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ABSTRACT 

This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) 

and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local 

Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on 

similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined 

for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS 

thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. 

Canonical correlation techniques were then applied to determine which factors explained the 

variability between urban and desert LST. 

Our results indicate that the daytime SUHS effect is greatest during the summer months 

(typically ~ 3.0°C) with the strongest cooling effects in open high-rise zones of the city. In 

contrast, the night-time SUHI effect is greatest during the winter months (typically ~3.5°C) with 

the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian 

Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling 

in the summer months and night-time warming in the winter months. However, other parameters 

associated with the urban environment such as building height had an influence on daytime 

cooling, with larger buildings promoting shade and variations in airflow. Likewise, other 

parameters such as sky view factor contributed to night-time warming, with higher temperatures 

associated with limited views of the sky. 

 

Keywords: urban heat sink; urban heat island; local climate zones; urban geometry; land cover; 

Dubai 
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1. Introduction 
 

 The term “Urban Heat Island (UHI)” is mostly associated with air temperature data 

collected from mobile traverses or weather stations up to two meters above ground level 

(Emmanuel and Kruger, 2012; Pichierri et al., 2012). However, with the advent of thermal 

infrared (TIR) remote sensing technology, more studies have investigated surface UHI (SUHI) 

effects based on differences in land surface temperature (LST) between urban and rural areas 

measured by various space-borne TIR sensors. Data from space-borne TIR sensors cover larger 

spatial extents and retrieve temperature measurements for each pixel much more rapidly and 

cost-effectively than conventional ground-based measurements. Furthermore, remotely-sensed 

TIR data is particularly useful in areas where the weather stations are sparse or absent altogether 

(Knight et al., 2010). Although LST is not identical to air temperature, as the former is usually 

higher than the latter (US EPA, 2008; Yuan and Bauer, 2007), a study by Coutts and Harris 

(2012) revealed that trends in LST derived from remotely sensed imagery were similar to trends 

in air temperature, albeit with differences in absolute values. 

While many factors affect the formation of a SUHI and its intensity, such as local 

weather conditions and geographical location, a key contributor is urbanization where the natural 

land cover is replaced by impervious surfaces (e.g. Imhoff et al., 2010; Rhee et al., 2014; Weng, 

2001). As a consequence of urbanization, the evapotranspiration, thermal properties and wind 

flow of the landscape is altered, which can lead to an increase in surface temperatures in cities 

(Kato and Yamaguchi, 2005; US EPA, 2008). The increase in impervious surfaces leads to the 

increase of absorption of solar energy and its conversion to sensible heat rather than latent heat. 

This is evident when compared to rural areas through the increase of heat storage in urban areas 
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from the combination of two properties: thermal conductivity and heat capacity (Gartland, 2008; 

Obiakor et al., 2012).  

For cities in desert environments, a SUHI has been observed during the night while a 

surface urban heat sink (SUHS) has been observed during the day, where urban areas exhibit 

lower temperatures than rural areas (Frey et al., 2007; Lazzarini et al., 2013). Previous remote 

sensing studies in desert cities have focused on investigating the direct relationship between land 

surface temperature and surface cover (i.e. impervious surface and vegetation) from a two-

dimensional perspective (Frey et al., 2007; Lazzarini et al., 2013). However, no research has 

thoroughly examined the effects of the three-dimensional urban geometry on the formation of 

SUHS and SUHI phenomena in desert cities. Indeed, urban geometry is considered a significant 

factor in determining the temperature distribution within cities (Unger, 2009; Voogt and Oke, 

2003). This investigation into the effects of urban geometry and land cover type on surface 

temperature variation is motivated by previous studies in desert cities that have found that even 

areas lacking vegetation and being largely composed of impervious surfaces exhibit lower day 

time surface temperatures than surrounding rural areas (Frey et al., 2007, Imhoff et al., 2010). 

Furthermore, proximity to large water bodies has not been considered in previous studies of 

SUHS and SUHI phenomena in coastal desert cities (Frey et al., 2007; Lazzarini et al., 2013) in 

spite of its recognized importance (e.g. Coseo and Larsen, 2014). 

1.1. Local Climate Zones in the urban environment 
 

Stewart and Oke (2012) developed a climate-based classification system called ‘Local 

Climate Zones’ (LCZs) in order to standardize the classification and sampling of field sites in 

urban heat island studies and facilitate the comparison between several sites within the urban 
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landscape. Typically, the study area is classified into a number of LCZs, each with a diameter 

ranging from hundreds of meters to several kilometres that share relatively similar geometry and 

land cover characteristics 

A recent study by Stewart et al. (2014) based on three temperate cities concluded that 

thermal contrasts do exist among different LCZs and are governed primarily by urban geometry, 

tree heights and proportion of pervious surfaces. Thus, the LCZ system was deemed useful to 

investigate the UHI among various locations within the cities. Several UHI studies have adopted 

the LCZ classification system based on air temperature measurements using fixed or mobile 

weather stations (Alexander and Mills, 2014; Leconte et al., 2015; Siu and Hart, 2013). Others 

have proposed various methods to classify the urban environment into LCZs and map their 

distribution across a study site using inputs from remote sensing and other spatial data using GIS 

techniques (e.g. Bechtel and Daneke 2012; Lelovics et al., 2014), although this was done for 

different reasons than the research presented in this paper. This study uses a similar approach to 

classifying and mapping LCZs by using the available spatial data for the study site and 

developing and applying an appropriate classification method to this data. The boundaries of the 

mapped LCZs were then used to explore the spatial and temporal differences in LST measured 

from remotely-sensed TIR data. 

 

1.2. Aim and objectives 
 

The aim of this study was to elucidate the dynamics and controls of SUHS and SUHI 

phenomena in the desert city of Dubai. In order to achieve this aim three objectives were 

addressed: (i) to develop a technique to categorize the urban environment of Dubai into LCZs in 

accordance with the LCZ classification system; (ii) to study the diurnal and seasonal dynamics of 
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the SUHS and SUHI in the LCZs using remotely-sensed thermal imagery; and (iii) to investigate 

the impact of different physical variables (related to urban geometry, proximity to the Arabian 

Gulf and land cover properties) on the temporal dynamics of the SUHI and SUHS phenomena. 

2. Study Area 
 

Situated on the Arabian Gulf, Dubai emirate (25° 16'N, 55° 20'E) is considered one of the 

fastest growing cities in the Middle East and has been transformed into a city of global stature 

(Elsheshtawy, 2010). The total administration area of the emirate before the development of the 

islands was 3885 km2 and the population reached 2,213,000 inhabitants in 2013 (Dubai 

Statistical Centre, 2013).  

Dubai Creek divides the city into Deira to the east and Bur Dubai to the west forming bi-

central districts comprised of high-density buildings. Bur Dubai is generally known for its 

modern high-rise buildings, however, low-rise to mid-rise building blocks are spreading in both 

directions from the Creek. In the last two decades, the physical size of the urban area has grown 

dramatically both horizontally and vertically and the desert has been transformed into residential, 

commercial, sports and tourism projects. The total urban area has increased horizontally to 

approximately 560 km2 in year 2011 (Nassar et al., 2014) while vertically, 96 buildings in Dubai 

are greater than 150m in height. In 2011, approximately 14% of the Emirate was covered by 

impervious surfaces (buildings, roads, walking-ways and parking lots) and 1.1% by vegetation 

(Nassar et al., 2014). 

Due to the diversity of building heights in Dubai and the systematic urban planning 

process, large discrete blocks of different urban land use types and building heights have been 

created, making this an interesting study site for investigating the impact of urban geometry on 

http://www.amazon.ca/s/ref=rdr_ext_aut?_encoding=UTF8&index=books&field-author=Yasser%20Elsheshtawy
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SUHS and SUHI effects. For example, residential areas are usually comprised of low to midrise 

buildings; mixed land use areas (commercial and residential combined) are usually comprised of 

mid to high-rise buildings while industrial areas are comprised of low-rise buildings. 

Dubai is built upon flat terrain and experiences a hot and arid climate. Desert sand is the 

main land cover type in the emirate. The warmest months in Dubai are July and August with an 

average maximum temperature of 43°C and an average minimum of 33°C, while the coldest 

months are January and February with an average maximum of 26°C and an average minimum 

of 16°C (Dubai Statistical Centre, 2014).  

Our specific study area covers the main urban areas in Dubai which consist of a variety of 

urban structures, configurations and land cover types covering an area of 450km2 (Fig. 1). The 

study area was also chosen based on the availability of building footprint data for the city which 

were used to compute urban geometry parameters. It has also been designed to exclude the 

coastal strip (1km) in order to avoid the problem of mixed pixels (land-water) in the remotely-

sensed imagery which is a confounding factor in thermal studies of coastal regions (Lazzarini et 

al., 2013).  
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Figure 1. Overview map of the study area and the Arabian Gulf, Dubai based on a Landsat 8 scene from 
2013 (Latitude: 25° 16'N; longitude: 55° 20'E). 

3. Materials and Methods  
 

To achieve the aim and objectives of the study, the following steps were taken: (1) derivation 

of urban geometry and land cover parameters from several datasets, (2) selection of LCZs based 

on the derived parameters according to the LCZ classification system, (3) LST retrieval using 

Dubai’s LCZs based on day and night-time satellite imagery, (4) investigation of the SUHS and 

SUHI magnitudes diurnally and seasonally for each LCZ, and (5) determination of the 
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relationships between different physical variables and the seasonal SUHS and SUHI variations 

during day and night-time. The schema in Figure 2 lists the major steps of the methodology. 

 

Figure 2. Flowchart showing the main stages of LCZs selection process and analysis. HRE: height of 
roughness elements, BSF: building surface fraction, SVF: sky view factor, BHV: building height 
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variation, ISF: impervious surface fraction, VF: vegetation fraction, WF: water fraction, SandF: sand 
fraction. 

3.1. Local Climate Zone parameters 
 
 The Stewart and Oke (2012) classification system defines 17 LCZs based on their 

geometrical, land cover and thermal characteristics (Table 1). The LCZs are categorized 

according to the geometrical properties: sky view factor (SVF), aspect ratio (h/w), building 

surface fraction (BSF) and height of roughness elements (HRE). They are also categorized 

according to the land cover properties: impervious surface fraction (ISF) and pervious surface 

fraction (PSF). The LCZs are also categorized according to their thermal, radiative, and 

metabolic properties such as surface admittance and anthropogenic heat output. For the full list 

of properties of each LCZ consult Stewart and Oke (2012, p1885-1887). 

Table 1.  
LCZ classification system (source: Stewart and Oke, 2012) 
Urban classes LCZ code Land cover classes LCZ code 
Compact high-rise LCZ 1 Dense trees LCZ A 
Compact mid-rise LCZ 2 Scattered trees LCZ B 
Compact low-rise LCZ 3 Bush, scrub LCZ C 
Open high-rise LCZ 4 Low plants LCZ D 
Open mid-rise LCZ 5 Bare rock or paved LCZ E 
Open low-rise LCZ 6 Bare soil or sand LCZ F 
Lightweight low-rise LCZ 7 Water LCZ G 
Large low-rise LCZ 8   
Sparsely built LCZ 9  
Heavy industry LCZ 10  
 

 Based on the parameters used to classify LCZs in Stewart and Oke (2012) and other 

parameters used in previous UHI studies, we determined nine different parameters for the LCZ 

classification of Dubai based on the availability of datasets for the study site: height of roughness 

elements (HRE); building surface fraction (BSF); sky view factor (SVF); building height 

variation (BHV); impervious surface fraction (ISF); vegetation fraction (VF); water fraction 

(WF); sand fraction (SandF); and proximity to the ocean. Out of the nine parameters, five 
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parameters relating to urban geometry and land cover type (HRE, BSF, SVF, ISF and PSF: 

Pervious Surface Fraction) were utilized from the Stewart and Oke classification system (2012). 

In their system, pervious surface fraction (PSF) is considered a single parameter, however, it 

actually combines three pervious surfaces: vegetation, water and bare soil, each of which has a 

different effect on surface temperature. Therefore, in our study, PSF was divided into three 

separate parameters: vegetation, inland water and sand. In Dubai, inland water consists of small 

recreational bodies (e.g. swimming pools, small lakes on golf courses) that cover only 0.3% of 

our study area, nevertheless it has been treated as a separate parameter. Sand is likely to play an 

important role in surface thermal differences as it is the dominant land cover type in desert 

environments. 

In addition, we added a building height variations (BHV) parameter because a group of 

buildings with varying heights tends to increase wind circulation within urban areas which helps 

in air and surface cooling (Johansson and Emmanuel, 2006). Furthermore, Coseo and Larsen 

(2014) have used proximity to water bodies to understand the variations in UHI intensity across a 

city. Urban areas that are close to large water bodies tend to have lower UHI intensity because 

cold breezes that are generated from water bodies convect heat away from urban surfaces, thus 

potentially mitigating the effects of UHI in cities (Oda and Kanda, 2009; US EPA, 2008). The 

sea-breeze effect is pronounced during daytime due to the difference in air pressure over land 

and water caused by the variation in surface temperatures, while at night an inverse land-breeze 

system is formed (Freitas et al., 2007). Hence, the proximity to the ocean was deemed as an 

important parameter for Dubai due to the location of the city on the coastline of the Arabian 

Gulf.  
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3.1.1. Urban Geometry Parameters 
 

In order to compute the urban geometry parameters we utilized a vector format GIS layer 

for Dubai which contains approximately 175,000 individual building ‘footprints’ (polygons) and 

associated attributes (including height) acquired from Dubai Municipality. The buildings data 

were spatially precise; however, in order to evaluate height accuracy a random sample of 50 

buildings were selected from an independent database (specifically of tall buildings >100m but 

this was the only available independent height data for Dubai) from the Council on Tall 

Buildings and Urban Habitat (Skyscraper Center, 2016) and the heights of these samples were 

compared to the heights for the corresponding buildings in the municipality data. The results 

show consistent building heights between the two sources (RMSE = 2.45m). Hence, the 

municipality data were subsequently used to compute four urban geometry parameters.  

SVF (Sky View Factor) is a widely used parameter in urban thermal studies and is 

considered as an essential controlling factor of the UHI effect. It represents a dimensionless 

quantity of visible sky (Hwang et al., 2011). This parameter represents the amount of solar 

radiation that reaches or leaves the surface, and thus has an impact of surface heating and cooling 

during the day and night (Heldens et al., 2013). This geometric variable is preferred over other 

geometric variables such as the aspect ratio because it can describe the complex urban 

environment more efficiently (Johnson and Watson, 1984). Although many methods have been 

used to compute SVF, ranging from fish-eye photos to computer modeling software, the vast 

majority of these methods rely on computing SVF for specific ground locations and do not 

derive SVF for building rooftop locations. Since this study examines the impact of SVF on LST 

from a remote sensing perspective, the value for each ground and rooftop pixel should be 

computed. For this reason, the SVF was computed using a model developed by Zakšek et al. 
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(2011). Using the three dimensional buildings data as an input, a continuous SVF map for the 

entire urban environment was generated at 1m pixel resolution. The SVF is stored for each pixel 

with values ranging from 0-1 (0 denotes that no sky is visible while 1 indicates that the entire sky 

hemisphere is visible) (Fig. 3). 

 
 

 
Figure 3. Sky view factor of a small sample area in Dubai at 1m resolution derived using a raster based 
model (Latitude: 25°16'23.67"N; longitude: 55°18'44.59"E). 
 
 

HRE (Height of Roughness Elements) is defined as the heights of buildings and trees in 

meters. We excluded tree heights from our parameter due to a lack of data and because there are 

few trees in Dubai in any case with the exception of parks and farms. The BHV (Building Height 

Variation) parameter is computed based on the variation or distribution of building heights in a 

given area compared to the mean for that area. The higher the value, the greater the variation in 

height, with zero representing buildings of uniform height. The standard deviation was used 
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because it is a more reliable measure of variation, and is less susceptible to outliers. Finally, BSF 

(Building Surface Fraction) is the horizontal area of building footprints per unit area of ground. 

This was computed using the building footprint polygons. 

3.1.2. Land Cover Parameters 
 

In this study, three land cover parameters were derived from large-scale land cover maps 

that provide a detailed representation of urban areas of Dubai (Source: Dubai Municipality). For 

the purposes of this study roads, walkways and car parking lots were merged into a single 

category of impervious surfaces while vegetation, inland water and sand were maintained as 

separate land cover categories. An accuracy assessment was undertaken for the land cover map 

using 150 random samples (map and reference pairs). The reference samples were identified 

through manual interpretation of a Dubai Sat-1 image at spatial resolution of 2.5m (pan-

sharpened) from 2013 acquired from Emirates Institution for Advanced Science and Technology. 

This analysis revealed that the municipality land cover map had an overall accuracy of 98% and 

was therefore suitable for use in this study. 

3.2. Land Surface Temperature Retrieval  
 

With the availability of various TIR sensors on board different satellite platforms, a 

choice has to be made between using thermal data at high spatial resolution or high temporal 

resolution. Similarly, a choice has to be made between using sensors that acquire data at different 

stages of the diurnal cycle. For example, Landsat 8 and ASTER sensors provide medium spatial 

resolution thermal data (100m and 90m respectively) over a relatively long revisit time (16 days) 

whilst MODIS and AVHRR sensors provide coarser resolution thermal data (1km) over short 
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revisit times of less than 24 hours. It is not currently possible to acquire LST data at both high 

spatial and temporal resolution (Sattari & Hashim, 2014). 

In this study, LST data were retrieved from two satellites which have been widely used in 

thermal studies due to their favorable spatial and temporal resolution and free availability to the 

research community: (i) MODIS (Moderate Resolution Imaging Spectroradiometer) TIR data 

with low spatial resolution of 1km and four times daily revisit time; (ii) Landsat 8 TIR data with 

medium spatial resolution of 100m (resampled to 30 meters to match multispectral bands) and 

16-day revisit time.  

MODIS is the instrument on board the Terra (Launched in late 1999) and Aqua (launched 

in mid-2002) satellites. Terra and Aqua orbits generate different overpass times. Terra acquires 

data for Dubai at approximately 11 a.m. (Gulf Standard Time; GST) and 11 p.m. (GST), while 

Aqua acquires data for Dubai at approximately 2 p.m. (GST) and 2 a.m. (GST). MODIS data 

have been widely used in SUHI studies because of the ability to provide LST measurements four 

times daily facilitating study of the diurnal variations in SUHI (e.g. Cui and Foy, 2012; Lazzarini 

et al., 2013). MODIS bands 31 and 32 are used to retrieve 1km LST data by using the 

generalized split-window algorithm which corrects both atmospheric effects and surface 

emissivity (Wan and Dozier, 1996). For this study eight-day composite 1km LST MODIS Terra 

(MOD11A2) and Aqua (MYD11A2) V5 products were acquired for year 2013. These LST data 

were derived from daily 1km LST products MOD/MYD_11A1 and the eight-day image 

compositing removes any effects of cloud cover.  

Landsat 8 was launched in early 2013. Images are available for Dubai from 13-April-

2013 and the local crossing time is approximately 10:40 a.m. (GST). Although the Landsat 8 

Thermal Infrared Sensor (TIRS) has two spectrally adjacent thermal bands (bands 10 and 11) 
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which are suitable for the split window techniques for atmospheric correction and LST retrieval, 

the Landsat science team does not recommend using band 11 in split-window techniques due to 

the larger calibration uncertainty associated with it (USGS, 2014). Thus, a single window 

technique based on band 10 is preferred at this stage. A total of nine cloud free scenes covering 

the study site were available between the period of April to December 2013 and were acquired 

from the NASA archive. The single window method from Yuan and Bauer (2007) was used to 

derive LST from TIR band 10 which takes into account the atmospheric parameters and surface 

emissivity (Fig. 4). Both Landsat and MODIS data were georeferenced to the Dubai municipality 

land cover map in order to perform the subsequent analysis.  

 



17 
 

 
 
Figure 4. Example of daytime LST in 0C image for Dubai acquired on July 18 2013 at 10:40 a.m. (GST) 
using Landsat 8 TIRS (Latitude: 25° 16'N; longitude: 55° 20'E). 
 

3.3. LCZs classification in Dubai & LCZs sampling technique 
 

The study area (Fig.1) was subdivided into a regular grid (‘fishnet’) of 250*250m cells. 

This was used to compute the geometry and land cover parameters for each cell in order to 

classify the study area into LCZs. As a result, 6750 cells were produced including a detached 

area of desert sand cells (4km2) to represent the main non-urban land cover type of Dubai. The 

desert sand zone (LCZSand) was used for both LST normalization purposes and to represent the 

LST of the rural area for comparison with urban LCZs. 
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The HRE parameter was used as the primary criterion for LCZ classification and the 

average building height per grid cell was computed. Each cell was then categorized into one of 

three classes according to the LCZ classification system: high-rise, mid-rise and low-rise cells 

(see Table 2 for height ranges). The BSF parameter was then used to categorize the cells in terms 

of compactness (open or compact). This was followed by a classification of ISF and PSF based 

on the proportion of vegetation, inland water and sand per grid cell. The SVF parameter was not 

employed in the selection process because in Stewart and Oke (2012) the SVF was based on SVF 

measured from ground observations. Nevertheless, the SVF for each cell was computed for 

subsequent analyses. Proximity to the ocean was then calculated using the Euclidian distance 

from the centroid of each grid cell to the coastline of the Arabian Gulf. 

Finally, groups of at least four adjacent cells of the same LCZ class were identified and 

all other cells were excluded to comply with Stewart and Oke’s recommendation that each LCZ 

should occupy an area of at least 500-1000m2 and also to facilitate comparison of the LCZs with 

MODIS LST data at a spatial resolution of 1km2. As a result of the selection criteria and the 

computed parameters, seven LCZs were derived, the boundaries of which are illustrated in Fig. 

5. Note that the areas of the study site not mapped as an LCZ did not meet the selection criteria 

of our classification system and were excluded from the subsequent analysis. The detailed 

characteristics of Dubai’s urban LCZs in terms of configuration, land cover and construction 

materials are given in Tables 2 and 3. 

Following the classification process, the boundaries of the areas covered by each LCZ 

type were overlaid on the MODIS data and used to extract data on the average daytime LST (11 

a.m. and 2 p.m.) and night-time LST (11 p.m. and 2 a.m.) for each LCZ. Similarly, the average 

daytime LST from Landsat (10:40 a.m.) was also extracted for each LCZ. 
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In order to study the magnitude of the temperature differences amongst the various LCZs, 

the differences between LST for the six urban LCZs and LST for desert sand (using this as a 

reference) were computed using the following (adapted from Stewart et al., 2014): 

 ∆LST = LST LCZi − LST LCZSand       (1) 

Where, LST LCZi is the average land surface temperature for each urban LCZ where i can be 

CMR, LLR, OHR, OLR, OMR, SB; and LST LCZSand is the average land surface temperature for 

the desert sand zone. When ∆LST is a positive value this represents a SUHI and when negative 

this represents a SUHS. 
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Figure 5. The fishnet of 250*250m cells and the obtained LCZ map of Dubai with a Landsat 8 scene 
from 2013 displayed in the background (Latitude: 25° 16'N; longitude: 55° 20'E). CMR= compact mid-
rise, LLR= large low-rise, OHR= open high-rise, OLR= open low-rise, OMR= open mid-rise, SB= 
sparsely built.  
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Table 2.  
Urban geometry and land cover properties of LCZs as originally defined by Stewart and Oke, (2012) and as adapted for Dubai in this 
study. 

 
Note: values between parentheses represent the average calculated values. 

 

 

 

 

 

 

 

 

 

 

 

 

LCZs  HRE (m) HREDubai %BSF BSFDubai SVF SVFDubai %ISF ISFDubai %PSF PSFDubai BHVDubai Proximity to 
the ocean 
(km) 

CMR 10-25  18-25 (22) 40-70 49-64 (56) 0.3–0.6 0.70-0.80 (.73) 30-50 34-36 (35) <20 02-16 (9) 5-8     (7) 1.5-3   (2.3) 
OHR >25 43–85(65) 20-40 25-33 (29) 0.5–0.7 0.60-0.75 (.72) 30-40 32-39 (35) 30-40 32-41 (36) 12-20 (15) 1.6-5   (2.5) 
OMR 10-25 12-23 (19.4) 20-40 21-34 (26) 0.5–0.8 0.70-0.85 (.76) 30-50 26-48 (33) 20-40 17-50 (41) 4-8     (6) 1-15    (7) 
OLR 3-10 6-12   (8) 20-40 22-34 (27) 0.6–0.9 0.70-0.90 (.83) 20-50 17-29 (21) 30-60 41-57 (52) 3-5     (3.5) 1.1-13 (6) 
LLR 3-10 5-9     (7) 30-50 35-51 (40) >0.7 0.84-0.91 (.87) 40-50 46-53 (51) <20  4-15  (9) 2-4     (2.9) 3-11    (7) 
SB 3-10 6-11   (7.8) 10-20 13-19 (16) >0.8 0.88-0.95 (.93) <20 08-14 (10) 60-80 67-79 (74) 2 -4    (2.6) 2-14    (9) 
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Table 3. 

The characteristics of the urban LCZ classification for Dubai in terms of configuration, land cover 
and construction materials. 

 

 

Urban local climate zones in Dubai Configuration & land cover Construction materials 
Compact mid-rise 

 

Dense mix of midrise 
buildings with medium height 
variations and relatively 
narrow roads. Sparse or no 
pervious cover types. 
 

Bricks, concrete, steel and 
some glass. Pavements of 
asphalt and concrete for 
roadways and walkways.  

Open high-rise 

 

Open configuration of tall 
buildings with large height 
variations and wide roads. 
Plenty of pervious land covers 
of sand and some vegetation. 

Comprised of mostly modern 
high-rise buildings made from 
glass, steel and other metal 
construction materials with 
mostly sharp edges. 

Open mid-rise 

 

Open configuration of mid-rise 
buildings with medium height 
variations. Plenty of pervious 
land covers of sand and some 
of vegetation and trees. 

Bricks, concrete, steel and 
some glass. Pavements of 
asphalt and concrete for 
roadways and walkways. 

Open low-rise 

 

Open configuration of low-rise 
buildings with moderate height 
variations and narrow roads. 
Plenty of pervious land covers 
of sand and some vegetation 
and trees.  

Found mostly in residential 
areas and made of bricks, 
stone and concrete. Pavements 
of asphalt, concrete and sand 
for roadways and walkways. 

Large low-rise  

 

Open configuration of large 
low-rise buildings with low 
height variations. Mainly 
paved land cover and no or 
very sparse vegetation. 
 

Found mainly in industrial 
areas and made mostly of 
metal corrugated sheets and 
steel hangers. Pavements of 
asphalt and concrete for 
roadways and walkways. 
 

Sparsely built 

 

Sparse configuration of low-
rise buildings with low height 
variations. Abundance of sand 
as the major land cover type. 

Found mainly in residential 
areas and made of bricks, 
stone and concrete. Pavements 
of sand and some asphalt for 
roadways and walkways. 
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3.4. Multivariate Correlation Analysis 
 

In order to investigate the factors influencing the SUHS and SUHI variations amongst the 

different LCZs we performed a canonical correlation analysis. Canonical correlation analysis is a 

multivariate analysis technique that is used to analyze the relationship between two sets of 

variables, a predictor set and a criterion set (Guarino, 2004). In the case of our study, this 

technique is used to investigate the impact of physical variables (urban geometry, land cover and 

proximity to the ocean) on the diurnal and seasonal variations in the magnitude of SUHS and 

SUHI phenomena.  

Despite the similarities with bivariate and multiple regression analysis, canonical 

correlation overcomes the limitations of other techniques (Tabachnick and Fidell, 2012). The 

bivariate technique can handle a relationship between two variables, while the canonical 

technique can handle two sets of variables. Furthermore, the major difference between the 

canonical technique and multiple regression analysis is that in the canonical the relationships 

between more than one variable as predictors and more than one variable as criteria can be 

examined simultaneously. Furthermore, canonical correlation is preferable to principal 

components analysis, which is primarily applicable to the analysis of a single set of variables. 

In the statistical analysis only MODIS data were used due to the limited number of 

Landsat scenes available and because Landsat data are only acquired at one time during the day 

compared to 4 times daily for MODIS. Therefore, MODIS data were used because they capture 

more comprehensively the SUHS and SUHI variations diurnally and seasonally, though clearly 

this is at the expense of using lower spatial resolution data than that of Landsat. For the statistical 

analysis four variables were used to capture the diurnal and seasonal dynamics of the SUHS 

effect, these were the magnitude of the SUHS at 11 a.m. and at 2 p.m. in summer and at 11 a.m. 
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and 2 p.m. in winter. Likewise, the magnitude of the SUHI at 11 p.m. and at 2 a.m. in summer 

and at 11 p.m. and 2 a.m. in winter to characterise the dynamics of the SUHI effect. 

Inland water fraction was not included in the statistical analysis because it is not a valid 

factor statistically as only 4 out of 39 areas of the classified LCZs contained water bodies. 

Therefore, the canonical technique was used in this study to investigate the correlation between a 

set of predictor physical variables from one side and a set of criteria variables related to SUHS or 

SUHI intensity on the other side. Given the characteristics of our data, the canonical correlation 

was the most appropriate method of analysis (Tabachnick and Fidell, 2012; p. 571). 

4. Results  

4.1.Dynamics of the surface urban heat sink and heat island phenomena 
 

The eight-day MODIS data from both Terra and Aqua were used to observe the temporal 

variations of LST amongst the six urban LCZs and the desert sand zone in Dubai. Subsequently, 

the magnitude of the SUHI or SUHS for each LCZ was computed and this data was used to 

investigate the temporal trends based on 8-day, monthly and seasonally averaged values of SUHI 

and SUHS intensity and the differences between the urban LCZs in Dubai.  

4.1.1. Daytime Surface Urban Heat Sink 
 

The daytime LST variations detected at 11 a.m. and 2 p.m. (GST) are shown in Fig. 6 for 

the urban LCZs and desert sand zone in Dubai. The LST variations for both times of day were 

consistent, with peaks of temperature observed especially during summer months (June, July and 

August). However, the afternoon LST measurements are higher than mornings by 3-5°C for all 

urban LCZs. The highest monthly average LST for urban LCZs was observed in August at 11 

a.m. (approx. 44°C) and in July at 2 p.m. (approx. 49°C). The lowest LSTs were observed during 
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winter months (January, February and December) with afternoon temperature values higher than 

morning temperature values by 1-3°C. The desert sand LCZ shows the highest LST values 

during most of the year at both times of day with the highest values in the afternoon. 

 

 
Figure 6. Daytime 8-day LST variations amongst LCZs at 11 a.m. (above) and 2 p.m. (below) GST, 
2013. 
 

Analysis of ∆LST at 11 a.m. and 2 p.m. revealed negative values which represent a 

SUHS during the daytime for the urban LCZs (Fig. 7), with the exception of some time periods 

in both the SB and LLR zones. Furthermore, the monthly averaged data (Fig. 8) clearly indicates 

that there are substantial differences between the LCZ classes in the magnitude of the SUHS at 

both times of day, though there is less contrast between SB and LLR zones at 2 p.m. Figure 8 

also shows that the most intense SUHS occurred in June at 11 a.m. and in July at 2 p.m, while 

the weakest SUHS intensities occurred mainly during winter months. 

The average seasonal and annual magnitude of the SUHS effect for urban LCZs is shown 

in Fig. 9. Annually, the SUHS was greater in the morning than the afternoon by an average 

cooling difference of 0.5°C. With the exception of LLR zones, the seasonal average SUHS 

intensity at 11 a.m. was greater than the SUHS at 2 p.m. for all LCZs with the highest intensity 

in summer by – 3°C and lowest in winter by – 1.8°C. The results show that the OHR and CMR 
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zones generated the most intense SUHS while the weakest effects were seen in the SB and LLR 

zones. The variations in SUHS between seasons and LCZs derived from the Landsat data (10:40 

a.m.) (Fig.10) were very similar to variations observed using the MODIS Terra (11 a.m.) data 

(Fig.9, left graph). This demonstrates that despite the lower spatial resolution of MODIS data, 

they are still capable of representing the spatial variations in the SUHS phenomena and its 

response to LCZ characteristics, reinforcing the applicability of this data source for the majority 

of the analysis in this study.  

 
 

 
Figure 7. Daytime 8-day SUHS magnitude based on the relative difference between urban LCZs and 
desert sand at 11 a.m. (above) and 2 p.m. (below) GST, 2013. 
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Figure 8. Daytime monthly average SUHS based on the relative difference between urban LCZs and 
desert sand at 11 a.m. (above) and 2 p.m. (below) GST, 2013. 
 
 
 

 
Figure 9. Daytime seasonal and annual average SUHS based on the relative difference between urban 
LCZs and desert sand at 11 a.m. (left) and 2 p.m. (right) GST, 2013. 
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Figure 10. Daytime seasonal and annual average SUHS based on the relative difference between urban 
LCZs and desert sand at 10:40 a.m. GST as derived from Landsat 8 TIRS data, based on nine scenes from 
2013. 

 

4.1.2. Night-time Surface Heat Island 
 
The night-time LST variations detected at 11 p.m. and at 2 a.m. GST are shown in Fig. 11 

for the urban LCZs and desert sand zone in Dubai. Similar to the daytime observations, the 

highest LST values occurred during summer months (June, July and August) while the lowest 

values occurred during winter months (January, February and December). In contrast to daytime 

LST values, the desert sand zone exhibited lower LST than the urban LCZs at night while the 

CMR zone experienced the highest LST values throughout the year. The LLR zone experienced 

the lowest LST values amongst the urban LCZs. The LST values at 11 p.m. were higher than at 2 

a.m. by 1-2.5°C during the summer months and 2-4°C during the winter months. The highest 

LST for urban LCZs at both times of night were observed in August and the lowest LST values 

for urban LCZs were found in January. 
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Figure 11. Night-time 8-day LST variations amongst LCZs at 11 p.m. (above) and 2 a.m. (below) GST, 
2013. 

 

A night-time SUHI was found for all of the urban LCZs, where all LST values were 

higher than that of the desert sand zone (Figure 12). The CMR zone shows the highest SUHI 

intensity throughout the year while the LLR zone consistently experienced the lowest SUHI 

intensity. Contrary to the SUHS, the weakest SUHI effect was observed in the summer while the 

strongest effect was found during the winter. Furthermore, the monthly SUHI intensities for the 

OHR, OMR and OLR zones show greater similarity during the summer months than winter 

months while other LCZs show clear contrasts throughout the year (Fig. 13). 

The average seasonal and annual magnitude of the SUHI effect for urban LCZs is shown 

in Fig. 14. Annually, the SUHI was higher at midnight than the evening by an average difference 

of 0.2°C. The seasonal and annual averages of SUHI intensity were higher at 11 p.m. than 2 a.m. 

for all LCZs with the highest intensities in winter by 3.5°C and lowest in summer by 2°C. The 

major contributors to the SUHI effect were the CMR, OHR, OMR and OLR zones while the 

lowest contributions were by the LLR and SB zones.  
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Figure 12. Night-time 8-day SUHI magnitude based on the relative difference between urban 
LCZs and desert sand at 11 p.m. (above) and 2 a.m. (below) GST, 2013. 

 

 

 
Figure 13. Night-time monthly average SUHI based on the relative difference between urban LCZs and 
desert sand at 11 p.m. (above) and 2 a.m. (below) GST, 2013. 
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Figure 14. Night-time seasonal and annual average SUHI based on the relative difference between urban 
LCZs and desert sand at 11 p.m. (left) and 2 a.m. (right) GST, 2013. 

 

4.2.Factors Influencing SUHS and SUHI Variations in Dubai 
 

Our next objective was to investigate the correlation between a set of predictor physical 

variables and a set of criterion variables describing the SUHS and SUHI effects. Summer and 

winter seasons were selected for the analysis because, as demonstrated above, these seasons 

experienced either the highest or the lowest SUHS and SUHI effects, respectively.  

The number of canonical correlations produced will be equal to the number of variables 

in the smaller data set of the predictor or criterion variables. Consequently, not all of the 

canonical correlations produced from a particular data are likely to be statistically significant. 

Furthermore, in order to interpret the meaning of the correlations between the two sets, the 

loading of each variable is used, which is similar to that for factor analysis loadings. Although 

there are no specfic rules for selecting which loading values are important, in our interpretation it 
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may be reasonable to consider loadings below .40 as insignificant to weak, .41 to .70 as moderate 

and above .70 as strong (Laessig and Duckett, 1979). 

4.2.1.  Factors Influencing Daytime SUHS Variations in Dubai 
 

As shown in Table 4, only one significant canonical correlation was produced in relation 

to the SUHS intensity at 11 a.m. and one for 2 p.m., according to the Chi-square significance 

values (i.e. values for the 2nd canonical correlation are insignificant for both times of day). For 

the significant correlations there was an identical correlation coefficient but higher % variability 

at 2 p.m. than 11 a.m. For both times of day, the first linear combination of physical predictors 

loaded strongly negative on proximity to the ocean, but with a higher magnitude at 2 p.m.. All of 

the urban geometry variables (HRE, SVF and BHV) were more highly loaded than land cover 

variables for both times of day. At both times of day the HRE and BHV variables loaded 

moderately positive, while SVF loaded moderately negative. The influence of the land cover 

variables varied with time of day, as VF loaded moderately positive at 11 a.m. but was weaker at 

2pm while ISF loaded moderately negative at 2 p.m. but was very weak at 11 a.m. The 

remaining variables BSF and SandF had little or no contribution to SUHS intensity at either time 

of day. Finally, summer SUHS loaded higher than winter SUHS for both times of day, indicating 

that the combined physical variables are more predictive of SUHS variations during summer. 
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Table 4.  
Canonical correlations between physical variables and daytime SUHS variations during summer 
and winter seasons at 11 a.m. and 2 p.m. 
  
 Canonical solution for predicting 

daytime SUHS (11 a.m.) 
 Canonical solution for predicting 

daytime SUHS (2 p.m.) 
 1st can. Corr. 2nd  Can. Corr.  1st can. Corr. 2nd  Can. Corr. 
Canonical correlation Coefficient .88 .70  .88 .55 
Chi-square significance .0001 .165  .0001 .0832 
Variability (%) 61.50 38.50  73.97 26.03 
  Loadings 

Predictor variables    
   HRE .58 .29  .60 .43 
   BSF  .24 - .39  .25 .21 
   SVF   - .65  - .28  - .64 - .38 
   BHV  .61             .16  .56 .48 
   ISF  - .07 - .47  - .41 - .23 
   VF  .44 - .09  .37 .12 
   SandF   - .27 - .07  - .17 - .04 
   Proximity to the ocean   - .82  - .21  - .92 .14 
      
Criterion Variables      
   Summer SUHS   .95  .32  .99 .12 
   Winter SUHS   .83  .68  .64 .81 
Note: n=39. 
 

4.2.2. Factors Influencing Night-time SUHI Variations in Dubai 
 

According to Table 5, only one significant canonical correlation was produced for Terra 

(11 p.m.) and Aqua (2 a.m.) data according to Chi-square significance values. The correlation 

coefficients for both night-time periods are lower than the correlations during both daytime 

periods which indicates that the correlation between the two set of predictor and criterion 

variables are weaker during night-time. Furthermore, the influence of urban geometry and 

proximity to the ocean on LST variations is inverted during night-time. 

Similarly to daytime, proximity to the ocean and urban geometry variables had the 

highest loading. At 11 p.m., the first linear combination of physical predictors loaded strongly 

and negatively on proximity to the ocean and SVF while proximity to the ocean loaded strongly 

and SVF loaded moderately at 2 a.m. With the exception of ISF (which is already insignificant), 



34 
 

all loadings at 2 a.m. were lower in magnitude than 11 p.m. This indicates a weaker influence of 

these variables on the SUHI variations at 2 a.m. than 11 p.m. In contrast to the daytime, the 

loadings for winter LST were higher than summer SUHI for both time periods, indicating that 

the physical variables are more predictive of the SUHI variations during winter. 

 
Table 5.  
Canonical correlations between Physical variables and night-time SUHI variations during 
summer and winter at 11 p.m. and 2 a.m. 
 
 Canonical solution for predicting night-

time SUHI (11 p.m.) 
 Canonical solution for predicting night-

time SUHI (2 a.m.) 
 1st can. Corr. 2nd  Can. Corr.  1st can. Corr. 2nd  Can. Corr. 
Canonical correlation Coefficient .74 .57  .71 .57 
Chi-square significance .0001 .082  .0001 .070 
Variability (%) 63.02 36.98  60.43 39.57 
  Loadings 

Predictor variables    
   HRE .60 - .10  .52 - .09 
   BSF  .33  .24   .31 .08 
   SVF - .75 - .08  - .57 .29 
   BHV .15 - .37   .11  .02 
   ISF .12 .28  - .18 .45 
   VF - .23 - .41  - .21 - .23 
   SandF - .28 - .14  - .05 - .28 
   Proximity to the ocean   - .87 - .08  - .78 .51 
      
Criterion Variables      
   Summer SUHI .40 .91  .75 .66 
   Winter SUHI   .87 .50  .91 .42 
Note: n=39. 
 

5. Discussion  
 

 
The urban geometry and land cover properties that were utilized to classify Dubai’s urban 

environment into LCZs have effectively characterized the landscape into units that have distinct 

thermal responses diurnally and seasonally. As expected, the SUHS phenomenon was observed 

during the daytime while the SUHI phenomenon was noted during the night for the majority of 

LCZs. One reason these phenomena exist might relate to differences in specific heat capacity 
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between the urban materials of the LCZs and the natural sands of the desert. Indeed, the specific 

heat capacity for typical urban surface materials such as asphalt, aluminum, concrete and bricks 

is higher than that of sand (Physics Hypertextbook, 2014). This means that sand shows a larger 

increase in LST than the urban surfaces during the daytime (Fig. 6) and a larger decrease in LST 

than the urban surfaces during the night (Fig. 11).  

The differences in magnitudes of SUHS and SUHI depending on LCZ type, time of the day 

and season, suggest that the properties used to characterize the LCZs influence the LST 

variations differently. The SUHS was stronger for zones with medium to high-rise buildings, 

thus these zones are most advantageous for daytime cooling (Figs. 7-10). However, during the 

night the SUHI was higher in zones with medium to high-rise buildings, with the highest 

intensity in compact-midrise zones, and the least intense SUHI in the sparsely built and large 

low-rise zones (Figs. 12-14). This indicates that some or all of the LCZs’ properties (Table 2) 

can result in the urban environment exhibiting quite different thermal behavior depending on the 

stage of the diurnal cycle.  

The findings indicate that the SUHS effect is greater in summer than winter, while the SUHI 

is greater in winter then summer. The reasons for this are somewhat unclear, but as windspeed 

and humidity vary little with seasons in Dubai and air temperature varies considerably, radiation 

and thermal effects may be the key factors controlling the SUHS and SUHI seasonal dynamics. It 

may be that in summer during the period of maximum solar radiation the effects of surface 

shading by buildings generates a proportionally larger reduction in urban LST relative to 

surrounding desert (a higher SUHS) than in winter when radiation is less intense and the desert 

experiences less solar heating (see Littlefair et al., 2000). Likewise, with lower daytime heating 

of the desert in winter, night-time LST is lower in winter than summer and because of the 
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differences in specific heat capacity of sand and urban materials (mentioned above) and the 

continued contribution to urban heating from anthropogenic sources during winter, the SUHI 

may be greater in winter. However, while these are feasible mechanisms, the reasons for the 

seasonal dynamics of SUHS and SUHI do require further investigation.  

The multivariate correlation analyses (Tables 4 and 5) revealed that proximity to the ocean 

and differences in urban geometry explain most of the variation in SUHI and SUHS intensity. 

This finding underscores the importance of integrating urban geometry into urban heat studies 

(Hwang et al., 2011; Voogt and Oke, 2003) and emphasizes the importance of including 

proximity to large water bodies as an essential factor in urban heat studies, being particularly 

relevant for coastal cities.  

During daytime, proximity to the ocean contributed strongly and negatively to the SUHS 

which indicates that zones closer to the coast exhibit larger SUHS (cooling). This influence is 

due to the presence of sea-breeze which helps in cooling nearby urban surfaces, with a larger 

effect at 2 p.m. than 11 a.m. Indeed, at 2 p.m. and especially during the summer season, the solar 

radiation increases to its maximum thus the temperature contrast between the land and ocean is 

greatest which promotes a stronger sea-breeze (Dailey and Fovell, 1999). These findings also 

concur with Coseo and Larsen (2014) who reported that breezes from Lake Michigan cooled 

urban areas that were nearer to the shoreline. However, building heights (HRE) loaded positively 

with SUHS variations and this is likely to be a result of taller buildings producing greater 

shadows which reduce the amount of solar energy reaching the land surface thus increasing the 

cooling of urban areas (e.g. Kato et al., 2010). Similarly, building height variations (BHV) 

loaded positively with SUHS, this may be explained by buildings with larger height variations 

producing stronger surface wind circulation thus helping to cool urban surfaces (Johansson and 
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Emmanuel, 2006) and this could also be related to greater land surface shadowing in areas with 

larger BHV. On the other hand, SVF loaded negatively with SUHS variations, which indicates 

that a lower SVF leads to fewer urban surfaces that are exposed to incoming solar radiation 

thereby increasing the SUHS effect. 

At 11 a.m. the magnitude of the SUHS was higher than at 2 p.m. and this finding was 

consistent across most urban LCZs and seasons (Fig. 9). This is likely due to the greater 

influence of impervious surface fraction (ISF), as a heat source, at 2 p.m. compared to 11 a.m., 

evidenced by the stronger loading. The greater influence of ISF at 2 p.m. is related to the fact 

that the impervious surfaces of roads, walkways and parking lots have higher LST than 11 a.m. 

due to longer period of exposure to solar radiation. In addition, the vegetation fraction (VF), as a 

cooling source, has a slightly more influence on SUHS at 11 a.m. than 2 p.m. with higher loading 

at 11 a.m. This might be related to the irrigation time of vegetated areas which usually occurs in 

the early mornings, therefore the quantity of water in vegetated areas can be lost to evaporation 

at 2 p.m. much larger than 11 a.m. 

The variations between the characteristics of the different LCZs are illustrated in Figure 9 

and Tables 2 & 3. Open high-rise zones (OHR) and compact mid-rise zones (CMR) showed 

higher SUHS than other zones due to the effects of their urban geometry (see Fig. 5), evidenced 

by the moderate loadings of three geometry properties in the canonical regression (Table 4). The 

tall buildings in OHR and narrow streets in CMR zones are likely to generate relatively greater 

shadow than other LCZs especially during the sun peak hours thus exhibiting more cooling 

(Littlefair et al., 2000). The effect of urban geometry on the SUHS is further demonstrated by the 

finding that open mid-rise (OMR) zones have a higher SUHS than open low-rise (OLR) zones. 

OLR zones are characterized by smaller values of HRE and BHV and larger SVF, therefore the 
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effect of shadow is minimized and the incoming solar radiation is larger compared to OMR 

zones. In addition to the urban geometry, other factors might have also contributed to the SUHS 

variations. For example, in the LLR zones the industrial activities and the metal construction 

materials with lower specific heat capacities than other urban materials may explain why this 

LCZ had the lowest SUHS effect.  

Proximity to the ocean strongly and negatively influenced night-time SUHI variations (Table 

5). This may be explained by areas close to the ocean experiencing a more intense land-breeze 

cooling during the night than areas further inland (Freitas et al., 2007). Similarly, SVF had a  

strong negative influence on SUHI indicating that the zones with lower SVF exhibit a higher 

SUHI effect. During the night-time, a low SVF increases radiative heat trapping within urban 

areas thus increasing the SUHI intensity (Wong et al., 2011). HRE had a moderate positive 

influence on SUHI variations again suggesting that the presence of taller buildings increases the 

radiative heat trapping effect at night.  

These findings are supported when we look at the variations between LCZs in SUHI 

dynamics (Figure 14 and Tables 2&3). The CMR and OHR zones exhibited the highest SUHI 

intensities and are characterized by their tall buildings and lower SVFs compared to other zones. 

As indicated above taller buildings with low SVF trap radiative heat near the surface at night 

thereby enhancing SUHI intensity. Furthermore, the LLR zones exhibited the lowest night-time 

SUHI which may be attributed to the metal construction materials that dominate this zone, which 

have a low specific heat capacity and lose heat at a higher rate at night than the construction 

materials in other SB zones.  

In Dubai, the unbuilt surfaces of LCZs are still covered mainly by sand while vegetation and 

inland water cover less than 5% of the studied LCZs. It is important to mention that the vast 
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majority of vegetation cover is found in parks, farms and golf courses which contain a very 

limited amount of impervious surfaces and buildings (Nassar et al., 2014), thus these areas were 

not selected in the LCZ classification process, as per the classification system of Stewart and 

Oke (2012). This might explain the low contribution VF of as a predictor of SUHS and SUHI 

variability found in the statistical analysis (Tables 4 & 5). 

Finally, in considering the findings for both SUHS and SUHI dynamics together, it can be 

seen that urban geometry can have both beneficial and negative impacts on the thermal 

characteristics of LCZs in Dubai, from the perspective of human habitation of these 

environments. For example, geometries that generate shadow effects which decrease the 

absorption of solar energy and increase wind speeds and natural ventilation at street level lead to 

beneficial cooling of urban surfaces during daytime. However, during the night, the same urban 

geometries can trap heat near to the surface resulting in a detrimental heating effect. Identifying 

urban geometries which balance appropriately these beneficial and negative impacts in the 

prevailing climatic conditions of desert environments should be a key focus for future research.   

6. Conclusions 
 

The main aim of this study was to elucidate the dynamics and controls of SUHS and SUHI 

phenomena in Dubai using MODIS thermal imagery and an LCZ-based sampling strategy. We 

have systematically analyzed how various urban zones with varying structures, cover types and 

proximity to the ocean influence urban cooling and heating in the desert city of Dubai. This 

provides a valuable extension to previous studies in coastal desert cities which have considered 

only land cover factors (Frey et al., 2007; Lazzarini et al., 2013). 
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In terms of the SUHS and SUHI intensities, we have found that different LCZs exhibited 

different responses in intensity, both diurnally and seasonally, which clearly indicates that the 

predictor variables affecting those intensities behave differently. On average, we found that the 

summer daytime SUHS magnitude was significantly higher than other seasons and that the 

winter daytime SUHS was the lowest. Conversely, during the night-time, winter SUHI 

magnitude was significantly higher than other seasons while summer night-time SUHI was the 

lowest. We have demonstrated that proximity to the ocean, sky view factor, height of roughness 

elements and building height variations are the major factors governing the zonal SUHS and 

SUHI variations in Dubai. 

To further investigate the factors influencing the surface thermal variation of LCZs, we 

encourage other researchers to use other LCZ characteristics such as traffic loads, anthropogenic 

activities, wind speed and albedo. 
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