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Abstract. The stable set problem is a well-knownNP-hard combinatorial opti-
mization problem. As well as being hard to solve (or even approximate) in theory,
it is often hard to solve in practice. The main difficulty is that upper bounds based
on linear programming (LP) tend to be weak, whereas upper bounds based on
semidefinite programming (SDP) take a long time to compute. We propose a new
method to strengthen the LP-based upper bounds. The key idea is to take vio-
lated Chvátal-Gomory cuts and then strengthen their right-hand sides. Although
the strengthening problem is itselfNP-hard, it can be solved reasonably quickly
in practice. As a result, the overall procedure proves to be capable of yielding
competitive upper bounds in reasonable computing times.

Keywords: Stable set problem, Clique inequalities, Chvátal-Gomory cuts, Cut-
ting plane algorithm

1 Introduction

Given an undirected graph G = (V,E), a stable set in G is a set of pairwise non-
adjacent vertices. The convex hull of the incidence vectors of all stable sets in G is
called the stable set polytope and denoted by STAB(G) [19]. The Stable Set Problem
(SSP) calls for a stable set of maximum cardinality α(G), or, if a weight vectorw ∈ Qn

+

is given, of maximum weight αw(G). The SSP is strongly NP-hard even to approxi-
mate [23]; and it is naturally stated as the binary program max{

∑
i∈V wixi : xi+xj ≤

1 ∀{i, j} ∈ E, x ∈ {0, 1}|V |}. Optimizing over its continuous relaxation provides very
weak upper bounds on αw(G). Therefore, a great effort has been devoted to improving
the basic relaxation FRAC(G) = {x ∈ [0, 1]|V | : xi + xj ≤ 1 ∀{i, j} ∈ E}, by
studying valid inequalities for STAB(G). The first steps are due to Padberg, who intro-
duced the clique inequalities [29]. These have the form

∑
i∈C xi ≤ 1, for any C ⊆ V

inducing a maximal clique in G, and induce facets of STAB(G). The polytope defined
by all clique and nonnegativity inequalities is denoted by QSTAB(G) [19].
Many other valid inequalities, such as the odd hole and odd antihole, web and antiweb
inequalities, have been derived. We refer the reader to [2] [19] and [14] for detailed
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surveys. The Chvátal rank of some of these inequalities with respect to FRAC(G) and
QSTAB(G) has been investigated in [24]. On the computational side, after the pio-
neering experience illustrated in [28] with clique and lifted odd-hole inequalities, more
extensive results have been obtained with general rank inequalities and some of their
(non-rank) lifted versions. These have been generated by project-and-lift separation
heuristics introduced in [31] and recently improved in [30] [8] [9]. A study concerned
with the exact separation of rank inequalities is described in [10]. Despite the fairly so-
phisticated techniques explored in these papers, the resulting upper bounds are not yet
satisfactory for several graph classes.
Much stronger upper bounds can be obtained by Semidefinite Programming (SDP) re-
laxations. In the seminal paper [26], Lovász introduced the theta function, denoted by
ϑ(G), as the optimal value of a SDP problem (we refer the reader to [19] for a com-
prehensive introduction). It has been proved that ϑ(G) dominates the bound obtained
by optimizing over QSTAB(G) [19], and it is often much stronger in practice. Some
classes of graphs for which this occurs are illustrated in [22], while a computational
comparison is documented in [14]. Computational experiments with ϑ(G), or stronger
relaxations obtained by adding valid linear inequalities, are presented in [20] [11] [4]
[15] [25]. These approaches typically require long computing times. In order to man-
age this difficulty, ellipsoidal relaxations have been introduced [16], which allow one
to obtain useful convex programming relaxations and derive effective cutting planes. In
fact, this method allows one to achieve upper bounds close to ϑ(G) by optimizing over
a linear relaxation.
Strong upper bounds have also been obtained by applying the Lovász and Schrijver
lift-and-project operators [27] to FRAC(G). The N operator, based on LP, has been
tested by Balas et al. [3]. The N+ operator, based on SDP, yields a much stronger
relaxation than the N operator, but it is often very hard to solve in practice. Computa-
tional experiments are presented in [5]. Finally, the M(k, k) operator has been applied
to QSTAB(G) [14] [13]: the resulting non-compact linear relaxations turns out to pro-
vide upper bounds comparable to those from SDP relaxations at reasonable computa-
tional cost.

We propose a new method to strengthen the LP-based upper bounds. The key idea is to
take violated Chvátal-Gomory cuts and then strengthen their right-hand sides relative
to STAB(G). Although the strengthening problem is itself a SSP, a careful selection of
the source cut can make it computationally tractable in practice. We present a cutting-
plane algorithm based on the strengthened cuts and show that it is capable of yielding
competitive upper bounds in moderate computing times. The algorithm is illustrated in
the next section, while the computational experience is described in section 3. Finally,
some conclusions are drawn in section 4.

2 Cutting plane algorithm

We consider an initial formulation of the SSP based on clique inequalities. In general,G
may have exponentially many cliques and the separation problem associated to clique
inequalities is strongly NP-hard [28]. Nevertheless, greedy-like separation heuristics
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perform extremely well: experience shows that a cutting-plane algorithm embedding
such a heuristic often achieves upper bounds quite close to those obtained by exactly
optimizing over QSTAB(G). We therefore concentrate on the collection C of cliques
generated by such an algorithm (see [14] [13] for details) and consider the basic relax-
ation Q(C) = {Ax ≤ 1, x ≥ 0}, where A = AC is the incidence matrix of the cliques
in C versus the vertices of G. We also let UBC = {maxwTx : x ∈ Q(C)} be the
associated upper bound on α(G).
We experiment with a cutting plane algorithm based on the classical Chvátal-Gomory
(CG) cuts [17] [18] [7]. These have the form

buTAcx ≤ buT bc, u ∈ Rm
+ .

The cut generation procedure has two main stages:

1. Identify a violated CG cut λTx ≤ λ0
2. Strengthen λ0 relative to STAB(G)

which are described in the following subsections.

2.1 Cut separation

The choice of u ∈ Rm
+ is critical for deriving useful inequalities. The classical idea from

Gomory [17] [18] is based on basic solutions. If one considers Q(C) in standard form
(A, I) and a fractional vertex x∗ associated with a basisB, any row i ofB−1 associated
with a fractional component of x∗ determines a vector of multipliers u such that the
resulting CG inequality cuts off x∗. In what follows, we refer to these inequalities as
CG cuts from the tableau.
A different approach to obtaining useful CG cuts has been proposed in [12], where
the separation problem associated to CG cuts (for a general MIP) is formulated as a
MIP. Let x∗ be the current fractional point and denote by J(x∗) = {j ∈ {1, . . . , n} :
0 < x∗j < 1} the associated fractional support. Let also λTx ≤ λ0 be the CG cut to
be generated, where λ = buTAc and λ0 = buT bc for some multiplier u ∈ R+. The
MIP-CG separation model has the form

max (
∑

j∈J(x∗)

λjx
∗
j−λ0)−

m∑
i=1

γiui

s.t.

fj = uTAj−λj , j ∈ J(x∗)
f0 = uT b−λ0
0 ≤ fj ≤ 1− δ, j ∈ J(x∗) ∪ {0}
0 ≤ ui ≤ 1− δ, i = 1, . . . ,m

λj integer j ∈ J(x∗) ∪ {0}.
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Some parts of this model are redundant and have been introduced in [12] for technical
reasons. In detail, the explicit slack variables fj = uTAj −buTAjc, along with the pa-
rameter δ (fixed to 0.01), improve numerical tractability; and the constraints ui ≤ 1− δ
reduce the chance of generating dominated cuts. Our experience confirmed that these ar-
rangements are indeed helpful. Another key feature of MIP-CG deals with the objective
function: besides cut violation

∑
j∈J(x∗) λjx

∗
j −λ0, it includes a penalty on multipliers∑m

i=1 γiui, with γi = 10−4, which helps to make the cut sparser and stronger. Accord-
ing to [12], the penalty term γi has to be applied only to tight constraints, that is, those
for which s∗i = 1− aTi x∗ = 0. Sparsity is, in general, an important feature for a cutting
plane to be numerically well-behaved. In our development it is also crucial to make the
strengthening stage tractable, as discussed later.
Due to all of these modifications, MIP-CG is not an exact separation oracle any more.
However, as pointed out in [12], exceptions are likely to occur only in pathologi-
cal cases. We solve MIP-CG by the commercial MIP solver IBM Cplex 12.6.3 (de-
fault settings). The computation is stopped using two parameters cutviolation and
septlim. In detail, the solver halts if: (i) a feasible solution of value greater than or
equal to cutviolation has been found; (ii) the elapsed cpu time reaches septlim.
In both cases, we store the whole catalog of violated inequalities corresponding to fea-
sible solutions contained in Cplex pool at termination.

2.2 Cut strengthening

Andersen and Pochet [1] present a general method to strengthen the left-hand side (lhs)
coefficients and right-hand side (rhs) of inequalities relative to the mixed-integer hull.
Their theoretical development suggests that the rhs should be strengthened before the
lhs coefficients are strengthened. In our context, strengthening the rhs of a cut λTx ≤ λ0
relative to the integer hull amounts to solving the problem λ∗0 = max{λTx : x ∈
STAB(G)} and replacing λ0 by λ∗0. This can be translated into the integer program
{maxλTx : x ∈ P, x ∈ {0, 1}}, referred to as MIP-RHS = MIP-RHS(P), where P
is any linear formulation of the problem. Notice that the number of nonzero entries of
λ determines the actual size of the subproblem MIP-RHS to be solved. In other words,
the sparser the cut, the easier the strengthening problem. Again, MIP-RHS is solved by
Cplex to which a time limit rhstlim is imposed. When it is reached, λ∗0 is set equal
to the best upper bound returned by the solver at the time limit.
The overall cutting-plane algorithm is summarized in Algorithm 1. The parameter niter
determines the maximum number of iterations (i.e., the maximum number of cuts gen-
erated); maxpercnz establishes the maximum percentage cut density allowed for
CG cuts from the tableau ; and minimprove stops the algorithm when tailing-off
is reached: it establishes the minimum improvement of the objective value between
consecutive iterations required to proceed.
In the separation stage of Algorithm 1 a first CG cut, namely, the one with the smallest
support (number nnz(λ) of nonzero coefficients), is obtained from the tableau. Ties are
broken by selecting the cut that forms the minimum angle with the objective function.
Then, if this cut turns out to be too dense, the exact MIP-CG separation is invoked with
the aim of detecting a sparser one. Notice that MIP-CG always generates rank-1 CG cuts
of relaxation Q(C), as the generated cutting planes are never added to it. This turned
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out to be useful to keep safe the sparsity of the cuts. The rationale for this policy is that,
although MIP-CG may be time consuming, it is typically largely counterbalanced by
the saving yielded by a sparser source cut when solving MIP-RHS.

Algorithm 1 Cutting plane algorithm
Input: FormulationQ(C)
Output: An updated formulation P , the upper bound CG-S;
Parameters: niter,cutviolation,septlim,

rhstlim,maxpercnz,minimprove

P ← Q(C)
Optimize over P , get x∗

newcut = true
for (i := 1 to niter and newcut = true) do

Evaluate all violated Gomory cuts from the current tableau
newcut← Select the sparsest cut (λ, λ0)
if (nnz (λ) > maxpercnz ∗ |V |) or (newcut = false) then

Solve MIP-CG(Q(C), cutviolation,septlim)
newcut← Select the sparsest violated cut (β, β0)
if nnz (λ) > nnz (β) then
λ := β, λ0 := β0

end if
end if
if newcut = true then
λ∗0 ← Solve MIP-RHS(P,rhstlim)
P ← P ∪ {λTx ≤ λ∗0}
x̄← x∗

Optimize over P , get x∗

if (wT x̄− wTx∗) < minimprove then
return CG-S = wTx∗

end if
end if

end for
return CG-S = wTx∗

3 Computational achievements

The upper bound CG-S computed by Algorithm 1 is now compared to those achieved
by other methods in the literature. The test-bed consists of the DIMACS Second Chal-
lenge (Johnson & Trick [21]) benchmark collection, available at the web site [6], rep-
resenting the standard benchmark for evaluating MSS and max-clique algorithms. We
consider the complemented version of these graphs, as they were originally created for
the max-clique problem. We include all the graphs with n ≤ 400 except the ”easy”
ones, i.e., those for which that upper bound UBC is close to the integer optimum α(G).
The latter include the whole family of johnson graphs and most of the c-fat,
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hamming and san graphs. All instances are unweighted instances, as these tend to
be the most difficult in practice. The computations are run on a machine with proces-
sor AMD Opteron 6376 (64 cores) clocked at 1.4 GHz with 64GB RAM. The LP-MIP
solver is IBM CPLEX 12.6.3 (using 32 threads): settings are default for MIP-CG, while
mipemphasis is set to moving best bound for CG-RHS. The parameter settings for
Algorithm 1 are as follows: niter = 30, cutviolation = 0.2, septlim ∈
{5, 50}, rhstlim ∈ {100, 150}, maxpercnz ∈ {0.9, 0.7}, minimprove = 0.01.
Pairs {x, y} of values indicate that the parameter assumes the value x for |V | ≤ 200
and y otherwise. Before going through the evaluation of CG-S we analyze the strength
of the first Chvátal closure of Q(C).

3.1 On the strength of the first Chvátal closure of QSTAB(G)

Let us denote byQ1(C) the first Chvátal closure ofQ(C) and byUBQ1(C) = {max1Tx :
x ∈ Q1(C)}. A close approximation to UBQ1(C) (unless pathological cases) is obtained
by a cutting plane algorithm which uses MIP-CG as separation oracle. Table 1 compares
UBQ(C) and UBQ1(C) and shows the percentage gap closed by the first Chvátal closure.
In 16 out of 26 cases the gap closed is less than 2%, in 21 cases less than 6% and
only in two cases greater than 10%. Overall it turns out to that Q1(C) is almost as tight
as Q(C). This also gives a strong pointer about the strength of the Chvátal closure of
QSTAB(G), which includes well known inequalities, such as odd-hole, odd-antihole
and antiweb inequalities [24]. These results provide a benchmark to demonstrate the
remarkable effect of cut strengthening, as documented below.

3.2 Evaluation of CG-S

Table 2 compares the upper bound CG-S returned by Algorithm 1 to the following up-
per bounds: UBC ; ϑ(G); BCS, obtained by separation algorithms for rank inequalities
and local cuts [30]; CMDK, obtained by separation algorithms for rank and non-rank
inequalities [8]; MKK, computed by the Lovász and Schrijver M(k, k) lifting oper-
ator applied to QSTAB(G) [14]; BLP derived from MKK through projection [13];
GR, obtained by strengthening the Lovász theta relaxation with odd circuit and triangle
inequalities [20]; DR, obtained by tailored SDP algorithms to compute ϑ+ [11]; BV,
computed by optimizing over the Lovász and Schrijver lifting operator M+ applied to
FRAC(G) [5]; L, computed by strengthening the ϑ bound with non valid inequalities
[25]; ELL achieved by outer approximation of ellipsoidal relaxations [16]. An asterisk
in the DR or BV columns means that result was not reported.
The results clearly show the high quality of CG-S. In 10 out of 26 cases CG-S is the
(unique) best upper bound while this holds 9 times for ϑ(G) andMKK. In 11 out of 24
cases it outperforms ϑ(G) (to the best of our knowledge ϑ(G) has never been computed
for the two sanr400 graphs) and in all the remaining cases it is quite close to ϑ(G).
Looking at the other bounds, CG-S is the best bound ever computed for all instances
in the hard classes brock, p hat and sanr. It is also evident that BCS and CMDK,
obtained by inequalities with a combinatorial structure, tend to be weaker in general.
However, CMDK performed pretty well in some specific instances.
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Graph α(G) UBQ(C) UBQ1(C)
UBQ(C)−UBQ1(C)
UBQ(C)−α(G)

%

brock200 1 21 38.02 37.83 1.12
brock200 2 12 21.21 21.12 0.98
brock200 3 15 27.3 27.22 0.65
brock200 4 17 30.66 30.54 0.88
brock400 1 27 63.96 63.92 0.11
brock400 2 29 64.39 64.34 0.14
brock400 3 31 64.18 64.13 0.15
brock400 4 33 64.21 64.16 0.16

C125.9 34 43.05 42.59 5.08
C250.9 44 71.39 70.99 1.46

c-fat200-5 58 66.67 65.76 10.5
DSJC125.1 34 43.16 42.64 5.68
DSJC125.5 10 15.39 15.25 2.6

mann a9 16 18 17 50
mann a27 126 135 134.15 9.44

hamming6-4 4 5.33 5.23 7.52
keller4 11 14.82 14.76 1.57

p hat300-1 8 15.26 15.24 0.28
p hat300-2 25 33.59 33.54 0.58
p hat300-3 36 54.33 54.18 0.82

san200 0.7-2 18 20.36 20.28 3.39
san200 0.9-3 42 45.13 44 36.1

sanr200 0.7 18 33.34 33.17 1.11
sanr200 0.9 42 59.82 59.39 2.41
sanr400 0.5 13 41.29 41.26 0.11
sanr400 0.7 21 57.02 56.96 0.17

Table 1. Upper bounds from the first Chvátal closure

Table 3 reports the times in seconds required to compute several among the tightest
upper bounds. The computing times of MKK, BLP, ELL are reported as in the original
papers. These refer to different computers: all of them have CPU-s with higher clock
frequency but a smaller number of cores. Although the comparison is not rigorously
documented, these values can be considered reliable enough for a general judgment.
In the column CG-S the total time required by Algorithm 1 is reported, while the suc-
cessive two columns contain the overall time spent for solving MIP-CG and MIP-RHS
respectively. The remaining columns report: the number of cuts generated; the number
of cuts generated from the tableau; the average size of the fractional support and, finally,
the number of clique inequalities in the initial formulation Q(C) and the time required
to construct it and compute UBC .
Table 3 shows that the strong bounds are achieved by a few cuts. Indeed, the very first
cuts turn out to close a significant portion of the integrality gap. Notice also that the
number of cuts generated by solving MIP-CG is large, which highlights that the ad-
justments of MIP-CG towards sparsification play a role. In 12 cases only one cut from
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Graph MKK BLP ELL CG-S MIP-CG MIP-RHS #cuts #cuts average |C| UBC
time time tableau frac. time

brock200 1 17,670 373 9.88 87.95 2.61 82.71 16 14 116.75 2127 1.10
brock200 2 26,501 190 5.8 93.03 14.92 72.74 12 1 101 3902 0.65
brock200 3 22,386 338 14.37 115.8 0 111.82 16 16 97.81 2867 3.84
brock200 4 25,362 196 20.12 92.88 7.11 83.03 15 9 109.8 2567 2.21
brock400 1 * * 11.43 661.99 110.93 510.07 18 1 269.28 5676 15.93
brock400 2 * * 5.88 838.44 110.29 681.67 21 1 268.24 5713 17.26
brock400 3 * * 5.44 923.55 172.79 683.1 26 1 278.69 5673 16.89
brock400 4 * * 5.83 1091.41 143.9 896.7 16 1 285.5 7325 12.74

C.125.9 227 391 0.6 9.48 4.28 5.1 15 8 111.33 489 0.06
C.250.9 9,397 8,908 5.02 323.94 11.71 309.63 20 9 201.85 1724 0.40

c-fat200-5 265 45 * 16.17 0 6.85 16 16 191.12 7561 1.34
DSJC125.1 274 297 0.44 6.48 1.76 4.62 14 11 106.93 464 0.06
DSJC125.5 377 27 2.27 19.55 3.55 15.21 11 5 81.09 1522 0.17

mann a9 0.41 0.26 * 3.95 0.14 3.83 18 4 40.44 48 0.01
mann a27 393 120 * 1.63 0 1.55 20 20 370.05 468 0.07

hamming6-4 4 5 * 48.5 43.89 4.53 16 1 30.06 149 0.02
keller4 15,324 9,586 0.64 30.07 7.51 22.12 13 1 86.85 868 0.54

p hat300 1 4,910 767 4.23 66.26 5.61 59.54 12 1 78.25 1124 1.78
p hat300 2 24,337 2,207 3.35 95.92 13.76 80.69 11 5 127.09 2016 1.03
p hat300 3 46,408 2,419 25.94 255.36 18.68 228.91 12 7 192.17 4074 9.41

san200 0.7-2 300 151 * 47.93 20.2 26.36 14 1 138.43 1537 1.16
san200 0.9-3 143 * * 0.24 0 0.23 1 1 152 1143 0.14

sanr200 07 9,971 762 6.02 64.95 5.29 57.46 14 8 114.43 2280 1.64
sanr200 09 8,483 949 1.42 56.68 5.15 50.87 15 8 156.6 1150 0.25

sanr400 0.5 * * * 1637.08 137.21 1454.1 23 1 207.65 4886 9.80
sanr400 0.7 * * * 1551.21 285.11 1152.83 25 1 267.84 8540 25.36

Table 3. Computational times (sec.) and details

the tableau is selected. It is indeed the first cut: at the first iteration even the cuts from
MIP-CG are very dense and are not worth generating.
The average time for a single cut separation is quite reasonable and, as one can expect,
most of this time is spent in solving MIP-RHS. These facts suggest that strengthened
CG cuts can be cost-effective when embedded in a branch-and-cut framework.
Looking at computing times, the proposed method is outperformed only by ELL [16],
while it is competitive with the other LP-based methods. Even if a direct comparison
cannot be done, methods GR, DR, BV, L, based on sophisticated SDP approaches tend
to be slower.
Another important fact is that the size of the average fractional support is often around
0.5|V |−0.7|V |. In our experience this nice effect is rarely observable with other cutting
planes which typically keep |J(x∗)| ' |V |. This of course impacts on the efficiency of
the method, which turns out to practical for graphs with 400 vertices.
It is worthwhile to remark that these experiments were carried out with general-purpose
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parameter settings, and that results on specific graphs may improve significantly with
dedicated tuning.

The overall picture of this experience is that strengthened CG cuts can be quite
effective even for a very structured combinatorial optimization problem such as the SSP.
In fact, they seem to be competitive with inequalities that are derived from polyhedral
studies. Notice also that the latter tend to be sparser than general CG cuts, a feature
that usually guarantees a better numerical behaviour. Nevertheless, the above results,
along with our previous experience with other general cutting planes, show that some
denser cuts are required in order to achieve very strong bounds. This is a key issue for
the development of IP algorithms for the SSP and deserve further investigation.

4 Conclusions

We showed that strengthening the right-hand-side of rank-1 CG cuts from a clique re-
laxation relative to the stable set polytope is extremely effective. In particular, the upper
bounds obtained are competitive to those from sophisticated SDP approaches. This is so
even though our implementation of the strengthening procedure is rather rudimentary
and has significant room for improvement. In fact, one major research direction deals
with speeding up the strengthening stage, either by using a combinatorial solver for the
weighted SSP instances, or by using upper bounds on the weighted stability number
that are faster to compute. Overall, our feeling is that the method can be improved so as
to tackle larger graphs. A natural development will also be testing these cutting planes
in a branch-and-cut framework. Finally, a theoretical study of strengthened rank-1 CG
cuts would be interesting. It can be shown, for example, that the odd hole, odd antihole,
web and antiweb inequalities, along with certain lifted versions of them, are cuts of this
type.

References

1. K. Andersen & Y. Pochet (2010) Coefficient strengthening: a tool for reformulating mixed-
integer programs. Math. Program., 122, 121–154.

2. R. Borndörfer (1998) Aspects of Set Packing, Partitioning and Covering. Doctoral Thesis,
Technical University of Berlin.
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Strengthening Chvátal-Gomory cuts for the stable set problem 11
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