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Event and model dependent rainfall adjustments to improve discharge predictions 
 

Abstract Most conceptual rainfall–runoff models use as input spatially averaged rainfall fields 

which are typically associated with significant errors that affect the model outcome. In this study, 

it is hypothesized that a simple spatially and temporally averaged event–dependent rainfall 

multiplier can account for errors in the rainfall input. The potentials and limitations of this lumped 

multiplier approach are explored by evaluating the effects of multipliers on the accuracy and 

precision of the predictive distributions. Parameter sets found to be behavioural across a range of 

different flood events were assumed to be a good representation of the catchment dynamics and 

were used to identify rainfall multipliers for each of the individual events. An effect of the 

parameter sets on identified multipliers was found, however it was small compared to the 

differences between events. Accounting for event–dependent multipliers improved the reliability 

of the predictions. At the cost of a small decrease in precision, the distribution of identified 

multipliers for past events can be used to account for possible rainfall errors when predicting 

future events. By using behavioural parameter sets to identify rainfall multipliers, the method 

offers a simple and computationally efficient way to address rainfall errors in hydrological 

modelling. 

 

Key words rainfall multiplier; rainfall input error; reliability of the predictions, precision of predictions, 

Topmodel, floods.

1 INTRODUCTION 

Hydrological models are useful tools to guide decision–making on problems related to e.g. water 

resource planning, flood forecasting, hydrological design, and impact study of climate change and 

land–use change, etc. (Kizza et al. 2011, Beven 2012, Hailegeorgis and Alfredsen 2015, Emam et al. 

2016, Jie et al. 2016, Zeng et al. 2016). Decisions can be facilitated by the use of relatively simple 

models, such as conceptual rainfall–runoff (CRR) models, that mathematically relate the rainfall upon 

a catchment to the streamflow at the catchment outlet (Jakeman and Hornberger 1993). However, 

calibration of CRR models is affected by errors coming from input, evaluation data, model structure 

and an inability to identify the exact values of model parameters (Beven and Binley 1992, Beven 

2009, Montanari and Di Baldassarre 2013). Errors associated with the precipitation inputs can have a 

major effect on model performance (Kavetski et al. 2006a, Moulin et al. 2009, Beven et al. 2011, 

Beven and Smith 2015) and are especially common when there are few rain gauges to capture the 

variability across the catchment (Kutiel and Kay 1996, Michaelides et al. 2009, McMillan et al. 2011, 

Xu et al. 2013, 2015, Kang 2014, Shafiei et al. 2014). 

Multipliers to account for errors on input rainfall have been used as an extra calibration 

parameter in many CRR models ever since the original Stanford Watershed Model (Linsley and 

Crawford 1966). McMillan et al. (2011) show that a multiplicative error is suitable for correcting 

mean catchment rainfall values for rainfall rates larger than 1 mm h
-1

. Rainfall multipliers have also 

been used in Bayesian total error analysis (BATEA) introduced by Kavetski et al. (2003) and further  

developed by Kavetski et al. (2006a, 2006b), Kuczera et al. (2006), Renard et al. (2008, 2010, 2011) 

and Thyer et al. (2009). BATEA offers the possibility to explicitly account for input rainfall and 

output observational data within the calibration procedure as latent variables additional to the model 

parameters. In this approach errors are being accounted for as stochastic multiplier variables which 

follow an assumed distribution. Evaluation of the model results with all available evidence makes it 

possible to retain likely combinations of model parameters with latent variables representing different 

sources of errors. 

Results from BATEA show that when compared with other sources of uncertainty e.g. output 

observational and model structure (Kuczera et al. 2006, Renard et al. 2010) or only output 
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observational (Thyer et al. 2009), uncertainties in rainfall are larger. Yet it should be taken into 

account that within this approach it is impossible to separate fully the effects of input error from other 

sources of error such that event by event input multipliers will compensate for model structural error, 

or output observational error for particular events (see for example, Beven 2005). Results from using 

storm dependent multipliers (Kuczera et al. 2006, Thyer et al. 2009), a multiplier per daily step (Thyer 

et al. 2009, Renard et al. 2010, 2011) and monthly time step (Huard and Mailhot, 2008)  lead to 

improvements in reliability of predictive distributions. This indicates that CRR models benefit from 

explicit consideration of rainfall errors (and other sources of uncertainties) but at the cost of more 

intensive computations (Kavetski et al. 2006a).  

The aim of this paper is to develop a simple and computationally inexpensive method to account 

for rainfall errors for sporadic large flood events. It was hypothesised that event–dependent spatially 

and temporally averaged rainfall depth multipliers could be used for this purpose. And behavioural 

parameter sets identified within the Generalised Likelihood Uncertainty Estimation (GLUE) 

methodology can help to identify such multipliers, thus avoiding the computational cost from 

combining model parameter sets with multipliers and making assumption on prior distribution of the 

errors. The appropriateness of the method was evaluated based on predictive distributions in terms of 

accuracy and precision. 

2 METHOD 

The method was developed within a cross–validation context, i.e. from a total of N flood events, N–1 

were used for calibration leaving one event out at a time for validation. A flowchart of the 

methodology following the context of N-1 calibration events and one validation event is schematized 

in Fig. 1 and explained in detailed in what follows in this method section. The method is being applied 

to a data-sparse situation in China, with only a limited number of observed flood events available to 

allow for model calibration.  The method is, however, essentially within the Bayesian paradigm so that 

as additional events are observed, the posterior estimates of parameter distributions and storm 

multipliers can be updated. 

 

2.1 Model setup 

Multiple parameter sets were generated and each was used with spatially averaged rainfall to simulate 

N flood events using a CRR model. Parameter sets were generated by randomly sampling from 

assumed prior distributions.  Sampling ranges should cover all possible values that the model 

parameters could take.  

 

2.2 Model evaluation 

The widely used Nash-Sutcliffe model efficiency coefficient (NSE) was adopted to evaluate model 

outputs on all the evaluation points for each event. The more recent GLUE limits of acceptability 

approach to model evaluation (e.g. Blazkova and Beven 2009; Liu et al. 2009) was not used here 

because no information was available about the discharge uncertainties. Behavioural parameter sets 

were defined as those for which the weighted score (WNSE) of the N–1 calibration events was larger 

than a specified threshold. The WNSE was calculated as the average of the NSE values corresponding 

to the calibration events, weighted by the number of evaluation points of each event (  ).  

     
∑        
     
   

∑   
     
   

   (1) 

It is expected that calibrating parameter sets against several different events, each associated 

with different input errors, will reduce bias in the selection of parameter sets introduced by those 

errors (Beven 2015, Jie et al. 2016). Thus, behavioural parameter sets were identified based on model 
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parameters only, those identified sets were then used to identify multipliers associated with input 

errors. 

The number of simulations was set by using a stopping criteria proposed by Pappenberger et al., 

(2005). For every 200 behavioural simulations added, an hourly cumulative distribution function 

(CDF) of the predicted discharge was estimated. This estimated CDF was compared with the previous 

one using the Kolmogorov-Smirnov two-sample test, the number of runs was considered sufficient 

when for all hours the addition of behavioural simulations did not change the CDF significantly (i.e. P 

< 0.05).  

 

2.3 Errors from spatial averaging of rain gauge measurements  

Relative errors from spatial averaging of rain gauge measurements were inferred at each rain gauge 

station by comparing its measured rainfall values for all calibration events with those estimated by 

averaging the correspondent measured values at the remaining gauge stations. A selected quantile 

range of the joint relative errors from all rain gauge stations can be used as a sampling range of the 

relative error from spatial averaging of rainfall at any point in the catchment. This approach to 

generalize the error across the whole catchment can be reasonable if gauges are representative of 

different altitudes within the catchment. Furthermore, to consider a variety of events can compensate 

the lack of more rain gauges, as one could expect the spatial distribution of precipitation to vary 

widely from event to event in mountainous terrains.  

 

2.4 Event dependent rainfall multipliers 

Mismatches between observed and simulated discharge are expected to result from a combination of 

errors, mainly in precipitation input, output observational data and model structure. Different sources 

of errors were accounted for by the following assumptions:  

 Input errors coming from spatial averaging of rainfall are assumed to be adequately 

characterised by an event–dependent, spatially and temporally averaged rainfall multiplier as 

in Kavetski et al. (2006a). 

 Errors in discharge observations are assumed to be independent and Gaussian distributed.  

 Model structural errors are not expected to be large and assumed to be treated implicitly in the 

covariation of model parameters. 

Possible rainfall multipliers were sampled from a vague prior uniform distribution with limits 

based on quantiles of the relative errors found from spatial averaging of rain gauge measurements, 

section 2.3. Sampled rainfall multipliers were combined with each of the behavioural parameter sets to 

simulate all flood events. For each event and parameter set, the multiplier that resulted in the best fit to 

the observations (based on the NSE score) was identified, resulting in a number of multipliers equal to 

the number of behavioural sets for each calibration event. 

To test the event dependency of identified multipliers, the Student’s t-test was used with the null 

hypothesis that two groups of multipliers are from the same population with equal means, without 

assuming that the populations also have equal variances. If the hypothesis is not rejected then two 

groups of multipliers are statistically similar, thus the multipliers are not event dependent or the two 

events have similar average rainfall errors. However, it only takes one rejection of the hypothesis to 

confirm that two groups of multipliers come from different populations and, hence, prove event 

dependence.  
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2.5 The effect of parameter set on identified multipliers 

Parameter sets consistently associated with high (or low) multipliers (relative to the average of the 

identified best multipliers of an event) across events are a result of an effect of parameter sets on 

identified multipliers. Then, the multiplier is, at least partly, interacting with the dynamics of the 

parameter set to improve model performance. Identified multipliers were tested for such effects by 

searching for a systematic pattern of identified multipliers across calibration events. For each event, 

multipliers were standardized to have zero mean and unit variance by subtracting their average and 

dividing them by the standard deviation. An average standardized multiplier for each behavioural 

parameter set was estimated by averaging N–1 standardized multipliers, leaving one event for 

validation as before. A systematic pattern was confirmed if the average standardized multipliers were 

highly correlated with the standardized multipliers for the validation event. If such a pattern is 

confirmed, the effect of the parameter set on identified multiplier can be reduced at each calibration 

event by subtracting a value equal to the parameter set average of standardized multipliers times the 

standard deviation of the multipliers for that calibration event.  

 

2.6 Effect of rainfall multipliers on predictive distributions at calibration and validation 

Allowing identified event–dependent multipliers to account for errors on rainfall input, the predictive 

distribution composed of behavioural parameter sets was evaluated for both calibration and validation 

events and compared with the case of not using multipliers. The predictive distributions were 

evaluated considering reliability and precision as in Laio and Tamea (2007), Thyer et al. (2009) and 

Renard et al. (2010).  

In calibration, multipliers were used to account for event input errors using the average of the 

multipliers identified for the event, whereas in validation the multiplier is unknown and the identified 

multipliers for the N–1 calibration events were used to infer likely multipliers. To this end, the 

distributions of multipliers from the calibration events were joined and fitted to a theoretical 

distribution used to sample multipliers with equally probable intervals (to have a relatively small 

number of samples but all along the possible range). All sampled multipliers were combined with each 

of the behavioural parameter sets for prediction. 

 

2.6.1 Reliability, a predictive distribution (PD) is reliable if it is statistically consistent with the 

observations, i.e. if the observations are realisations of the PD. In this paper, the reliability of the PD is 

evaluated using the predictive QQ-plot (Laio and Tamea 2007, Thyer et al. 2009, Renard et al. 2010), 

which provides visual clues to the statistical consistency between the observed discharge and the PD. 

Assuming an observation of discharge at time  ,     is a realisation from the PD with cumulative 

distribution function   , then the cumulative probability P-value,   (  )             (     ), is a 

realisation from a uniform distribution on [0,1]. Thus, for   varying from 1 to L observations in an 

event, the series of L P-values, one for each observation, will also be a realisation from a uniform 

distribution. The predictive QQ-plot is constructed by plotting the quantiles i.e. P-values against the 

corresponding theoretical quantiles of a uniform distribution on [0, 1]. The closer the points fall to the 

bisector (1:1 line), the better the agreement of the predictive distribution with the observations, and 

with all points falling on the line indicating a perfect agreement (Fig. 2). Deviations from the bisector 

indicate issues with prediction bias and predictive uncertainty. For example, if at the theoretical 

median, P-values are higher (lower) than the corresponding theoretical quantiles, the model 

systematically under–predicts (over–predicts) the observed data. A steep (flat) slope of the curve in the 

midrange (around theoretical quantiles 0.4–0.6) indicates an underestimated (overestimated) predictive 

uncertainty.  
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2.6.2 Precision, also called resolution in the literature (Renard et al. 2010), measures the 

sharpness of the PD. Two predictive distributions could give reliable estimates but have different 

precisions. The relative precision ( ) of the predictors can be quantified as the average of the relative 

precision of the predictions    over all the observations ( ), or could be looked at as the average of the 

inverse coefficient of variation: 

  
 

 
∑

 [  ]

    [  ]
 
    (2) 

where  [ ] and      [ ] are the expectation and standard deviation operators. 

 

3 APPLICATION 

3.1 Study area and data  

The study area is the 259 km
2
 Jiaokou Reservoir watershed, a sub-basin of the Yongjiang River basin 

located in Zhejiang province, south–eastern part of China (Fig. 3). The watershed characteristics and 

data have previously been described in Du et al. (2007, 2009). The watershed elevation ranges from 

50 to 975 m. The largest part of the catchment is composed of forest (78%) and the remaining area is a 

mix of agriculture (14.5%), grassland (2.5%), water surface (2.7%) and residential areas (1.9%). Most 

of the catchment is composed of loam and clay, mainly poorly drained soil with high runoff generation 

potential. The region has a typical subtropical monsoon climate, with an annual average temperature 

of 16.3°C and minimum and maximum temperatures of -11.1°C and 39.5°C occurring in January and 

July, respectively. The mean annual precipitation is about 2000 mm with most of the rainfall occurring 

between March and September. 

In the catchment, there are three stations that measure precipitation and one river flow gauging 

station (Fig. 3), all of which measure hourly data. Discharge measurements in the catchment were 

conducted during large flood events only. All the available six isolated large flood events measured 

from the period 1979 to 2000 (Fig. 4) were used in this work. A 30 m digital elevation model from a 

digitalized contour map of 1:50 000 scale was generated by Du et al. (2007).  

  

3.2 Model description  

TOPMODEL is a semi–distributed CRR model originally proposed by Beven and Kirby (1979). 

TOPMODEL takes into account the dynamics of catchment saturation by means of a time–variable 

saturated contributing area. Nevertheless, TOPMODEL retains the simplicity of a lumped model for 

representing the flow through the soil profile. Since its original development, TOPMODEL has been 

modified and adapted to the specific needs of different modelling applications; thus, instead of a 

model, it is better known as a collection of concepts (Beven 2012). In the present version of 

TOPMODEL, the network width function, NWF, concept (Surkan 1969, Kirkby 1976), with further 

adaptations by Grimaldi et al. (2010) was used to route the surface runoff. The main idea behind the 

NWF is that discharge at the outlet is influenced by the shape of the stream network. Thus, a 

histogram function is built based on the shape of the flow path distances along the catchment 

contributing area and the river network. A comprehensive description of the model is given in 

Appendix A. 

 

3.3 Model set up 

By Monte Carlo sampling from the uniform distribution, with sampling ranges as defined in Table 1, 

10 000 combinations of model parameters were generated. The initial deficit of the model was 

estimated by inverting equation (A5) in Appendix A based on measured discharge at the beginning of 
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each event. The root zone storage was considered constant and was estimated based on the 

characteristics of the catchment. Spatially averaged rainfall in conjunction with the generated 

parameter sets were used to simulate the six flood events. All six different combinations of five–

calibration–events and one validation event per each combination were analysed. Behavioural sets 

were defined as those sets for which the combined NSE score (    , Equation 1) for the five 

calibration events was larger than 0.90. 

 

4 RESULTS 

4.1 Errors from spatial averaging of rain gauge measurements  

No substantial difference was found on the statistics of the relative error for all different calibration 

events combinations (Fig. 5). Given the small difference between the relative error distributions, the 

values of the relative errors corresponding to the 20
th
 and 80

th
 quantiles, i.e. containing 60% of the 

errors, were similar across combinations. Lower estimates of the multiplier (i.e. relative error plus one) 

ranged from 0.55 to 0.60 and upper estimates from 1.45 to 1.55. 

 

4.2 Event dependent multipliers and the effect of parameter set on identified multipliers 

The number of behavioural parameter sets for which the CDF of the predictions became stable ranged 

from 1439 to 5127 for the different combinations of five calibration events. The initial sampling of 10 

000 parameter sets was enough to find enough behavioural parameter sets for all these combinations. 

To reduce computational cost, 480 parameter sets that were behavioural for all the combinations and 

for which the CDF for all predicted hours was similar (i.e. P < 0.05) to those estimated using all 

behavioural simulations for each combination were identified. For each combination, it was ensured 

that those 480 sets were representative of the whole range of five–calibration–events weighted NSE 

score (    ). For each calibration event, 120 multipliers, sampled from the range found in section 

4.1, were combined with each of the 480 behavioural sets. A plot of the multipliers against NSE score 

resulted in convex sets with one peak for all the cases, confirming that best multipliers were always 

within the multipliers sampling range.  

Some parameter sets were consistently associated with high multipliers (relative to the average 

of the identified best multipliers of an event) across events whereas others were consistently associated 

with low multipliers. This was confirmed by high correlation coefficients found between the average 

of standardized multipliers for the calibration events and the standardized multipliers of each 

validation event (0.76, 0.89, 0.96, 0.82, 0.70 and 0.74 for validation events 1 to 6 respectively). 

Accounting for the effect of parameter sets on the multipliers leads to a reduction in the noise of 

identified best multipliers (Fig. 6). The average values of the multipliers associated with each event 

after correction for multipliers were 1.24, 0.96, 1.08, 0.96, 0.97 and 0.95 for event 1 to 6 respectively.  

Differences of the spread in values of identified multipliers between events were even more 

noticeable, after correction for multipliers (Fig. 6). Results from the Student’s t-test estimated at a 5% 

significance level showed that events 2 and 4 were samples from the same populations whereas 1, 3, 5 

and 6 were from different. Thus four events showed event dependency of identified multipliers. 

Correction for the effect of parameter set on multiplier can also be considered at prediction, 

however, the event standard deviation is unknown and the smallest standard deviation from all the 

calibration events was used as it improved performance for all calibration events. Improvements will 

not occur at validation events with smaller deviation than the smallest observed at calibration, thus 

there will be benefits from having more calibration events with different characteristics. 
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4.3 Effect of rainfall multipliers on predictive distribution at calibration  

Predictive ranges for one calibration event obtained from different combination of calibration events 

were similar. This was because across combinations, the same behavioural parameter sets were used 

and the different weighted scores to each parameter set for different combinations did not show 

significant effect on the predictive ranges. Thus in what follows, when referring to a predictive range 

at a calibration event, it applies to any of the combinations of calibration events.  

The use of multipliers increased the proportion of observations inside the predicted range for 

events 1, 3, 5 and 6. The increase was larger for event 1 which had the largest error (Table 2). For 

events 1 and 3, the use of multipliers clearly made predictions closer to the bisector 1:1 line in the QQ-

plot (Fig. 7). However, for events 2, 4, 5 and 6 there was no general improvement on reliability, and 

predictions were close to the bisector only at certain sections of the QQ-plot. 

 

4.4 Effect of rainfall multipliers on predictive distribution at validation 

The posterior distribution of the event multipliers suggested that they could be usefully treated as 

fuzzy variables (Fig. 8). Thus the minimum, median and maximum values of the combined 

distribution were set to correspond to membership values of zero, one and zero respectively of a 

triangular fuzzy measure. The exclusion of event 1 generated a narrower range than the other cases 

which had more similar distributions. Thus the distributions of 50 sampled likely multipliers for 

validation events varied depending on the combination of calibration events. Predictions from a 

combination of all the sampled multipliers with each of the behavioural parameter sets resulted in a 

general better fit to the bisector 1:1 line in the QQ-plot for all validation events (Fig. 9). Since, for 

validation, a distribution of multipliers was considered, the precision of the distribution decreased 

more when compared to calibration where only one multiplier per set was used (Table 2). However, 

the proportion of observations inside the predicting range increased considerably by using multipliers. 

Including events with large errors at calibration increases considerably the observations within 

the predictive range for that calibration event (Fig. 10a) as oppose to events with small error (Fig. 

10b). When predicting events with errors larger than those observed at calibration, the range of 

estimated likely multipliers is not wide enough to encompass the error (Fig. 10c). On the contrary, 

when considering calibration events with large errors, estimated likely multipliers are wide–ranging 

thus increasing greatly observation inside the predicting range (Fig. 10d).   

 

5 DISCUSSION 

The method used here depends on identifying an adequate ensemble of behavioural parameter sets that 

can then be used to obtain estimates for the event by event rainfall multipliers.   Given the data-sparse 

situation in the study catchment, this clearly raises issues about whether the available data are 

adequate to provide a robust calibration.  The methodology somewhat circumvents this issue since the 

ensemble of behavioural parameter sets are all consistent with the calibration data and are never 

interpreted in terms of the marginal parameter distributions.  It is the sets of parameters that are used 

in predicting the next event (a prediction that is still required even given the limited observations).  

The methodology is also Bayesian in concept, since new data are readily incorporated into the analysis 

as they become available, ready to predict the next future event.  Thus, estimates of distributions of 

model parameters and multipliers for prediction can be used with few available events but should be 

part of a process in which events should be added when they become available to update the 

distributions. The larger the number of events considered at calibration, the more stable and 

representative the predictive ensemble of model parameter sets and multipliers could be expected to 

be, assuming the forcing data at prediction to be similar to that used in calibration (Kavetski et al. 

2006a). 
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In the results presented in this paper, the hypothesis that event identified rainfall multipliers came from 

the same population was rejected for four events and the results therefore supports the assumption that 

the multipliers are event–dependent and associated with errors on rainfall input. Since the NSE 

criterion used for model evaluation is sensitive to extreme values (Hauduc et al. 2015), identification 

of multipliers was expected to be biased towards flood peaks. In other words, multipliers are biased 

towards compensating for errors during the more intensive time of the storm but this is acceptable as 

the emphasis is put on the simulation of peaks. Furthermore, multipliers associated with high rainfall 

intensities are generally better identified (Renard et al. 2010) as opposed to those associated with low 

rainfall depths, which might be not representative of the rainfall error but noise (McMillan et al. 

2011).  The larger average value of identified multipliers was 1.24 for event 1, thus accounting for 

uncertainty larger than  24% in rainfall would encompass the error on rainfall input found at any of 

the evaluated events. 

The range of the identified multipliers for each event was substantially narrower than the 

initially assumed sampling ranges. This is not surprising as the sampling range was estimated based on 

errors at three particular points in the catchment, while the identified multipliers represented the 

lumped errors over the catchment. Hence, the method of inferring spatial averaging error from rain 

gauge data gives a reasonable indication of the range of variation of multipliers when no better source 

of information is available. Assumed vague priors of the multipliers with wide ranges can be an option 

to avoid the problem of model given wrong inferences when wrong priors are assumed (Kavetski et al. 

2006b, Kuczera et al. 2006, Renard et al. 2010, McMillan et al. 2011). It was confirmed that 

parameter sets influenced the identified multipliers, but to a much lesser degree than the input errors 

for the different events. The effect of parameter sets on multipliers might be dependent on the CRR 

model used, but it is worth considering this effect when obtaining the marginal distribution of 

multipliers (Kavetski et al. 2006a), as it can reduce bias produced by the effect of parameter sets in the 

multipliers. At prediction, if the event–dependent standard deviation of the identified multipliers could 

be explained by some characteristics of the event, e.g. magnitude or type of storm, then the noise due 

to the effect of parameter sets could be further reduced.  

In calibration, accounting for input errors on event 2, 4, 5 and 6 did not result in a general 

improvement of reliability of the predictive distribution, at some cases lead to increase in under–

prediction (events 5 and 6). Poor fit of the QQ-plot after correction of input errors could be due to the 

simplistic approach used to consider those errors or due to errors on model structural and output 

observational data not considered in this study. However, predictive distributions at events 1 and 3 

were more statistically consistent at calibration when using multipliers, i.e. issues with under–

prediction were decreased. Strong improvements of reliability can be obtained when substantial input 

errors are considered (event 1). 

In validation, the use of multipliers leads to improvement in reliability, however precision 

decreased for all events, which was expected due to the consideration of a distribution of multipliers. 

Though, the decrease in precision can be seen as secondary compared to the strong benefit of 

encompassing more of the observations with the predictive range. 

Inferred event–dependent, spatially and temporally averaged rainfall multipliers can be useful to 

correct errors on rainfall input, improvement of their identification was possible by correcting for the 

dependence on specific model parameter sets. Once improvement in reliability after correction for 

multipliers is evidenced, the remnant errors, after correction of the input, should be more 

representative of model structural errors, and, hence, a better representation of model deficiencies, 

which can facilitate model improvements. During predictions, identified events–dependent multipliers 

at calibration could be used to infer distribution of multipliers likely to occur in future events.  

Huard and Mailhot (2008) and Renard et al. (2010, 2011) have discussed the dependency of 

posterior distributions of multipliers on model structural errors. Such a dependency is expected as all 
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sources of errors interact among each other during calibration influencing model outcome (Beven 

2005, 2006, 2009). Thus, the multipliers identified here will, to a certain degree, be dependent of the 

model used. Therefore, comparison of this method using different model structures should be done to 

become confident in generalization of the obtained results. Research to differentiate input errors from 

model structural errors and/or output observational errors is still on-going and seems to be possible 

only when precise priors of the error model are given (Renard et al. 2008). However, precise priors are 

virtually impossible to define when data are scarce and information on the uncertainties associated 

with available sources is limited (Li et al. 2011). 

In this paper, errors in discharge measurements and model structure are not explicitly 

considered. If those errors are expected to be large in comparison to precipitation errors, proper 

account for them should be done.  

 

6 CONCLUSIONS 

Effects of precipitation input errors on CRR models are known to be significant, especially when 

models are driven by spatially averaged rainfall. Consideration of those errors is important to improve 

predictions and to decrease bias on the remnant errors which helps to identify better flaws on the 

model structure. Here a simple approach to account for those errors through event–dependent spatial 

and temporal averaged rainfall multipliers identified from an ensemble of behavioural parameter sets 

was developed and tested. The main findings were: 

 Event–dependent multipliers could be identified and were found to be associated with the 

error on the event rainfall input.  

 An effect of parameter sets on the identified multipliers was found but was inferior to the 

effect of rainfall errors.  

 At calibration, for some of the flood events analysed, accounting for rainfall errors through 

multipliers improved predictive performance by an increase in accuracy and in the proportion 

of observation inside the predicting range. 

 At validation, for all flood events, accounting for rainfall errors through multipliers improved 

predictive performance by an increase in accuracy and in the proportion of observation inside 

the predicting range at only a small cost in terms of precision. 

The method considers parameter uncertainty and rainfall input uncertainty in a simpler way than 

e.g. BATEA, which makes it less computational demanding, but still provides a way to account for 

rainfall input errors, which can be used to infer on possible multipliers for prediction. This method can 

be used with few events and can be updated as more events become available. It is not known what 

effects the chosen model structure might have on the results in this paper and the methodology should 

be further tested with different model structures. 
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APPENDIX A: 

Model description 

In the present TOPMODEL scheme, a catchment is grid–cell distributed. For the n
th
 cell, precipitation 

firstly infiltrates through the root zone storage,    . Where     is the minimum value between a 

constant value and the local initial deficit (  ), both with dimension of length (L). The rate at which 

water infiltrates is   [    ] , equal to the precipitation depth (L) over the duration of the time step (T), 

unless   is larger than a specified maximum infiltration rate     .  In that case      gets infiltrated and 

the excess rainfall        is routed as surface runoff. Once the maximum capacity of the root zone 

storage,      , is filled, water infiltrates towards the unsaturated zone storage,    . The maximum 

capacity for     at each time step is equal to the local saturated zone deficit minus the root zone 

storage,       . Once the local maximum capacity is exceeded, again excess water is considered to 

reach the outlet by surface runoff. There is a leakage     [  
  ] from the unsaturated zone storage, 

     towards the catchment lumped subsurface storage,     the leakage is a function of the water at the 

unsaturated zone storage and a local residence time i.e. a factor,    [  
  ], multiplied by the local 

unsaturated zone deficit,   . Thus the leakage or vertical flux is        (     )⁄  . The leakage 

is summed up over all the cells and instantaneously redistributed over the subsurface storage,     

In TOPMODEL a relationship between the shape of the saturated area and the subsurface 

storage is established based on the following assumptions (Kirkby 1997): (a) the saturated zone takes a 

configuration as if it is in equilibrium with a steady recharge rate,  , over an upslope contributing area, 

  ; (b) the water table is almost parallel to the subsurface such that the effective hydraulic gradient is 

D
ow

nl
oa

de
d 

by
 [

L
an

ca
st

er
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

19
 2

5 
Ju

ly
 2

01
6 



14 

 

equal to the local surface slope,      ; (c) a transmissivity profile is described by a function, with a 

value of    [ 
  ⁄ ]when the soil is just saturated to the surface (zero deficit). The exponential function 

is the most commonly used, although other options have been described in Ambroise et al. (1996), 

Duan and Miller (1997) and Iorgulescu and Musy (1997). From assumptions (b) and (c), at any cell     

on the catchment, the downslope saturated subsurface flow rate per unit contour length,    [ 
   ], is 

described using an exponential transmissivity soil profile with a rate of decline controlled by a 

parameter  . 

           
    ⁄   (A1) 

 

From assumption (a) 

        (A2) 

 

Combining of equation (A1) and equation (A2) leads to: 

        (
   

       
)       (A3) 

For  ̅  equal to the average of    over the catchment, a relation between the local deficit,   , 

and the catchment average storage deficit ( ̅) is expressed as 

    ̅   [     (
  

       
)] (A4) 

 

Where      (  (       )⁄ ) is known as the soil–topographic index and can be calculated from 

the catchment topographic information and a value of   ; and    is the average of the wetness index 

over all the cells in the catchment.  

The baseflow compounded volume,    in units     , over all the catchment at any time step is 

estimated as the sum of the downslope subsurface flow rate over all the channel cells and simplified as 

in equation (A5), for A equal to the catchment area 

   ∑     
     ̅  ⁄  (A5) 

 

The compounded unsaturated zone recharge volume,    [  
   ]   is estimated as the sum of 

vertical flows at all the cells.  

     ∑      (A6) 

 

The catchment average storage deficit at each time step is updated by subtracting the 

unsaturated zone recharge (     ) and adding the baseflow (     )  both calculated from the previous 

time step: 

 ̅   ̅    
[           ]

 
 (A7) 

 

A simulation can be initialized by assuming an initial value of   ̅ estimated by inverting 

equation (A5) assuming an initial baseflow. Then, the shape of the saturated area,    can be estimated 

by equation (A4). 
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There are two sources of water surface runoff: excess rainfall when the rate of water exceeds a 

specified maximum infiltration rate and water excess after the unsaturated zone storage has reach its 

maximum capacity (saturation overland flow). The network width function, NWF, concept (Surkan 

1969, Kirkby 1976) with further adaptations by Grimaldi et al. (2010) was used to route the surface 

runoff. The main idea behind the NWF is that discharge at the outlet is influenced by the shape of the 

river network. Thus, a histogram function is built based on the shape of the flow path distances along 

the catchment contributing area and river network. Assuming constant celerity through the river 

network (Beven et al. 1979, McDonnell and Beven 2014) and a slope–varying celerity on the 

hillslopes (Haan et al. 1994, Grimaldi et al. 2010). 

If we assume that a quantity of surface runoff  (      ) is exceeded at cell n during a time 

period     , where    is the time that takes to travel from the n
th
 cell to the outlet. The 

hydrograph,  ( ) [    ]  at the outlet cell is the sum of  (      ) at all the cells which 

contributions arrived at the same time period (t) at the outlet : 

 ( )  ∑  (     
   ) (A8) 

 

Where    [ ] is estimated by equation (A9) as the sum of the time spent on the hillslope and 

time spent in the channel network. Flow velocity is considered slower on the hillslope than in the 

channel network.  

   
   
  
 
   
   

  (A9) 

where,  

-Following the direction of flow,     [ ] is the distance from the n
th
 cell at a hillslope towards 

the junction at the channel;     [ ] is the distance from the junction at the channel towards the 

catchment outlet. 

-  , Celerity in channel (L/T), spatially uniform. 

-   , Celerity in hillslope (L/T), based on results from (Grimaldi et al. 2010) where various 

options to estimate celerity at hillslope scale were tested, and an equation for locally variable velocity 

dependent on hillslope slope from Haan et al. (1994) was shown to give better results. 

        √    (A10) 

 

For    corrected for steep slopes, larger than 0.04.  

-  , slope from one cell to the next in the direction of flow (L/L). 

-   , land use coefficient that controls the velocity on hillslope (L/T) 
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Tables 

Table 1 Model parameters and sample ranges.  

Parameter Variable name Sampled range  Source 

Rate of decline of transmissivity (m) m 0.005-0.035*  (Beven 1997)  

Horizontal transmissivity (m2 h-1)  To 0.005-50* (Beven 1997)  

Maximum infiltration capacity rate (m h-1) imax 0.02-0.13 (Dingman 2002) 

Time constant factor (h m-1) td 1-80* (Beven 1997)  

Channel velocity (m s-1) vc 1.5-3.5 (Di Lazzaro 2009) 

Land use coefficient (m s-1)  luc 0.02-0.3 (Di Lazzaro 2009) 

*
Obtained by considering catchments with similar characteristics as the one studied here  

D
ow

nl
oa

de
d 

by
 [

L
an

ca
st

er
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

19
 2

5 
Ju

ly
 2

01
6 



17 

 

Table 2 For a 95% probability limits, relative precision (rp) and proportion of observations inside the predicting 

range (pr) for calibration and validation events using and not using multipliers. 

Event 1 2 3 4 5 6 

  rp pr rp pr rp pr rp pr rp po rp po 

C
al

ib
ra

ti
o

n
 

ev
en

t 

With 

multipliers 
14.3 0.79 6.6 0.79 12.3 0.87 15.4 0.71 7.4 0.91 13.2 0.67 

Without 

multipliers 
14.3 0.60 6.6 0.84 12.2 0.85 15.7 0.75 7.2 0.89 13.4 0.62 

V
al

id
at

io
n

  
  

ev
en

t 

With 

multipliers 
8.4 0.72 5.4 0.91 6.9 1.00 7.3 0.96 5.5 0.93 6.8 0.80 
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Fig. 1Flowchart of the procedure for using rainfall multipliers to improve discharge predictions for large flood 

events 
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Fig. 2 Interpretation of possible outcomes of a predictive QQ-plot (modified from (Laio and Tamea 2007)) 

 

 

Fig. 3 Map of China, Jiaokou catchment and stations location 
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Fig. 4 Measured rainfall intensity (bars) and stream flow (continues line) for six flood events at the Jiaokou 

catchment 

 

 

Fig. 5 Boxplots of the relative errors at three locations from spatial averaging of rainfall. Boxes correspond to 

20th, 50th and 80th quantiles, and whiskers extend to 1.5 times the interquartile range. 
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Fig. 6 Frequency distribution of identified best multipliers for different events (top to bottom), without and with 

adjustment for the effect of parameter sets on the multipliers (grey and black outlined bars respectively) 
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Fig. 7 Predictive QQ-plot for events 1 to 6 when they are part of the calibration events, for the cases of using 

multiplier (grey dots) and without use of multipliers (black dots) 
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Fig. 8 Fuzzy measure (dotted line) based on the probability distribution of identified best multipliers for all 

calibration events (black outlined bars) and the probability distribution of sampled multipliers according to the 

fuzzy measure (grey bars). 
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Fig. 9 Predictive QQ-plot for the six different validation events (event left out) for the cases of using multiplier 

(grey dots) and without use of multipliers (black dots) 
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Fig. 10 Predictive ranges of the 95% probability limits, using multipliers (black), and not using multipliers (grey) 

and observed flows (grey dots) for events1 and 6 at calibration (a and b respectively) and same events at 

validation (c and d respectively). 
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