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Abstract

A simple graph G = (V, E) is 3-rigid if its generic bar-joint frameworks in R3 are infinitesimally
rigid. Block and hole graphs are derived from triangulated spheres by the removal of edges and the
addition of minimally rigid subgraphs, known as blocks, in some of the resulting holes. Combina-
torial characterisations of minimal 3-rigidity are obtained for these graphs in the case of a single
block and finitely many holes or a single hole and finitely many blocks. These results confirm a
conjecture of Whiteley from 1988 and special cases of a stronger conjecture of Finbow-Singh and
Whiteley from 2013.

Keywords: infinitesimal rigidity, vertex splitting, bar-joint framework, combinatorial rigidity
2010 MSC: 52C25, 05C75

1. Introduction

A classical result of Cauchy [1] asserts that a convex polyhedron in three-dimensional Eu-
clidean space is continuously rigid, when viewed as a bar-joint framework, if and only if the faces
are triangles. Dehn [2] subsequently showed that this is also equivalent to the stronger condition
of infinitesimal rigidity. If the joints of such a framework are perturbed to generic positions, with
the bar lengths correspondingly adjusted, then infinitesimal rigidity may be established more di-
rectly by vertex splitting. In this case convexity is not necessary and it follows that the graphs of
triangulated spheres are 3-rigid in the sense that their generic placements in R3 provide infinites-
imally rigid bar-joint frameworks. This is a theorem of Gluck [5] and in fact these graphs are
minimally 3-rigid (isostatic) in view of their flexibility on the removal of any edge. The vertex
splitting method was introduced into geometric rigidity theory by Whiteley [9] and it plays a key
role in our arguments.

While the general problem of characterising the rigidity or minimal rigidity of generic three-
dimensional bar-joint frameworks remains open, an interesting class of graphs which are derived
from convex polyhedra has been considered in this regard by Whiteley [8], Finbow-Singh, Ross
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and Whiteley [4] and Finbow-Singh and Whiteley [3]. These graphs arise from surgery on a
triangulated sphere involving the excision of the disjoint interiors of some triangulated discs and
the insertion of minimally rigid blocks into some of the resulting holes. Even in the case of a single
block and a single hole of the same perimeter length n ≥ 4 the resulting block and hole graph need
not be 3-rigid. A necessary and sufficient condition, obtained in [3], for the minimal rigidity of
such an n-tower case, with disjoint block and hole boundaries, is that there exist n vertex disjoint
paths connecting the vertices of the boundaries.

1.1. The main result
In what follows we introduce some new methods which provide, in particular, characterisations

of minimal 3-rigidity for the class of block and hole graphs with a single block and finitely many
holes. Such graphs may be viewed as the structure graphs of triangulated domes with windows,
where the role of terra firma is played by the single block. In fact, the girth inequalities, defined
in Sect. 4, provide a computable necessary and sufficient condition for 3-rigidity in terms of lower
bounds on the lengths of cycles of edges around sets of windows.

Triangulated

Fixed jointsFixed joints

Triangulated

Figure 1: A triangulated dome with windows.

The main result is as follows.

Theorem 1. Let Ĝ be a block and hole graph with a single block and finitely many holes, or, a
single hole and finitely many blocks. Then the following statements are equivalent.

(i) Ĝ is minimally 3-rigid.

(ii) Ĝ is (3, 6)-tight.

(iii) Ĝ is constructible from K3 by the moves of vertex splitting and isostatic block substitution.

(iv) Ĝ satisfies the girth inequalities.
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Condition (ii) is a well known necessary condition for minimally 3-rigid graphs which requires
the Maxwell count |E| = 3|V | − 6 together with corresponding sparsity inequalities for subgraphs
(see Sect. 2). The construction scheme in (iii) involves three phases of reduction for a (3, 6)-tight
block and hole graph, namely,

1. discrete homotopy reduction by (3, 6)-tight preserving edge contractions,

2. graph division over critical separating cycles of edges, and,

3. admissible block-hole boundary contractions.

The girth inequalities in (iv) are a reformulation of the cut cycle inequalities of [3]. For the single
block case, the equivalence of conditions (i) − (iii) is established in Sect. 3 and the equivalence
with condition (iv) is established in Sect. 4. The same equivalences are then obtained for the
“dual” class of block and hole graphs with a single hole in Corollary 48. In fact, the dual of any
generically isostatic block and hole graph is generically isostatic (see [4]).

Theorem 1 confirms the single hole case and the single block case of Conjecture 5.1 in [3] (see
also Remark 13 below). Example 50 shows that the conjecture is not true in general. A further
corollary of Theorem 1 is that the following conjectures, paraphrased from [8], are true.

Conjecture 2 ([8, Conjectures 4.2 and 4.3]). Let Ĝ be a block and hole graph with one pentagonal
block and two quadrilateral holes, or, two quadrilateral blocks and one pentagonal hole. If Ĝ is
5-connected then it is minimally 3-rigid.

The Appendix provides a proof of the preservation of minimal 3-rigidity under vertex splitting
(established in [9]) and a simple proof of Gluck’s theorem ([5]) on the 3-rigidity of graphs of
triangulated spheres.

2. Block and hole graphs

A cycle of edges in a simple graph is a sequence e1, e2, . . . , er, with r ≥ 3, for which there exist
distinct vertices v1, v2, . . . , vr, such that ei = vivi+1 for i < r and er = vrv1.

2.1. Face graphs
Let S = (V, E) be the graph of a triangulated sphere, that is, S is a planar simple 3-connected

graph such that each face of S is bounded by a 3-cycle. Let c be a cycle in S of length four or more.
Then c determines two complementary planar subgraphs of S , each with a single non-triangular
face bordered by the edges of c. Such a subgraph is referred to as a simplicial disc of S with
boundary cycle c. The boundary cycle of a simplicial disc D is also denoted by ∂D. The edge
interior of D is the set of edges in D that do not belong to ∂D. A collection of simplicial discs is
internally-disjoint if their respective edge interiors are pairwise disjoint.

Definition 3. A face graph, G, is obtained from the graph of a triangulated sphere, S , by,

1. choosing a collection of internally disjoint simplicial discs in S ,
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2. removing the edge interiors of each of these simplicial discs,

3. labelling the non-triangular faces of the resulting planar graph by either B or H.

A labelling of the triangular faces of G by the letter T would be redundant but nevertheless
an edge of G is said to be of type BB, BH,HH, BT,HT or TT according to the labelling of its
adjacent faces. A face graph is of type (m, n) if the number of B-labelled faces is m and the
number of H-labelled faces is n.

Example 4. The complete graph K4 is the graph of a triangulated sphere and may be expressed
as the union of two simplicial discs with a common 4-cycle boundary. The edge interiors of these
simplicial discs each contain a single edge. Remove these edge interiors to obtain a 4-cycle and
label the two resulting faces by B and H. This is the smallest example of a face graph of type
(1, 1).

If B and H are collections of internally-disjoint simplicial discs of S then the notation G =
S (B,H) indicates that the B-labelled faces of the face graph G correspond to the simplicial discs
in B and the H-labelled faces of G correspond to the simplicial discs inH .

2.2. Block and hole graphs
Let G = S (B,H) be a face graph derived from S and let B = {B1, B2, . . . , Bm} be the simplicial

discs in S which determine the B-labelled faces of G.

Definition 5. A block and hole graph on G = S (B,H) is a graph Ĝ of the form Ĝ = G∪B̂1∪· · ·∪B̂m

where,

1. B̂1, B̂2, . . . , B̂m are minimally 3-rigid graphs which are either pairwise disjoint, or, intersect
at vertices and edges of G,

2. G ∩ B̂i = ∂Bi for each i = 1, 2, . . . ,m.

As in [3, 4], we refer to the subgraphs B̂i as the blocks or isostatic blocks of Ĝ. The follow-
ing isostatic block substitution principle asserts that one may substitute isostatic blocks without
altering the rigidity properties of Ĝ. The proof is an application of [7, Corollary 2.8].

Lemma 6. Let G = S (B,H) be a face graph and suppose there exists a block and hole graph on G
which is simple and minimally 3-rigid. Then every simple block and hole graph on G is minimally
3-rigid.

The graph of a triangulated sphere is minimally 3-rigid ([5]) and so such graphs provide a
natural choice for the isostatic blocks in a block and hole graph.

Example 7. Let G = S (B,H) be a face graph and for each Bi ∈ B construct an isostatic block B†i
with,

V(B†i ) = V(∂Bi) ∪ {xi, yi}, E(B†i ) = E(∂Bi) ∪ {(v, xi), (v, yi) : v ∈ V(∂Bi)}
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The graph B†i is referred to as a simplicial discus with poles at xi and yi. The resulting block and
hole graph G ∪ B†1 ∪ · · · ∪ B†m, denoted by G†, is referred to as the discus and hole graph for G.
Note that G† is a simple graph which is uniquely determined by G. The discus and hole graphs
will be used in Sect. 3 to establish a construction scheme for (3, 6)-tight block and hole graphs
with a single block.

In general, a block and hole graph may not be simple. This can occur if two B-labelled faces
of G share a pair of non-adjacent vertices.

Example 8. Let G = S (B,H) be a face graph and for each Bi ∈ B construct an isostatic block B◦i
as follows: Define B◦i to be the graph of a triangulated sphere which is obtained from the boundary
cycle ∂Bi by adjoining 2(|∂Bi|−3) edges so that B◦i is the union of two internally-disjoint simplicial
discs with common boundary cycle ∂Bi. The resulting block and hole graph G ∪ B◦1 ∪ · · · ∪ B◦m will
be denoted G◦. Note that G◦ is not uniquely determined and may not be simple. However, G◦ has
the convenient property that its vertex set is that of G. This construction will be applied in Sect. 4
to characterise isostatic block and hole graphs in terms of girth inequalities.

There is a simple relationship between a face graph G and its associated block and hole graphs.
It is convenient therefore to focus the reduction analysis at the level of face graphs. This perspec-
tive also underlines a duality principle of the theory under B, H transposition, a feature exposed in
[4] and discussed in Sect. 4.4.

2.3. Freedom numbers
Let f (J) denote the freedom number 3|V(J)| − |E(J)| of a graph J. A simple graph J satisfies

the Maxwell count if f (J) = 6.

Lemma 9. Let G, K and K′ be graphs with the following properties,

(i) K and K′ both satisfy the Maxwell count, and,

(ii) G ∩ K = G ∩ K′.

If G ∪ K satisfies the Maxwell count then G ∪ K′ satisfies the Maxwell count.

Proof. The result follows on considering the freedom numbers,

f (G ∪ K′) = f (G) + f (K′) − f (G ∩ K′) = f (G) + f (K) − f (G ∩ K) = f (G ∪ K) = 6.

A simple graph G is said to be (3, 6)-sparse if f (J) ≥ 6 for any subgraph J containing at least
two edges. The graph G is (3, 6)-tight if it is (3, 6)-sparse and satisfies the Maxwell count.

Lemma 10. Let G, K and K′ be simple graphs with the following properties,

(i) K and K′ are both (3, 6)-tight,

(ii) G ∩ K = G ∩ K′,
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(iii) if v,w ∈ V(G ∩ K′) and vw ∈ E(K′) then vw ∈ E(G).

If G∪K is (3, 6)-sparse (respectively, (3, 6)-tight) then G∪K′ is (3, 6)-sparse (respectively, (3, 6)-
tight).

Proof. Suppose that G ∪ K is (3, 6)-sparse and let J be a subgraph of G ∪ K′ which contains at
least two edges. It is sufficient to consider the case where J is connected. If J is a subgraph of G
then f (J) ≥ 6 since G ∪ K is (3, 6)-sparse. If J is not a subgraph of G then there are two possible
cases.

Case 1) Suppose that J ∩K′ contains exactly one edge vw and that this edge is not in G. Then,
by condition (iii), either v < V(G) or w < V(G). It follows that,

f (J) = f (J ∩G) + ( f (J ∩ K′) − f (J ∩ (G ∩ K′))) ≥ 5 + 2 = 7.

Case 2) Suppose that J ∩K′ contains two or more edges. Since K satisfies the Maxwell count,
f (J ∩ K′) ≥ 6 = f (K) and, since G ∪ K is (3, 6)-sparse,

f (J) = f (J ∩G) + f (J ∩ K′) − f (J ∩ (G ∩ K′))
≥ f (J ∩G) + f (K) − f (J ∩ (G ∩ K))
= f ((J ∩G) ∪ K) ≥ 6.

In each case, f (J) ≥ 6 and so G ∪ K′ is (3, 6)-sparse. If G ∪ K is (3, 6)-tight then by the above
argument, and Lemma 9, G ∪ K′ is also (3, 6)-tight.

It is well-known that minimally 3-rigid graphs, and hence the isostatic blocks of a block and
hole graph, are necessarily (3, 6)-tight (see for example [6]). The following corollary refers to the
discus and hole graph described in Example 7.

Corollary 11. Let G = S (B,H) be a face graph of type (m, n).

(i) Suppose there exists a block and hole graph on G which satisfies the Maxwell count. Then
every block and hole graph on G satisfies the Maxwell count.

(ii) Suppose there exists a block and hole graph on G which is simple and (3, 6)-sparse (respec-
tively, simple and (3, 6)-tight). Then the discus and hole graph G† is (3, 6)-sparse (respec-
tively, (3, 6)-tight).

Proof. The statements follow by applying Lemmas 9 and 10 respectively with K and K′ repre-
senting two different choices of isostatic block for a given B-labelled face of G. Note that in the
case of (ii), if Bi ∈ B then there are no edges vw of the simplicial discus B†i with v,w ∈ ∂Bi other
than the edges of the boundary cycle ∂Bi. Thus condition (iii) of Lemma 10 is satisfied.
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2.4. 3-connectedness
Recall that a graph is 3-connected if there exists no pair of vertices {x, y} with the property that

there are two other vertices which cannot be connected by an edge path avoiding x and y. Such a
pair is referred to here as a separation pair. The block and hole graphs Ĝ which are derived from
face graphs G need not be 3-connected. However, it is shown below that in the single block case
3-connectedness is a consequence of (3, 6)-tightness.

Lemma 12. Every (3, 6)-tight block and hole graph with a single block is 3-connected.

Proof. Let Ĝ be a (3, 6)-tight block and hole graph with a single block and suppose that Ĝ is
not 3-connected. Then there exists a separation pair {x, y} with associated connected components
K1,K2, . . . ,Kr. That is each K j is a maximal connected subgraph in which every pair of vertices
may be connected by a path of edges whose internal vertices do not include x or y.

Let K1 be the component which contains an edge of B̂1 and hence all of B̂1. The graph K1 and
its complementary graph K′1 with E(K′) = E(Ĝ)\E(K) each have more than one edge and their
intersection is {x, y}. Thus f (K1 ∩ K′1) = 6 and

f (K1) + f (K′1) = f (Ĝ) + f (K1 ∩ K′1) = 12

It follows that the (3, 6)-sparse graphs K1 and K′1 are both (3, 6)-tight. In particular, K′1 must be
the graph of a triangulated sphere and it follows that K′1 contains the edge xy. Now K1 ∪ {xy} is a
subgraph of Ĝ which fails the (3, 6)-sparsity count, which is a contradiction.

Remark 13. The definition of a block and hole graph Ĝ is somewhat more liberal than the block
and hole graphs P̂ of Finbow-Singh and Whiteley [3]. A graph P̂ is defined by considering a
planar 3-connected graph P whose faces are labelled with the letters B,H and D. The B-labelled
faces are replaced with isostatic block graphs and the D-labelled faces are triangulated. The
resulting graph P̂ is called a base polyhedron reflecting the fact that it is the starting point for
an “expanded” graph P̂E. This is obtained by a further triangulation process involving adding
vertices on edges of DD type, and vertices interior to triangles. In particular P̂ and P̂E are also
3-connected.

3. Edge contraction and critical cycle division

For m, n nonnegative integers let G(m, n) be the set of all face graphs of type (m, n) for which
the discus and hole graph G† is (3, 6)-tight. In particular, the graphs of G(0, 0) are triangulations
of a triangle and the sets G(0, n) and G(m, 0) are empty for n,m ≥ 1.

3.1. TT edge contractions
The first reduction move for block and hole graphs is based on an edge contraction move for

face graphs. A TT edge in a face graph G is said to be contractible if it belongs to two triangular
faces and to no other 3-cycle of G. In this case the deletion of the edge and the identification
of its vertices determines a graph move G → G′ on the class of face graphs, called a TT edge
contraction, which preserves the boundary cycles of the labelled faces of G.
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Definition 14. A terminal face graph G in G(m, n) is one for which there exist no TT edge con-
tractions G → G′ with G′ ∈ G(m, n).

Example 15. A cycle graph with length at least 4, with exterior face labelled B and interior face
labelled H is evidently a terminal graph in G(1, 1).

Example 16. Fig. 2 shows a face graph G with a contractible TT edge which is nevertheless
a terminal face graph of G(1, 5). The discus and hole graph for the contracted graph G′ fails
to be (3, 6)-tight since there is an extra edge added to the simplicial discus B†. Each block and
hole graph Ĝ is evidently reducible by inverse Henneberg moves to a single block (i.e. by succes-
sively removing degree 3 vertices, see for example [6]). However, there is a systematic method of
reduction described below in which each move is a form of edge contraction or cycle division.

B
H

H

H

H

H

Figure 2: A terminal face graph in G(1, 5).

Example 17. The 6-vertex graph of Fig. 3 is a terminal face graph in G(2, 2) whose block and hole
graphs (variants of the double banana graph) are not 3-rigid. The graph G◦ (see Ex. 8), which in
this case is unique, is not a simple graph.

B
H

B

H

Figure 3: A terminal face graph in G(2, 2).

Remark 18. The contraction of a TT edge in a graph which is both (3, 6)-tight and 3-connected
may remove either one of these properties while maintaining the other. However, for a block
and hole graph with a single block the situation is more straightforward since, by Lemma 12, 3-
connectedness is a consequence of (3, 6)-tightness. In particular, if G is a terminal face graph in
G(1, n), for some n ≥ 1, then the discus and hole graph G† is both (3, 6)-tight and 3-connected.
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3.2. Critical separating cycles
Let c be a cycle of edges in a face graph G and fix a planar realisation of G. Then c determines

two new face graphs G1 and G2 which consist of the edges of c together with the edges and labelled
faces of G which lie outside (resp. inside) c. If c is not a 3-cycle then the unlabelled face in G1

(and in G2) which is bounded by c is assigned the label H. The discus and hole graph for G1 (resp.
G2) will be denoted Ext(c) (resp. Int(c)). Note that G† = Ext(c) ∪ Int(c) and Ext(c) ∩ Int(c) = c.

Definition 19. A critical separating cycle for a face graph G is a cycle c with the property that
either Ext(c) or Int(c) is (3, 6)-tight.

The boundary of a B-labelled face is always a critical separating cycle. Moreover, if G† is
(3, 6)-tight then the boundary of every face of G is a critical separating cycle.

Lemma 20. Let G be a face graph in G(m, n). If c is a 3-cycle in G then c is a critical separating
cycle for G and both Ext(c) and Int(c) are (3, 6)-tight.

Proof. Since G† is (3, 6)-sparse, both Ext(c) and Int(c) are (3, 6)-sparse. Note that f (G†) = f (c) =
6, f (Ext(c)) ≥ 6 and f (Int(c)) ≥ 6. Thus applying the formula,

f (G†) = f (Ext(c)) + f (Int(c)) − f (c),

it follows that both Ext(c) and Int(c) are (3, 6)-tight.

For face graphs of type (1, n) a planar depiction may be chosen for which the unbounded face
is B-labelled. Thus for any cycle c, it may be assumed that Ext(c) contains the isostatic block and
Int(c) is a subgraph of a triangulated sphere.

Lemma 21. Let G be a face graph in G(1, n). Then a cycle c is a critical separating cycle for G if
and only if Ext(c) is (3, 6)-tight.

Proof. If c is a 3-cycle then apply Lemma 20. If c is not a 3-cycle then Int(c) is a subgraph of a
triangulated sphere with f (Int(c)) ≥ 6 + (|c| − 3) > 6.

Proposition 22. Let G be a face graph of type (1, n) and suppose that there are no TT or BH
edges in G.

(i) If G† satisfies the Maxwell count then G contains a cycle π, which is not the boundary of a
face, such that Ext(π) satisfies the Maxwell count.

(ii) If G ∈ G(1, n) then G contains a critical separating cycle for G which is not the boundary of
a face.

Proof. Since G contains no edges of type TT or BH, every edge in the boundary cycle ∂B is of
type BT (see Fig. 4) and so each vertex v in ∂B must be contained in an H-labelled face Hv. If
each vertex v in ∂B is contained in a distinct H-labelled face Hv then let r = |∂B| and let v1, . . . , vr

be the vertices of ∂B. Let H1, . . . ,Hn be the H-labelled faces of G, indexed so that Hi = Hvi for
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each i = 1, 2, . . . , r. Note that r ≤ n. Since the block and hole graphs G◦ satisfy the Maxwell count
it follows that,

r − 3 = |∂B| − 3 =
n∑

i=1

(|∂Hi| − 3) ≥
r∑

i=1

(|∂Hi| − 3) ≥ r.

This is a contradiction and so Hv = Hw for some distinct vertices v,w ∈ ∂B. The boundary of
this common H-labelled face is composed of two edge-disjoint paths c1 and c2 joining v to w. The
boundary cycle ∂B is also composed of two edge-disjoint paths joining v to w. Let π1 be the path in
Fig. 4 which moves anti-clockwise along ∂B from v to w and then along c1 from w to v. Similarly,
let π2 be the path which moves clockwise along ∂B from v to w and then along c2 from w to v.
Note that π1 and π2 are cycles in G with Ext(π1) ∩ Ext(π2) = B†. Thus,

f (G†) = f (Ext(π1)) + f (Ext(π2)) − f (B†),

and so, since f (G†) = f (B†) = 6, it follows that f (Ext(π1)) = f (Ext(π2)) = 6. Hence Ext(π1) and
Ext(π1) both satisfy the Maxwell count. This proves (i) and now (ii) follows immediately.

B

H

c1

c2

v

w

Figure 4: H = Hv = Hw.

3.3. Separating cycle division
The next reduction move for block and hole graphs is based on a division of the face graph

with respect to a critical separating cycle of edges. The usefulness of this arises from the fact that
critical separating cycles arise when there are obstructions to TT edge contraction.

Definition 23. Let G be a face graph with a single B-labelled face and consider a planar realisa-
tion in which the unbounded face is labelled by B. Let c be a cycle in G.

Define G1 to be the face graph obtained from G and c by,

(i) removing all edges and vertices interior to c, and,

(ii) if |c| ≥ 4, viewing the edges of c as the boundary of a new face with label H.
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Define G2 to be the face graph obtained from G and c by,

(i) removing all edges and vertices which are exterior to c, and,

(ii) if |c| ≥ 4, viewing the edges of c as the boundary of a new face with label B.

This division process G → {G1,G2} is referred to as a separating cycle division for the face graph
G and cycle c.

Note that, under this separating cycle division, G†1 = Ext(c). If |c| = 3 then G†2 = Int(c) while
if |c| ≥ 4 then G†2 = Int(c) ∪ B† where B† is the simplicial discus with perimeter vertices in c.

+

B

c
Hint(c)

B
B

int(c)

Figure 5: Separating cycle division in a face graph.

Lemma 24. Let G be a face graph in G(1, n) with a separating cycle division G → {G1,G2} for a
critical separating cycle c in G.

(i) If |c| = 3 then G1 ∈ G(1, n) and G2 ∈ G(0, 0).

(ii) If |c| ≥ 4 then G1 ∈ G(1, n− l+ 1) and G2 ∈ G(1, l), where l is the number of H-labelled faces
interior to c.

Proof. (i) By Lemma 20, G1 and G2 both have (3, 6)-tight discus and hole graphs. Since G2 has
no B-labelled faces it must be the graph of a triangulated sphere.

(ii) By Lemma 21, G†1 = Ext(c) is (3, 6)-tight. That G†2 is (3, 6)-tight follows from Lemma 10
since G† = Ext(c)∪Int(c) is (3, 6)-tight and Ext(c) (which intersects Int(c) in c) may be substituted
by the simplicial discus B† with vertices in c to obtain G†2.

It can happen that the only critical separating cycles in a face graph G ∈ G(m, n) are the trivial
ones, that is, the boundary cycles of the faces of G.

Definition 25. A face graph G in G(m, n) is indivisible if every critical separating cycle for G is
the boundary cycle of a face of G.

In the next section it is shown how repetition of (3, 6)-tight-preserving TT edge contractions
may lead to the appearance of critical separating cycles. Through a repeated edge contraction and
cycle division process a set of terminal and indivisible face graphs may be obtained. Such a face
graph is illustrated in Fig. 6.
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B

H
H

HH

H

H H

Figure 6: A face graph in G(1, 7) which is both terminal and indivisible.

3.4. Key Lemmas
If c is a cycle in a face graph G, which is not the boundary of a face, then int(c) denotes the

subgraph of G† obtained from Int(c) by the removal of the edges of c. The following result will be
referred to as the “hole-filling” lemma.

Lemma 26. Let G be a face graph in G(1, n). Let K be a subgraph of G† and suppose that c is a
cycle in G ∩ K with E(K ∩ int(c)) = ∅.

(i) f (K ∪ int(c)) ≤ f (K).

(ii) If K is (3, 6)-tight then K ∪ int(c) is (3, 6)-tight.

Proof. Since G† is (3, 6)-sparse, f (K ∪ int(c)) ≥ 6 and f (Ext(c)) ≥ 6. Note that,

6 = f (G†) = f (Ext(c)) + f (int(c)) − 3|c|,

and so f (int(c)) − 3|c| ≤ 0. It follows that,

f (K ∪ int(c)) = f (K) + f (int(c)) − 3|c| ≤ f (K).

This proves (i). To prove (ii) apply the above argument with f (K) = 6.

The following lemma plays a key role in the proof of the main result.

Lemma 27. Let G be a face graph in G(1, n) with n ≥ 1. Let e be a contractible TT edge in G
with contracted face graph G′. Then the following statements are equivalent.

(i) G′ < G(1, n).

(ii) The edge e lies on a critical separating cycle of G.

Proof. Suppose that G′ < G(1, n) and let e = uv. Then the discus and hole graph (G′)† is not
(3, 6)-tight and so there exists a subgraph K′ in (G′)† with f (K′) ≤ 5. Let v′ be the vertex in G′

obtained by the identification of u and v. Evidently, v′ ∈ V(K′) since, otherwise, G† must contain
a copy of K′ and this contradicts the (3, 6)-sparsity count for G†. There are two pairs of edges xu,
xv and yu, yv in G which are identified with xv′ and yv′ in G′ on contraction of e (see Fig. 7).
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Figure 7: Locating a critical separating cycle for e.

Case (a). Suppose that x, y ∈ V(K′). Let K be the subgraph obtained from K′ by first adjoining
the edges xv′ and yv′ to K′ (if necessary) and then reversing the TT edge contraction on e. Then
f (K′) ≥ f (K) ≥ 6 which is a contradiction.

Case (b). Suppose that x ∈ V(K′) and y < V(K′). Let K be the subgraph of G† obtained from
K′ by first adjoining the edge xv′ to K′ (if necessary) and then reversing the TT edge contraction
on e. Then f (K) ≤ f (K′) + 1 ≤ 6 and so f (K) = 6. In particular, K is (3, 6)-tight. Rechoose K, if
necessary, to be a maximal (3, 6)-tight graph in G† which contains the edge e and does not contain
the vertex y. Note that K must be connected and must contain the isostatic block in G†. Since K is
maximal, by the hole-filling lemma (Lemma 26), K = Ext(c) for some cycle c in G. This cycle is
a critical separating cycle for G, and so (i) implies (ii) in this case.

Case (c). Suppose that x < V(K′) and y < V(K′). Let K be the subgraph of G† obtained from K′

by reversing the TT edge contraction on e. Then f (K) = f (K′)+ 2 ≤ 7 and so f (K) ∈ {6, 7}. Once
again assume that K is a maximal subgraph with this property. Then K must be connected and
must contain the isostatic block in G†. By the planarity of G there are two cycles c, d of G, passing
through e, with int(c) and int(d) disjoint from K and containing x and y respectively. Since K is
maximal, by the hole-filling lemma (Lemma 26), K = Ext(c) ∩ Ext(d). Note that f (Ext(c)) ≥ 6,
f (Ext(d)) ≥ 6 and

6 = f (G†) = f (Ext(c)) + f (Ext(d)) − f (K).

Thus, since f (K) ∈ {6, 7}, at least one of c and d is a critical separating cycle and so (i) implies (ii).
For the converse, suppose that the contractible edge e lies on a critical separating cycle c. Then

c is a separating cycle for a division G → {G1,G2} and G†1 is a (3, 6)-tight subgraph of G†. Since
the edge e lies in exactly one triangular face of G†1, the graph obtained from G†1 by contracting e is
a subgraph of (G′)† with freedom number 5 and so (i) does not hold.

Corollary 28. Let G be a face graph in G(1, n) which is both terminal and indivisible. Then G
contains no TT edges.

13



Proof. Suppose there exists a TT edge e in G. Since G is terminal, either e is not contractible or
e is contractible but the graph obtained by contracting e is not in G(1, n). If e is not contractible
then it must be contained in a non-facial 3-cycle c. By Lemma 20, c is a critical separating cycle
for G. However, this contradicts the indivisibility of G. If e is contractible then by Lemma 27, e
lies on a critical separating cycle. Again this contradicts the indivisibility of G and so the result
follows.

3.5. Contracting edges of BH type
A BH edge e of a face graph G is contractible if it does not belong to any 3-cycle in G. A BH

edge contraction is a graph move G → G′ on the class of face graphs under which the vertices
of a contractible BH edge of G are identified. At the level of the discus and hole graph G†, a
contractible BH edge e is contained in a simplicial discus B† and is an edge of exactly two 3-
cycles of G†. The contraction of e preserves the freedom number of G† and can be reversed by
vertex splitting. Thus, prima facie, there is the possibility of reducing an indivisible terminal face
graph with a (3, 6)-tight discus and hole graph to a smaller face graph which also has a (3, 6)-tight
discus and hole graph. In the case of a block and hole graph with a single block this is always the
case.

Lemma 29. Let G ∈ G(1, n), n ≥ 1, and let G′ be derived from G by a BH edge contraction. Then
G′ is a face graph in either G(1, n), G(1, n − 1) or G(0, 0).

Proof. Let e = uv be the contractible BH edge in G with B1 and H1 the adjacent labelled faces of
G and v′ the vertex in G′ obtained on identifying of u and v. Then e is contained in exactly two 3-
cycles of G† which lie in the simplicial discus B†1. Clearly, (G′)† satisfies the Maxwell count since
f ((G′)†) = f (G†) = 6. The BH edge contraction on e reduces the length of the boundary cycle
∂B1 by one. If this reduction of the boundary cycle results in a 3-cycle then G′ has no B-labelled
face. Moreover, the Maxwell count for G′ ensures that there are no H-labelled faces in G′. Thus
G′ ∈ G(0, 0). If G′ has one B-labelled face then it must have either n or n − 1 H-labelled faces,
depending on whether or not the BH edge contraction on e reduces the boundary cycle ∂H1 to a
3-cycle. It remains to show that (G′)† is (3, 6)-sparse in this case.

If K′ is a subgraph of (G′)† then K′ may be obtained from a subgraph K of G† by the contraction
of e. Let x and y be the polar vertices of the simplicial discus B†1. If K′ contains neither of the
vertices x, y then K is a subgraph of G with f (K) ≥ 6 + (|∂B1| − 3) + (|∂H1| − 3) ≥ 8. Thus
f (K′) = f (K) − 2 ≥ 6. Suppose that K′ contains exactly one of the polar vertices x, y. Then,
assuming it is the vertex x, it follows that K is a subgraph of the triangulated sphere obtained
from G by substituting the simplicial disc B1 with the discus hemisphere for the vertex x and by
inserting simplicial discs in the H-labelled faces of G. It follows that K′ is also a subgraph of a
triangulated sphere and so f (K′) ≥ 6. Now suppose that K′ contains both of the polar vertices
x, y. It is sufficient to consider the case when K′ contains the edges xv′ and yv′ and to assume that
xu, xv, yu, yv ∈ K. Then f (K′) = f (K) ≥ 6. It follows that (G′)† is (3, 6)-sparse.

For multiblock graphs a BH edge contraction need not preserve (3, 6)-tightness.
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Example 30. Let G ∈ G(2, 3) be the face graph illustrated in Fig. 8. Contraction of the edge e
leads to a vertex which is adjacent to four vertices in ∂B1 and so the associated discus and hole
graph is not (3, 6)-tight.

eH

H

H

B1

B2

Figure 8: A contractible BH edge e in a face graph G ∈ G(2, 3) with inadmissible contraction.

The following analogue of Lemma 29 applies to multi-block graphs.

Lemma 31. Let G be a face graph in G(m, n) with m, n ≥ 1. Let e be an edge of a path P in
∂Bi ∩ ∂H j which has length 3 or more and let G′ be the face graph, of type (m′, n′) obtained by the
contraction of e. Then G′ ∈ G(m′, n′).

Proof. The proof follows by applying the (3, 6)-tight graph substitution principle of Lemma 10.
Consider the graph obtained from G† by removing the poles of the simplicial discus B†i and the
interior vertices of P. This graph plays the role of G in Lemma 10. Let (B′i)

† denote the simplicial
discus obtained from B†i on contracting e. Now B†i and (B′i)

† play the roles of K and K′ respectively
in Lemma 10. Note that since the path containing e has length at least 3, condition (iii) of Lemma
10 is satisfied. Thus, since G† is (3, 6)-tight, (G′)† is also (3, 6)-tight.

In the light of Lemma 29, the indivisible terminal face graph of Fig. 6 may be reduced by
BH edge contractions and further edge contraction reductions become possible in view of the
emerging edges of type TT . One can continue such reductions until termination at the terminal
graph of G(0, 0) which is K3. In fact this kind of reduction is possible in general and forms a key
part of the proof of Theorem 36.

Definition 32. A face graph G is BH-reduced if it contains no contractible BH edges.

Corollary 33. For each n ≥ 1, there is no face graph in G(1, n) which is terminal, indivisible and
BH-reduced.

Proof. Suppose there exists G ∈ G(1, n) which is terminal, indivisible and BH-reduced. By Corol-
lary 28, G contains no TT edges. If an edge e in G is of type BH then, since G is BH-reduced, e
is not contractible and so must be contained in a non-facial 3-cycle c of G. By Lemma 20, c is a
critical separating cycle for G. However, this contradicts the assumption that G is indivisible and
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so G contains no BH edges. By Proposition 22, G contains a critical separating cycle for G which
is not the boundary of a face. However, this contradicts the indivisibility of G and so there can be
no face graph in G(1, n) which is terminal, indivisible and BH-reduced.

Corollary 34. Let G be a face graph in G(1, n). Then there exists a rooted tree in which each node
is labelled by a face graph such that,

(i) the root node is labelled G,

(ii) every node has either one child which is obtained from its parent node by a TT or BH
edge contraction, or, two children which are obtained from their parent node by a critical
separating cycle division,

(iii) each node is either contained in G(1,m) for some m ≤ n and is not a leaf, or, is contained in
G(0, 0) (in which case it is a leaf).

Proof. The statement follows by applying Corollary 33 together with Lemma 24 and Lemma
29.

G G′

G′2

G′22 S 3

S 2

G′1 S 1

Figure 9: Deconstructing a face graph G ∈ G(1, n). Each node is obtained from its parent by a TT or BH edge
contraction, or, by a critical separating cycle division. Each leaf is contained in G(0, 0).

In the case of general block and hole graphs one can also perform division at critical cycles,
and there are counterparts to Lemma 27 and Corollary 28. However, as the following example
shows, there are face graphs in G(m, n), m ≥ 2, which are terminal, indivisible and BH-reduced.

Example 35. Fig. 10 shows a face graph G ∈ G(2, 6) which is terminal, indivisible and BH-
reduced. Note that the associated block and hole graphs Ĝ are 3-rigid. This follows from the
fact that they are constructible from K3 by vertex splitting together with Henneberg degree 3 and
degree 4 vertex extension moves.
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Figure 10: A face graph in G(2, 6) which is terminal, indivisible and BH-reduced.

3.6. Generic rigidity of block and hole graphs
Let J be a simple graph and let v be a vertex of J with adjacent vertices v1, v2, . . . , vn, n ≥ 2.

Construct a new graph J̃ from J by,

1. removing the vertex v and its incident edges from J,

2. adjoining two new vertices w1,w2,

3. adjoining the edge w1v j or the edge w2v j for each j = 3, 4, . . . , n.

4. adjoining the five edges v1w1, v2w1, v1w2, v2w2 and w1w2.

The graph move J → J̃ is called vertex splitting. It is shown in [9] that if J is minimally 3-rigid
then so too is J̃. (See also the Appendix).

Theorem 36. Let Ĝ be a block and hole graph with a single block. Then the following statements
are equivalent.

(i) Ĝ is minimally 3-rigid.

(ii) Ĝ is (3, 6)-tight.

(iii) Ĝ is constructible from K3 by the moves of vertex splitting and isostatic block substitution.

Proof. The implication (i) ⇒ (ii) is well known for general minimally 3-rigid graphs. The impli-
cation (iii) ⇒ (i) follows from the isostatic block substitution principle (Lemma 6) and the fact
that vertex splitting preserves minimal 3-rigidity (see Appendix).

To prove (ii) ⇒ (iii), apply the following induction argument based on the number of vertices
of the underlying face graph. Let P(k) be the statement that every (3, 6)-tight block and hole graph
Ĝ with a single block and |V(G)| = k is constructible from K3 by the moves of vertex splitting and
isostatic block substitution. Note that if |V(G)| = 4 then G is a 4-cycle with one B-labelled face
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and one H-labelled face. In this case, every block and hole graph Ĝ is clearly constructible from
K3 by applying a single vertex splitting move to obtain the minimally 3-rigid graph K4 and then
substituting this K4 with the required isostatic block for Ĝ. Thus the statement P(4) is true and this
establishes the base of the induction.

Now assume that the statement P(k) holds for all k = 4, 5, . . . , l − 1 where l ≥ 5. Let Ĝ
be a (3, 6)-tight block and hole graph with a single block and |V(G)| = l. By Corollary 11, the
discus and hole graph G† is also (3, 6)-tight and so G ∈ G(1, n) for some n. Thus G admits a
TT edge contraction, a BH edge contraction or a critical separating cycle division as described
in the reduction scheme for face graphs in G(1, n) (Corollary 34). In the case of a TT or BH
edge contraction G → G′, the contracted face graph G′ has fewer vertices than G and is contained
in either G(1,m) for some m ≤ n, or, in G(0, 0). In the former case, the induction hypothesis
implies that (G′)† is constructible from K3 by the moves of vertex splitting and isostatic block
substitution. In the latter case, (G′)† is the graph of a triangulated sphere and so is constructible
from K3 by vertex splitting alone (see Appendix). It follows that G† is itself constructible from
K3 by vertex splitting and isostatic block substitution. In the case of a critical separating cycle
division G → {G1,G2}, G is obtained from two face graphs G1 and G2, each with fewer vertices
than G. Moreover, for each j = 1, 2 either G j ∈ G(1,m j) for some m j ≤ n, or, G j ∈ G(0, 0). Thus it
again follows that both G†1 and G†2 are constructible from K3 by vertex splitting and isostatic block
substitution. Note that G†1 is minimally 3-rigid and so may be used as a substitute for the isostatic
block of G†2. In this way G† is shown to be constructible from K3 in the required manner. This
establishes the inductive step and so the proof of the implication (ii)⇒ (iii) is complete.

4. Girth inequalities

We now examine certain cycle length inequalities for block and hole graphs that were consid-
ered in Finbow-Singh and Whiteley [3]. Recall from Ex. 7 that G◦ denotes the block and hole
graph obtained from a face graph G by adjoining 2(|∂B| − 3) edges to each B-labelled face so that
each isostatic block B◦ is the graph of a triangulated sphere.

4.1. Index of a collection of labelled faces
Let B′ and H ′ respectively be collections of B-labelled and H-labelled faces of a face graph

G. The index of the collection B′ ∪H ′ is defined as,

ind(B′ ∪H ′) =
∑
B∈B′

(|∂B| − 3) −
∑

H∈H ′
(|∂H| − 3).

Lemma 37. Let G = S (B,H) be a face graph of type (m, n).

(i) If C and C′ are two collections of labelled faces of G then,

ind(C ∪ C′) = ind(C) + ind(C′) − ind(C ∩ C′).

(ii) f (G◦) = 6 − ind(B ∪H).
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(iii) If G◦ satisfies the Maxwell count then,

ind((B ∪H)\C) = − ind(C)

for each collection C of labelled faces of G.

Proof. (i) This follows by simple counting.
(ii) The face graph G is obtained from the graph of a triangulated sphere S . By construction,

|E(G◦)| = |E(S )| + ind(B ∪H).

Moreover, S and G◦ have the same vertex set and so,

f (G◦) = 3|V(G◦)| − |E(G◦)| = f (S ) − ind(B ∪H).

The graph of a triangulated sphere S must satisfy the Maxwell count and so the result follows.
(iii) Let C be a collection of labelled faces of G. By (i),

ind(B ∪H) = ind(C) + ind((B ∪H)\C).

If G◦ satisfies the Maxwell count then, by (ii), ind(B ∪H) = 0 and so the result follows.

Definition 38. A face graph G is said to satisfy the girth inequalities if, for every cycle c in G, and
every planar realisation of G,

|c| ≥ | ind(C)| + 3

where C is the collection of B-labelled and H-labelled faces of G which lie inside c.

A block and hole graph Ĝ is said to satisfy the girth inequalities if it is derived from a face
graph G which satisfies the girth inequalities.

Example 39. Let G be a face graph of type (1, 1), so that G has exactly one B-labelled face and
exactly one H-labelled face. Then G satisfies the girth inequalities if and only if the lengths of
the boundaries of the B-labelled face and the H-labelled face are equal and, letting r denote this
common boundary length, every cycle in G which winds around H has length at least r.

Lemma 40. Let G be a face graph of type (m, n). If G satisfies the girth inequalities then G◦

satisfies the Maxwell count.

Proof. By Lemma 37(ii) it is sufficient to show that ind(B ∪H) = 0. Choose any H-labelled face
H1 in G and let C = (B ∪H)\{H1}. Applying the girth inequalities,

ind(B ∪H) = ind(C) − (|∂H1| − 3) ≤ | ind(C)| − (|∂H1| − 3) ≤ 0.

To obtain the reverse inequality, choose any B-labelled face B1 in G and let C′ = (B ∪ H)\{B1}.
By the girth inequalities,

ind(B ∪H) = (|∂B1| − 3) + ind(C′) ≥ | ind(C′)| + ind(C′) ≥ 0.

19



Proposition 41. Let c be a cycle in a face graph G of type (m, n) and let C be a collection of
labelled faces of G which lie inside c for some planar realisation of G.

(i) If G◦ is simple and (3, 6)-sparse then |c| ≥ ind(C) + 3.

(ii) If G◦ is simple and (3, 6)-tight then |c| ≥ | ind(C) | + 3.

In particular, if G◦ is simple and (3, 6)-tight then G satisfies the girth inequalities.

Proof. Let S be the graph of a triangulated sphere and let c be a cycle of edges of length greater
than 3. Then c determines two simplicial discs D1 and D2 with intersection equal to c. Since each
simplicial disc may be completed to the graph of a triangulated sphere by the addition of |c| − 3
edges it follows that,

f (D1) = f (D2) = 6 + (|c| − 3).

Suppose a graph K1 is derived from D1 by keeping the same vertex set and subtracting and adding
various edges. Then K1 will fail the sparsity count f (K1) ≥ 6 if the total change in the number of
edges is an increase by more than |c| − 3 edges.

Consider now the face graph G and suppose it is derived from the graph of a triangulated
sphere S . Fix a planar representation of G and let c be a cycle in G. As in the previous paragraph,
c determines two simplicial discs D1 and D2 in S . Without loss of generality, assume that D1

contains the edges of S which lie inside c and D2 contains the edges which lie outside c. Let
K1 and K2 be the corresponding subgraphs of the block and hole graph G◦. Thus K1 and K2 are
derived from D1 and D2 respectively by removing edges which correspond to H-labelled faces in
G and adjoining the edges of each isostatic block.

(i) If G◦ is (3, 6)-sparse then f (K1) ≥ 6. Thus the total change in the number of edges in
deriving K1 from D1 does not exceed |c| − 3 in magnitude. This implies the inequality |c| − 3 ≥
ind(C).

(ii) Applying the argument for (i) to K2, f (K2) ≥ 6 and so the total change in the number of
edges in deriving K2 from D2 does not exceed |c| − 3. Thus,

|c| − 3 ≥ ind((B ∪H)\C).

By Lemma 37, ind((B ∪H)\C)) = − ind(C) and so |c| − 3 ≥ | ind(C)|.

4.2. Critical girth cycles
Definition 42. A cycle c in a face graph G is called a critical girth cycle for G if, for some planar
realisation of G,

|c| = | ind(C)| + 3

where C is the collection of B-labelled and H-labelled faces of G which lie inside c.

Recall from Def. 19 the definition of a critical separating cycle for a face graph.

Lemma 43. Let G be a face graph of type (m, n) and suppose the block and hole graphs for G
satisfy the Maxwell count. If c is a cycle in G then the following statements are equivalent.
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(i) c is a critical girth cycle for G.

(ii) Either Ext(c) or Int(c) satisfies the Maxwell count.

In particular, if G ∈ G(m, n) then c is a critical girth cycle if and only if it is a critical separating
cycle.

Proof. Fix a planar realisation for G and let B′ ∪H ′ be the labelled faces of G which lie inside c.
Let G1 be the face graph obtained from G by removing edges and vertices which are interior to c
and, if |c| ≥ 4, labelling the face with boundary c by H. Then f (G◦1) = f (G◦)−ind(B′∪H ′)+(|c|−3).
It follows that G◦1 satisfies the Maxwell count if and only if |c| = ind(B′∪H ′)+3. Similarly, let G2

be the face graph obtained from G by removing edges and vertices which are exterior to c and, if
|c| ≥ 4, labelling the face with boundary c by H. Then, by Lemma 37(iii), G◦2 satisfies the Maxwell
count if and only if |c| = − ind(B′ ∪ H ′) + 3. Thus, c is a critical girth cycle if and only if either
G◦1 or G◦2 satisfies the Maxwell count. The result now follows from Corollary 11.

4.3. One block and n holes
From the arguments of [3] it follows that a block and hole graph with a single block and a

single hole is (3, 6)-tight if and only if the underlying face graph satisfies the girth inequalities. In
Theorem 46 this equivalence is extended to the case of block and hole graphs with a single block
and n holes for any n ≥ 1.

Lemma 44. Let G → G′ be a TT edge contraction or a BH edge contraction on a face graph G
of type (1, n). If G satisfies the girth inequalities and contains no critical girth cycles, other than
boundary cycles, then G′ satisfies the girth inequalities.

Proof. If G′ is obtained from G by contracting a TT edge e then this contraction does not alter the
boundary of any labelled face of G. If G′ is obtained from G by contracting a BH edge e then this
contraction reduces by one the boundary lengths of the B-labelled face and some H-labelled face
H1. All other labelled faces of G are unchanged. Let c′ be a cycle in G′. Then there is a cycle c in
G such that either c = c′, or, c′ is obtained from c by contracting the edge e. If e is an edge of c
then B1 and H1 must lie in complementary regions of the complement of c. Thus the index of the
exterior and interior labelled faces for c are, respectively, reduced and increased by one. If e is not
an edge of c then the B and H labelled faces both lie either inside or outside c. Thus the index of
the exterior and interior labelled faces for c are unchanged. Since c is not a critical girth cycle in
G, in each of these cases the girth inequality is satisfied by c′.

Lemma 45. Let G be a face graph of type (1, n) and let G → {G1,G2} be a separating cycle
division on a critical girth cycle c in G. If G satisfies the girth inequalities then G1 and G2 both
satisfy the girth inequalities.

Proof. Let C denote the collection of labelled faces of G which lie inside c. Evidently, ind(C) ≤ 0
and so, since c is a critical girth cycle in G, |c|−3 = − ind(C). Moreover, by Lemma 40, G◦ satisfies
the Maxwell count and so, by Lemma 37, |c| − 3 = ind((B∪H)\C). If c1 is a cycle in G1 then c1 is
also a cycle in G. LetD denote the collection of labelled faces of G which lie inside c1 and let C1
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denote the collection of labelled faces of G1 which lie inside c1. Since |c| −3 = − ind(C), it follows
that ind(D) = ind(C1). Since G satisfies the girth inequalities, |c1| ≥ | ind(D)| + 3 = | ind(C1)| + 3.
If C′1 denotes the labelled faces of G1 which lie outside c1 then, again since |c| − 3 = − ind(C), it
follows that ind(C′1) = − ind(D). Thus, |c1| ≥ | ind(C′1)|+3 and so G1 satisfies the girth inequalities.
Similarly, if c2 is a cycle in G2 then c2 is also a cycle in G and, since |c| − 3 = ind((B ∪H)\C), it
follows that G2 satisfies the girth inequalities.

The following theorem completes the proof of Theorem 1 in the single block case.

Theorem 46. Let Ĝ be a block and hole graph with a single block. Then the following are equiv-
alent.

(i) Ĝ is minimally 3-rigid.

(ii) G satisfies the girth inequalities.

Proof. If Ĝ is minimally 3-rigid then, by the isostatic block substitution principle, Lemma 6, G◦

is minimally 3-rigid for any choice of triangulated sphere B◦. In particular, G◦ is (3, 6)-tight and
so, by Proposition 41, G satisfies the girth inequalities.

To prove the converse, apply the following induction argument. Let P(k) be the statement that
every block and hole graph Ĝ with a single block which satisfies the girth inequalities and has
|V(G)| = k, is minimally 3-rigid. The statement P(4) is true since in this case there exists only
one face graph G, namely a 4-cycle with one B-labelled face and one H-labelled face. Clearly, G
satisfies the girth inequalities and has minimally 3-rigid block and hole graphs. This establishes
the base of the induction.

Suppose that P(k) is true for all k = 4, 5, . . . , l − 1 and let Ĝ be a block and hole graph with
a single block which satisfies the girth inequalities and has |V(G)| = l. Note that, by Lemma 40,
each block and hole graph G◦ satisfies the Maxwell count. If G contains a critical girth cycle c,
which is not the boundary of a face, then by Lemma 45 the face graphs G1 and G2 obtained by
separating cycle division on c both satisfy the girth inequalities. Note that G1 and G2 are each
either face graphs with a single B-labelled face and fewer vertices than G, or, are triangulations
of a triangle. It follows that both G1 and G2 have minimally 3-rigid block and hole graphs. By
the block substitution principle (Lemma 6) the isostatic block of G†2 may be substituted with G†1 to
obtain G†. Thus G has minimally 3-rigid block and hole graphs.

Now suppose that there are no critical girth cycles in G, other than the boundary cycles of
faces of G. If G contains no edges of type TT or BH then, by Proposition 22, G contains a cycle
π, which is not the boundary of a face, such that Ext(π) satisfies the Maxwell count. By Lemma
43, π is a critical girth cycle for G. This is a contradiction and so G must contain an edge of type
TT or BH. Moreover, such an edge must be contractible since any non-facial 3-cycle would be a
critical girth cycle for G.

Suppose a face graph G′ is obtained from G by contracting a TT or a BH edge e. Then G′ is
either a face graph with a single B-labelled face and fewer vertices than G, or, is a triangulation of
a triangle. By Lemma 44, G′ satisfies the girth inequalities and so G′ must have minimally 3-rigid
block and hole graphs. Now G† may be obtained from (G′)† by vertex splitting and so G also has
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minimally 3-rigid block and hole graphs. This establishes that the statement P(l) is true and so, by
the principle of induction, the theorem is proved.

In [3] the following theorem is obtained.

Theorem 47. Let Ĝ be a block and hole graph with one block and one hole such that |∂B| = |∂H| =
r. If there exist r vertex disjoint paths in G which include the vertices of the labelled faces then Ĝ
is 3-rigid.

We note that this also follows from Theorem 46. Indeed if the disjoint path condition holds
then it is evident that every cycle c associated with the single hole has length at least r since
it must cross each of the r paths. Thus the girth inequalities hold. Similarly, Conjecture 2, in
our introduction, follows on verifying that the 5-connectedness condition ensures that the girth
inequalities hold.

4.4. Block-hole transposition
We next observe that the characterisation of minimally 3-rigid block and hole graphs with a

single block also provides a characterisation in the single hole case. Let Gt be the face graph
obtained from graph G by replacing B labels by H labels and H labels by B labels.

Corollary 48. Let Ĝ be a block and hole graph with a single hole. Then the following are equiva-
lent.

(i) Ĝ is minimally 3-rigid.

(ii) Ĝ is (3, 6)-tight.

(iii) Ĝ is constructible from K3 by vertex splitting and isostatic block substitution.

(iv) G satisfies the girth inequalities.

In particular, Ĝ is minimally 3-rigid if and only if Ĝt is minimally 3-rigid.

Proof. The implications (iii) =⇒ (i)⇒ (ii)⇒ (iv) have already been established more generally
for face graphs of type (m, n). If G satisfies the girth inequalities then Gt also satisfies the girth
inequalities and so there exists a reduction scheme for Gt as described in Corollary 34. This same
reduction scheme may be applied to show that the block and hole graphs for G are minimally 3-
rigid. Thus the equivalence of (i)− (iv) is established. The final statement follows since G satisfies
the girth inequalities if and only if Gt satisfies the girth inequalities.

4.5. Separation conditions
The following separation conditions for block and hole graphs Ĝ were indicated in [3] (see

Conjecture 5.1 and Proposition 5.4) and are necessary conditions for minimal 3-rigidity.

Corollary 49. Let Ĝ be a minimally 3-rigid block and hole graph with face graph G of type (m, n).

(i) There are no edges in G between nonadjacent vertices in the boundary of a labelled face of
G.

23



(ii) Each pair of labelled faces in G with the same label share at most two vertices and these
vertices must be adjacent.

Proof. (i) If there exists an edge between two nonadjacent vertices in the boundary of a labelled
face of G then there exists a cycle in G which violates the girth inequalities.

(ii) If two H-labelled faces in G share more than two vertices then by the girth inequalities
there exists a B-labelled face within their joint perimeter cycle. However, this implies that the
block and hole graphs for G fail to be 3-connected. Similarly, if two H-labelled faces in G share
two nonadjacent vertices then the block and hole graphs for G fail to be 3-connected. By block-
hole transposition the result also holds for B-labelled faces.

The following example shows that Conjectures 5.1 and 5.2 of [3] are not true in general.

Example 50. Let G be the face graph of type (2, 2) with planar realisation illustrated in Fig. 11.
The block and hole graph G◦ satisfies the separation conditions of Corollary 49 (and of [3]).
Also, G◦ is (3, 6)-tight and, by Proposition 41, G satisfies the girth inequalities. However, G◦

is not minimally 3-rigid since it may be reduced to a graph which is not 3-connected by inverse
Henneberg moves on vertices of degree 3.

B

H
H B

Figure 11: A face graph of type (2, 2) which satisfies the girth inequalities and separation conditions but does not have
a 3-rigid block and hole graph.

5. Appendix

A bar-joint framework in R3 consists of a simple graph G = (V, E) and a placement p : V →
R3, such that p(v) , p(w) for each edge vw ∈ E. An infinitesimal flex of (G, p) is an assignment
u : V → R3 which satisfies the infinitesimal flex condition (u(v) − u(w)) · (p(v) − p(w)) = 0 for
every edge vw ∈ E. A trivial infinitesimal flex of (G, p) is one which extends to an infinitesimal
flex of any containing framework, which is to say that it is a linear combination of a translation
infinitesimal flex and a rotation infinitesimal flex. The framework (G, p) is infinitesimally rigid if
the only infinitesimal flexes are trivial and the graph G is 3-rigid if every generic framework (G, p)
is infinitesimally rigid. See [6].
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5.1. Vertex splitting
The proof of rigidity preservation under vertex splitting indicated in Whiteley [9] is based

on static self-stresses and 3-frames. For completeness we give an infinitesimal flex proof of this
important result.

Let G = (V, E) with v1, v2, . . . , vr the vertices of V and v1v2, v1v3, v1v4 edges in E. Let G′ =
(V ′, E′) arise from a vertex splitting move on v1 which introduces the new vertex v0 and the new
edges v0v1, v0v2, v0v3. Some of the remaining edges v1vt may be replaced by the edges v0vt. Let
p : V → R3 be a generic realisation with p(vi) = pi and for n = 1, 2, . . . let q(n) : V ′ → R3 be
nongeneric realisations which extend p, where q(n)(v0) = qn

0, n = 1, 2, . . . is a sequence of points
on the line segment from p1 to p4 which converges to p1.

p4

p1
p2

p3

q0

Figure 12: The vertex q0 = q(1)(v0).

Let u(n), n = 1, 2, . . . , be infinitesimal flexes of (G′, q(n)), n = 1, 2, . . . , which are of unit norm in
R3(r+1). By taking a subsequence we may assume that u(n) converges to an infinitesimal flex u(∞) of
the degenerate realisation of G′ with q(v0) = q(v1) = q1. In view of the line segment condition we
have,

u(n)
0 · (p(n)

0 − p4) = u(n)
1 · (p1 − p4).

for each n. Also we have,

u(n)
0 · (p(n)

0 − p2) = u(n)
1 · (p1 − p2), u(n)

0 · (p(n)
0 − p3) = u(n)

1 · (p1 − p3),

and it follows from the generic position of p2, p3 and p4 that u(∞)
0 = u(∞)

1 . Thus u(∞) restricts to an
infinitesimal flex u of (G, p). Note that the norm of u is nonzero.

We now use the general construction of the limit flex in the previous paragraph to show that if
G′ is not 3-rigid then neither is G. Indeed if G′ is not 3-rigid then there exists a sequence as above
in which each flex u(n) is orthogonal in R3(r+1) to the space of trivial infinitesimal flexes. It follows
that u(∞) is similarly orthogonal and that the restriction flex u of (G, p) is orthogonal in R3r to the
space of trivial infinitesimal flexes. Since u is nonzero G is not 3-rigid, as desired.
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5.2. A proof of Gluck’s theorem
In our terminology Gluck’s theorem ([5]) asserts that the (unlabelled) face graphs G of type

(0, 0) are 3-rigid. For convenience we give a direct proof here. In view of 3-rigidity preservation
under vertex splitting it will be enough to show that G derives from K3 by a sequence of vertex
splitting moves. To see this let P(k) be the statement that every plane representation of a face
graph G of type (0, 0) with |V(G)| = k contains a contractible edge which is not in the topological
boundary (of the unbounded component of the complement) of G. The statement clearly holds
when k = 4. Assume P(k) holds for all 4 ≤ k ≤ n and let G be a face graph of type (0, 0) with
|V(G)| = n + 1. Consider an interior edge of G, e = uv say, with associated edges xu, xv and yu,
yv for its adjacent faces. If e is not contractible then there is a nonfacial triangle in G with edges
zu, zv and uv. The subgraph consisting of the 3-cycle zu, zv, uv and its interior is a face graph
G′ of type (0, 0) with fewer vertices than G. It contains at least 4 vertices, since it contains x or
y, and so by the induction hypothesis G′ contains a contractible interior edge. This edge is also a
contractible interior edge in G. Thus the statement P(n + 1) holds and so by induction P(k) holds
for all k ≥ 4.
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