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Structured	abstract	

Importance:	Neonates	born	to	overweight/obese	women	are	larger	and	at	higher	risk	of	birth	

complications.	Many	maternal	obesity-related	traits	are	observationally	associated	with	birth	

weight,	but	the	causal	nature	of	these	associations	is	uncertain.	

Objective:	To	test	for	genetic	evidence	of	causal	associations	of	maternal	body	mass	index	(BMI)	and	

related	traits	with	birth	weight.	

Design,	Setting	and	Participants:		We	used	Mendelian	randomization	to	test	whether	maternal	BMI	

and	obesity-related	traits	are	causally	related	to	offspring	birth	weight.	Mendelian	randomization	

exploits	the	fact	that	genotypes	are	randomly	determined	at	conception	and	are	thus	not	

confounded	by	non-genetic	factors.	Data	were	analysed	on	30,487	women	from	18	studies.	

Participants	were	of	European	ancestry	from	population-	or	community-based	studies	located	in	

Europe,	North	America	or	Australia	and	participating	in	the	Early	Growth	Genetics	(EGG)	

Consortium.	We	included	live,	term,	singleton	offspring	born	between	1929	and	2013.	We	tested	

associations	between	a	genetic	score	of	30	BMI-associated	single	nucleotide	polymorphisms	(SNPs)	

and	(i)	maternal	BMI	and	(ii)	birth	weight,	to	estimate	the	causal	effect	of	BMI	on	birth	weight.	

Analyses	were	repeated	for	other	obesity-related	traits.	

Exposures:	Genetic	scores	for	BMI,	fasting	glucose	level,	type	2	diabetes,	systolic	blood	pressure	

(SBP),	triglyceride	level,	HDL-cholesterol	level,	vitamin	D	status	and	adiponectin	level.	

Main	Outcome(s)	and	Measure(s):	Offspring	birth	weight	measured	by	trained	study	personnel	(n=2	

studies),	from	medical	records	(n=	10	studies)	or	from	maternal	report	(n=6	studies).	

Results:	The	genetic	score	for	BMI	was	associated	with	a	2g	(95%CI:	0,	3g)	higher	offspring	birth	

weight	per	maternal	BMI-raising	allele	(P=0.008).	The	maternal	genetic	scores	for	fasting	glucose	and	

SBP	were	also	associated	with	birth	weight	with	effect	sizes	of	8g	(95%CI:	6,	10g)	per	glucose-raising	

allele	(P=7x10-14)	and	-4g	(95%CI:	-6,	-2g)	per	SBP-raising	allele	(P=1x10-5),	respectively.	A	1	standard	
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deviation	(1	SD	≈	4kg/m2)	genetically	higher	maternal	BMI	was	associated	with	a	55g	(95%	CI:	17,	

93g)	higher	birth	weight.	A	1-SD	genetically	higher	maternal	fasting	glucose	(≈	0.4mmol/L)	or	SBP	

(10mmHg)	were	associated	with	a	114g	(95%CI:	80,	147g)	higher	or	-208g	(95%	CI:	-394,	-21g)	lower	

birth	weight,	respectively.	For	BMI	and	fasting	glucose	these	genetic	associations	were	consistent	

with	the	observational	associations,	but	for	SBP,	the	genetic	and	observational	associations	were	in	

opposite	directions.		

Conclusions	and	Relevance:	This	Mendelian	randomization	study	supports	a	possible	causal	

association	between	genetically	elevated	maternal	BMI	and	blood	glucose	and	higher	offspring	birth	

weight.	Conversely,	genetically	elevated	maternal	systolic	blood	pressure	was	shown	to	be	

potentially	causally	related	to	lower	birth	weights.	If	replicated,	these	findings	may	have	implications	

for	counseling	and	managing	pregnancies	to	avoid	adverse	weight-related	birth	outcomes.
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Introduction	

Neonates	born	to	overweight	or	obese	women	are	more	likely	to	be	large	for	gestational	age.1	The	

precise	mechanisms	underlying	this	association	and	the	extent	to	which	confounding	factors	

contribute	are	poorly	understood.	It	is	important	to	understand	which	maternal	traits	are	causally	

associated	with	birth	weight	because	this	may	(i)	facilitate	targeted	development	of	interventions	to	

be	tested	in	randomized	controlled	trials,	and	(ii)	enable	clear,	evidence-based	recommendations	in	

pregnancy.	

	

Maternal	overweight	and	obesity	are	key	risk	factors	for	gestational	diabetes.2	Even	in	the	absence	

of	diabetes,	obese	women	have	higher	glucose	levels	than	normal	weight	women,	despite	a	

controlled	diet.3	The	association	between	gestational	diabetes	and	higher	birth	weight	is	well	

documented4,	and	maternal	glucose	levels	below	those	diagnostic	of	diabetes	also	show	strong	

associations	with	birth	weight.5	

	

The	fetus	of	an	overweight	or	obese	woman	may	be	exposed	to	the	consequences	of	higher	

maternal	triglyceride	levels	and	blood	pressure,	lower	levels	of	HDL-cholesterol	(HDLc)	and	

adiponectin	and	lower	vitamin	D	status1,6,7	(Box	1).	These	maternal	obesity-related	traits	have	been	

variably	associated	with	birth	weight	in	observational	studies:	higher	triglycerides	and	lower	HDLc	

with	higher	birth	weight8,9;	higher	blood	pressure	with	lower	birth	weight10;	lower	vitamin	D	status	

with	lower	birth	weight11;	and	lower	adiponectin	with	higher	birth	weight12.	However,	associations	

are	not	always	consistently	observed	and	may	be	confounded,	for	example	by	maternal	

socioeconomic	status	and	associated	behaviours	such	as	smoking	and	diet.	Furthermore,	the	high	

inter-correlation	of	obesity-related	traits	complicates	determination	of	causal	relationships	in	an	

observational	setting.		
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Maternal	genotypes	may	be	used	in	a	Mendelian	randomization13,14	approach	to	provide	evidence	of	

a	potential	causal	association	between	maternal	traits	and	birth	outcomes	(Figure	1).	Mendelian	

randomization	is	analogous	to	a	randomized	controlled	trial:	genotypes,	which	are	randomly	

allocated	at	conception,	are	largely	free	from	confounding		and	can	be	used	to	estimate	the	possible	

causal	effects	of	maternal	traits.	Here,	we	have	selected	genetic	variants	to	calculate	genetic	scores	

representing	maternal	BMI	and	each	of	7	obesity-related	maternal	traits.	The	potential	causal	effect	

of	maternal	BMI	and	each	related	trait	was	estimated	by	testing	associations	between	maternal	

genetic	risk	scores	and	offspring	birth	weights.		
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Methods	

Study	participants	

Single	nucleotide	polymorphism	(SNP)	genotype	data	were	used	from	a	total	of	30,487	women	from	

18	population-	or	community-based	studies	located	in	Europe,	North	America	or	Australia.	The	birth	

weight	of	one	child	per	mother	was	included	(see	eTable	1	for	full	details	of	participant	

characteristics	and	eTable	2	for	genotyping	information).	Birth	weight	was	measured	by	trained	

study	personnel	(n=2	studies),	from	medical	records	(n=10	studies)	or	from	maternal	report	(n=6	

studies).	The	offspring	years	of	birth	were	from	1929	to	2013.	Multiple	births,	stillbirths,	congenital	

anomalies,	births	before	37	weeks	gestation	and	individuals	of	non-European	ancestry	were	

excluded.	Informed	consent	was	obtained	from	all	participants,	and	study	protocols	were	approved	

by	the	local	regional	or	institutional	ethics	committees.	

	

Selection	of	maternal	obesity-related	traits	and	SNPs	

In	addition	to	BMI,	traits	were	selected	that	are	associated	with	maternal	obesity	and	may	affect	

fetal	growth	through	the	intrauterine	environment.	Their	effects	were	modelled	in	the	directions	

hypothesised	by	their	relationships	to	maternal	BMI	(Box	1)	

	

We	selected	SNPs	robustly	associated	(P	<	5x10-8)	with	BMI	and	each	obesity-related	trait.	Full	

details	of	the	selected	SNPs	are	provided	in	eTable	3.	SNPs	associated	with	(i)	fasting	glucose	and	(ii)	

type	2	diabetes	were	used	to	represent	maternal	glycemia.	We	considered	the	type	2	diabetes	SNPs	

to	represent	exposure	to	maternal	diabetes	in	pregnancy,	including	gestational	diabetes	given	

overlap	between	type	2	and	gestational	diabetes	genetic	susceptibility	variants.15	For	blood	

pressure,	SNPs	were	selected	that	are	primarily	associated	with	systolic	blood	pressure	(SBP),	

though	all	also	show	strong	evidence	of	association	with	diastolic	blood	pressure.	For	vitamin	D	

status,	two	SNPs	with	hypothesised	roles	in	vitamin	D	synthesis	were	used	to	represent	25(OH)D	
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levels	(an	indicator	of	overall	vitamin	D	status),	as	previously	recommended.16,17	Further	details	of	

SNP	selection	are	provided	in	the	eMethods.	

	

A	weighted	genetic	score	was	calculated	for	each	maternal	trait	(see	eMethods	for	full	details).		Very	

few	of	the	selected	SNPs	have	been	tested	in	pregnancy.	Genetic	scores	were	validated	by	

confirming	that	each	was	associated	with	its	respective	maternal	trait,	measured	during	pregnancy	

(with	the	exception	of	BMI,	for	which	the	pre-pregnancy	value	was	used).	Maternal	pre-pregnancy	

BMI	was	available	from	registry	data	(N=2	studies)	or	calculated	from	self-reported	weight	and	

height	(N=3	studies).	In	the	Avon	Longitudinal	Study	of	Parents	and	Children	(ALSPAC)	study,	the	

self-report	was	validated	with	a	clinic	measure18.	Details	of	traits	measured	in	pregnancy	and	their	

sources	are	given	in	eTable	4.	In	each	available	study,	we	performed	linear	regression	of	the	

maternal	trait	(e.g.	BMI)	against	the	genetic	score,	adjusting	for	maternal	age.	To	confirm	that	

associations	between	each	genetic	score	and	its	respective	maternal	trait	were	similar	in	the	same	

individuals	during	and	after	pregnancy,	available	data	were	used	from	two	longitudinal	studies	(the	

Avon	Longitudinal	Study	of	Parents	and	Children	[ALSPAC]	and	the	Exeter	Family	Study	of	Childhood	

Health	[EFSOCH]).	To	check	that	the	strategy	for	SNP	selection	had	resulted	in	genetic	scores	that	

were	specific	to	each	maternal	trait,	we	tested	the	association	between	each	of	the	8	genetic	scores	

and	the	other	maternal	traits,	and	indicators	of	maternal	socio-economic	status	and	smoking.		

	

Testing	the	hypothesis	that	maternal	BMI	and	obesity-related	traits	influence	birth	weight	through	

the	intra-uterine	environment.	

For	BMI	and	each	related	maternal	trait,	two	Mendelian	randomization	approaches	were	used	to	

test	the	hypothesis.	First	we	tested	associations	between	genetic	scores,	representing	maternal	

traits,	and	offspring	birth	weight	using	the	maximum	number	of	participants	(i.e.	for	each	trait,	those	

with	genetic	score	and	offspring	birth	weight	data	available,	irrespective	of	whether	they	had	the	

maternal	trait	measured).	An	association	of	the	genetic	score	with	birth	weight	would	support	a	
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possible	causal	effect	of	the	trait	(e.g.	pre-pregnancy	BMI)	on	birth	weight,	but	would	not	provide	

information	on	the	size	of	that	effect.	Second,	we	performed	analyses	in	those	with	the	measured	

trait	that	enabled	an	estimate	the	size	of	a	possible	causal	effect.	The	analyses	took	into	account	the	

association	between	each	genetic	score	and	the	maternal	trait	it	represented	(e.g.	BMI),	in	addition	

to	the	association	between	the	same	genetic	score	and	birth	weight.	These	two	results	were	used	to	

calculate	an	association	between	the	maternal	trait	(e.g.	BMI)	and	birth	weight	that	was	free	from	

confounding.	This	second	approach	measures	the	relationship	between	variation	in	maternal	BMI	

(or	BMI-related	trait)	and	birth	weight	that	is	attributable	only	to	genetic	factors	(see	Figure	1	for	an	

explanation	of	the	method).	For	each	approach	meta-analysis	was	used	to	combine	data	from	

individual	studies	(see	eMethods).		

	

Using	the	first	approach,	we	investigated	the	association	between	each	genetic	score	and	(i)	birth	

weight	and	(ii)	ponderal	index	(an	index	of	neonatal	leanness,	measured	in	kg/m3).		Within	each	

study,	birth	weight	or		ponderal	index	Z-scores	were	regressed	against	each	maternal	genetic	score,	

adjusted	for	offspring	sex	and	gestational	age.	Analyses	using	the	type	2	diabetes	genetic	score	were	

repeated	after	excluding	participants	with	pre-existing	and	gestational	diabetes.	Analyses	using	the	

SBP	genetic	score	were	repeated	after	excluding	participants	with	pre-eclampsia	and	existing	or	

gestational	hypertension.		

	

We	compared	our	genetic	estimate,	from	the	second	approach,	of	the	association	between	each	

maternal	trait	and	birth	weight/ponderal	index	with	the	corresponding	observational	association.	To	

obtain	the	observational	estimates	linear	regression	was	performed	using	birth	weight	or	ponderal	

index	as	the	dependent	variable,	and	each	of	7	maternal	traits	as	independent	variables,	adjusting	

for	sex	and	gestational	age.	There	was	insufficient	information	on	maternal	type	2	diabetes	

prevalence,	so	it	was	not	possible	to	estimate	the	causal	effect	for	that	trait.	Full	details	of	the	

analysis	are	provided	in	the	eMethods.		
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Estimating	how	much	of	the	association	between	maternal	BMI	and	birth	weight	is	mediated	by	

fasting	glucose	

Available	data	were	used	to	estimate	the	approximate	causal	effect	of	a	1	SD	(≈	4kg/m2)	higher	

maternal	BMI	on	(i)	fasting	glucose	and	(ii)	SBP.	Using	each	of	those	estimates,	the	results	of	the	

Mendelian	randomization	analyses	were	rescaled	to	represent	the	effects	of	fasting	glucose	and	SBP	

that	could	be	directly	compared	with	the	causal	effect	of	a	1	SD	higher	BMI	on	birth	weight	(see	

eMethods	for	a	detailed	description	of	the	method).	

	

Correcting	for	direct	fetal	genotype	effects	

Genotypes	of	maternal-fetal	pairs	were	available	in	up	to	8	studies	(N	=up	to	11,494).	Analyses	were	

repeated	including	the	fetal	genotype	at	each	SNP	in	the	model,	to	correct	for	potential	confounding	

caused	by	direct	effects	of	the	fetal	genotype.	
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Results	

The	characteristics	of	included	participants	from	the	18	contributing	studies	are	shown	in	Table	1.	

There	was	evidence	of	association	between	each	genetic	score	and	its	corresponding	maternal	trait	

measured	in	pregnancy	(P≤0.002;	Table	2).	For	BMI,	fasting	glucose	and	SBP,	data	from	multiple	

studies	were	meta-analysed,	with	similar	effect	estimates	between	studies	for	BMI	and	fasting	

glucose	(Phet>0.05)	and	weak	evidence	of	heterogeneity	for	SBP	(Phet=0.04).	The	effect	sizes	of	

associations	between	maternal	traits	and	their	respective	genetic	scores	were	very	similar	when	

compared	in	the	same	individuals	during	and	outside	pregnancy,	with	the	exception	of	the	SBP	

genetic	score	which	had	a	weaker	effect	during	pregnancy	(eTable	5).	There	was	no	evidence	of	

association	between	any	genetic	score	and	potentially	confounding	variables.	No	individual	genetic	

score	was	associated	with	any	of	the	other	maternal	traits,	except	for	the	genetic	score	for	BMI,	

which	was	positively	associated	with	SBP	(P	<	0.003	Bonferroni-corrected	for	15	tests;	eTable	6).	

	

Genetic	evidence	for	a	possible	causal	association	between	higher	maternal	BMI	and	higher	birth	

weight	

The	maternal	BMI	genetic	score	was	associated	with	higher	birth	weight	(Table	3)	and	ponderal	

index	(eTable	7)	with	similar	effect	sizes	before	and	after	adjusting	for	possible	effects	of	fetal	

genotype.	Using	the	genetic	score	to	quantify	the	possible	causal	association,	a	1	SD	genetically	

higher	maternal	BMI	(equivalent	to	4kg/m2)	was	associated	with	a	55g	(95%CI:	17,	93)	higher	

offspring	birth	weight.	After	adjusting	for	fetal	genotype,	the	estimated	effect	was	104g	(95%CI:	32,	

176)	(Table	4).	These	Mendelian	randomization	causal	estimates	were	similar	to	the	observational	

association	of	62g	(95%CI:	56,	70)	per	1SD	(4	kg/m2)	higher	maternal	BMI	(Figure	2).	Similar	results	

were	obtained	for	ponderal	index	(eTable	8	and	eFigure	1).		

	

Genetic	evidence	for	a	possible	causal	association	between	higher	maternal	fasting	glucose	and	

higher	birth	weight,	but	no	association	with	maternal	lipids	or	adiponectin	
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The	maternal	fasting	glucose	and	type	2	diabetes	genetic	scores	were	associated	with	higher	birth	

weight	(Table	3)	and	ponderal	index	(eTable	7)	with	similar	effect	size	estimates	before	and	after	

adjusting	for	fetal	genotype,	and	before	and	after	excluding	pre-existing	and	gestational	diabetes.	

Using	the	genetic	score	to	estimate	the	possible	causal	effect,	a	1SD	(0.4	mmol/L)	genetically	higher	

maternal	glucose	was	associated	with	a	114g	(95%CI:	80,	147)	higher	birth	weight.	After	adjusting	for	

fetal	genotype,	the	association	was	145g	(95%CI:	91,	199)	(Table	4).	These	genetic	estimates	were	

similar	to	the	observational	association	of	92g	(95%CI:	80,	104)	per	1SD	(0.4	mmol/L)	higher	

maternal	glucose	(Figure	2).	Similar	results	were	obtained	for	ponderal	index	(eTable	8	and	eFigure	

1).	

	 	

The	maternal	triglyceride	genetic	score	was	not	associated	with	offspring	birth	weight	(Table	3)	or	

ponderal	index	(eTable	7).	Using	the	genetic	score	to	estimate	the	possible	causal	effect,	a	

genetically	higher	maternal	triglyceride	level	was	not	associated	with	offspring	birth	weight	and	the	

95%	confidence	intervals	around	the	genetic	estimate	excluded	the	observational	association	

between	maternal	triglycerides	and	birth	weight	(P=0.007	testing	difference	between	genetic	and	

observational	association;	Table	4;	Figure	2).	Likewise,	the	genetic	estimate	of	the	possible	effect	of	

maternal	adiponectin	levels	on	offspring	birth	weight	was	different	from	the	observational	

association	(P=0.002).	The	genetic	score	for	HDLc	was	not	associated	with	birth	weight	or	ponderal	

index	and	the	analysis	was	consistent	with	no	causal	effect,	however	this	could	not	be	distinguished	

from	the	negative	observational	association	between	maternal	HDLc	and	birth	weight.	

	

Genetic	evidence	for	a	possible	causal	association	between	higher	systolic	blood	pressure	and	

lower	birth	weight	

The	maternal	SBP	genetic	score	was	associated	with	lower	birth	weight	(Table	3)	and	ponderal	index	

(eTable	7)	with	similar	effect	size	estimates	before	and	after	adjusting	for	fetal	genotype,	and	before	

and	after	excluding	maternal	pre-eclampsia	and	hypertension.	Using	the	genetic	score	to	estimate	
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the	possible	causal	effect,	a	1SD	(10	mmHg)	genetically	higher	maternal	SBP	was	associated	with	a	-

208g	(95%CI;	-394,	-21)	lower	offspring	birth	weight.	After	adjusting	for	fetal	genotype,	the	

estimated	effect	was	-151g	(95%CI:	-390,	89)	(Table	4).	The	genetic	estimate	of	the	effect	of	

maternal	SBP	on	birth	weight	in	the	full	sample	of	women	was	in	the	opposite	direction	to	the	

observational	association	(P=0.01	for	difference	between	genetic	and	observational	associations;	

Table	4;	Figure	2).	Similar	results	were	obtained	for	ponderal	index	(eTable	8	and	eFigure	1).	

	

The	maternal	genetic	score	for	lower	vitamin	D	status	was	associated	with	lower	birth	weight	

(P=0.03;	Table	3).	However,	the	estimated	causal	effect	was	not	significantly	different	from	zero	(the	

estimated	change	in	birth	weight	for	a	10%	genetically	lower	maternal	25[OH]D	level	was	-26g	

(95%CI:	-54,	2);	Table	4,	Figure	2).	

	

Associations	between	the	genetic	scores	and	birth	weight	were	consistent	across	studies	

Associations	between	maternal	genetic	scores	and	offspring	birth	weight	were	similar	between	

studies	in	the	meta-analysis	(Table	3;	Phet>0.05).	Where	we	combined	data	from	observational	

analyses,	the	associations	between	maternal	fasting	glucose	or	SBP	and	birth	weight	were	similar	

(Phet>0.05),	and	there	was	weak	evidence	of	heterogeneity	for	the	BMI-birth	weight	observational	

association	(Table	4;	Phet=0.03).	

	

Exposure	of	the	fetus	to	higher	maternal	fasting	glucose	is	unlikely	to	explain	all	of	the	association	

between	higher	maternal	BMI	and	higher	offspring	birth	weight	

	To	estimate	how	much	of	the	association	between	maternal	BMI	and	birth	weight	might	be	

mediated	by	fasting	glucose,	we	used	the	BMI	and	fasting	glucose	genetic	scores:	a	1	SD	(≈	4	kg/m2)	

genetically	higher	maternal	BMI	was	associated	with	a	0.34	SD	(≈	0.14	mmol/L)	higher	maternal	

fasting	glucose.	From	the	Mendelian	randomization	analyses,	1	SD	(≈	0.4	mmol/L)	genetically	higher	

maternal	fasting	glucose	was	associated	with	a	114g	(95%CI:	80,	147)	higher	birth	weight,	so	we	
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would	predict	that	a	0.34SD	higher	fasting	glucose	would	be	associated	with	a	114g	×	0.34	=	39g	

[95%CI:	27,	50]	higher	birth	weight.	This	approximation	is	broadly	similar	to	the	total	estimated	

effect	of	a	1	SD	higher	BMI	on	birth	weight	(55g	[95%CI:	17-93]).	However,	using	the	same	method	

with	the	BMI	and	SBP	genetic	scores	we	estimated	that	a	1SD	higher	maternal	BMI	would	be	

associated	with	a	-40g	[95%CI:-75,	-4]	lower	birth	weight	via	its	association	with	maternal	SBP	

(eFigure	2),	which	would	oppose	the	positive	association	with	maternal	fasting	glucose.		
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Discussion	

This	study	provides	evidence	for	a	possible	causal	association	between	maternal	BMI	and	offspring	

birth	weight.	A	4	kg/m2	genetically	higher	maternal	BMI	(a	1	SD	rise)	was	associated	with	a	55g	(95%	

CI:	17,	93)	higher	offspring	birth	weight.	In	addition,	a	0.4	mmol/l	(1	SD)	genetically	higher	circulating	

maternal	fasting	glucose	was	associated	with	a	114	g	(95%CI:	80,	147)	higher	birth	weight,	while	a	10	

mmHg	genetically	higher	maternal	SBP	was	associated	with	a	-208g	(95%CI:	-394,	-21)	lower	birth	

weight.	These	results	provide	evidence	of	possible	causal	associations	with	birth	weight	of	maternal	

fasting	glucose	and	SBP	in	opposite	directions.	The	estimated	effects	of	these	maternal	traits	on	

birth	weight	(either	increased	or	reduced)	are	substantial	and	of	clinical	importance.	They	support	

efforts	to	maintain	healthy	gestational	glucose	and	blood	pressure	levels	to	ensure	healthy	fetal	

growth.	The	positive	association	between	maternal	BMI	and	birth	weight	may	be	partially	mediated	

by	the	effect	of	higher	BMI	on	circulating	maternal	fasting	glucose.	There	was	no	evidence	of	

association	with	a	genetic	score	for	maternal	triglycerides,	which	have	also	been	hypothesised	to	be	

important	contributors	to	higher	birth	weight	in	overweight	or	obese	women.	Other	lipids,	or	

specific	subclasses	of	triglycerides,	might	be	important	but	require	further	study.	

	

Our	results	provide	genetic	evidence	of	a	causal	association	between	maternal	glycemia	and	birth	

weight	and	ponderal	index,	even	in	women	with	no	pre-existing	or	gestational	diabetes,	which	is	

consistent	with	published	observational	data.5	A	possible	explanation	for	this	finding	is	that	women	

with	a	higher	genetic	score	for	type	2	diabetes	have	relatively	higher	glucose	levels	in	pregnancy,	as	

a	result	of	inadequate	beta	cell	compensation	in	response	to	gestational	insulin	resistance,19,20	

leading	to	increased	placental	glucose	transfer	and	fetal	insulin	secretion,21	and	consequently	higher	

birth	weight.		

	

Our	data	did	not	support	a	causal	association	between	maternal	triglyceride,	HDLc	or	adiponectin	

levels	and	birth	weight	or	ponderal	index.	The	genetic	associations	between	maternal	triglycerides	

Deleted: In	this	study,	we	have	provided	evidence

Deleted: Our	

Deleted: We	have	further	shown	that	the

Deleted: We	found

Field Code Changed
Formatted: Font:11 pt
Deleted: Most	likely,	women	with	a	high	genetic	score	for

Field Code Changed

Field Code Changed



17	
	

and	adiponectin	and	birth	weight	were	null,	in	contrast	to	the	observational	associations,	suggesting	

that	the	observational	associations	seen	here,	and	in	other	published	studies8,9,12,	are	confounded.		

	

The	Mendelian	randomization	analysis	showed	that	the	positive	observational	association	between	

SBP	and	birth	weight	is	confounded,	most	likely	by	BMI,	which	is	both	an	important	risk	factor	for	

higher	SBP	in	pregnancy	and	positively	associated	with	birth	weight.1	Using	genetic	variants	that	are	

independent	of	confounding	by	BMI,	we	demonstrated	that	genetically	higher	maternal	SBP	is	

associated	with	lower	birth	weight,	even	after	excluding	pre-eclampsia	and	hypertension.	The	

precision	of	our	estimate	of	the	change	in	birth	weight	per	1	SD	in	maternal	SBP	could	be		affected	

by	the	heterogeneity	between	studies	in	the	genetic	score-SBP	association	(P=0.04,	I2=76.0%;	Table	

2).	However,	associations	between	the	SBP	genetic	score	and	birth	weight	were	consistent	across	all	

13	meta-analyzed	studies	(P=0.14,	I2=30.4%;	Table	3)	and	supportive	of	a	causal	association	between	

higher	maternal	SBP	and	lower	birth	weight.	These	findings	support	observational	associations	

between	maternal	SBP	and	birth	weight	that	were	adjusted	for	a	wide	range	of	confounders,22	and	

are	consistent	with	laboratory	and	population	studies	suggesting	a	link	between	hypertensive	

disorders	of	pregnancy	and	impaired	fetal	growth	due	to	placental	pathology.23	There	are	increasing	

concerns	about	the	effect	the	obesity	epidemic	might	have	on	birth	size,	via	greater	maternal	BMI.	

However,	the	focus	of	that	concern	has	been	largely	on	increased	birth	size	as	a	result	of	greater	

maternal	glucose	and	other	fetal	nutrients.	Our	findings	suggest	that	there	are	opposing	effects	of	

maternal	blood	pressure	and	glucose.	

	

Published	Mendelian	randomization	analyses	provide	evidence	that	higher	BMI	is	causally	associated	

with	lower	vitamin	D	status,6	and	evidence	from	multiple	observational	studies	suggests	that	lower	

maternal	vitamin	D	is	associated	with	lower	birth	weight.11,24	Our	analysis	of	the	vitamin	D	genetic	

score	provided	some	evidence	to	support	a	possible	causal	association	with	birth	weight,	but	this	

requires	further	exploration	in	larger	numbers	of	pregnancies.	
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Socio-economic	factors	and	related	behaviours	such	as	smoking	are	key	confounders	of	

observational	associations	between	maternal	BMI	(or	BMI-related	traits)	and	offspring	birth	weight,	

since	they	are	associated	with	both	variables	(see	eTable	9	for	a	demonstration	of	these	associations	

in	the	ALSPAC	study).	The	genetic	scores	used	in	our	analyses	were	not	associated	with	socio-

economic	factors	or	smoking,	and	this	illustrates	a	key	strength	of	the	Mendelian	randomization	

approach:	since	genotypes	are	determined	at	conception,	such	confounding	is	avoided.		

	

There	are	some	limitations	to	our	study.	Despite	attempts	to	maximise	specificity	of	the	genetic	

scores,	we	cannot	fully	exclude	the	possibility	that	the	selected	genetic	variants	act	on	more	than	

one	maternal	trait.	Although	all	available	information	was	used,	there	was	limited	power	to	detect	

associations	between	the	genetic	scores	and	other	traits.	For	example,	the	known	association	

between	BMI-associated	variants	and	triglyceride	levels	was	not	detected.25	With	the	potential	for	

high-throughput	metabolomic	studies	and	a	growing	public	database	of	genetic	associations,26-28	

future	studies	will	improve	the	specificity	(for	different	lipid	sub-fractions)	of	selected	genetic	

variants.		

	

Despite	our	large	sample,	statistical	power	to	detect	causal	effects	was	limited	for	some	maternal	

traits	(see	eMethods	and	eTable	10	for	power	calculations).	The	total	sample	provided	>99%	power	

to	detect	associations	at	P<0.05	between	birth	weight	and	genetic	scores	such	as	fasting	glucose	and	

systolic	blood	pressure	that	explain	at	least	0.1%	variance	in	birth	weight.	However,	larger	samples	

(N	>	80,000)	will	be	needed	to	confidently	detect	or	rule	out	(i)	the	association	with	vitamin	D	status	

suggested	by	our	data,	or	(ii)	smaller	positive	or	negative	causal	associations	between	maternal	

triglycerides,	HDLc	or	adiponectin	and	birth	weight.	
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While	adjusting	for	the	fetal	genetic	scores	was	necessary	to	separate	maternal	effects	from	the	

direct	effects	of	genetic	variants	in	the	fetus,	this	could	potentially	introduce	bias	via	association	

with	paternal	genotypes.	Assortative	mating	for	BMI	could	additionally	result	in	a	correlation	

between	maternal	and	paternal	genotypes,	leading	to	similar	bias.	However,	a	father’s	genetic	score	

would	only	confound	the	Mendelian	randomization	estimates	if	the	father’s	phenotype	were	related	

to	birth	weight,	and	we	found	only	very	weak	associations	of	fathers	BMI	and	related	traits	with	

offspring	birth	weight	(eTable	11).	Another	potential	bias	could	be	induced	by	the	use	of	the	genetic	

score	for	SBP,	which	was	derived	from	a	genome-wide	association	study	of	blood	pressure	

conditional	on	BMI.	Since	BMI	is	also	associated	with	birth	weight,	this	could	bias	the	results.	

However,	similar	results	were	obtained	using	an	alternative	genetic	score	that	was	unadjusted	for	

BMI	(eMethods).	

	

In	Mendelian	randomization	analysis,	a	weak	statistical	association	between	a	genetic	score	and	a	

maternal	trait	(due	to	low	variance	explained	and/or	small	sample	size)	has	the	potential	to	cause	

weak	instrument	bias	towards	the	observational	results.29	The	proportions	of	maternal	trait	variance	

explained	by	the	genetic	scores	are	modest	in	our	study	(Table	2).	However,	the	large	overall	sample	

size	ensured	that	the	possible	causal	associations	identified	are	unlikely	to	be	due	to	weak	

instrument	bias	(see	eMethods).	

	

Our	analyses	assume	that	maternal	BMI	and	related	traits	are	linearly	associated	with	offspring	birth	

weight.	We	have	not	tested	for	non-linear	associations	which,	in	a	Mendelian	randomization	design,	

would	require	very	large	numbers30.	However,	for	maternal	BMI,	fasting	glucose	and	systolic	blood	

pressure,	there	is	observational	evidence	of	such	linear	associations	across	the	distribution,	with	no	

evidence	of	threshold	or	curvilinear	associations5,10,31.	
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Conclusions	

This	Mendelian	randomization	study	supports	a	possible	causal	association	between	genetically	

elevated	maternal	BMI	and	blood	glucose	and	higher	offspring	birth	weight.	Conversely,	genetically	

elevated	maternal	systolic	blood	pressure	was	shown	to	be	potentially	causally	related	to	lower	birth	

weights.	If	replicated,	these	findings	may	have	implications	for	counseling	and	managing	

pregnancies	to	avoid	adverse	weight-related	birth	outcomes.	

Deleted: To	conclude,	we	found

Formatted: Space After:  10 pt

Deleted: 	genetic	evidence	in	support	of	a	possible	causal	
association	between	higher	maternal	BMI	and	higher	offspring	birth	
weight.	Some	of	this	possible	causal	association	may	be	mediated	by	
fasting	glucose.	We	further	found	genetic	evidence	in	support	of	a	
possible	causal	association	between	higher	maternal	blood	pressure	
and	lower	offspring	birth	weight.	We	found	no	evidence	of	
association	between	genetic	scores	for	maternal	triglycerides,	HDLc	
or	adiponectin	and	birth	weight.	Our	findings	support	promoting	
healthy	levels	of	weight	in	women	of	reproductive	age	and	also	
monitoring	and	controlling	SBP	and	glucose	levels	in	women	with	
higher	BMI.	These	results	highlight	the	importance	of	findings	from	
pilot	and	ongoing	trials	of	metformin	in	obese	pregnant	women31	
and	of	statins	to	prevent	pre-eclampsia	and	small	for	gestational	age	
in	women	at	risk32,33.
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FIGURE/BOX	LEGENDS	

Box	1.	The	maternal	obesity-related	traits	hypothesized	to	cause	increased	or	decreased	fetal	growth,	

based	on	observational	associations	with	birth	weight:	body	mass	index	(BMI)1;	fasting	glucose5;	type	

2	diabetes32;	triglycerides9;	HDL-cholesterol8;	systolic	blood	pressure10;	vitamin	D	status	(as	indicated	

by	25-hydroxyvitamin	D,	25[OH]D	level)11;	adiponectin12.		

	

Figure	1	

Principle	of	Mendelian	randomization:	If	a	maternal	trait	causally	influences	offspring	birth	weight,	

then	a	risk	score	of	genetic	variants	associated	with	that	trait	will	also	be	associated	with	birth	

weight.	Since	genotype	is	determined	at	conception,	it	should	not	be	associated	with	factors	that	

normally	confound	the	association	between	maternal	traits	and	birth	weight	(e.g.	socio-economic	

status).	Estimates	of	the	genetic	score-maternal	phenotype	association	(w)	and	the	genetic	score-

birth	weight	association	(x)	may	be	used	to	estimate	the	association	between	the	maternal	trait	

variation	that	is	due	to	genetic	score,	and	birth	weight	(y	=	x/w),	which	is	expected	to	be	free	from	

confounding.	If	the	estimated	causal	effect,	y,	is	different	from	the	observational	association	

between	the	measured	maternal	phenotype	and	birth	weight,	this	would	suggest	that	the	

observational	association	is	confounded	(assuming	that	the	assumptions	of	the	Mendelian	

randomization	analyses	are	valid).14	The	line	connecting	maternal	trait	with	fetal	growth	has	no	

arrow,	to	indicate	that	the	causal	nature	of	the	association	is	uncertain.	It	is	important	to	adjust	for	

possible	direct	effects	of	fetal	genotype	(z).	

	

Figure	2.	Comparison	of	the	observational	with	the	genetic	change	in	birth	weight	(in	grams)	for	a	1	

standard	deviation	(SD)	change	in	each	maternal	obesity-related	trait.	For	25[OH]D	and	adiponectin,	

we	present	the	change	in	birth	weight	for	a	10%	change	in	maternal	trait	level	because	these	

variables	were	logged	for	analysis.	The	genetic	change	was	estimated	from	Mendelian	

randomization	analysis,	in	which	a	genetic	score	was	used	to	estimate	the	possible	causal	effect	of	
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the	maternal	trait	on	birth	weight.	The	genetic	estimate	is	presented	twice:	in	the	second	case	it	was	

adjusted	for	fetal	genotype	using	a	subset	of	available	studies.	The	error	bars	represent	the	95%	

confidence	intervals	around	the	effect	size	estimates.	For	maternal	pre-pregnancy	BMI	and	fasting	

glucose,	the	95%	confidence	intervals	for	both	the	observational	and	genetic	approaches	exclude	the	

null,	suggesting	a	positive	possible	causal	effect	of	maternal	BMI	and	fasting	glucose	on	birth	weight.	

For	maternal	SBP,	the	observational	analysis	suggested	a	weak	positive	association	with	birth	

weight,	whereas	the	genetic	analysis	showed	evidence	of	a	negative	possible	causal	effect.	

Observational	analyses	suggested	that	higher	maternal	triglyceride	levels,	lower	maternal	

adiponectin	and	lower	maternal	HDL-cholesterol	levels	were	associated	with	higher	birth	weight,	

while	lower	maternal	vitamin	D	status	was	associated	with	lower	birth	weight,	but	none	of	these	

were	supported	by	the	genetic	analyses.
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Table	1.	Key	characteristics	of	participants	by	study	(for	full	details,	see	eTable	1)	

Abbreviated	
study	name*	

Country	(sample	
source)	

Offspring	
years	of	
birth	

N	women	with	
birth	weight	of	
one	child	/	N	
offspring	with	
genotype	

Mean	
maternal	age	
at	delivery	in	
years	(SD)		

Mean	
maternal	pre-
pregnancy	BMI	
(SD)	in	kg/m2	

Mean	
offspring	birth	
weight	(SD)	in	

grams	

ALSPAC	
mothers	

UK	 1991-1992	 7304	/	4913	 28.5	(4.8)	 22.93	(3.73)	 3481	(475)	

BBC	mothers	 Germany	 2000-2004	 1357	/	1357	 30.1	(5.4)	 22.78	(3.93)	 3472	(511)	

B58C-WTCCC	 UK	 1972-2000	 855	/	NA	 26.2	(5.2)	 NA	 3325	(483)	

B58C-T1DGC	 UK	 1972-2000	 836	/	NA	 26.1	(5.4)	 NA	 3379	(469)	

CHOP	mothers	 USA	
1987-
present	

312	/	NA	 NA	 NA	 3440	(562)	

COPSAC-2000	
mothers	

Denmark	 1998-2001	 282	/	282	 30.4	(4.3)	 NA	 3560	(505)	

DNBC-GOYA	 Denmark	 1996-2002	 1805	/	NA	 29.2	(4.2)	 23.57	(4.27)	 3643	(495)	

DNBC-PTB-
CONTROL	

Denmark	 1987-2009	 1649	/	975	 29.9	(4.2)	 23.57	(4.27)	 3595	(497)	

EFSOCH	
mothers	

UK	 2000-2004	 746	/	332	‡	 30.5	(5.3)	 24.07	(4.42)	 3512	(480)	

GEN-3G	
mothers	

Canada	 2010-2013	 676	/	NA	 28.4	(4.4)	 24.83	(5.63)	 3448	(433)	

Generation	R	
mothers	

The	Netherlands	 2002-2006	 3810	/	2196	 31.2	(4.5)	†	 23.12	(3.92)	 3528	(494)	

HAPO	mothers	
(GWAS)	

UK,	Canada,	
Australia	

2000-2006	 1380	/	1300	 31.5(5.3)	†	 24.5	(5.0)	 3557	(517)	

HAPO	mothers	
(non-GWAS)	

USA,	UK,	Canada,	
Australia	

2000-2006	 3590	/	2318	 30.4	(5.4)	†	 24.63	(5.33)	 3526	(463)	

MoBa	mothers	 Norway	 1999-2008	 650	/	350	 28.5	(3.3)	 23.93	(3.94)	 3679	(430)	

NFBC1966	 Finland	 1987-2001	 2035	/	NA	 26.5	(3.7)			 NA	 3525	(461)	

NTR	 The	Netherlands	 1946-2003	 706	/	NA	 27.1	(3.7)	 NA	 3469	(529)	

QIMR	 Australia	 1929-1990	 892	/	NA	 Q24.5	(4.0)R	 22.79	(5.13)	 3344	(532)	

TwinsUK	 UK	 NA	 1602	/	NA	 NA	 NA	 3365	(581)	

*Expanded	study	names:	ALSPAC,	Avon	Longitudinal	Study	of	Parents	and	Children;	BBC,	Berlin	Birth	Cohort;	B58C-
WTCCC,	1958	British	Birth	Cohort-Wellcome	Trust	Case	Control	Consortium;	B58C-T1DGC,	1958	British	Birth	Cohort-
Type	1	Diabetes	Genetics	Consortium;	CHOP,	Children’s	Hospital	Of	Philadelphia;	DNBC-GOYA,	Danish	National	Birth	
Cohort-Genetics	of	Obesity	in	Young	Adults	study;	DNBC-PTB-CONTROLS,	Danish	National	Birth	Cohort	Preterm	Birth	
study	Controls;	EFSOCH,	Exeter	Family	Study	Of	Childhood	Health;	GEN-3G,	Genetics	of	Glycemic	regulation	in	
Gestation	and	Growth;	HAPO,	Hyperglycemia	and	Adverse	Pregnancy	Outcome	study	(GWAS,	Genome-Wide	
Association	Study);	MoBa,	the	Norwegian	Mother	and	Baby	Cohort;	NFBC1966,	the	Northern	Finland	1966	Birth	
Cohort;	NTR,	Netherlands	Twin	Registry;	QIMR,	Queensland	Institute	of	Medical	Research.	
†In	Generation	R,	maternal	age	was	recorded,	on	average,	at	14.4	weeks	of	gestation;	in	HAPO,	maternal	age	was	
recorded,	on	average,	at	28	weeks	of	gestation.	
‡Fetal	genotype	in	EFSOCH	available	only	for	the	fasting	glucose	genetic	score.	
NA,	not	available.	
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Table	2.	Associations	between	maternal	genetic	scores	and	maternal	obesity-related	traits		

Maternal	obesity-
related	trait	

Number	of	SNPs	used	to	
construct	genetic	score		

Reference	for	
primary	GWAS	

paper	for	each	set	
of	SNPs	

Estimate	of	%	
variance	in	

maternal	trait	
explained	by	

genetic	score	in	
pregnant	
women	

Total	N	women	with	
trait	measured	

during	pregnancy	
(except	BMI,	for	

which	the	
appropriate	

measurement	is	pre-
pregnancy)	

N	
studies		

Estimated	change	in	
maternal	trait	per	
average	weighted	

trait-
raising/lowering*	
allele		(95%	CI)	

P	value		

Heterogeneity	P	
value	(I2	%),	
where	results	
from	>1	study	
were	meta-
analysed		

Higher	pre-pregnancy	
Body	Mass	Index	

(BMI)	
30	

Speliotes	et	al.,	
2010,	Nat	Genet33	

1.8%	in	ALSPAC	
11,822	 5	

0.145	(0.126,	0.164)	
kg/m2	

<	2x10-16	 0.18	(35.8)	

Higher	fasting	
glucose†	

13	
Dupuis	et	al.	2010,	

Nat	Genet34	
5%	in	EFSOCH	

5,402	 3	
0.029	(0.025,	0.032)	

mmol/L	
<	2x10-16	 0.70	(0)	

Higher	odds	of	
gestational	diabetes	
and	existing	diabetes	
(SNPs	associated	with	

type	2	diabetes)	

55	

Morris	et	al.	2012,	
Nat	Genet	35	

1.4%	in	ALSPAC	
6,606	

(54	Cases,	6,552	
controls)	

1	
Odds	ratio:1.08	
(1.03,	1.14)	

0.003	 -	

Higher	triglycerides		 17	
Teslovich	et	al.	
2010,	Nature36	

3%	in	EFSOCH	
663	 1	

0.055	(0.032,	0.078)	
mmol/L	

3x10-6	 -	

Lower	HDL-cholesterol	 4	
Teslovich	et	al.	
2010,	Nature36	

3%	in	EFSOCH	
733	 1	

-0.050	(-0.072,	-
0.027)	mmol/L	

1x10-5	 -	

Higher	systolic	blood	
pressure		

33	
Ehret	et	al.	2010,	

Nature	
1%	in	ALSPAC	

8,450	 2	
0.186	(0.140,	0.231)	

mmHg	
<	2x10-16	 0.04	(76.0)	

Lower	vitamin	D	
status,	ln[25(OH)D]	 2	(“Synthesis”	score)	

Vimaleswaran	et	al.	
2013,	PloS	Med6	

0.2%	in	ALSPAC	
4,767	 1	

-0.024	(-	0.039,	-
0.009)	on	log	scale	

0.002	 -	

Lower	adiponectin,	
ln[adiponectin]	

3	
Yaghootkar	et	al.	
2013,	Diabetes37	

2%	in	HAPO	
1,376	 1	

-0.17	(-0.23,	-0.11)	
on	log	scale	

1x10-8	 -	

	
*The	decision	to	model	the	association	in	relation	to	the	trait-raising	or	trait-lowering	allele	depended	on	the	known	direction	of	association	of	each	trait	with	higher	BMI	
(see	Box	1).	Column	1	specifies	each	of	these	directions	of	association.		
†Removing	the	one	study	in	which	the	rs10830963	SNP	was	poorly	imputed	(r2<0.8),	we	obtained	very	similar	results	(n=4026;	effect	size	=	0.028	(95%CI:	0.024,	0.032);	P	<	
2x10-16;	Phet	=	0.46;	I2	=	0%).		
Levels	of	25(OH)D	and	adiponectin	levels	were	log-transformed	to	achieve	normality	before	analyses.	ALSPAC,	Avon	Longitudinal	Study	of	Parents	and	Children.	EFSOCH,	
Exeter	Family	Study	Of	Childhood	Health.	HAPO,	Hyperglycemia	and	Adverse	Pregnancy	Outcome	study.	
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Table	3.	Associations	between	maternal	genetic	scores	and	birth	weight	of	offspring	

Maternal	trait	for	which	
genetic	score	was	

constructed	
N	studies	 Total	N	

women	

Estimated	change	
in	offspring	birth	
weight	(grams)	per	
maternal	trait-

raising/lowering*	
allele	(95%	CI),	to	
the	nearest	1	

gram†	

P	value	

Heterogeneity	
P	Value	(I2	%)	
from	meta-
analysis	

N	studies	
with	fetal	
genotypes	

Total	N	
offspring	
with		

genotypes	
available	

Estimated	change	in	
birth	weight	(grams)	
per	maternal	trait-
raising/lowering	
allele*	(95%	CI),	to	
the	nearest	1	gram†,	
adjusted	for	fetal	

genotypes	

P	value	
(adjusted	
for	fetal	

genotypes)	

Heterogeneity	
P	Value	(I2	%)	
from	meta-
analysis	

(adjusted	for	
fetal	

genotypes)	

Higher	pre-pregnancy	
BMI	

16	 25,265	 2	(0,	3)	 0.008	 0.84	(0)	 7	 10,964	 4	(1,	6)	 0.004	 0.20	(30.5)	

Higher	fasting	glucose	 15	 23,902	 8	(6,	10)	 7x10-14	 0.11	(33.3)	 8	 11,493	 11	(7,	14)	 7x10-9	 0.26	(21.6)	

Higher	odds	of	type	2	
Diabetes	

12	 18,670	 2	(0,	2)	 0.06	 0.22	(23.1)	 5	 7,769	 4	(2,	6)	 0.0004	 0.81	(0)	

Higher	odds	of	type	2	
Diabetes	(excluding	pre-
existing	and	gestational	

diabetes)	

6	 13,029	 2	(1,	3)	 0.02	 0.92	(0)	 4	 6,210	 4	(1,	6)	 0.006	 0.93	(0)	

Higher	triglycerides		 15	 24,985	 -2	(-4,	0)	 0.12	 0.83	(0)	 6	 11,031	 -2	(-7,	1)	 0.21	 0.86	(0)	

Lower	HDL-cholesterol	 15	 22,167	 0	(-3,	3)	 1	 0.52	(0)	 6	 9,176	 0	(-5,	5)	 0.98	 0.85	(0)	

Higher	systolic	blood	
pressure	

13	 20,062	 -4	(-6,	-2)	 1x10-5	 0.14	(30.4)	 5	 7,790	 -3	(-6,	0)	 0.09	 0.50	(0)	

Higher	systolic	blood	
pressure	(excluding	pre-

eclampsia	and	
hypertension)	

7	 13,271	 -5	(-7,	-3)	 6x10-6	 0.18	(32)	 4	 5,488	 -4	(-8,	0)	 0.04	 0.16	(41.2)	

Lower	vitamin	D	status		 18	 30,340	 -6	(-12,	0)	 0.03	 0.13	(37.1)	 3	 9,510	 -14	(-25,	3)	 0.01	 0.77	(0)	

Lower	adiponectin	 9	 14,920	 -2	(-16,	12)	 0.76	 0.90	(0)	 5	 7,820	 7	(-16,	30)	 0.55	 0.71	(0)	

*	The	decision	to	model	the	association	in	relation	to	the	trait-raising	or	trait-lowering	allele	depended	on	the	known	direction	of	association	of	each	trait	with	higher	BMI	
(see	Box	1).	Column	1	specifies	each	of	these	directions	of	association.	Results	are	per	average	weighted	allele,	adjusted	for	sex	and	gestational	age.	†Standard	deviation	of	
birth	weight	averaged	over	a	number	of	European	studies	(=484	g)38	was	used	to	generate	these	estimates	from	z-scores.	We	considered	a	2-tailed	P	value	of	<0.05	to	
provide	evidence	against	the	null	hypothesis.
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Table	4.	A	comparison	of	the	observational	with	the	genetic	association	between	each	maternal	trait	and	offspring	birth	weight		

Maternal	trait	(value	
of	1	SD	with	units)	

Study/ies*	used	for	
observational	estimates	

[Total	N	women]	

N	women	for	
observational	
estimates	

Observational	
estimate	of	the	
change	in	birth	

weight	(g)	per	1	SD	
(or	10%	†)	change	in	

maternal	trait,	
adjusted	for	sex	and	

gestational	age	
(95%CI)	

Genetic	estimate	of	
the	change	in	birth	
weight	(g),	adjusted	

for	sex	and	gestational	
age,	per	1	SD	(or	10%	
†)	change	in	maternal	
trait,	unadjusted	for	

fetal	genotype	(95%CI)	
[N	women	as	in	Tables	

1	and	2]	

	P	value‡	
comparing	

observational	with	
genetic	birth	

weight	associations	
(unadjusted	for	
fetal	genotype)	

Genetic	estimate	of	
the	change	in	birth	
weight	(g),	adjusted	

for	sex,	gestational	age	
and	fetal	genotype,	
per	1	SD	(or	10%	†)	
change	in	maternal	
trait	(95%CI)	[N	

offspring	as	in	Tables	1	
and	2]	

	P	value‡	
comparing	

observational	
with	genetic	birth	

weight	
associations	
(adjusted	for	

fetal	genotype)	

Higher	pre-
pregnancy	BMI	(4	

kg/m2)	

ALSPAC	Mothers,	
EFSOCH	Mothers,	HAPO	

Mothers		
11,969	 62	(56,	70)	 55	(17,	93)	 0.70	 104	(32,	176)	 0.28	

Higher	fasting	
glucose	(0.4	mmol/L)	

EFSOCH	Mothers,	HAPO	
Mothers		

6,008	 92	(80,	104)	 114	(80,	147)	 0.28	 145	(91,	199)	 0.09	

Higher	triglycerides	
(0.7	mmol/L)	

EFSOCH	Mothers		 930	 32	(7,	56)	 -24	(-55,	8)	 0.007	 -33	(-86,	20)	 0.03	

Lower	HDL-
cholesterol	(0.5	

mmol/L)	
EFSOCH	Mothers		 927	 30	(3,	58)	 0	(-33,	34)	 0.17	 -1	(-55,	54)	 0.32	

Higher	systolic	blood	
pressure	(10	mmHg)		

ALSPAC	Mothers,	HAPO	
Mothers		

12,077	 24	(15,	34)	 -208	(-394,	-21)	 0.01	 -151	(-390,	89)	 0.14	

Lower	vitamin	D	
status	(10%)†	

ALSPAC	Mothers		 4,710	 -4	(-7,	-2)	 -26	(-54,	2)	 0.13	 -56	(-112,	1)	 0.07	

Lower	adiponectin	
(10%)†	

HAPO	Mothers	(GWAS	
only)		

1,376	 14	(9,	18)	 -1	(-9,	7)	 	0.002	 4	(-9,	17)	 0.19		

*Heterogeneity	statistics	from	the	meta-analyses	of	observational	associations	were:	Phet	=	0.03	and	I2	=	67.7%	for	BMI;	Phet	=	0.09	and	I2	=59.1%		for	fasting	glucose;	Phet	=	
0.54	and	I2	=	0%		for	SBP.	† For	25[OH]D	and	adiponectin,	we	present	the	estimated	change	in	birth	weight	per	10%	reduction	in	maternal	trait	level	because	these	variables	
were	logged	for	analysis.	
‡P-values	<0.05	are	considered	to	indicate	evidence	that	the	genetic	effect	size	estimate	is	different	from	the	observational	estimate,	suggesting	that	the	observational	
estimate	is	subject	to	confounding	or	bias.	
ALSPAC:	Avon	Longitudinal	Study	of	Parents	And	Children39;	EFSOCH:	Exeter	Family	Study	of	Childhood	Health40;	HAPO:	Hyperglycaemia	and	Adverse	Pregnancy	Outcomes5;	
SD	standard	deviation	
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