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Abstract 

 

In this paper, we propose a semiparametric version of the zero-inefficiency stochastic frontier 

model of Kumbhakar, Parmeter and Tsionas (2013) by allowing for the proportion of firms that 

are fully efficient to depend on a set of covariates via unknown smooth function. We propose a 

(iterative) backfitting local maximum likelihood estimation procedure that achieves the optimal 

convergence rates of both frontier parameters and the nonparametric function of the probability 

of being efficient. We derive the asymptotic bias and variance of the proposed estimator and 

establish its asymptotic normality. In addition, we discuss how to test for parametric 

specification of the proportion of firms that are fully efficient as well as how to test for the 

presence of fully inefficient firms, based on the sieve likelihood ratio statistics. The finite sample 

behaviors of the proposed estimation procedure and tests are examined using Monte Carlo 

simulations. An empirical application is further presented to demonstrate the usefulness of the 

proposed methodology. 
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1. Introduction 

 
One drawback or restrictive assumption of estimating productivity and efficiency through 

stochastic frontier analysis originally proposed by Aigner et al. (1977), Meeusen and van den 

Broeck (1977),  (see also, Ondrich and Ruggiero (2001)) was recently pointed out by 

Kumbhakar, Parmeter and Tsionas (2013, KPT hereafter) and Rho and Schmidt (2015, RS 

hereafter). The assumption that, a priori, all firms are inefficient and their inefficiency is 

modelled through a continuous density was shown to have considerable implications. When 

some firms are, in fact, fully efficient, a fact that we cannot preclude on prior grounds, applying 

stochastic frontier analysis with the familiar distributions (half-normal, exponential etc.) results 

in biased estimates of inefficiency.  

To overcome this draw back, KPT (and independently by RS) proposed a new model for 

which they call “zero-inefficiency stochastic frontier (ZISF) model, that allows for the 

inefficiency term to have mass at zero with certain probability,  and a continuous distribution, 

with probability, 1 . In essence, their model takes a special form of the latent class model 

considered by, among others, Ivaldi et al. (1995), Caudill (2003), Orea and Kumbhakar (2004) 

and Greene (2005). The interesting feature of the proposed model is that only non-existence and 

existence of inefficiency differs but not the frontier itself. KPT and RS also extend the ZISF 

model to allow for  to depend on a set of covariates via a logit or a probit function. Estimation 

of the model parameters can be carried out by using either standard maximum likelihood or E-M 

algorithm (see RS). 

In this paper we use a non-parametric formulation for the probability as a function of 

covariates, (.)  which does not impose restrictive assumptions on what determines full 

efficiency. The issue is important as misspecification of the parametric form of probability has 

implication for estimating technical efficiency and, more specifically, which firms are fully 

efficient. Although functional forms for production or cost functions are more or less established 

in applied studies, this is not so for the functional form of the probability of firms being fully 

efficient, (.) . This is quite important since the functional form of ( | )E y X  depends on the 

functional form of (.)  and the covariates. 

To accommodate for the unknown probability of firms being efficient function in the 

estimation, we develop an iterative backfitting local maximum likelihood procedure which is 
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fairly simple to compute in practice. We also derive the necessary asymptotic theory of the 

proposed estimator. Specifically, we derive the asymptotic bias and variance of the proposed 

estimator and established its asymptotic normality. In addition, we discuss how to test for 

parametric specification of the probability function of firms that are fully efficient as well as how 

to test for the presence of fully efficient firms, based on the bootstrap sieve likelihood ratio 

statistics (Fan et al. (2001)). 

We use both Monte Carlo experiments and real-world data from U.S banks to illustrate the 

applicability of the new model, and compare the results with the standard stochastic frontier 

models as well as the model proposed by KPT where the probability is a parametric function of 

covariates. Our Monte Carlo results indicate that the proposed estimation methods as well as the 

bootstrap sieve likelihood ratio statistics perform well in samples of the size typically used in 

applied econometric studies.  

The rest of the article is organized as follows. Section 2 introduces the semiparametric zero-

inefficiency stochastic frontier model. Section 3 derives the backfitting local maximum 

likelihood estimator and discusses construction of inefficiency scores. Section 4 establishes the 

asymptotic properties of the proposed estimator. Hypothesis testing for the parametric 

specification of probability of firms being fully efficient as well as testing for the presence of 

fully inefficient firms are discussed in Section 5. Monte Carlo simulations are presented in 

Section 6, while Section 7 provides an empirical application to the U.S. banking industry. 

Section 8 provides concluding remarks. Proofs of the theorems are gathered in the Appendix. 

 

2. The Model  

 
We consider the following semiparametric version of the zero-inefficiency stochastic frontier 

(SP-ZISF) model of KPT: 

 

 
with probablity 

with probablilty 

'

'

( )

1 ( )
i i i

i
i i i i

x v z
y

x v su z
 , (1) 

 

where 
i
y  is a scalar representing output of firm i , 

i
x  is a 1d  vector of inputs, 

i
v  is random 

noise, 
i
u  is one-sided random variable representing technical inefficiency, 1s  for cost 
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frontier and 1s  for production frontier, (.)  is an unknown smooth function representing 

the proportion of  firms that are fully efficient and 
i
z  is a 1q  vector of covariates which 

influence whether a firm is inefficient or not; and the 
i
z  may or may not be a subset of 

i
x . Note 

that in (1) the technology is the same for both regimes, and the composed error is 

(1 1{ 0})
i i i
v u u  where 1{.}  is an indicator function and (1{ 0}) ( )

i i
P u z . For 

illustration purpose, we focus mainly on the production frontier. Cost frontier can be handled in 

the same way by replacing the negative sign on 
i
u  by a positive sign. In addition, to simplify our 

discussion, we consider univariate z . Extension to multivariate z  is straightforward but at the 

expenses of increasing notational complexity and the “curse of dimensionality” problem. 

 

Identification Issues: 

 

Under the standard stochastic frontier framework, there is no identification issue arise 

since the parameter 2

u
, the variance of 

i
u  is identified through the moment restrictions on the 

composed errors 
i i i
v u . However, in the context of model (1), we have an additional 

parameter (.)  which can be identified only if there are non-zero observations in each class. In 

addition, as KPT and RS point out, when 2 0
u

, (.)  is not identified since the two classes 

become indistinguishable. Conversely, when (.) 1  for a given z ,  2

u
 is not identified. In 

fact, when a data set contains little inefficiency, one might expect that 2

u
 and (.)  to be 

imprecisely estimated, since it is difficult to identify whether little inefficiency is due to (.)  is 

close to 1 or 2

u
 is close to zero. However, this identification issue is more relevant to the testing 

problem of all firms are efficient (or inefficient). We will return to the discussion of this 

hypothesis testing as well as other hypothesis testing problems in the later section. For the 

present discussion, we will assume that 2 0
u

 and 0 (.) 1  so that all the parameters in 

model (1) are identified. 

To complete the specification of the model, let ( )f z  and ( | , )f y x z  denote the marginal density 

of z  and the conditional density of y  given x  and z  , respectively. In addition, we assume 
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throughout the paper that ( | , )f y x z  is known and belongs to a class of parametric densities with 

parameter 
k

  where k  a positive integer and the function ( ) : [0,1]qz  is a 

smooth function which is twice continuously differentiable.  

 

3. Estimation 

3.1 Backfitting Local Maximum Likelihood Procedure 

 
To make specific assumption regarding the conditional distribution of ( | , )f y x z , we follow 

the standard practice and assume that 
2| , . . . (0, )

i v
v x z i i d N  and 2| , . . . (0, )

i u
u x z i i d N , 

albeit other distributions such as exponential, truncated normal or gamma can also be considered 

for 
i
u . The conditional probability density function of 

i i i
v u  is given by 

 

 
( ) 2

( | , ) (1 ( ))
v v

z
f x z z , (2) 

 

where 2 2 2

u v
, /

u v
, (.)  and (.)  are the probability density (pdf) and 

cumulative distribution functions (CDF) of a standard normal variable, respectively. To avoid the 

non-negativity restrictions we make use of the following transformation: exp( )  and 

2 2 2exp( ) . Let 
' 2 '( , , )  then it follows that the conditional pdf of y  given x  

and z   is 

 

 
' '

'( ) 2
( | , ) (1 ( )) ( )

v v

z y x y x
f y x z z y x , (3) 

 

and conditional log-likelihood is then given by 

 

 *

1
( ( ), ) log ( ; ( ), | , )

n

i i ii
L z f y z x z .  (4) 

 

From (4), it is clear that if ( )z  is known and belong a class of parametric function with finite 

dimensional parameter vector, then standard maximum likelihood (ML) estimator can be 
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obtained by maxing (4) as discussed in KPT. However, ( )z  is generally unknown in practice 

rendering the standard MLE infeasible. To make the MLE operational, we approximate the 

unknown function ( )z  locally by a linear function, albeit in practice, one might wish to 

consider higher orders of local polynomials for ( )z . For a given value of 
0
z , and z  in the 

neighborhood of 
0
z , a Taylor series expansion of ( )

i
z  at 

0
z  gives 

 
'

0 0 0 0 0 0
( ) ( ) ( )( ) ( ) ( )( )
i i i
z z z z z a z b z z z , 

 

where '

0
( )z  is the derivative of ( )

i
z  evaluated at 

0
z . Then, the conditional local log-

likelihood function associated with (4) can be written as 

 

 
1 0 0 0 0 01
( ( ), ( ), ) {log ( ; ( ), ( ), | , )} ( )

n

i h ii
L a z b z f y a z b z x z K z z , (5) 

 

where 1( ) ( / )
h
K h K h  and (.)K  is a  kernel function and h  is the appropriate bandwidth. 

Thus the conditional local log-likelihood depends on z . However, since the parameter   does 

not depend on z , we suggest the following backfitting procedure which motivated by Huang and 

Yao (2012) for estimating semiparametric mixture regression models. Specifically, for a given 

value of 
0
z , we first estimate (.)  locally by maximizing (5) with respect to ,a b  and . Let 

,a b  and   be the solution to the maximization problem of (5), that is
1
 

 

 
1

( , , )
( , , ) argmax ( , , )

a b
a b L a b .  

   

Then 
0 0
( ) ( )z a z  and 

0
( )z . Now note that the global parameter vector  do not depend 

on z  and since  is estimated locally, it does not possess the usual parametric n -consistency. 

To preserve the n -consistency and to improve the efficiency, given the estimate of 
0
( )z , the 

                                                           
1
 In practice, the estimation is performed at a set of given 

0
z  values. A simple approach is to set 

0 1 0
, ...,

n
z z z z which yields a set of 

0
( )z  values.  
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parameter vector  can be estimated globally by maximizing the following (global) log-

likelihood function where we replace 
0
( )z  with its estimate 

0
( )z  in (4) 

  

 
2 1
( ) log ( ; ( ), | , )

n

i ii
L f y z x z .  (6) 

 

Let ˆ  be the solution of maximizing (6). In the next section, we will show that, under certain 

regularity conditions, ˆ  retains its n -consistency property. Given the estimates of  ˆ and to 

improve efficiency, the function 
0
( )z  can be obtained by maximizing the local likelihood 

function 

 

 
3 0 0 0 0 0 01

ˆ ˆ( ( ), ( ), ) {log ( ; ( ), ( ), | , )} ( )
n

i h ii
L a z b z f y a z b z x z K z z .  (7) 

 

Let ˆ ˆ(.) (.)a  be the solution of maximizing (7). Finally, ˆ  and (̂ )z  can further be improved 

by iterating until convergence. We will denote the final (̂ )z  and ˆ  as iterative backfitting local 

MLE. 

We summarize the above backfitting local ML estimation procedure with the following 

computational algorithm: 

 

Step 1: For each , 1,...,
i
z i n , in the sample, maximize the conditional local log-likelihood (5) 

to obtain the estimate of ( )
i
z . Note that if the sample size n  is large, (5) could be performed on 

a random subsample 
s
N  where 

s
N n  to reduce the computational burden. Also, to ensure 

that the estimates of (.)  fall within the interval [0,1], we reparameterizing the local linear 

parameters using logistic function.  

 

Step 2: From step 1, conditional on ( )
i
z , maximize the conditional global log-likelihood 

function (6) to obtain ˆ . 
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Step 3: Conditional on ˆ  from step 2, maximize the conditional local log-likelihood function (7) 

to obtain (̂ )
i
z . 

 

Step 4: Using (̂ )
i
z repeat step 2 and then step 3 until the estimate of ˆ  converges. 

 

Remark:  First, in practice, one could stop at step 3 to reduce the computational burden. 

However, iteration between step 2 and step 3 until convergence is highly recommended. Based 

on our limited experience, convergence is typically fast as it requires only a few iterations. 

Second, Step 1 requires specifications of the kernel function (.)
h
K  as well as bandwidth h . For 

the kernel function, an Epanechnikov or Gaussian function is a popular choice. As for the 

bandwidth selection, data driven methods such as cross-validation (CV) can be used (see for 

example Li and Racine (2007)). In our context, we use a likelihood version of CV which is given 

by 

 

 
( ) ( )

1

1 ˆˆ( ) log ( ; ( ), | , )
n

i i

i i
i

CV h f y z x z
n

,  (8) 

 

where ( )ˆ ( )i

i
z  and ( )ˆ i  are the leave-one-out version of the backfitting local MLE described 

above. Third, it is important to note that, in semiparametric modeling, undersmoothing 

conditions (see Theorem 1 below) are typically required in order to obtain n consistency for 

the global parameters. The optimal bandwidth ĥ  selected by CV will be in the order of 1/5n  

which does not satisfy the required undersmoothing conditions. However, a reasonable adjusted 

bandwidth which suggested by Li and Liang (2008) that satisfies the undersmoothing condition 

can be used, and it is given by 
2/15 1/3ˆ ( )h h n O n . We will apply this adjusted bandwidth 

in our simulations and empirical application below. 

Finally, the iterative backfitting local MLE described in this section uses direct maximization of 

the log likelihood functions (5), (6) and (7). An alternative approach is to use EM algorithm 

procedure. The main advantage of EM algorithm is that it is numerically stable and possesses the 

ascent property in the sense that when the sample size is large enough, each iteration raises the 

likelihood value (Greene (2012), and Huang and Yao (2012)). However, the main drawback of 
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EM algorithm is that it requires extensive computation, especially for the model considers in this 

paper, and the convergence can be very slow. Huang and Yao (2012) give detail implementations 

of EM algorithms for normal mixture model which is very similar to our model. Interest readers 

are referred to their paper for more details. 

 

3.2 Estimation of Firm-Specific Inefficiency: 

Follow the discussion of KPT, we can similarly consider several approaches to estimate firm-

specific inefficiency. The first approach is based on the popular estimator of Jondrow et al. 

(1982) where under our setting, the conditional density of u  given  is 

 

with probability

with probability2

* *

0 ( )
( | )

( , ) (1 ( ))

z
f u

N z
, 

 

where (.)N  denotes the truncated normal, 2 2

*
/

u
 and 2 2 2 2

*
/

u v
. Thus, the 

conditional mean of u  given 
'y x  is: 

 

 
2

( / )
( | , ) (1 ( ))

( / )1
E u z z . (9) 

 

A point estimator of individual inefficiency score could be obtained by replacing the unknown 

parameters in (9) by their estimates and  by 
' ˆ(̂ )x y x .  

The second approach is to use the modal estimator which defined as 

 

 
( | , )

( | , ) 0
df u z

M u z
du

,  (10) 

 

and (10) is known to have a zero at the value of 
*

u  whenever 0 , and zero otherwise. 

Hence, multiplying 
*
 by (1 ( ))z  yields the modal estimator. 

The final approach is to construct the posterior estimates of inefficiency 
i
u . To do this, let *(.)

i
p  

denotes the posterior estimate of the probability of being fully efficient where 
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*

ˆˆˆ ˆ ˆ( ( ) / ) ( / )
( )

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ) / ) ( / ) (1 ( ))(2 / ) ( / ) ( / )
v i i v

i

v i i v i i i i

z
p z

z z
. (11) 

  

Then the posterior estimate of inefficiency can be defined as 
* ˆ(1 ( ))

i i i
u p z u  where 

î
u  is the 

estimated of inefficiency based on (9) or (10). KPT provide an intuitive explanation for why the 

estimator given in (11) would be particularly helpful for researchers and regulators in the merger 

case to determine the probability of a specific firm or a group firms in the industry is to being 

fully efficient. 

 

4. Asymptotic Properties 

 
In this section, we derive the sampling property of the proposed backfitting local MLE (̂ )z  

and 
' 2 'ˆ ˆ ˆˆ( , , ) . In particular, we will show that the backfitting estimator ˆ  is n

consistent and follows an asymptotic normal distribution. In addition, we also provide the 

asymptotic bias and variance of the estimator (̂ )z , and show that asymptotically, it has smaller 

variance compared to ( )z . To this end, let us define the following additional notations. 

 Let 
' '( ) ( ( ), )z z  and ( ( ), , ) log ( | , ( ))z x y f y x z . Define 

( ( ), , )
( ( ), , )

z x y
q z x y

,  
2

'

( ( ), , )
( ( ), , )

z x y
q z x y  and the terms , , ,q q q q  and q  can be defined similarly. 

In addition, let ( | ) [ ( ( ), , ) | ]w z E q z x y z w ,  

 

  ( ) [ ( ( ), , ) | ]I z E q z x y z   

 ( ) [ ( ( ), , ) | ]I z E q z x y z   

 ( ) [ ( ( ), , ) | ]I z E q z x y z   

 ( ) [ ( ( ), , ) | ]I z E q z x y z   

 

Finally, let ( )j

j
u K u du  and 2( )j

j
u K u du . We make the following assumptions: 
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Assumption 1: The sample {( , , ), 1, , }
i i i
x y z i n  is independently and identically distributed 

from the joint density ( , , )f x y z  which has continuous first derivative and positive in is support. 

The support for z , denoted by , is a compact subset of and ( ) 0f z  for all z . 

Assumption 2: The unknown function ( )z  is twice continuously differentiable in its argument. 

Furthermore, ( ) 0z  hold for all z . 

Assumption 3: The matrix ( )I z  and I  are positive definite. 

Assumption 4: The kernel density function (.)K  is symmetric, continuous and has bounded 

support. 

Assumption 5: For some 
1 2 11 ,r n h  and 2( )rE z . 

 

All the above assumptions are relatively mild and have been used in the mixture models and 

local likelihood estimation literature. Given the above assumptions, we now ready to state our 

main results in the following theorems. 

 

Theorem 1: Under Assumptions 1-5 and in addition, 4 0nh  and 2 log(1/ )nh h , we 

have 

1 1ˆ( ) (0, )Dn N A A , 

where { ( )}A E I z  and 
( ( ), , , )

( ) ( , , )
z x y

Var I z d x y z  with ( , , )d x y z  is the 

first element of 1( ) ( ( ), , )I z q z x y . 

 

Theorem 2: Under Assumptions 1-5 and in addition, as , 0n h  and , nh  we have 

2 1 1

0
ˆ{ ( ) ( ) ( ) ( )} {0, ( ) }D

p
nh z z B z o h N f z I ,  

where 
2 1 ''

2

1
( ) ( ) ( | )

2
B z h I z z z . 
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The proofs of Theorem 1 and 2 are given in Appendix A. Note that, the result from Theorem 2 

shows that, as for common semiparametric model, the estimate of  has no effect on the first-

order asymptotic since the rate of convergence of (̂ )z  is slower than that of n . Consequently, 

it is fairly straightforward to see that (̂ )z  is more efficient than the initial estimate of ( )z . 

 

5. Hypothesis Testing 

 
Given the structure of model (1), it is of great interest to ask whether the probability of a firm 

being efficient takes a specific parametric form such as those suggested in KPT or RS. This 

question leads to the following hypothesis testing problem:  

 

0
: ( ) ( , )

i i
H z h z ,       (12) 

 

where ( , )
i

h z  is a specific parametric function and  is a vector of unknown parameters. For 

example, as in KPT and RS, one can assume ' '( , ) exp( )/ [1 exp( )]
i i i

h z z z  or 

'( , ) ( )
i i

h z z  where (.)  is the cumulative distribution function of a standard normal 

random variate. Under the null hypothesis, model (1) reduces to the parametric zero-inefficiency 

stochastic frontier model considered by KPT and RS. However, under the alternative hypothesis, 

model (1) is a semiparametric model and hence the number of parameters under the alternative is 

undefined. One useful approach to test for the above null hypothesis is to use sieve likelihood 

ratio (hereafter SLR) statistics suggested by Fan et al. (2001), and it is given by: 

  

* *

1 0
2{ ( ) ( )}T L H L H ,      (13) 

 

where *

0
( )L H  and *

1
( )L H  denote the log-likelihood function computed under the null and the 

alternative hypothesis, respectively. Fan et al. (2001) show that the SLR statistics are 

asymptotically distribution free of nuisance parameters and follow 
2

nb
 distributions (for a 

sequence 
n
b ) under the null hypothesis (i.e., Wilks phenomenon) for testing a number of 

useful hypotheses for a variety of useful models such as nonparametric regression, varying 
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coefficient and generalized varying coefficient models. However, since model (1) belongs to the 

class of semiparametric mixture models, the asymptotic null distribution of the SLR may or may 

not follow 
2

nb
 distribution. Thus, one approach is to derive the asymptotic distribution of T . 

Alternatively, we can use the conditional bootstrap procedure suggested by Cai at al. (2000) to 

approximate the asymptotic null distribution. The conditional bootstrap can be conducted as 

follows.  Let 
2{ , , , }  be the MLE under the null hypothesis. Given 

i
x , generate a bootstrap 

sample, *

i
y   from a given distribution of y  specified in (1) with 

2{ (.), , , }  are replaced by 

their MLE estimates 
2{ , , , } . For each bootstrap sample, calculate the test statistic *T  in 

(13), and use the distribution *T as an approximation to the distribution of T . 

It is important to note that, the conditional bootstrap described above is valid only if the 

asymptotic null distribution is independent of nuisance parameter (.)(i.e., Wilk’s 

phenomenon). We investigate the Wilk’s phenomenon via Monte Carlo simulation below. Our 

simulation results indicate that, indeed Wilk’s type of phenomenon continue to hold for the 

model consider in this paper. 

Another interesting question that arises is whether all firms are inefficient. This question 

leads to the following testing hypothesis: 
0
: ( ) 0H z  for all z . Under null hypothesis of 

0
: ( ) 0H z , model (1) reduces to a standard stochastic frontier and this is simply a special 

case of the testing problem of constancy of (.)  which take on a specific value of 0. Thus, in 

principle, a simple modification of sieve likelihood ratio statistics in (13) can be used to test the 

null. However, since the value of 0 lies on the boundary of the parameter space of , the 

asymptotic null distribution of the test statistics is no longer a 
2
 distribution. Thus, one 

approach is to derive the asymptotic distribution of the test statistics under this null hypothesis 

along the line of Andrews (2001), which is very complicated, given the semiparametric nature of 

the alternative. In addition, it is beyond the scope of this paper and we will leave it for future 

research.  

Alternatively, since the null hypothesis of 
0
: ( ) 0H z  is a special case of 

0
: ( )H z , the conditional bootstrap described earlier can be used to approximate the 

asymptotic distribution of the test statistics, provided that the Wilk’s type of phenomenon 
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continues to hold. Our Monte Carlo results below show that the test which is based on the 

conditional bootstrap has approximately correct sizes. 

Finally, note that we did not pursue the hypothesis testing problem of 
0
: ( ) 1H z  for all z  

(i.e., all firms are efficient) simply because under this null hypothesis, there is a technical 

problem related to the fact that 2

u
 is not identified, which invalidates the conditional bootstrap 

procedure, albeit the SLR test would remain valid. In this case, there is a need for deriving the 

asymptotic distribution of the test statistics, and this is beyond the scope of this paper. Further 

investigation for this case would be interesting and useful for future research. 

 

6. Monte Carlo Simulations 

 
In this section, we conduct some simulations to study the finite sample performance of the 

proposed estimator and test statistics. To this end, we consider the following data generating 

process (DGP): 

 

with probablity 

with probablilty 

1 ( )

1 1 ( )
i i i

i
i i i i

x v z
y

x v u z
, 

  

where ( ) 0.05 0.6sin( )
i i
z z  We generate 

i
z  from an uniform distribution on [0,1] and the 

i
x  is generated from a (0,1)N .  The random error term 

i
v  is generated as (0,0.5)N  and the one-

sided error 
i
u  is generated as (0,0.5 )N . For all of our simulations, we set {1, 2.5,5} , and 

let the sample sizes vary over 2500n  or 5000n . For each experimental design, 1,000 

replications are performed. 

 We use the Gaussian kernel function and the bandwidth is chosen according to 2/15ˆh h n   

where ĥ  is the optimal bandwidth based on CV approach previously discussed in Section 3.1. 

We measure the performance of the estimate of the probability of firms being fully efficient 

function ( )z  by computing the mean average squared errors (MASE): 

1000
2

1 1

1 1
ˆ[ ( ) ( )]

1000

n

r i r j
r j

MASE z z
n

. 
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The performance of the estimates of the production parameters is measured by the mean squared 

errors (MSE) 

1000
2

1

1 ˆ( )
1000 r

r

MSE , 

where 
2ˆ ˆ ˆ,  or ˆ . The simulations were performed on the mainframe using FORTRAN 77 

using G77 complier of GNU.   

The simulation results for the estimated MSE of the production parameter estimates and the 

estimated MASE of (̂ )
i
z , for various values of  are presented in Table 1. From Table 1, first 

we observe that as the sample size increases, both estimated MSE for production parameter 

estimates, ˆ  and MASE for (̂ )
i
z  reduces. Second, we also observe that as the sample size 

doubles, the estimated MSE for production parameter estimates reduces to about half of the 

original values; this is consistent with the fact that the back-fitting local ML estimator of  is 

n -consistent as predicted by Theorem 1. 

Table 2 reports the empirical sizes of the bootstrap SLR statistics. From Table 2, we see that, 

there are little sizes distortions indicating the conditional bootstrap provides a good 

approximation for the asymptotic distribution of the SLR statistics. 

Table 3 summarizes the performance of the bootstrap approach for standard errors of 

estimate of parameters for two different samples, and three different bandwidths which 

correspond to under-smoothing ( 2/15ˆh h n ), appropriate amount ( ĥ ) and over-smoothing (

ˆ2h ). In the table, the standard deviation of 1000 estimates are denoted by STD which can be 

viewed as the true standard errors, whilst the average bootstrap standard errors are denoted SE 

along with their standard deviations are given the parentheses. The SE are calculated as the 

average of 1000 estimated standard errors. The coverage probabilities for all the parameters are 

given the last column and they are obtained based on the estimated standard errors. The results 

from the table 3 show that the suggested bootstrap procedure approximates the true standard 

deviations quite well and the coverage probabilities are close to the nominal levels for almost all 

cases. 

Note that the bootstrap procedure also allows us to compute the point-wise coverage 

probabilities for the probability functions. Table 4 provides the 95% coverage probabilities of 
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( )z  for a set of evenly space grid points distributed on the support of z . In the table, the row 

labelled with ˆ( ) gives the results using the proposed approach, whilst ( )  provides the 

results assuming  were known. For most cases, the coverage probabilities are close to the 

nominal level, especially when under-smoothing or appropriate smoothing is used. For the case 

of over-smoothing, the results are somewhat less satisfactory. Moreover, the coverage levels are 

slightly low for point 0.4 and slightly high for points 0.8 and 0.9  

Next, we investigate whether Wilk’s type of phenomenon hold for the proposed model. 

Under the null hypothesis of (12), we assume the probability of efficient firm takes a specific 

parametric form. The DGP is the same as above except now we generate ( )z  as logistic 

function or standard normal CDF with parameter . For each function, we fixed the value of 

2.5  and set 3 different values of { 1,0,1} , and use nonparametric kernel density 

estimation to compute the unconditional (asymptotic) null distribution of SLR statistics with 

2500n  and 0.06h  via 500 replications
2
. The resulting densities are plotted in solid lines in 

Figures 1.a to 1.c. As can be seen from these plots, the resulting densities are very close 

indicating that the asymptotic distribution of the SLR statistics are not sensitive to the choice of 

function ( )z . This suggests that Wilk’s type of results continue to hold for our model. 

Finally, to validate the conditional bootstrap approach, for each assumed function, we select 

3 typical samples generated from the 3 different values of , and compute the conditional null 

distribution based on its 500 bootstrap samples. The resulting densities are depicted as dotted 

curves in the same Figures 1.a-1.c. From these figures, we can observe that the proposed 

conditional bootstrap approach performed quite well to approximate the asymptotic null 

distribution. 

 

7. Empirical Application 

 
There exists a vast literature on measuring productivity and efficiency for the banking sectors 

in various countries (see for example, Tzeremes (2015), Galán et al. (2015), Sathye (2003) and 

the articles in Volume 98, Issue 2 (1997) of the European Journal of Operational Research, just 

to name a few). However, all these applications typically do not allow for the presence of fully 

                                                           
2
 We also conduct simulations using other bandwidths 0.12h  and 0.24h . The results are very similar, and 

hence we do not report them here but available from the authors upon request. 
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efficiency banks, and hence these results could potentially be misleading if in fact there are 

efficient banks in the sample. 

In this section, we provide an application of the U.S. banking sectors to illustrate the 

usefulness and merit of our proposed model and approach. The data we use are taken from 

Koetter et al. (2012) which consist of large number of individual U.S. commercial banks from 

Reports of Condition and Income of the Federal Reserve System
3
. The data contain annual year-

end from all U.S. insured banks between 1976 and 2007. After controlling for outliers and 

missing observations, the final sample use in the estimation consists of 342,868 observations. 

Following convention in the competition and efficiency literature, the regressors used in our 

model are logs of three input prices: price of fixed assets (
1
w ), cost of labor (

2
w ) and purchased 

funds costs (
3
w ), levels of two outputs: loans (

1
y ) and federal funds sold and securities 

purchased (
2
y ), a time trend (t ) and the log of total assets to control for size effects (z ). In 

addition, to be in line with the intermediation approach, it is assumed that banks transform 

various saving of consumers and firms into loans and investment, and seek to minimize costs. 

Thus, the dependent variable is total operating costs implying a cost frontier approach is 

employed. 

Note that our proposed model and approach is designed for cross-section data, and since we 

are using panel data, we need to make some assumptions regarding the temporal behavior of the 

technical inefficiency and random noise. Following KPT, first we include a time variable in the 

SF function to allow for technical change or shift in the frontier; and second, for simplicity we 

assume that both u  and v  are independently and identically distributed. 

We employ the translog specification for the cost frontier which can be written as: 

 
2 2 2 2 2 2

0 , , , , , ,
1 1 1 1 1 1

2 2 2 2
2

, , , ,
1 1 1 1

1 1
ln ln ln ln ln ln ln

2 2

ln ln ln ln ,

it j j it j j it lk l it k it lk l it k it
j j l k l k

lk l it k it t tt lk l it lk l it it it
l k l l

C y w y y w w

y w t t t y t w v u

  

                                                           
3
 See Koetter et al. (2012) for the issues involved as well as details construction of the data set. The data are 

available also from Restrepo-Tobon and Kumbhakar (2014). 
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where we assume 2. . . (0, )
it u
u i i d N  and 

2. . . (0, )
it v
v i i d N . We impose the usual symmetry 

conditions in which we assume 
lk kl

 and 
lk kl

. In addition, we normalized the cost and 

input prices by one input price (here we use 
3
w ) to ensure that the linear homogeneous 

restriction of the cost function with respect to input prices hold.  

For comparison purpose, we also estimate a half-normal standard scholastic frontier model 

(HN-SFM) and a zero-inefficiency stochastic frontier (ZISF) model of KPT, which assumes the 

underlying probability of firms being fully efficient follows the logit specification of 
i
z . 

Note that, since the estimated parameters of the translog frontier do not have any direct 

economic interpretation, for brevity, we do not report all the parameter estimates here but these 

are available from the authors upon request. Instead, we summarize the results for the estimated 

returns to scale (RTS), technical change (TC) as well as report the results that associated with the 

estimated probability function and the estimated technical inefficiencies. 

For a cost function, RTS measures the proportional increase in costs due to an increase in all 

outputs, that is, RTS can be defined as the reciprocal of ( ln / )
jj

C y , Thus, if RTS is 

larger than one then a proportional increase in all outputs will lead to a less than proportional 

increase in cost, implying that the scale operation is below optimum, and hence there are benefits 

from expansion (i.e., economies of scale). The opposite holds true when RTS is less than one. 

For TC, it is defined as the rate of change in cost over time, ceteris paribus, i.e., ln /C t . 

Therefore, a negative value of TC suggests a reduction in cost overtime, implying technical 

progress, and a positive value of TC shows a technical regress, ceteris paribus.  

As previously mentioned in the Introduction, it is important to recognize that the prominent 

feature of the ZISF model is that the frontier itself does not vary across the two classes of firms 

but only the existence or non-existence of inefficiency differs. Thus, we would expect that the 

estimated RTS and TC of the three models would not differ significantly. Indeed, our results 

indicated that the estimated RTS and TC are very similar across all models. For RTS, the 

estimated values ranging from 0.85 to 1.3 with the mean value of 1.11 and standard deviation of 

0.22; while the estimated values of TC ranging from -0.091 to 0.019 with the mean value of -

0.016 and standard deviation of 0.0068. These results indicate that most of the banks experienced 

economies of scale as well as technical progress. 
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We now turn our attention to the results of the estimated probability function, and the 

estimated technical efficiencies. To present results for the probability function, we normalize the 

log of total assets as *

max max min
( ) / ( )

it it
z z z z z  where 

it
z  is the log of total assets. The 

function is then evaluated at 100 points between 0 and 1, and presented (along with two standard 

error bands) in Figure 2. From Figure 2, we observe that banks attaining full efficiency are, most 

likely, concentrated near the 20% asset quantile where the probability peaks at about 80% while 

95% confidence intervals indicate that the probability can be as high as one. Larger banks seem 

to be inefficient with large probability, although there is some evidence of marginal behavior 

near the 79-85% quantiles. Zero inefficiency seems to prevail for most banks roughly below the 

median (normalized) assets. These results are consistent with the hypothesis that larger banks are 

inefficient due, for example, to the “quiet life hypothesis” (Koetter and Vins (2008) and Koetter 

et al. (2012)), albeit other reasons could also be responsible for inefficient larger banks and 

nearly efficient smaller banks. 

The estimated technical inefficiency distributions are displayed in Figure 3. It can be seen 

from Figure 3 that, the SFM based on the half-normal specification yields inefficiency results 

that display virtually no mass at zero, indicating that no banks are fully efficient. The 

inefficiency scores lie in the range of 0.5% to 14% with the mean value of 6.5% and the standard 

deviation of 0.021. In contrast, results from ZISF indicate that there is some mass at zero with a 

long right tail in the inefficiency distribution. This suggests that, albeit there are some fully 

efficiency banks, inefficiency can be as high as 20% for some other banks. The inefficiency 

scores lie in a wider range than in the case of half-normal SFM, ranging from 0% to 20% with 

the mean value of 4.5% and the standard deviation of 0.032. The semi-parametric specification 

places even more mass at zero, and the inefficiency distribution is much tighter than both half-

normal SFM and ZISF. The inefficiency scores lies between 0% to 10%, with the mean value of 

2.3% and the standard deviation of 0.012. Thus, from the results in Figure 3, we can see that 

parametric models (HN-SFM or ZISF) deliver very different inefficiency distributions compared 

to the semi-parametric specification.  

To determine which specification is more appropriate for the data considered, we use the 

SLR test discussed in Section 5 to test for the hypotheses of  (i) 
0
: ( ) / (1 )z zH z e e  

(ZISF model) and (ii) 
0
: ( ) 0H z  (HN-SFM), based on the conditional bootstrap critical 
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values. Our SLR tests produce the conditional bootstrap p-values of 0.0236 for testing (i) and 

0.0073 for testing (ii), suggesting that both null hypotheses are rejected at a 5% significant level 

in favor of the nonparametric specification of the probability function. Consequently, for this 

particular data set, our results provide evidence that a flexible specification of the probability 

function is critical and, in particular, material in terms of inefficiency estimation.  

 

8. Concluding Remarks 

 

In this paper, we propose semiparametric approach for estimating the zero-inefficiency 

stochastic frontier model (e.g., KPT (2013) and RS (2015)) by allowing for the proportion of 

firms that are fully efficient to depend on a set of covariates via unknown smooth function. In 

particular, we propose an iterative backfitting local maximum likelihood estimation procedure 

that achieves the optimal convergence rates of both frontier parameters and the nonparametric 

function of the probability of firms being efficient. We derive the asymptotic bias and variance 

of the proposed estimator and establish its asymptotic normality. In addition, we discuss how to 

test for parametric specification of the proportion of firms that are fully efficient as well as how 

to test for the presence of fully inefficient firms, based on the conditional bootstrap sieve 

likelihood ratio statistics. The finite sample behaviors of the proposed estimation procedure and 

tests are examined using Monte Carlo simulations. We apply the proposed method to data on a 

large number of individual U.S. commercial banks to examine the effects of total assets on the 

probability of banks being efficient as well as technical inefficiency measurements overall. Our 

analysis indicated that flexible specification of the probability function of banks being efficient is 

critical in efficiency estimation. 

Note that the estimation approach proposed in this paper can also be easily modified and 

extended to other models as well that allow for the distribution of 
i
u  to depend on covariate 

i
z  

either parametrically (e.g., Reifschneider and Stevenson (1991), Caudill and Ford (1993) and 

Caudill et al. (1995)) or nonparametrically. For example, if it is assumed that 2 '( ) exp( )
i i
z z  , 

then by simply redefining the finite dimensional parameter vector  , the estimation algorithm 

proceeds as discussed. On the hand, if we assume 2( )
i
z  to be an unknown smoothing function, 
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then by approximating this function locally at a point 
0
z  and by modifying the local log 

likelihood function in (4), the estimation algorithm remains unaffected. 

Finally, it would be interesting to extend the current model to full nonparametric setting that 

includes both continuous and categorical variables in the frontier as well as in the probability 

function. 
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Appendix A: Proofs of the Theorems. 

 

We first introduce some additional notations. Let * ( )nh , * ( )nh , 

* ( )nh , 2* 2 2( )nh  where , ,  and 2  are the true values. Also, let 

* *' * 2* '( , , )  and 
* * *' '( (.), )   

 

Proof of Theorem 1: The proof of this theorem follows similarly to that of Huang and Yao 

(2012). We show the key steps of the proof.  

To derive the asymptotic properties of ˆ , we first examine the asymptotic behavior of 

' '( , )  which is the local MLE of (4). Let 

*̂ ˆ( )n , 

( ( ), , , ) log ( | ( ), )
i i i i i
z x y f y z  

1/2 1/2ˆ ˆ( ( ), , , ) log ( | ( ), )
i i i i i
z n x y f y z n   

Then *̂  is the maximize of  

* 1/2

1

ˆ( ) { ( ( ), , , ) ( ( ), , , )}
n

n i i i i i i
i

L z n x y z x y          (A.1) 

By using a Taylor series expansion and after some calculation, yields 

* * *' *1
( ) (1)

2n n n p
L A B o      (A.2) 

where  

  
1/2

1

( ( ), , , )n
i i i

n
i

z x y
A n   

  
2

1/2

'
1

( ( ), , , )n
i i i

n
i

z x y
B n   

 

Next we evaluate the terms 
n
A  and 

n
B . First, expanding 

n
A  around ( )

i
z , we obtain 



24 
 

2
1/2 1/2 1/2 2

1 1

1/2 1/2 2

1
1

( ( ), , , ) ( ( ), , , )
[ ( ) ( )] ( || (.) (.) || )

( ( ), , , )
( || (.) (.) || )

n n
i i i i i i

n i i p
i i

n
i i i

n p
i

z x y z x y
A n n z z O n

z x y
n D O n

 

 where the definition of 
1n
D  should be apparent. Now, applying Lemma A.1 of Fan and Huang 

(2005), we have 

1 1 1

1

( ( ), , )
( ) ( ) ( ) ( ) ( ) ( )

n
j j j

i i i i h j i p n
j

z x y
z z n f z I z K z z O   

where 
1/2 3/2 1( ) log(1/ )

n
n h nh h . Under the condition 

2 / log(1/ )nh h , we have 

1/2( ) (1)
p n p
O n o . Furthermore, since 2( ) ( ) (( ) )

i j i j
z z O z z  and (.)K  is symmetric 

about 0 , we have 

2
3/2 1 1/2 2

1
1 1

1/2 2

2

( ( ), , , )
( ) ( , , ) ( ) ( )

( )

n n
i i i

n i j j j h i j p
j i

n p

z x y
D n f z d x y z K z z O n h

D O n h

  

where  ( , , )
j j j

d x y z  is the first element of 1( ) ( ( ), , )
j j j j

I z q z x y  and the definition of 
2n
D  should 

be apparent. Let 1/2

3
1

( ) ( , , )
n

n j j j j
j

D n I z d x y z , then it can be shown that 

2 3
0p

n n
D D  . Hence, under the condition 4 0nh , we have 

   1/2

1

( ( ), , , )
( ) ( , , ) (1)

n
i i i

n i i i i p
i

z x y
A n I z d x y z o    (A.3) 

For 
n
B , it can be shown that  

  [ ( )] (1) (1)
n p p
B E I x o B o       (A.4) 

Thus, from (A.2) in conjunction with (A.4) and an application of quadratic approximation lemma 

(see for example Fan and Gijbel (1996, p. 210)), leads to 

 

   
* 1ˆ (1)

n p
B A o                  (A.5) 
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if 
n
A  is a sequence of stochastically bounded vectors. Consequently, the asymptotic normality of 

*̂  follows from that of 
n
A . Note that since 

n
A  is the sum of i.i.d. random vectors, it suffices to 

compute the mean and covariance matrix of 
n
A  and evoke the Central Limit Theorem. To this 

end, from (A.3), we have 

1/2 ( ( ), , , )
( ) ( ) ( , , )
n

z x y
E A n E I z d x y z     (A.6) 

The expectation of each element of the first term on the right hand side can be shown to be equal 

to 0 and further calculation shows that ( ) ( , , ) 0E I z d x y z . Thus ( ) 0
n

E A . The variance 

of 
n
A  is 

( ( ), , , )
( ) ( ) ( , , )
n

z x y
Var A Var I z d x y z . By the Central Limit Theorem, 

we obtain the desired result.    

 

Proof of Theorem 2: Recall that, given the estimate of ˆ , (̂ )z  maximizes (5). Let  

'

0
( , ) ( ) ( )( )
o o o
z z a z a z z z  and * 1/2 ' ' '

0 0
( ) { ( ), ( ( ))}nh a z h a z  , then *ˆ  

maximizes 

   
* * 1/2 *'

0 0 0
1

ˆ ˆ( ) { ( ( , ) ( ) , , , ) ( ( , ), , , )} ( )
n

n i i i i i i i h i
i

L z z nh w x y z z x y K z z   

where 
'

0
(1,( ) / )

i i
w z z h . Using Taylor expansion of (.) and after some calculation, we 

have 

  * * ' * *' *1ˆ ˆ( ) (1)
2n n n p

L o           (A.7) 

where    

  

1/2 0
0

1

2
1 '0

0'
1

ˆ( ( , ), , , )ˆ ( ) ( )

ˆ( ( , ), , , )ˆ ( ) ( )

n
i i i

n i h i
i

n
i i i

n i i h i
i

z z x y
nh w K z z

z z x y
nh w w K z z

  

 

By the SLLN, Assumption 3 and Lemma A.1 of Fan and Huang (2005), it can be shown that  
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0

2

1 0ˆ ˆ( ) ( )
0n

E f z I   

and 
1var{( ) } (( ) )

n ij
O nh  implying that  ˆ ˆ (1)

n p
o . Thus (A.7) can be written as 

    * * ' * *' *1ˆ ˆ( ) (1)
2n n p

L o           (A.8) 

Using the quadratic approximation lemma, yields 

* 1ˆˆˆ (1)
n p
o              (A.9) 

if  ˆ
n

 is a sequence of stochastically bounded random vectors. An expansion of ˆ
n

 leads to 

1/2 0
0

1

( ( , ), , , )ˆ ( ) ( ) (1) (1)
n

i i i
n i h i n p n n p

i

z z x y
nh w K z z G o G o  

where 

2
1/2 0

0
1

( ( , ), , , ) ˆ( ) ( ) ( )
n

i i i
n i h i

i

z z x y
G nh w K z z  

Since ˆ( ) (1)
p

n O , it can be shown that  
1/2 ' ( ) ( ) (1)

n p
G h I z f z o  where 

( ) [ ( ( ), , , ) | ]I z E q z x y z . Thus,   (A.9) becomes 

* 1ˆˆ (1)
n p
o              (A.10) 

The asymptotic normality of *ˆ  follows from that of 
n

 so it suffices to calculate the mean and 

variance of 
n

. Since (.)K  is symmetric and bounded, we have 

1/2 0
0

1/2
2 ''0

0 0

( ( , ), , , )
( ) ( ) ( )

( ) ( ) ˆ( ) ( ){1 (1)}
02

n h

p

z z x y
E n nh E wK z z

nh f z
z z o

  

and  
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2

1 ' 20
0

0 1

0 0
1 2

( ( , ), , , )
( ) ( )

ˆ( ) ( ){1 (1)

n h

p

z z x y
Var h E wwK z z

f z z o

  

Let 
'

1
(1 0)e  denote  a (2 1)  unit vector, then 

' 1 ' '

1 1 1 1
{ ( ) } { ( )} (0,1)D

n n n
e Var e e e E N   

by using standard argument.     
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Table 1: MSE of 
2ˆ ˆˆ( , , )  and MASE of (̂.)   
 

2500, 1.0n  5000, 1.0n  

           MSE MSE 

  

2   

  

0.0028 

0.0057 

0.1011 

0.0014 

0.0022 

0.0051 

          MASE MASE 

(.)   0.1357 0.0072 

 

2500, 2.5n  5000, 2.5n  

         MSE MSE 

  

2   

  

0.0021 

0.0051 

0.0097 

0.0011 

0.0023 

0.0044 

          MASE MASE 

(.)   0.1019 0.0059 

 

2500, 5.0n  5000, 5.0n  

          MSE MSE 

  

2   

  

0.0018 

0.0049 

0.0085 

0.0010 

0.0025 

0.0044 

         MASE MASE 

(.)   0.0095 0.0044 
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Table 2: Empirical Sizes of the Bootstrap SLR Statistics 

( 2.5)   
 

2,500n  

0
: ( ) / (1 )z zH z e e  

5,000n

0
: ( ) / (1 )z zH z e e  

 1% 5% 10% 1% 5% 10% 

Emp. Sizes 0.0117 0.0493 0.1105 0.0101 0.0502 0.099 

2,500n  

                
0
: ( ) 0H z  

5,000n  

0
: ( ) 0H z  

 1% 5% 10% 1% 5% 10% 

Emp. Sizes 0.0112 0.0489 0.1112 0.0104 0.0503 0.108 
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Table 3: Standard Deviations, Standard Errors and Coverage Probabilities 

 

Parameter STD SE(STD) 95% Coverage 

2500, 0.06n h   

1
 0.027 0.029(0.006) 94.6% 

2
 0.015 0.014(0.004) 95.2% 

 0.022 0.021(0.002) 93.2% 

2500, 0.12n h  

1
 0.028 0.027(0.006) 94.7% 

2
 0.017 0.018(0.0004) 95.2% 

 0.023 0.025(0.002) 93.5% 

2500, 0.24n h  

1
  0.019 0.020(0.005) 94.8% 

2
 0.009 0.008(0.004) 95.4% 

 0.013 0.013(0.002) 93.5% 

    

5000, 0.05n h  

1
 0.018 0.017(0.003) 95.0% 

2
 0.009 0.010(0.002) 95.3% 

 0.012 0.011(0.001) 95.0% 

5000, 0.10n h  

1
 0.019 0.018(0.003) 94.7% 

2
 0.010 0.010(0.002) 95.1% 

 0.011 0.011(0.001) 94.2% 

5000, 0.20n h  

1
 0.020 0.020(0.003) 93.1% 

2
 0.011 0.010(0.003) 94.0% 

 0.012 0.013(0.001) 92.2% 

Note: STD = standard deviations of estimated parameters; SE = estimated standard errors using 

bootstrap procedure. 
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Table 4: The Pointwise Coverage Probabilities for ( )z   

 

z   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

2500, 0.06n h  

ˆ( )  94.6% 94.7% 94.8% 90.9% 95.4% 95.2% 94.9% 98.9% 97.7% 

( )  94.1% 94.3% 94.5% 90.7% 95.0% 95.0% 94.8% 98.0% 97.1% 

2500, 0.12n h  

ˆ( ) 94.6% 94.8% 94.9% 94.9% 95.6% 95.6% 94.9% 98.9% 97.8% 

( ) 94.1% 94.3% 94.5% 94.7% 95.0% 95.0% 94.8% 98.0% 97.1% 

2500, 0.24n h  

ˆ( ) 91.6% 94.8% 94.9% 90.1% 95.7% 95.7% 94.8% 98.8% 90.7% 

( ) 92.1% 94.3% 94.5% 90.5% 95.0% 95.0% 94.8% 96.0% 92.1% 

5000, 0.05n h  

ˆ( ) 95.5% 95.7% 95.5% 92.4% 95.4% 95.1% 95.1% 98.6% 96.1% 

( ) 95.2% 95.3% 95.2% 92.1% 95.0% 95.0% 95.0% 98.1% 96.7% 

5000, 0.10n h  

ˆ( ) 95.5% 95.7% 95.5% 95.4% 95.4% 95.1% 95.1% 98.0% 96.1% 

( ) 95.7% 95.8% 95.2% 95.1% 95.0% 95.0% 95.0% 97.8% 96.5% 

5000, 0.20n h  

ˆ( ) 91.5% 95.7% 95.5% 89.9% 95.4% 95.1% 95.1% 98.5% 90.1% 

( ) 92.7% 95.8% 95.2% 91.1% 95.0% 95.0% 95.0% 98.2% 92.0% 

Note: ˆ( ): when ˆ  is estimated and ( ): when  are assumed to be known.  
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Figure 1.a: Estimated densities of the null distributions of SLR statistics, 

1, 2.5, 0.06h    

 
 

 

Figure 1.b: Estimated densities of the null distributions of SLR statistics, 

0, 2.5, 0.06h    
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Figure 1.c: Estimated densities of the null distributions of SLR statistics, 

1, 2.5, 0.06h    

 
 

 

Figure 2: Estimated probability function ( )z  

 

 
 

 

  



34 
 

Figure 3: Technical inefficiency distributions 

 

 


