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Abstract 
 
 
 
 
 

Automorphisms of   is isomorphic to ( /n )×.  If G is a finite abelian group, which is 

isomorphic to direct product of m cyclic groups of order q where  for some prime p. 
Then Aut(G) is isomorphic to the set of m×m matrices with determinant coprime to p, 

. Also . 
 
If  is an automorphism of  and t is a transposition of  for , then  is a 
transposition. If  maps transposition  to a transposition, then  is an inner automorphism. 
Then , . Furthermore, there exists an outer automorphism of  and 

 . Thus  . 
 
Coset enumeration is one of the basic methods for investigating finitely generated 
subgroups in finitely presented.. Information are gradually added to a coset, a relation 
, a subgroup tables and once they are filled in, all cosets have been enumerated,  the 
algorithm terminates. 
 
Goldschmidt’s Lemma on the number of isomorphism classes of amalgams having 
fixed type, verify that there is one isomorphism class of amalgam of type 

), where  is an identity map from  to  for i=1, 2 and 
. When ,7 we have two isomorphic class of amalgam of type  . 

 
Finally,  
If   and ’ are cyclic amalgams of the same type then there universal completions 
are isospectral. 
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Introduction

In this thesis we shall prove that universal completions of two cyclic amalgams of the

same type are isospectral. We approach to this theory by proving the bijection be-

tween the homomorphisms of universal completions of amalgams A and Aγ with Sym(n).

Automorphisms of Z/nZ is isomorphic to (Z/nZ)× which is proved under the Auto-

morphism Groups in Chapter 2. If G is a finite abelian group, which is isomorphic to

direct product of m cyclic groups of order q where q = pn for some prime p. Then Aut(G)

is isomorphic to the set of m ×m matrices with determinant coprime to p, denoted by

GLm(Zq). Also | Aut (G) |= p(n−1)m2 | GLm(Zq) |.

If α is an automorphism of Sn and t is a transposition of Sn for n 6= 6, then we show

that α(t) is a transposition. Also, if α maps transposition to transposition, then α is an

inner automorphism. Using these two results it will be shown that Aut(Sn) ∼= Sn,unless

n 6= 6 under the section 2.3.3. Furthermore, using the Sylow’s Theorem, we will prove

that there exists an outer automorphism of S6 and Out(S6) =
Aut(S6)

Inn(S6)
∼=

Z
2Z

. Thus,

| Out(S6) |= 2.

The set F of equivalence classes of words is called free group on the set of symbols

S, denoted by F [S]. In the Chapter 3 we will prove that the theorem:

Let G be a group generated by T = {ai|i ∈ I} and let H be any group. Then there is at

most one homomorphism φ : G −→ H such that φ(ai) = hi for any element hi ∈ H and

i ∈ I. If G is free on T , then there is exactly one such homomorphism.

Coset enumeration, discuss in Chapter 4, is one of the basic methods for investigat-

ing finitely presented groups. Todd and Coxeter’s algorithm for enumerating cosets of

finitely generated subgroups in finitely presented groups is one of the famous methods
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from combinatorial group theory for studying the subgroup problem. In 1936, J.A. Todd

and H.S.M. Coxeter published a paper in which they described a technique for enumerat-

ing the cosets of a finite group given only a presentation for the group and the generators

of the subgroup written in terms of the generators of the group.

It consists three types of tables: a coset table, a relation table, a subgroup table of the

group. Informations are gradually added to these tables, and once they are filled in and

all cosets have been enumerated and the algorithm terminates.

In Chapter 5 we will move to the Amalgams. An amalgam consists of a five-tuple

(A1, A2, B, φ1, φ2) where A1, A2 and B are groups and φi : B −→ Ai for i = 1, 2, are

monomorphisms. Let A1 = (A1, A2, B, φ1, φ2) and A2 = (Â1, Â2, B̂, ϕ1, ϕ2) be amalgams.

Then A1 and A2 have the same type provided there exists ismorphisms αi : Ai −→ Âi

and γ : B −→ B̂ such that Im(φiαi) = Im(γϕi) for i = 1, 2. Two amalgams of the same

type are isomorphic, if φiαi = γϕi for i = 1, 2. A completion of A in a group G is the

triple (〈ψ1(A1), ψ2(A2)〉, ψ1, ψ2), where ψi : Ai −→ G for i = 1, 2 such that φ1ψ1 = φ2ψ2.

A completion of A is faithful if ψ1 and ψ2 are monomorphisms.

Goldschmidt’s Lemma on the number of isomorphism classes of amalgams having

fixed type is included in section 5.2. In order to give an example of how it works we

verify that there is one isomorphic class of amalgam of type A = (Sn, Sn, Sn−1, φ1, φ2),

where φi is an identity map from Sn−1 to Sn for i = 1, 2 and n 6= 2, 3, 6, 7. When n = 2

and n = 7 we have two isomorphic class of amalgam of type A.

Let G be a group. Then the number of subgroups of G of index n is denoted by an(G).

Let H be a group, then G and H are called isospectral if, and only if, an(G) = an(H)

for all natural numbers n. If B is a cyclic group then A is a cyclic amalgam.
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The main result of the thesis as follows:

If A and A′ are cyclic amalgams of the same type then their universal completions are

isospectral.

First we prove that for cyclic amalgam A = (A,B,C, φ1, φ2) there is a bijection be-

tween Hom(A, Sym(n)) and Hom(Aγ, Sym(n)) for all natural numbers n and for all γ ∈

Aut(C). Furthermore, there is a bijection between Hom(G(A), Sym(n)) and Hom(G(Aγ), Sym(n))

for a group G.
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Chapter 1

Preliminaries

1.1 Normalizer and Centralizer

Definition 1.1.1. The centralizer of an element g of a group G is the set of elements of

G which commute with g, that is CG(g) = {x ∈ G | xg = gx}. Let H be a subgroup of

G. Then the centralizer of H in G is

CG(H) = {x ∈ G | xh = hx for all h ∈ H} = ∩h∈HCG(h).

Definition 1.1.2. The normalizer of a subgroup H in a group G is NG(H) = {x ∈ G |

xH = Hx}.

Theorem 1.1.1. Let H be a subgroup of a group G. Then CG(H) is a normal subgroup

of NG(H).

Proof. Since every element of CG(H) satisfies Hg = gH, CG(H) is a subgroup of NG(H).

Let n ∈ NG(H) and c ∈ CG(H). Then we need to show that n−1cn ∈ CG(H).

i.e. (n−1cn)−1h(n−1cn) = h for h ∈ H. So consider,

(n−1cn)−1h(n−1cn) = (n−1c−1n)h(n−1cn)

4



= n−1c−1(nh)n−1cn.

Since n ∈ NG(H) and h ∈ H, nhn−1 = h1 for some h1 ∈ H. Then we have,

(n−1c−1n)h(n−1cn) = n−1c−1h1cn = n−1h1n

= n−1nhn−1n = h.

Thus, CG(H) is a normal subgroup of NG(H).

Definition 1.1.3. Let G and H be groups. Then a homomorphism of a group G to H

is a mapping φ of G to H such that for all x and y in G, φ(xy) = φ(x)φ(y).

Definition 1.1.4. An automorphism of a group G is a bijective homomorphism from

G to itself. The set of automorphisms is denoted by Aut(G) = {φ : G −→ G |

φ is an automorphism}. Aut(G) forms a group under composition of functions.

Example 1.1.1. Consider the group C2 × C2 = {(1, 1), (1, x), (x, 1), (x, x)}. C2 × C2 is

generated by (1, x) and (x, 1). Since (1, 1) is the identity and so any automorphism is

generated by the images of these generators. This gives six automorphisms:

ϕ1 : (x, 1) 7−→ (x, 1)

(1, x) 7−→ (1, x)

ϕ2 : (x, 1) 7−→ (x, 1)

(1, x) 7−→ (x, x)

ϕ3 : (x, 1) 7−→ (1, x)

(1, x) 7−→ (x, 1)

ϕ4 : (x, 1) 7−→ (1, x)

(1, x) 7−→ (x, x)

ϕ5 : (x, 1) 7−→ (x, x)

(1, x) 7−→ (x, 1)

ϕ6 : (x, 1) 7−→ (x, x)

(1, x) 7−→ (1, x)

It is clear that these six automorphisms are acting faithfully on the set {(1, x), (x, 1), (x, x)}

and it follows that Aut(C2 × C2) ∼= Sym(3).

5



Lemma 1.1.1. For any fixed g ∈ G define θg : G −→ G by θg(x) = xg = g−1xg for

x ∈ G. Then θg ∈ Aut(G).

Proof. For given y ∈ G, let x = gyg−1. Then θg(x) = g−1xg = g−1(gyg−1)g = y. So θg

is onto. If θg(x) = θg(y), then g−1xg = g−1yg, so by the cancellation laws in G, x = y.

Hence θg is one-to-one. Now consider, for xy ∈ G,

θg(xy) = g−1(xy)g = g−1(xgg−1y)g = (g−1xg)(g−1yg) = θg(x)θg(y).

Hence, θg is a homomorphism. So θg is an automorphism of G.

Definition 1.1.5. The set {θg|g ∈ G} is called the inner automorphism group of G and

is denoted by Inn(G).

Lemma 1.1.2. Inn(G) is a normal subgroup of Aut(G).

Proof. Inn(G) is non-empty since θ1 ∈ Inn(G). Take θa, θb ∈ Inn(G). Then

θa(θb(g)) = θa(g
b) = (gb)a = gba = θba(g).

So θaθb = θba. Therefore θbθb−1 = θ1 and this implies that (θb)
−1 = θb−1 . Hence

θa(θb)
−1 = θaθb−1 = θb−1a ∈ Inn(G)

as b−1a ∈ G. Therefore Inn(G) is a subgroup of Aut(G). Take any θa ∈ Inn(G) and

β ∈ Aut(G). Then for any g ∈ G,

(θa)
β(g) = β−1(θa)β(g)

= β−1[β(g)]a

= β−1[a−1β(g)a]

6



= β−1(a−1)β−1β(g)β−1(a)

= β(a−1)gβ−1(a)

= [β−1(a)]−1gβ−1(x)

= gβ
−1(a) = θβ−1(a)(g) ∈ Inn(G)

Hence Inn(G) is a normal subgroup of Aut(G).

Theorem 1.1.2. Let H be a subgroup of a group of G. Then
NG(H)

CG(H)
is isomorphic to a

subgroup of Aut(H).

Proof. Let αx ∈ Inn(G) such that αx : G −→ G by g 7−→ gx for x ∈ NG(H).

Claim: (αx |H) ∈ Aut(H).

Proof. Suppose that αx(h1) = αx(h2) for h1, h2 ∈ H. This implies that h1
x = h2

x and

hence h1 = h2. Thus, (αx |H) is injective. For any h ∈ H, hx
−1 ∈ H as x−1 ∈ NG(H)

and (αx |H)hx
−1

= (hx
−1

)x = h. This implies that (αx |H) is surjective. Hence (αx |H) ∈

Aut(H).

Next define a map, θ : NG(H) −→ Aut(H) by x 7−→ (αx−1 |H).

Claim: θ is a homomorphism and Ker θ = CG(H).

Proof. So consider

θ(xy) = (α(xy)−1 |H) = (αy−1x−1 |H)

= (αx−1αy−1 |H) = (αx−1 |H)(αy−1 |H)

= θ(x)θ(y).

Next

Ker θ = {g ∈ NG(H) | θ(g) = 1} = {g ∈ NG(H) | (αg−1 |H) = 1}

7



= {g ∈ NG(H) | hg−1

= h, for all h ∈ H}

= {g ∈ NG(H) | hg = h, for all h ∈ H}

= {g ∈ NG(H) | g ∈ CG(H)} = CG(H).

Therefore by the first isomorphism theorem,

NG(H)

CG(H)
∼= Im θ ≤ Aut (H).

Theorem 1.1.3. Let G be a group. Then
G

Z(G)
∼= Inn(G).

Proof. Define a map ϕ : G −→ Inn (G) by ϕ(g) = σg where σg is an inner automorphism

of G. Let g, h ∈ G. For all x ∈ G we have

σgh(x) = (gh)−1σx(gh)

= h−1(g−1xg)h

= h−1(σg(x))h

= σhσg(x).

Hence ϕ(gh) = σgh = σgσh = ϕ(g)ϕ(h). So ϕ is a homomorphism. If ϕ ∈ Inn (G),

then by the definition of ϕ, σg = ϕ(g) for some g ∈ G, hence ϕ is surjective and Im ϕ =

Inn (G). An element g ∈ G is in Ker ϕ if, and only if, ϕ(g) = σg is the identity

map on G, hence if, and only if, x = σg(x) = g−1xg for all x ∈ G. This holds if,

and only if, g ∈ Z(G). Hence, Ker ϕ = Z(G) and, by the First Isomorphism Theorem,

G

Z(G)
=

G

Ker ϕ
∼= Im ϕ = Inn (G).

8



1.2 Some Symmetric Groups Results

Definition 1.2.1. A permutation of a finite set X is a bijection σ : X −→ X.

Definition 1.2.2. The symmetric group on a set X is a group of permutations on X,

denoted by Sym(X) or SX .

In particular, the symmetric group on the finite set X = {1, . . . , n} is written Sn.

Definition 1.2.3. An even permutation is a permutation that can be produced by an

even number of exchanges (called transpositions).

Definition 1.2.4. The alternating group on a set X is the group of even permutations

on the set X, denoted by Alt(X) or AX .

The set of even permutations of Sn is the alternating group on n symbols, denoted

by Alt(n) or An.

Theorem 1.2.1. If σ is a permutation in Sn, then σ can be expressed as a product of

cycles.

Proof. We proceed by induction. If σ ∈ S1, then σ = (1), the identity permutation, and

hence, σ is a cycle. Now assume that every permutation in Sm can be expressed as a

product of cycles. Let σ be an element of Sm+1. If (m + 1)σ = m + 1, then σ ∈ Sm

and therefore σ can be expressed as a product of cycles. If (m + 1)σ 6= m + 1, let

ρ = (m+ 1)σ−1, and let τ = (m+ 1 ρ)σ. Then

(m+ 1)τ = (m+ 1)[(m+ 1 ρ)σ] = [(m+ 1)(m+ 1 ρ)]σ

= ρσ = m+ 1.

9



Therefore τ ∈ Sm and hence τ can be expressed as a product of cycles, say, C1, C2, . . . , Cl.

Since τ = C1C2 . . . Cl and τ = (m+ 1 ρ)σ,

C1C2 . . . Cl = (m+ 1 ρ)σ

(m+ 1 ρ)C1C2 . . . Cl = (m+ 1 ρ)(m+ 1 ρ)σ = Iσ = σ

and therefore

(m+ 1 ρ)C1C2 . . . Cl = σ.

Thus, every element of Sm+1 can be expressed as a product of cycles. Then by the

Mathematical induction the theorem follows.

Theorem 1.2.2. If σ is a cycle in Sn for n ≥ 2, then σ can be expressed as a product of

transpositions of the form (1 m), where m is a positive integer.

Proof. If σ = (1), then σ = (1 2)(1 2). If σ = (a b) then σ = (1 a)(1 b)(1 a). Thus, cycle

m of length 1 and 2 can be expressed. Assume the assertion is true for cycle m of length

n and let σ = (a1 a2 . . . an an+1). But (a1 a2 . . . an)(a1 an+1). Since (a1 a2 . . . an) is of

length n and (a1 an+1) is of length 2, both can be expressed as a product of transpositions

of the form (1 m) and hence, product can be so expressed.

Theorem 1.2.3. Every element of Sn can be expressed as a product of transpositions of

the form (1 m), where m is a positive integer.

Proof. The result follows from Theorems 1.2.1 and 1.2.2.

Theorem 1.2.4. Two permutations of Sn are conjugate if, and only if, they have the

same cycle type.

10



Proof. If σ and τ are conjugate permutations in Sn, then there exists a permutation ρ

such that σ = ρτρ−1. Suppose C = (x1 . . . xl) is a cycle of σ of length l. Then

σ(x1) = x2, σ(x2) = x3, . . . , σ(xl) = x1.

Let ρ(xi) = yi for each i. Then

τ(yi) = (ρ−1σρ)(yi) = (σρ)(xi) = ρ(xi+1) = yi+1

in which the subscripts are to be evaluated modulo l. Thus every cycle of σ of length l

corresponds to a cycle of τ of length l. So σ and τ are of the same cycle type.

On the other hand, assume that σ and τ are of the same cycle type, and let C =

(x1 . . . xl) be a cycle of σ. Then τ has a cycle of the form C
′

= (y1 . . . yl). Define

ρ(xi) = yi, over C and similarly, over every other cycle of σ. This is possible because, ρ

is a bijection from Sn to Sn, or a permutation of Sn. So we have,

ρσ(xi) = ρ(xi+1) = yi+1 = τ(yi) = τρ(xi).

So σ and τ are conjugate.

1.3 Commutative Diagram and Double Cosets

Definition 1.3.1. A commutative diagram is a diagram of objects and morphisms such

that, when picking two objects, one can follow any directed path through the diagram

and obtain the same result by composition.

Example 1.3.1. The first isomorphism theorem is a commutative triangle as follows:

G

f
$$HHHHHHHHHHH

φ // G/Kerf

h

��
H

11



The diagram commutes if and only if f = h ◦ φ.

Definition 1.3.2. Let H and K be subgroups of a group G. Then the set HgK =

{hgk|h ∈ H, k ∈ K} for some g ∈ G is a (H,K)-double coset. Every (H,K)-double

coset is a union of right cosets of H and also a union of left cosets of K. The set of all

(H,K)-double cosets of G is denoted by H \G/K.

Example 1.3.2. Consider the symmetric group S3 with the subgroups H = 〈(12)〉 and

K = 〈(13)〉 then the two (H,K)-double cosets are {1, (12), (13), (132)} and {(23), (123)}.

Theorem 1.3.1. Let G be finite group and H and K are subgroups of G. Then the

number of double cosets of G is

| H \G/K |= | G |
| H || K |

m∑
j=1

| Cj ∩H || Cj ∩K |
| Cj |

.

where Cj, 1 ≤ j ≤ m are the conjugacy classes of G.

Proof. Let C1, . . . , Cm be the conjugacy classes of finite group G, and H and K be

subgroups of G. Let H \ G be the left coset of H. Then K acts on H \ G by right

multiplication. So, (Hg)k = Hgk for g ∈ G and k ∈ K. The orbits of K on H \ G are

the double cosets HgK for g ∈ G. So

| H \G/K | = number of orbits of K on H \G

=
1

| K |
∑
k∈K

fix H\G(k)

where fix H\G(k) =| {Hg | Hgk = Hg} |.

Then Hgk = Hg if, and only if, gkg−1 ∈ H. Also,

| {g ∈ G | gkg−1 ∈ H} |=| kG ∩H || CG(k) |

12



where kG = {x−1kx | x ∈ G} and

| {Hg ∈ H \G | gkg−1 ∈ H} | =
| kG ∩H || CG(k) |

| H |
.

thus, | fix H\G(k) |= | k
G ∩H || CG(k) |
| H |

. If k conjugates to k
′
, k

′
= g−1kg for some

g ∈ G, then fix H\G(k) = fix H\G(k
′
). Hence,

1

| K |
∑
k∈K

fix H\G(k) =
1

| K |

m∑
j=1

∑
k∈Cj∩K

fix H\G(k)

=
1

| K |

m∑
j=1

| Cj ∩K | fix H\G(kj) where kj ∈ Cj

=
1

| K |

m∑
j=1

| Cj ∩K || Cj ∩H || CG(kj) |
| H |

=
| G |

| H || K |

m∑
j=1

| Cj ∩K || Cj ∩H |
| Cj |

as | CG(kj) |=
| G |
| Cj |

.

Example 1.3.3. Consider the group S3 with the subgroups H = 〈(1 2)〉 and K =

〈(1 3)〉. Then the conjugacy classes of S3 are C1 = 1, C2 = {(1 2), (2 3), (1 3)} and

C3 = {(1 2 3), (1 3 2)}. Thus, the number of (H,K) double cosets of S3 is

| H \ S3/K | =
| S3 |
| H || K |

3∑
j=1

| Cj ∩H || Cj ∩K |
| Cj |

=
6

4

{
1 +

1

3

}
= 2.
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Chapter 2

Automorphism Groups

2.1 Automorphism of Z/nZ

The factor ring Z/nZ is called the ring of integers modulo n. We also denote Z/nZ =

Z(n). For an integer n > 1, the units in the ring Z/nZ consist of those residue classes

mod nZ which are represented by integers m 6= 0 and coprime to n.

The multiplicative group of invertible elements of the ring Z/nZ is denoted by (Z/nZ)×.

Theorem 2.1.1. Let G be a cyclic group of order n. For each k ∈ Z let φk : G −→ G

be the endomorphism x 7−→ kx (writing G additively). Then k 7−→ φk induces a ring

isomorphism Z/nZ ∼= End(G) and a group isomorphism (Z/nZ)× ∼= Aut(G).

Proof. The additive group structure on End(G) is simply addition of mappings and the

multiplication is composition of mappings. The fact that the k 7−→ φk is a ring homo-

morphism is then a restatement of the formulas

1a = a

(k + k
′
)a = ka+ k

′
a and

14



kk
′
a = k(k

′
a)

for k, k
′ ∈ Z and a ∈ G. If a is a generator of G, then ka = 0 if and only if, k ≡

0(mod n), so Z/nZ is embedded in End(G). On the other hand, let φ : G −→ G be an

endomorphism. Again for a generator a we have φ(a) = ka for some k, whence, φ = φk

since every x ∈ G is of the form ma for some m ∈ Z, and

φ(x) = φ(ma) = mφ(a) = mka = kma = kx.

This proves the isomorphism Z/nZ ∼= End(G).

Furthermore, if k ∈ (Z/nZ)× then there exists k
′

such that kk
′ ≡ 1(mod n) so φk is

an automorphism. Conversely, given any automorphism φ with inverse ϕ, we know from

the first part of the proof that φ = φk and ϕ = ϕk for some k, k
′
and φ◦ϕ = id means that

kk
′ ≡ 1(mod n), so kk

′ ∈ (Z/nZ)×. This proves the isomorphism (Z/nZ)× ∼= Aut(G),

[15].

2.2 Automorphisms of Abelian Groups

LetG be a finite additive abelian group, which is isomorphic to a direct product ofm cyclic

groups of order q where q = pn for some prime p. Consider the ring endomorphism of G,

End(G). This is the of group homomorphisms from G to itself with ring multiplication

given by composition of maps and addition given naturally by (φ+ ϕ)(g) = φ(g) + ϕ(g)

for endomorphisms φ and ϕ and all g ∈ G, [12].

Consider G as a direct sum of m copies of the integers modulo q. Let g ∈ G. Then g

has the form g = (ḡ1, ḡ2, . . . , ḡm) where ḡi is an equivalence class of integers modulo q and

gi ∈ Z is an integral representative. Let θ : Zm −→ G be a natural homomorphism defined
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by θ(g1, g2, . . . , gm) 7−→ (ḡ1, ḡ2, . . . , ḡm), where Zm = {(g1, . . . , gm) | gi ∈ Z for all i =

1, . . . ,m}.

Lemma 2.2.1. Let Mm(Z) = {(aij)m×m | aij ∈ Z}. Consider the map,

χq : Mm(Z) −→ End(G) defined by

A 7−→ χq(A),

where χq(A) : (ḡ1, ḡ2, . . . , ḡm) 7−→ θ((g1, g2, . . . , gm)A) and χq is a surjective ring homo-

morphism.

Proof. We need to show that the map χq(A) is a well-defined endomorphism of group

G. Suppose that (g1, . . . , gm) and (h1, . . . , hm) satisfy the condition θ(g1, . . . , gm) =

θ(h1, . . . , hm) for gi and hi from G for all i = 1, 2, . . . ,m. Then q | (gi − hi) for each

1 ≤ i ≤ m. Therefore,

χq(A)(ḡ1, . . . , ḡm)− χq(A)(h̄1, . . . , h̄m) = θ((g1, . . . , gm)A)− θ((h1, . . . , hm)A)

= θ

(
m∑
i=1

giai1, . . . ,
m∑
i=1

giaim

)
−

θ

(
m∑
i=1

hiai1, . . . ,
m∑
i=1

hiaim

)

= θ

(
m∑
i=1

(gi − hi)ai1, . . . ,
m∑
i=1

(gi − hi)aim

)

=

(
m∑
i=1

θ ((gi − hi)ai1) , . . . ,
m∑
i=1

θ ((gi − hi)aim)

)
= 0G, since q | (gi − hi).

So that χq(A) is well-defined and, as θ is linear and matrix multiplication is distributive,

χq(A) is a group homomorphism. Therefore, χq is a map into End(G).

Next we need to show that χq is surjective. Let x̄i := (0, . . . , 1̄, . . . , 0) be the element
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whose non zero entry is a 1̄ in the ith component and zero everywhere else. Suppose that

θ(xi) = (ḡ1, . . . , ḡm). Then consider the matrix A = (aij) where aij = gj for each j ≤ m.

Then we have χq(A) = θ by doing this for each i ≤ m. Thus, χq is surjective.

Also from the definition,

χq(I) = 1End(G)
and

χq(A+B) = χq(A) + χq(B) for A,B ∈Mm(Z).

Furthermore, from the properties of matrix multiplication, χq(A)χq(B) = χq(AB). Thus

χq is a surjective ring homomorphism.

Lemma 2.2.2. The kernel of χq is the set of matrices A = (aij) ∈ Mm(Z) such that

q | aij for all i, j.

Proof. Let Y = {(aij)m×m | (aij) ∈ Mm(Z) and q | aij for all i, j}. Take any element y

from Y and let xi := (0, . . . , 1̄, . . . , 0) be defined as above. Then, χq(y)(xi) = 0G. Since

G is generated by xi’s, Y ⊆ Kerχq. Since each g ∈ G is a linear combination of the xi,

χq(A)(g) = 0 for all g ∈ G. Therefore, A ∈ Kerχq.

Conversely, suppose that A = (aij) ∈ Kerχq. Thus, χq(A)(xi) = 0G for each xi. Then

each aij is divisible by q. Therefore, Y = Kerχq.

Definition 2.2.1. Let A = (aij) be a matrix of order n. For each pair (i, j) of indices,

let A
′
ij be the matrix of order (n−1) obtained by deleting the ith row and the jth column

in the matrix A. The scalar

dij := (−1)i+j det(A
′

ij)

is called the (i, j)-cofactor of the matrix A, and the matrix Cof (A) := dij is called the

cofactor matrix of the matrix A.

17



We know that det(A) =
∑n

j=1 aijdij, 1 ≤ i ≤ n and det(A) =
∑n

i=1 aijdij, 1 ≤ j ≤ n,

are equivalent to A(Cof(A))T = (Cof(A))TA = det(A))I. If the matrix is invertible

Cof(A) = (det(A))A−T with A−T = (A−1)T and in this case Cof(A)T is the only matrix

B that satisfies AB = BA = (det(A))I.

Lemma 2.2.3. χq(A) ∈ End(G) is an automorphism of G if, and only if, det(A) is prime

to p.

Proof. Suppose that A is a m×m matrix which has determinant prime to p. Let B be

the cofactor matrix of A, which is the matrix satisfies ABT = det(A)I. Since, det(A) is

prime to p, there exists r ∈ Z such that rdet(A) ≡ 1(mod q). Set χq(A
−1) := χq(rB).

Then we have

χq(A).χq(rB
T ) = χq(rAB

T )

= χq(r det(A)I)

= 1End(G)
.

Therefore χA is an invertible endomorphism of G.

Conversely, suppose that χq(A) is an invertible endomorphism of G for A ∈ Mm(Z).

Let χq(A
−1) = χq(C) for some C ∈Mm(Z). Then

χq(AC − I) = χq(AC)− χq(I)

= χq(A)χq(C)− 1End(G)

= 0End(G)
.

Hence AC − I ∈ Ker(χ). So every entries of AC − I is divisible by q. Thus, the entries

of AC are equal to the entries of I modulo p by Lemma 2.2.2. Therefore,

1 ≡ det(AC) ≡ det(A)det(C)(mod p)
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Hence det(A) is prime to p.

Lemma 2.2.4. Let GLm(Zq) be the set of matrices with determinant prime to p. Then

GLm(Zq) ∼= Aut(G) has order p(n−1)m2 | GLm(Zp) | .

Proof. First we will show that the set GLm(Zq) is a group under matrix multiplication.

The determinant is multiplicative; if A and B are matrices such that det(A) = a and

det(B) = b with a, b are prime to p, then det(AB) =det(A)det(B) = ab which is prime to

p. Hence closure property satisfies under multiplication. Assosiativity holds due to matrix

multiplication. The identity element exists since the determinant of identity matrix is 1

and hence prime to p. Also A × id = id × A = A. Furthermore, each element has an

inverse, since determinant is not zero.

Define a map

Ψ : GLm(Zq) −→ Aut(G)

by Ψ( ¯(aij)) = χq((aij)) for each (āij) ∈ GLm(Zq). Then we have Ψ = χ |GLm(Zq). As χq

is a homomorphism, Ψ is a well-defined homomorphism and the matrix (aij) is not in

Ker(χq). If (āij), (b̄ij) ∈ GLm(Zq) with χq((aij)) = χq((bij)), then aij − bij ∈ Ker(χq) and

hence q | aij − bij for all i, j. Hence (āij) = (b̄ij). Therefore, Ψ is injective. Next, for any

automorphism of G, there exists (mij) ∈ Mn(Z) such that (mij) has determinant prime

to p. Hence, (m̄ij) ∈ GLm(Zq) and so Ψ is surjective.

Next consider the map

Γ : GLm(Zq) −→ GLm(Zp)

such that for each A ∈ GLm(Zq) we restrict the matrix entries modulo p. Then the

determinant of Γ(A) is non-zero modulo p, so Γ(A) is an element of GLm(Zp). It is clear
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that Γ is a surjective homomorphism. Also,

Ker(Γ) = {(aij) | aii ≡ 1(mod p) for all i and aij ≡ 0(mod p) for all i 6= j}.

Therefore there are pn−1 choices for each entry since eachA is invertible as the determinant

of A is not equal zero.. Hence, | Ker(Γ) |= p(n−1)m2
. Hence, GLm(Zq) ∼= Aut(G) and has

order p(n−1)m2 | GLm(Zq) | .

2.3 Automorphisms of Sn

In this section we will prove that if n 6= 6, then Aut(Sn) ∼= Sn. In particular, when

n 6= 6, every automorphism of Sn is an inner automorphism. However, Aut(S6) is not

isomorphic to S6. In fact, [Aut(S6) : Inn(S6)] = 2 as we shall see in Theorem 2.3.3. We

first present an example 2.3.1.

Example 2.3.1. Let us find Aut(G) and Inn(G) for G = S3.

Let S3 = {1, ρ1, ρ2, µ1, µ2, µ3} where ρ1 = (1 2 3), ρ2 = (1 3 2), µ1 = (2 3), µ2 = (1 3) and

µ3 = (1 2). So S3 = 〈ρ1, µ1〉. Therefore any element of S3 is of the form ρ1
rµ1

s where

r = 0, 1, 2 and s = 0, 1. Take any α ∈ Aut(G). Then

α(ρ1
rµ1

s) = α(ρ1
r)α(µ1

s) = (α(ρ1))r(α(µ1))s.

Since o(ρ1) = 3, (α(ρ1))3 = α(ρ3
1) = α(1) = 1. Hence α(ρ1) is ρ1 or ρ1

2 = ρ2. Similarly,

o(µ1) = 2 and α(µ1) = µ1, µ2 or µ3. Therefore α ∈ Aut(S3) if α(1) = 1, α(ρ1) = ρ1
r

for r = 1, 2 and α(µ1) = ρ1
rµ1 for r = 0, 1, 2. So these are the only possibilities for

α. Therefore the order of Aut(S3) is at most 6. Since | Inn(S3) |=| S3 |= 6, we have

Aut(S3) = Inn(S3) ∼= S3.
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Lemma 2.3.1. The number of elements of cycle shape 2k1n−2k in Sn is
n!

2kk!(n− 2k)!

for 1 ≤ k ≤ n/2.

Proof. A product of k disjoint transpositions in Sn has the form, (a1 b1) . . . (ak bk) with the

ai, bi distinct integers between 1 and n. A transposition can be done in

(
n

2

)
=
n(n− 1)

2

ways. Therefore, we have
n(n− 1)

2
choices for (a1 b1). And for (a2 b2) there are

(n− 2)(n− 3)

2
choices, after (a1 b1) has been chosen. Proceeding this way, there are

n(n− 1)

2
.
(n− 2)(n− 3)

2
. . . . .

(n− 2k − 2)(n− 2k − 1)

2
=

n!

2k(n− 2k)!

choices for k disjoint transpositions. To account for over counting, divide by k! since

there are k transpositions. Hence, we have
n!

2kk!(n− 2k)!
.

Lemma 2.3.2. Let α be an automorphism of Sn and let t be a transposition of Sn. If

n 6= 6, then α(t) is a transposition.

Proof. Let X = Sn and let t ∈ X be a transposition. Suppose the lemma is false. Since

the only elements of order 2 in X are those whose disjoint cycle decomposition consists

of disjoint transpositions, we may suppose that α takes a transposition to a product of

k disjoint transpositions where 1 6= k ≤ n/2. That is α(t) is an element of cycle type

1n−2k2k. Since α is an automorphism | αX |=| α(t)X |. The number of elements of the

conjugacy class of the transposition is

(
n

2

)
=
n(n− 1)

2
.

Therefore | α(t)X |= n(n− 1)

2
and , as α(t) has cycle type 2k1n−2k ,

| α(t)X |= n!

2kk!(n− 2k)!
,

by Lemma 2.3.1. Hence, we require

n!

(n− 2)!2!
=

n!

2kk!(n− 2k)!
.
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Thus we have 2k(n− 2k)!k! = (n− 2)!2! and therefore 2k−1(n− 2k)!k! = (n− 2)!. Divide

both sides by (n− 2k)!(2k − 2)! to get

(
n− 2

2k − 2

)
=

2k−1k!

(2k − 2)!
. (2.1)

Now consider the possible values of k. If k = 1, then α(t) is a transposition which is a

contradiction. So start with k = 2. Then equation 2.1 says

(
n− 2

2

)
= 2, which has no

integer solution for n. If k = 3, then we get

(
n− 2

2

)
= 1, which has the unique solution

n = 6. But we have not allowed n = 6. Consider k ≥ 4. we know that 2k−1 < 22k−4 and

hence,
2k−1k!

(2k − 2)!
<

22k−4k!

(2k − 2)!
as k ≥ 4. Consider

(2k − 2)!

k!
= (2k − 2)(2k − 3)...(k + 1)

> 4.4...4︸ ︷︷ ︸
k−2 terms

= 4k−2 = 22k−4.

Hence,

2k−1k!

(2k − 2)!
<

22k−4k!

(2k − 2)!
<

22k−4

22k−4
= 1.

So that
2k−1k!

(2k − 2)!
< 1 for k ≥ 4.

Therefore equation 2.1 has no integer solution for n. This proves that α(t) is a

transposition, as claimed.

Lemma 2.3.3. Let φ ∈ Aut(Sn). If φ maps transpositions to transpositions, then φ is

an inner automorphism.

Proof. Suppose that φ(1 r) = (ar br) for each r. Then φ((1 2)(1 r)) = (a2 b2)(ar br).

However, if r ≥ 3, then (1 2)(1 r) = (1 2 r) is an element of order 3. Thus either

ar ∈ {a2, b2} or br ∈ {a2, b2} but not both. We claim that for all r either ar = a2 or
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ar = b2 .

Suppose that there are r 6= s with ar = a2 and as = b2. Note that (1 r 2)(1 s 2) =

(1 r)(2 s) has order 2. Also,

φ((1 2 r)(1 2 s)) = (a2 b2)(ar br)(a2 b2)(as bs)

= (a2 b2)(a2 br)(a2 b2)(b2 bs)

= (b2 br bs)

has order 3. This is a contradiction. Hence we have either a2 = ar for all r or b2 = br for

all r. So we assume that a2 = ar for all r. Then the other case is similar. We then have

φ(1 r) = (a2 br) for all r ≥ 3. So that this shows, br 6= bs if r 6= s since φ is injective.

Let σ be a permutation such that σ(1) = a2 and σ(r) = br for all r ≥ 3. This uniquely

determines σ as we have defined σ on n− 1 values. From the choice of σ we can see that

φ(1 r) = (a2 br) = σ(1 r)σ−1. Therefore φ is an inner automorphism.

Theorem 2.3.1. If n 6= 6, then Aut(Sn) ∼= Sn.

Proof. The result now follows from 2.3.2 and 2.3.3.

Lemma 2.3.4. If H is a transitive subgroup of S6 having order 120, then H cannot

contain a transposition.

Proof. The transitive subgroup H of order 120 contains an element σ of order 5, which

is a 5-cycle. We may suppose that σ = (1 2 3 4 5). If (i j) ∈ H, then the transitivity of

H gives, τ ∈ H with τ(j) = 6. Therefore τ(i j)τ−1 = (k 6) for some k 6= 6. Conjugating

(k 6) by the powers of τσ shows that H contains (1 6), (2 6), (3 6), (4 6), (5 6). However

these transpositions generate all of S6.
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Theorem 2.3.2. There exists an outer automorphism of S6.

Proof. By the Sylow’s Theorem, the Sylow 5-subgroup P of S5 has 6 conjugates. Let

ϕ : S5 −→ S6 be the representation of S5 on the conjugates of P .

Since Kerϕ ⊆ N(P ), the normalizer of P which has index 6 in S6, and hence is not

one of the subgroups A5 or S5, we have ϕ is one-one. Hence H = Imϕ is a transitive

subgroup of S6 and H ∼= Sym(5).

Next let φ : S6 −→ S6 be the permutation representation on the cosets of H.

As above, φ is injective, hence onto and so φ ∈ Aut(S6). If φ ∈ Inn(S6), then φ((1 2))

will be a transposition, that fixes four symbols. Thus, (1 2) will be contained in exactly

four conjugates of H. But then H contains a transposition which contradicts Lemma

2.3.4. Thus, φ is an outer automorphism.

Theorem 2.3.3.
Aut(S6)

Inn(S6)
∼=

Z
2Z
.

Proof. Two permutations lie in the same conjugacy class if and only if they have the

same cycle structure. Therefore we have the following table of conjugacy classes of S6.

Let C = {C1, . . . , C11} be the set of conjugacy classes of S6 and if φ ∈ Aut(S6), then

φ ∈ SC. If φ is an inner automorphism if, and only if φ(C2) = C2 by Theorem 4.2.

Therefore, φ is an outer automorphism if, and only if φ interchanges C2 and C10, since

these are the only conjugacy classes having 15 elements. It follows that if φ and ϕ are

outer automorphisms. Then φϕ(C2) = C2, hence φϕ is an inner automorphism, and

Aut(S6)

Inn(S6)
has order at most 2. Combining this with Theorem 2.3.2 we have the claim.
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Conjugacy classes Cycle structure Order Parity Number of such

C1 (1) 1 even 1

C2 (1 2) 2 odd 15

C3 (1 2 3) 3 even 40

C4 (1 2 3 4) 4 odd 90

C5 (1 2 3 4 5) 5 even 144

C6 (1 2 3 4 5 6) 6 odd 120

C7 (1 2)(3 4) 2 even 45

C8 (1 2)(3 4 5) 6 odd 120

C9 (1 2)(3 4 5 6) 4 even 90

C10 (1 2)(3 4)(5 6) 2 odd 15

C11 (1 2 3)(4 5 6) 3 even 40

720 = 6!
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Chapter 3

Free Groups

3.1 Words and Reduced Words

Definition 3.1.1. Let S be an arbitrary set of symbols, say S = {x1, x2, . . .}, which may

be finite or infinite, and define a word to be a finite string of symbols from S, in which

repetetion is allowed. For example, x1, x1x2, x1x1 and x1x1x2x1 are words. Two words

can be composed by juxtaposition:

x1x1, x2x1 7−→ x1x1x2x1.

Thus the set W of all words has an associative law of composition. Also, the empty word

can be introduced as an identity element. We will denote the empty word by 1.

Let S
′

be the set consisting of the symbols in S and also x−1
i for every xi ∈ S:

S
′
= {x1, x

−1
1 , x2, x

−1
2 , . . .}.

Let W
′

be the set of words made using the symbols S
′
. If a word w ∈ W ′

looks like

. . . xx−1 . . . or . . . x−1x . . . for some x ∈ S, then we can cancel the two symbols x, x−1 and
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reduce the length of the word. The word is said to be reduced if no such cancellation can

be made.

Now there is more than one way to proceed with cancellation. For instance, let

w = x2x1x2x
−1
2 x−1

1 x−1
3 x3x1,

x2x1x2x
−1
2 x−1

1 x−1
3 x3x1

��
x2x1x

−1
1 x−1

3 x3x1

��
x2x

−1
3 x3x1

��
x2x1

x2x1x2x
−1
2 x−1

1 x−1
3 x3x1

��
x2x1x2x

−1
2 x−1

1 x1

��
x2x1x2x

−1
2

��
x2x1

At the end we will obtained the same reduced word.

Lemma 3.1.1. There is only one reduced form of a given word w.

Proof. We will use the Mathematical Induction on the length of w. If w is a reduced

word then the assertion is true. If not, there should be some pair which can be canceled,

say w = . . . xx−1 . . . be a word for x ∈ S ′ . Suppose that w
′

is reduced form of w. We

know that w
′

is obtained from w by some steps of cancellation. The first case is that our

pair xx−1 is canceled at some step. Then we might rearrange the operations and cancel

xx−1 first. On the other hand, the pair xx−1 cannot remain in w
′

as w
′

is a reduced

word. Therefore at least one of the two symbols must be canceled at some time. If the

pair itself is not canceled, then the first cancellation involving the pair must look like,

. . . x−1xx−1 . . . or . . . xx−1x . . . .

Note that the word obtained by this cancellation is the same as that obtained by canceling

the original pair xx−1. Then we are back in the first case, and the lemma is proved.
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Definition 3.1.2. Two words w and w
′

in W
′

are equivalent if they have the same

reduced form, and we write w ∼ w
′
.

This is an equivalence relation.

Lemma 3.1.2. The product of two equivalent words is equivalent.

Proof. Let w and v be two words and equivalent to w
′

and v
′

respectively. Hence we

need to show that w ∼ w
′

and v ∼ v
′
, then wv ∼ w

′
v
′
. to obtain the reduced word

equivalent to the product wv, cancel the possible terms in w and v,to reduce w to w◦

and v to v◦. Then wv is reduced to w◦v◦. Next we continue canceling in w◦v◦ if possible.

Since, w ∼ w
′

and v ∼ v′, the same process applied to w
′
v
′
. Therefore it gives the same

reduced word.

Lemma 3.1.2 says that multiplication of equivalence classes of words is well-defined

law of composition.

Lemma 3.1.3. Let F denote the set of equivalence classes of words in W
′
. Then F is a

group with the law of composition induced from W
′
.

Proof. It is clear that the multiplication is associative and 1 is an identity in W
′
. We

need to show that all the elements of F are invertible. But we know that w = x1x2 . . . xn

then the class of x−1
n . . . x−1

2 x−1
1 is the inverse of the class of w.

3.2 Free Groups

Definition 3.2.1. The group F of equivalence classes of words is called the free group

on the set S, denoted by F [S].
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Definition 3.2.2. Let G be a group and let T ⊆ G. Then the smallest subgroup of G

containing T is the subgroup generated by T. We write 〈T 〉 for subgroup generated by T .

A group G is generated by a set T , if G has no proper subgroup containing T . That is

G = 〈T 〉. If there is a finite set that generates G, then G is finitely generated.

Theorem 3.2.1. Let G be a group and ai ∈ G for i ∈ I. Let H be a subgroup of G

generated by T = {ai | i ∈ I}. Then H has elements precisely those elements of G that

are finite products of integral powers of ai, where powers of a fixed ai may occur several

times in the product.

Proof. Let K be the set of all finite products of integral powers of the ai. Clearly, K ⊆ H.

The product of elements in K is again in K. The identity element e ∈ K. For every

element k ∈ K, k−1 ∈ K, since from the product giving k a new product with the order

of the ai reversed and the opposite sign on all exponents, we have k−1, and k−1 ∈ K.

Therefore K is a subgroup of G and since H is the smallest subgroup containing ai for

i ∈ I,K = H.

To illustrate how we invert elements in the last but one sentence of the previous we

have the following:

[(x1)2(x2)−3(x3)2]−1 = (x3)−2(x2)3(x1)−2.

Theorem 3.2.2. Let G be a group generated by T = {ai|i ∈ I} and let H be any

group. Then there is at most one homomorphism φ : G −→ H such that φ(ai) = hi

for any element hi ∈ H and i ∈ I. If G is free on T , then there is exactly one such

homomorphism.
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Proof. Let φ be a homomorphism from G to H such that φ(ai) = hi. Now for any g ∈ G

for some finite product of the generators ai. Then we have

φ(g) = φ(
∏
j

aij
nj) =

∏
j

φ(a
nj
ij

) =
∏
j

h
nj
ij

as φ is a homomorphism. Therefore a homomorphism is completely determined by its

values on elements of a generating set. Hence there is at most one homomorphism such

that φ(ai) = hi.

Let G be a free group on the set S, that is, G = F [S]. Define a map

ϕ : G −→ H

by

ϕ(g) =
∏
j

h
nj
ij

for g =
∏
j

a
nj
ij

Since F [S] contains precisely reduced words, two different products in F [S] are not

equal. Therefore map ϕ is well defined.

ϕ(gg
′
) = (

∏
j

h
nj
ij

)(
∏
k

h
′mk
ik ) = ϕ(g)ϕ(g

′
)

for any elements g and g
′

in G. Hence ϕ is a homomorphism.
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Chapter 4

Coset Enumeration

4.1 Group Presentation

Definition 4.1.1. Let S be a set and F [S] be a free group. Let R = {ri|i ∈ I} ⊆ F [S].

Let N be the least normal subgroup containing the ri. An isomorphism φ of F [S]/N onto

a group G is a presentation of G. The sets S and {ri} give a group presentation. The

set S is the set of generators for the presentation and each ri is a relator. An equation

ri = 1 is a relation. The notation 〈S | R〉 denote the group presentation in which the

generators are elements from S and the relators are from R. A finite presentation is one

which both S and I are finite sets. .

Example 4.1.1. The presentation 〈x, y | x2 = 1, yn = 1, (xy)2 = 1〉 defines a group which

is isomorphic to D2n.

Example 4.1.2. A Coxeter group can be defined as a group with the presentation

〈a1, a2, ..., an|(aiaj)mij = 1〉
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where ai, i = 1, 2, ..., n is a relation and mij is an integer for all i, j = 1, 2, ..., n. Also

mij = 1 if i = j and mij ≥ 2 if i 6= j.

If mii = 1 then (ai)
2 = 1 for all i = 1, 2, ..., n and the generators are either involutions

or trivial. Recall an involution is elements such that (ai)
2 = 1. If mij = 2 then the

generators ai and aj commute for all i, j such that i 6= j. So (aiaj)
2 = 1. Let aiaj = x

then x2 = 1.

4.2 Coset Enumeration

Coset enumeration is a method of counting the cosets of a subgroup H of a group

G given in terms of a presentation. As a by-product, one can obtain a permutation rep-

resentation for G on the cosets of H. If H has a known finite order, coset enumeration

gives the order of G as well.

The algorithm for the coset enumeration is the Todd Coxeter algorithm which we

now describe.

Todd Coxeter Algorithm

Let G be a group with a finite set X = {g1, ..., gn} of generators. Let R be a finite

set of relators in these generators. Thus, G is the quotient of the free group on X by

the normal closure of the subgroup, as we have seen in Section 4.1, generated by the

elements in R. Elements of R are words in the elements of X ∪X−1. Suppose that H is

a subgroup of G generated by Y = {h1, ..., hm}. The elements of Y are also words in the

elements of X ∪X−1.

Todd coxeter enumeration is a method to enumerate all the different cosets of H in
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G. These cosets will be denoted by positive integers. The integer 1 represents H. The

notation n · g is the image under g of the coset represented to n. Todd Coxeter enumer-

ation relies on the following three observations:

•1 · h = 1, for all h ∈ H.

Since for all h ∈ H, Hh = H.

•j.r = j, for all cosets j and r ∈ R.

This follows as r evaluates to 1 in G.

•i · g = j ⇐⇒ i = j · g−1, for all cosets i, j and all g ∈ X.

Assume that i = Hm and j = Hl, then i· = Hmg = Hl if, and only if, Hm = Hlg−1.

These three observations will be used to set up three types of tables:

• subgroup table

• relator table and

• coset table.

We will illustarte the process in the following example.

Example 4.2.1. G∗ = 〈x, y|x2, y2, (xy)3〉 and subgroup H∗ = 〈x〉. We start to construct

a subgroup table for every generator h = gj1...gj l of H, where gj i are the set of generators.

This table consists of only one row of length l + 1 and starts and ends with the entry

1, that represents the coset H. In this example, there is only one subgroup table as

H∗x = H∗.

subgroup x

1 1

Next we will construct relator tables for each relator r = gi1 ...gik with the generators gij .

These tables consist of k + 1 columns and the number of rows is determined during the
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process. As with the subgroup table, each row starts and ends with the same integer.

For this example, there are three relator tables: using the subgroup table, the first row

of each of these is filled as follows:

relator x x y y x y x y x y

1 1 1 2 1 1 2 3 4 5 1

Where H∗y = 2, H∗yx = 3, H∗yxy = 4. Then add the other rows using

2 · y = H∗y2 = H∗ = 1

3 · x = H∗yx2 = H∗y = 2

3 · y = H∗yxy = 4

4 · x = H∗yxyx = 5

4 · y = H∗yxy2 = H∗yx = 3

5 · x = H∗yxyx2 = H∗yxy = 4

5 · y = H∗yxyxy = H∗x = 1

relator x x y y x y x y x y

1 1 1 2 1 1 2 3 4 5 1

2 3 2 1 2 3 4 5 1 1 2

3 2 3 4 3 2 1 1 2 3 3

4 5 4 3 4 5 1 1 2 3 4

5 4 5 1 5 4 3 2 1 1 5

Then the coset table for G∗ is

coset x y

1 1 2

2 3 1

3 2 4

4 5 3

5 4 1
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If the information from the tables tells that i · g = j · g for some generator g, but i 6= j,

then two distinct integers i and j represent the same coset. This is called a coincidence.

From the second relator table 2 · y = 1 and from the third relator table 5 · y = 1. This

says that coset labeled 2 and 5 are equal. So replace 5 by 2 in the relator tables and

remove the row starting with 5. Hence, the table now has four rows.

relator x x y y x y x y x y

1 1 1 2 1 1 2 3 4 2 1

2 3 2 1 2 3 4 2 1 1 2

3 2 3 4 3 2 1 1 2 3 3

4 2 4 3 4 2 1 1 2 3 4

Another coincidence is from the first relator table, 2 · x = 3 and 2 · x = 4. So we can

replace 4 by 3. Then only three cosets remain. Furthermore the coset table is closed.

The relator tables and coset table are

relator x x y y x y x y x y

1 1 1 2 1 1 2 3 3 2 1

2 3 2 1 2 3 3 2 1 1 2

3 2 3 3 3 2 1 1 2 3 3

coset x y

1 1 2

2 3 1

3 2 3

So the group H∗ = 〈x〉 has index 3 in G∗. Moreover, we can obtain a permuta-

tion representation of G∗ into S3. Hence x maps to (2 3) and y maps to (1 2). So

G∗ = 〈(1 2), (2 3)〉 ∼= S3 and | G∗ : H∗ |= 3. The group G∗ is of order 6, since H∗ is the

order of 2.
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We now demonstrate a more complicated example.

Example 4.2.2. [6] Consider the group

G = 〈x1, x2, x3, x4, x5|x1x2 = x3, x2x3 = x4, x3x4 = x5, x4x5 = x1, x5x1 = x2〉

and enumerate cosets of 〈x1〉. The subgroup table is

subgroup x1

1 1

and relator tables are (after some work)

relator x1 x2 x3
−1 x2 x3 x4

−1 x3 x4 x5
−1 x4 x5 x1

−1 x5 x1 x2
−1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Therefore the group G is generated by only one element and G = 〈x1〉. Hence G is

cyclic.

Example 4.2.3. Consider the group

G = 〈x1, x2, x3, x4|x1
2 = x2

2 = x3
2 = x4

2 = 1, [x1, x3] = [x1, x4] = [x2, x4] = 1,

(x1x2)3 = (x2x3)3 = (x3x4)3 = 1〉

and enumerate cosets with respect to the subgroups H = 〈x1, x2〉. We know the ele-

ments of H satisfy the relations (x1x2)3 = x1
2 = x2

2 = 1. But as a subgroup of G it

may satisfy further relations. K = 〈x1, x2, x3〉 and the elements of K satisfy relations

x1
2 = x2

2 = x3
2 = [x1, x3] = (x1x2)3 = (x2x3)3 = 1. Subgroup table for H, relator tables

for subgroup H in K and coset table for H are
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We deduce that |K : H| = 4. We also have x1 = (3 4), x2 = (2 4) and x3 = (1 2). A group

generated by three elements of order 2 subject only to relations [x1, x3] = (x1, x2)3 =

(x2, x3)3 = 1 must be Sym(4). Thus K = Sym(4). It follows that |K| = 24 and |H| = 6.

So H = Sym(3).

Next we will consider the relator tables for subgroup K in G.
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Coset table for G

coset x1 x2 x3 x4

1 1 1 1 2

2 2 2 3 1

3 3 4 2 3

4 5 3 4 4

5 4 5 5 5

From the coset table we can see that |G : K| = 5. Also we have x1 = (4 5), x2 =

(4 3 5), x3 = (3 2 5), x4 = (1 2)(3 4 5).

|G| = |G|
|K|

.
|K|
|H|

.|G| = 5.4.6 = 120.

Hence as | G |=| Sym(5) | and G acts faithfully on five points G is the group Sym (5).

Since the elements (1 2)(2 3) . . . (4 5) of Sym(5) satisfy the relations we get that | G |≥

120.
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Chapter 5

Amalgams

5.1 Amalgams

Definition 5.1.1. Let A,B and C be groups, and φ1 : C −→ A and φ2 : C −→ B be

monomorphisms. Then the five-tuple A = (A1, A2, B, φ1, φ2) is called an amalgam.

Example 5.1.1. Let A1 = Sym(4), A2 = Sym(4) and B = Dih(8) = 〈(12)(34), (23)〉. De-

fine φ1 : B −→ A1 and φ2 : B −→ A2 by identity mappings. Then A = (A1, A2, B, φ1, φ2)

is an amalgam, since φ1 and φ2 are monomorphisms.

Definition 5.1.2. Let A1 = (A1, A2, B, φ1, φ2) and A2 = (Â1, Â2, B̂, ϕ1, ϕ2) be amal-

gams. If there exist isomorphisms αi : Ai −→ Âi and γ : B −→ B̂ for i = 1, 2, such that

Im(φiαi) = Im(γϕi) then we say that A1 and A2 have same type. Two amalgams of the

same type are isomorphic, if for i = 1 and 2, φiαi = γϕi. This is equivalent to saying

that the following diagram of groups commutes.
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A1

α1

��

B
φ1oo

γ

��

φ2 // A2

α2

��

Â1 B̂ϕ1

oo
ϕ2

// Â2

Definition 5.1.3. Let A = (A1, A2, B, φ1, φ2) be an amalgam. A representation of A

into a group G is a homomorphism (ψ1, ψ2) where ψi : Ai −→ G for i = 1, 2, such that

φ1ψ1 = φ2ψ2. Then a completion of A in G is the triple (〈ψ1(A1), ψ2(A2)〉, ψ1, ψ2).

Definition 5.1.4. A completion of A is faithful if ψ1 and ψ2 are monomorphisms.

Definition 5.1.5. A completion (G,ψ1, ψ2) of A is called a universal completion of A if

given any other completion (H,ψ1
∗, ψ2

∗) there exists a unique homomorphism κ : G −→

H which makes the following diagram commute.

A1

ψ1
∗

��/////////////////////
ψ1 // G

κ

���
�
�
�
�
�
�
�
�
�

B

φ1

??������������

φ2

��????????????

A2

ψ2

GG���������������������

ψ2
∗

// H

Definition 5.1.6. Let A = (A1, A2, B, φ1, φ2) be an amalgam and let N be the normal

subgroup of the free product A1 ∗ A2 generated by {φ1(b)φ2(b−1) | b ∈ B}. The group

(A1 ∗A2)/N , often denoted by G(A), is the free amalgamated product of A1 and A2 over

B.

Lemma 5.1.1. Let A = (A1, A2, B, φ1, φ2) be an amalgam, and N be a normal subgroup

of the free product A1 ∗ A2 generated by the set {φ1(b)φ2(b−1)|b ∈ B}. Let

θ1 : A1 −→ (A1 ∗ A2)/N be defined by θ1(x) = xN, for all x ∈ A1
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and

θ1 : A2 −→ (A1 ∗ A2)/N be defined by θ2(y) = yN, for all y ∈ A2.

Then ((A1 ∗ A2)/N, θ1, θ2) is a universal completion of A.

Proof. We have φ1θ1 = φ2θ2 as θ1 and θ2 are homomorphisms. Then the following diagram

commutes.

B

φ2

��

φ1 // A1

θ1

��
A2 θ2

// (A1 ∗ A2)/N

Let (H,ψ1, ψ2) be a completion of A. Define κ : A1 ∗A2 −→ H be the unique homomor-

phism such that κ(x) = ψ1(x) and κ(y) = ψ2(y) for all x ∈ A1 and y ∈ A2. Then

κ(φ1(b)φ2(b−1)) = κ(φ1(b))κ(φ2(b−1))

= ψ1(φ1(b))ψ2(φ2(b−1)) = 1

for all b ∈ B. Next define κ
′
: (A1 ∗A2)/N −→ H by κ

′
(x
′
N) = κ(x

′
) for all x

′ ∈ A1 ∗A2.

Then κ
′

is a homomorphism. Also κ
′
(θ1(x)) = κ

′
(xN) = κ(x) for all x ∈ A1, and

κ
′
(θ2(y)) = κ

′
(yN) = κ(y) for all y ∈ A2,. Also, κ(x) = ψ1(x) and κ(y) = ψ2(y) for all

x ∈ A1, y ∈ A2. This shows that the uniqueness of κ
′
.

Note that the uniqueness of the homomorphism κ in the Definition 5.1.5 and the

existence of a universal completion for any amalgam, A, by Lemma 5.1.1, imply that

G(A) is unique upto isomorphism, and that any other completion of A is a quotient of

G(A).
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Lemma 5.1.2. Isomorphic amalgams have the same groups as completions.

Proof. Assume that A1 = (A1, A1, B, φ1, φ2) and A2 = (Â1, Â2, B̂, θ1, θ2) are isomorphic

amalgams by the triple of isomorphisms:

α : Â1 −→ A1, β : Â2 −→ A2, γ : B̂ −→ B.

Let (G,ψ1, ψ2) be a completion of A1. Then the following diagram commutes.

Â1
α // A1

ψ1

��???????????????

B̂

θ1

??��������������

θ2

��??????????????
γ // B

φ1

??���������������

φ2

��??????????????? G

Â2

β // A2

ψ2

??���������������

θ1αψ1 = γφ1ψ1

= γφ2ψ2

= θ2βψ2.

Therefore (G,αψ1, βψ2) is a completion of A2.

Lemma 5.1.3. Let A = (A1, A2, B, φ1, φ2) and A′ = (A1
′
, A2

′
, B

′
, φ
′
1, φ

′
2) be amalgams

with the same type, then there exists γ ∈ Aut(B) such that A′ is isomorphic to Aγ =

(A1, A2, B, φ1, γφ2).

Proof. Suppose that A = (A1, A2, B, φ1, φ2) and A′ = (A1
′
, A2

′
, B

′
, φ
′
1, φ

′
2) are amalgams

of the same type. Let τi : Ai −→ Ai
′

be an isomorphism such that Im(φiτi) = Im(φi
′
).

Next define θi : B −→ B
′

by θi 7−→ θiτi(φi
′
)−1. Since φi and φi

′
are monomorphisms θi

44



is an isomorphism.

Let ρ : B −→ B
′

be any isomorphism and define βi ∈ Aut(B) as βi = ρθi
−1 for i = 1, 2.

Note that

θi
−1 = φi

′
(τi)

−1φi
−1

βiφiτi = ρθi
−1φiτi

= ρ(φi
′
τi
−1φiτi) = ρφi

′

for i = 1, 2.

Hence A′ and (A1, A2, B, β1φ1, β2φ2) are isomorphic as the triple (τ1, ρ, τ2). The amal-

gams (A1, A2, B, β1φ1, β2φ2) and (A1, A2, B, φ1, β1
−1β2φ2) are isomorphic as the triple of

automorphisms (1, βi, 1). Therefore (A1
′
, A2

′
, B

′
, φ
′
1, φ

′
2) and (A1, A2, B, φ1, β1

−1β2φ2) are

isomorphic amalgams. So take γ = β−1
1 β2. Hence γ ∈ Aut (B).

Theorem 5.1.1. Let H and K be subgroups of a group G such that H ≤ K. Then

NAut(K)
(H)

CAut(K)
(H)

is isomorphic to a subgroup of Aut(H).

Proof. Define

φ : NAut(K)
(H) −→ Aut (H)

φ(σ) = σ |H

where σ is a map from H to a subgroup of K. Then σ ∈ Kerφ if, and only if σ(h) = h

for h ∈ H if, and only if σ ∈ CAut(K)
(H). So Ker φ = CAut(K)

(H). Then by the first

isomorphism theorem,

NAut(K)
(H)

CAut(K)
(H)

∼= Imφ ≤ Aut(H).
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5.2 Goldschmidt’s Lemma

Definition 5.2.1. Suppose that H and K are subgroups of a group G such that H ≤ K.

Let σ be an automorphism from K to K. Then σ is a map from H to a subgroup of K

as H is a subgroup of K. So σ(H) = {σ(h) | h ∈ H} and then the normalizer of H in

the automorphism of K is defined as

NAut(K)
(H) = {σ ∈ Aut(K) | σ(H) = H}

and the centralizer of H in the automorphism of K is defined as

CAut(K)
(H) = {σ ∈ Aut(K) | σ(h) = h, for all h ∈ H}.

Then Aut (K,H) = NAut(K)
(H)/CAut(K)

(H) is a subgroup of Aut(H) by Theorem

5.1.1. If L is also a subgroup of K then a (H,L)- double coset is a subset HxL of K for

some x ∈ K.

Notation Let A be an amalgam. Then for an amalgam B of the same type as A denote

by [B] its isomorphism class.

Theorem 5.2.1. [Goldschmidt’s Lemma] Let A = (A,B,C, φ1, φ2) be an amalgam

and define the following subgroup of Aut(C).

A∗ = {φ1αφ1
−1|α ∈ Aut(A, φ1(C))}

and

B∗ = {φ2βφ2
−1|β ∈ Aut(B, φ2(C))}.

Then the isomorphism classes of amalgams of type A are in one-to-one correspondence

with the (A∗, B∗)-double cosets in Aut(C).
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Proof. Let µ ∈ Aut(C) and define A = (A,B,C, φ1, µφ2). Consider the map

F : A∗ \ Aut(C)/B∗ −→ C(A)

A∗µB∗ 7−→ [Aµ]

where A∗ \ Aut(C)/B∗ denote the (A∗, B∗)-double cosets in Aut(C). First we will show

that F is well defined. Suppose that A∗µB∗ = A∗δB∗.Then there exist α ∈ Aut(A, φ1(C))

and β ∈ Aut(B, φ2(C)) such that

µ = (φ1αφ1
−1)−1δ(φ2βφ2

−1).

Hence the amalgam A and Aµ are isomorphic as the following diagram commutes.

A

α

��

C
φ1oo

φ1αφ1
−1

��

µ // C

φ2βφ2
−1

��

φ2 // B

β

��
A C

φ1

oo
µ

// C
φ2

// B

Therefore, F (AµB) = F (AδB). Suppose that [Aµ] = [Aδ]. Then the triple of isomor-

phism (α, γ, β) makes the following diagram commute.

A

α

��

C
φoo

γ

��

µφ2 // B

β

��
A C

φ1

oo γφ2 // B

Then,

µ = γδφ2β
−1φ2

−1 = (φ1αφ1
−1)δ(φ2β

−1φ2
−1)

Thus, AµB = AδB and so F is one-to-one.

Suppose that A′ is an amalgam of the same type of A. Then by Lemma 3.3 A′ is
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isomorphic to Aε, for some ε ∈ Aut (C). So, F (AεB) = [A′ ] = [Aε]. This shows that F

is onto and hence, a bijection.

Goldschmidt’s Lemma can be found in [11].

Example 5.2.1. Consider the amalgamA = (Sn, Sn, Sn−1, φ1, φ2) where, φi is an identity

map from Sn−1 to Sn for i = 1, 2 and n is a positive integer. Then φi(Sn−1) = Sn−1 and

φi(C) = C for i = 1, 2. Hence,

Aut(Sn, φ1(C)) = Aut (Sn, Sn−1)

=
NAut(Sn)

(Sn−1)

CAut(Sn)
(Sn−1)

(5.1)

by the Theorem 5.1.1. Also the Theorem 2.3.1 says that Aut(Sn) = Sn unless n = 6.

Therefore,

Aut(Sn, Sn−1) =
NSn(Sn−1)

CSn(Sn−1)

Next we need to show that NSn(Sn−1) = Sn−1. Clearly, Sn−1 ⊆ NSn(Sn−1). To show

that NSn(Sn−1) ⊆ Sn, let τ ∈ Sn \ Sn−1. Then nτ = i 6= n. Let j ∈ {1, ..., n} such that

j 6= i. Thus,

τ−1(ij)τ = (iτjτ)

= (njτ) 6∈ Sn−1

as n fixes in Sn−1. So τ 6∈ NSn(Sn−1). This implies that Sn−1 ⊆ NSn(Sn−1). We know

that CSn(Sn−1) ⊆ NSn(Sn−1). Since CSn(Sn−1) = CSn−1(Sn−1),

CSn−1(Sn−1) = Z(Sn−1) = {1}, n ≥ 4.

So, Aut(Sn, Sn−1) ∼= Sn−1 = Sym(1, ..., n − 1). Also, Aut(Sn−1) = Sn−1 for n 6=

2, 3, 6, 7.
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Then A∗ = Sn−1, B
∗ = Sn−1 and Aut(C) = Aut(Sn−1) = Sn−1.

Then the double cosets,

A∗ \ Aut(C)/B∗ = Sn−1 \ Sn−1/Sn−1

= {Sn−11Sn−1}.

Hence there is only one double coset. Therefore there is one isomorphic class of amalgam

of type A when n 6= 2, 3, 6, 7.

Consider n = 6. Then by Theorem 2.3.3, Aut (Sn) = 2 : Sn. HenceNAut(Sn)
(Sn−1) =

Sn−1 and CAut(Sn)
(Sn−1) = {1}. Then the equation 5.1 gives Aut(Sn, Sn−1) = Sn−1.

Then the double cosets,

A∗ \ Aut(C)/B∗ = Sn−1 \ 2 : Sn/Sn−1

= S5 \ 2 : S5/S5

= {S51S5, S5xS5} for x 6∈ S5.

If n = 7, Aut(Sn−1) = AutS6 = 2 : S6 by Theorem 2.3.3. Then A∗ = S6 and B∗ = S6.

Then the double cosets,

A∗ \ Aut(C)/B∗ = S6 \ 2 : S6/S6

= {S61S6, S6xS6} for x 6∈ S6.

Therefore there are two double cosets when n = 7 and n = 6. Hence we have two

isomorphic class of amalgam of type A when n = 7, 6.
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5.3 Isospectral Groups

Definition 5.3.1. Let G be a group. Then the number of subgroups of G of index n is

denoted by an(G). Let H be a group, then G and H are called isospectral if, and only if,

an(G) = an(H) for all natural numbers n.

Definition 5.3.2. Let G be a group and suppose that A = (A,B,C, φ1, φ2) is an amal-

gam. Define

Hom(A, G) = {ψ | ψ is a representation of A into G}.

Let θ ∈ Hom(C,G), where Hom(C,G) is the set of homomorphisms from C to G. Then

we say that (ϕ1, ϕ2) ∈ Hom(A, G) extends θ if θ = φ1ϕ1 = φ2ϕ2 for ϕ1, ϕ2 ∈ Hom(A, G).

Then

Homθ(A, G) = {ψ ∈ Hom(A, G) | ψ extends θ}.

Lemma 5.3.1. Let G = 〈x〉 be a cyclic group of order n Then for each divisor m of n,

there is a unique subgroup G with order m. This subgroup is a cyclic group generated by

xn/m, and these are all the subgroups of G.

Proof. Let H be a subgroup of G, and let k be the smallest positive integer such that

xk ∈ H. We claim that xl ∈ H if, and only if, k divides l. If l = kq, the xl = (xk)q ∈ H.

Conversely, suppose that xl ∈ H and let l = kq+r, with 0 ≤ r < k. Then xr = xl−kq ∈ H,

and so r = 0. In particular, xn = 1 ∈ H, so k divides n. Putting m = n/k, we can see

that H is generated by xn/m, and that H has m elements 1 = x0, xk, x2k, ..., x(m−1)k.

Lemma 5.3.2. If H is a subgroup of a cyclic group C, and γ ∈ Aut(C), then γ(H) = H.

Proof. We can use the fact that a subgroup of a cyclic group is uniquely determined by
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its order from the Lemma 5.3.1. Since γ(H) and H have the same number of elements,

they must be the same. Hence, | H |=| γ(H) |. Therefore, H = γ(H).

Lemma 5.3.3. Let G = Sym(n). Let C be a cyclic group. Suppose that θ ∈ Hom(C,G).

Then the generators for θ(C) in G all have the same cycle type and so are conjugate in

G.

Proof. Let C be a cycle of order m and x be a generator of C. Consider θ(x) ∈ G. Then

the order of θ(x) divides m. Write l for the order of θ(x). Let θ(x) has a cycle shape

1a12a2 .... Then the order of θ(x) = lcm{i | ai 6= 0} = l. i.e. θ(x)l = 1. That means

θ(x)l = 1. Write θ(x) = c1,1c1.2...c1,a1c2,1c2,a2 .... Suppose ci,j as a cycle of length i.

1 = θ(x)l = cl1,1...c
l
1,a1

cl2,1...c
l
2,a2

...

where ci,j denote the conjugacy class. Hence, cli,j = 1 for all i, j. Thus i | l for all i such

that ai 6= 0.

Now look at the cycle shape of θ(x)k.

θ(x)k = ck1,1...c
k
1,a1

ck2,1...c
k
2,a2

...

Let i be such that ai 6= 0. Consider cki,1 is a cycle shape of length i. Thus, gcd(k, i) = 1.

Now i | l since l = lcm{i | ai 6= 0}. So, if s divide k and i then s divide k and l, but

gcd(l, k) = 1. This implies that s = 1. Hence, cki,1 is a cycle of length i. Therefore θ(x)k

has the same cycle shape as θ(x).

Let θ ∈ Hom(C,G). Let πθ : C −→ C/Ker θ be a projection map and θ̄ : C/Ker θ −→
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θ(C) be the unique homomorphism which makes the following diagram commutes.

C

πθ

��

θ // G

C/Kerθ

θ̄

??���������������

Define θ̃ : NG(θ(C)) −→ Aut(C/ Ker θ) by θ̃(x) = θ̄cxθ̄
−1,where cx is the automorphism

of θ(C) induced by conjugation by x. Next, take γ ∈ Aut(C) such that γ( Ker θ) =

Ker θ. Define γ̃ such that πθγ̃πθ
−1 = γ. Then we have the following commutative

diagram

C

πθ

��

γ // C

πθ

��
C/Kerθ

γ̃ //_____ C/Kerθ

and hence γ̃ ∈ Aut(C/Ker θ).

Recall. LetA = (A1, A2, B, φ1, φ2) be an amalgam. ThenAγ is defined as (A1, A2, B, φ1, γφ2),

where γ ∈ Aut (B).

Lemma 5.3.4. Let θ ∈ Hom(C,G) and γ ∈ Aut(C) such that γ( Ker θ) = Ker θ. If

there exists x ∈ NG(θ(C)) such that θ̃(x) = γ̃−1 then there exists a bijection between

Homθ(A, G) and Homθ(Aγ, G).

Proof. Define two maps:

σ1 : Homθ(A, G) −→ Homθ(Aγ, G) by (ϕ1, ϕ2) 7−→ (ϕ1, ϕ2cx)

and

σ2 : Homθ(Aγ, G) −→ Homθ(A, G) by (ϕ1, ϕ2) 7−→ (ϕ1, ϕ2cx−1).
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Then we have the following two commutative diagrams,

A

ϕ1

��???????????????

C

φ1

OO

φ2

��

θ // G

B

ϕ2

??���������������

A

ϕ1

��???????????????

C

φ1

OO

φ2 γ

��

θ // G

B

ϕ2cx

??���������������

We need to show that these two maps are well defined. So, we will show that (ϕ1, ϕ2cx) ∈

Homθ(Aγ, G). Consider,

γφ2ϕ2cx = γθcx = γπθθ̄cx = γπθθ̄cxθ̄
−1θ̄

= γπθθ̃(x)θ̄ = γπθγ̃
−1θ̄( as θ̃(x) = γ̃−1)

= γγ−1πθθ̄ as πθγ̃ = γπθ

= πθθ̄ = θ.

Hence, we infer that σ1 is well defined. Similarly, we can show that σ2 is well defined.

Definition 5.3.3. Let A = (A,B,C, φ1, φ2) be an amalgam. Then we say that A is a

cyclic amalgam if C is a cyclic group

Lemma 5.3.5. Let A = (A,B,C, φ1, φ2) be a cyclic amalgam.Then there is a bijection

between Hom(A, Sym(n)) and Hom(Aγ, Sym(n)), for all natural numbers n and for all

γ ∈ Aut(C).

Proof. Let G = Sym(n). Suppose that θ ∈ Hom(C,G). Since C is a cyclic group,

γ(Ker θ) = Ker θ by the Lemma 5.3.2. Also, the generators of θ(C) in G have the

same cycle type and they are conjugate in G by the Lemma 5.3.3. Therefore the
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map, θ̃ : NG(θ(C)) −→ Aut (C/ Ker θ) is an isomorphism. Therefore, there exists

x ∈ NG(θ(C)) such that θ̃(x) = γ̃−1, for all θ ∈ Hom(A, G). Then by Lemma 5.3.4,

there exists a bijection between Homθ(A, G) and Homθ(Aγ, G).

Let Θ ∈ Hom (A, G). Then Θ determines θ ∈ Hom (C,G) such that Θ ∈ Hom θ(C,G).

Therefore

Hom (A, G) ⊆
⋃

θ∈Hom (C,G)

Hom θ(A, G).

It is easy to see that

Hom (A, G) ⊇
⋃

θ∈Hom (C,G)

Hom θ(A, G).

Thus, Hom (A, G) is a disjoint union of Hom θ(A, G).

i.e. Hom (A, G) =
⊔

θ∈ Hom (C,G)

Hom θ(A, G).

Similarly, we can see that

Hom (Aγ, G) =
⊔

θ∈ Hom (C,G)

Hom θ(Aγ, G).

Hence, there is a bijection between Hom (A, G) and Hom (Aγ, G).

Let G be a group and H a subgroup of index n in G. Then G permutes the right

cosets of H by right multiplication. Let H as 1 and remaining n− 1 cosets with 2, ..., n

in any order. Then we have a homomorphism κ : G −→ Sym (n). It is clear that κ(G)

is transitive. Denote

tn(G) =| {κ : G −→ Sym (n) | κ(G) is transitive } | .

Then we have an(G) =
tn(G)

(n− 1)!
.

Denote hn(G) =| Hom (G, Sym (n)) | . Then h0 = 1.
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Lemma 5.3.6. For a group G,

hn(G) =
n∑

m=1

(
n− 1

m− 1

)
tm(G)hn−m(G).

Proof. Denote the number of representations of G in Sym (n) such that the orbit of 1

has length m, by hn,m(G). So we have

(
n− 1

m− 1

)
ways to choose the orbit of 1 for given

m. Also, tm(G) ways for G to act on this orbit. Hence, there are hn−m(G) ways for G to

act on its complement in {1, ..., n}. Thus, we have

hn,m(G) =

(
n− 1

m− 1

)
tm(G)hn−m(G).

Therefore, the number of homomorphisms from G into Sym (n) is,

hn(G) =
n∑

m=1

hn,m(G)

=
n∑

m=1

(
n− 1

m− 1

)
tm(G)hn−m(G).

Lemma 5.3.7. Let G be a group. Then

an(G) =
1

(n− 1)!
hn(G)−

n−1∑
m=1

1

(n−m)!
hn−m(G)am(G).

Proof. Note that

(
n

m

)
=

n!

m!(n−m)!
. We have tn(G) = (n− 1)!an(G).

Then

hn(G) =
n∑

m=1

(n− 1)!

(k − 1)!(n−m)!
tn(G)hn−m(G)

=
n∑

m=1

(n− 1)!

(m− 1)!(n−m)!
(m− 1)!am(G)hn−m(G)

= (n− 1)!
n∑

m=1

1

(n−m)!
am(G)hn−m(G)

= (n− 1)!

[
n−1∑
m=1

1

(n−m)!
am(G)hn−m(G) + anh0

]
.
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as h0 = 1, an(G) =
1

(n− 1)!
hn(G)−

n−1∑
m=1

1

(n−m)!
hn−m(G)am(G). [8]

Corollary 5.3.1. For all natural numbers n and all γ ∈ Aut (C), there is a bijection

between Hom(G(A), Sym(n)) and Hom(G(Aγ), Sym(n)).

Proof. Since there is a bijection between Hom(A, Sym(n)) and Hom(Aγ, Sym(n)) by the

Lemma 5.3.4 and also, Hom(G(A), Sym(n)) is isomorphic to Hom(A, Sym(n)) the result

follows.

Theorem 5.3.1. If A and A′ are cyclic amalgams of the same type, then their universal

completions are isospectral.

Proof. Assume thatA andA′ are cyclic amalgams of the same type. Then there exists γ ∈

Aut(C) such that A′ and Aγ are isomorphic by Lemma 5.3.7. Then by Corollary 5.3.1,

hn(G(A)) = hn(G(A′)) for all n. Lemma 5.3.7 says that a1(G(A)) = 1 = a1(G(Aγ))

. Now we want to prove by induction that an(G(A)) = an(G(Aγ)) for all n. Suppose

that am(G((A)) = am(G(Aγ)) for all m < n. Then by Corollary 5.3.1, hn(G(A)) =

hn(G(Aγ)). Also, hn−m(G(A)) = hn−m(G(Aγ)) for all m. Then by induction hypothesis,

am(G(A)) = am(G(Aγ)). Thus by Lemma 5.3.7 G(A) and G(Aγ) are isospectral.
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