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Abstract 

We report on a method that allows for the radiometric detection of non-radioactive caesium 

by the measurement of potassium ions displaced from an ion exchange barrier. Electrokinetic 

transport of K+ and Cs+ through concrete samples was measured using a bespoke scintillation 

detector to monitor electrolyte concentrations. Results show experimental ionic flux and 

diffusion parameters of non-active caesium (~1 × 10-5 mol m-3) were consistent with those 

recorded for potassium and also with values reported in relevant literature. This work 

demonstrates a novel concept that can be applied to proof-of-concept studies that help 

develop the next generation of nuclear decommissioning technologies. 
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Introduction 

Radioactive fission products produced in the nuclear fuel cycle are perhaps the single largest 

contributor to the challenge of managing nuclear waste and the safe decommissioning of 

nuclear facilities. Of all the fission products 137Cs is the isotope of most interest due to its 

radiological and chemical properties; caesium has high solubility over a wide pH range 

rendering it extremely mobile in the environment; 137Cs has a high specific activity and 

decaying through a high-energy γ-ray emission.  

These properties, as well as creating the safety and environmental issues in the real-world, 

also contribute to the difficulty of using the isotope in laboratory and bench-top scale 

experimental studies. Such studies are necessary for researching and developing the next 

generation of technologies needed to combat the issues faced in the clean-up of the nuclear 

legacy. 

This short communication presents a method of detecting the electrokinetic transport of non-

active caesium, using radiometric equipment, through concrete samples based on work 

previously carried out [1]. The purpose of the work is to demonstrate that the study of new 

decommissioning techniques (e.g. electrokinetic remediation) can be achieved using the same 

measurement technologies and contaminants without any of the safety issues. To accomplish 

this, the method utilises high-sensitivity gamma spectroscopy, ion exchange, and naturally 

abundant potassium. 
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Methods and Materials 

Experimental Setup 

The electrokinetic experiments were carried out using a radioanalytical phantom, shown in 

Figure 1. The analytical phantom used was similar to the one described in previous work [2], 

as such only a concise description of the set-up is given in this work. Concrete samples were 

sealed into a polypropylene pipe connecting two electrolyte compartments: the volume of 

each compartment was 1.04 litres. The external DC necessary for the generation of 

electrokinetic transport was provided by an EL302T power supply (Thrulby Thandar 

Instruments), set to an applied voltage of 60 V. To prevent electrolyte heating, and unwanted 

electroosmotic flow, the current was limited to a maximum of 35 mA. The power supply was 

connected to a mild steel reinforcement bar cathode, and a platinised titanium mesh anode. 

The anode and cathode were both mounted 50 mm from the surface of the concrete samples 

within the respective compartments. Two additional platinum electrodes were placed at the 

anodic and cathodic facing surfaces of the concrete sample to measure the potential 

difference across the length of the samples.  
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Figure 1. Sketch of the electrochemical fuel pond phantom showing the location of the concrete sample and the 

adjacent ion exchange barrier. 

Experimental Regime 

The experiments were conducted in two phases; firstly the radiometric measurement of the 

transport rates of potassium ions driven by the external electric field was conducted. This 

allowed for the determination of ionic flux through the samples without the complication of 

the ion exchange displacement barrier. The second phase was the radiometric measurement 

of non-active caesium ion transport under the influence of the external electric field. 

The ion exchange barrier consisted of a 30 gram Lewatit Monoplus S 108 KR ion exchange 

resin bed, formed between two ion-permeanble membranes mounted in a polypropylene ring. 

The barrier was placed immediately adjacent to the cathodic-facing surface of the concrete 

samples within the connecting tube between the two electrode compartments. The ion 

exhange resin was converted from its manufacturer-shipped H+ form to a K+ form by washing 

the resin in a 500 g l-1 solution of KCl for four hours. Based on the manufacturers information 

the barrier is estimated to have a total exchangeable capactiy of 75 mmol [3]. 
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The mechanism for the ion exchange barrier is shown in Equation (1); caesium ions 

migrating through the concrete, under the influence of the electric field, pass into the ion 

exchange barrier where they exchange with potassium ions. The potassium ions are also 

influenced by the electric field and migrate into the catholyte where they can be detected. For 

the potassium transport studies the ion exchange barrier was removed from the 

electrochemical phantom. 

IX BARRIER  SOLUTION  IX BARRIER  SOLUTION  
M-K+ + Cs+ ⇋ M-Cs+ + K+ (1) 

 

For the two phases of experiments the starting anolyte consisted of KCl and CsCl solutions 

with concentrations of 396 and 70 mol m-3, respectively. The concentration of KCl was 

chosen to maximise the chances of radiometric detection and the concentration of CsCl was 

based on the exchangeable capacity of the ion exchange barrier. In addition to the KCl or 

CsCl, the electrolyte in each compartment contained a 100 mol m-3 NaOH solution to match 

the highly alkaline cementitious pore solutions and to prevent the corrosion of the anode. 

Concrete 

The concrete samples used throughout this work were mixed with a 3:2:1 ratio (coarse pebble 

aggregate, siliceous sand, and Ordinary Portland Cement), in accordance with European 

Standard E206-1. The mixed concrete was poured into cylindrical polypropylene moulds, 150 

mm long with an inner diameter of 105 mm, and left to cure for 28 days. At the end of the 

curing period the cylinders were cut into smaller thickness sections (25, 35, 65 mm) using a 

diamond toothed circular saw to ensure a smooth surface. The thickness of the concrete 

samples was chosen based on comparable studies in literature and to provide a range of 

widths which the ionic flux could be measured against.  
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Transport Detection and Sampling 

The ionic transport through the concrete samples was assessed radiometrically using a 

bespoke NaI(Tl) well-type scintillation counter [4]. Following the start of the experiments 40 

ml aliquots of the catholyte were sampled on a daily basis. The aliqouts were than placed in 

the detector setup, shown in Figure 2. Samples were counted over a 4 hour period. This 

period was chosen as it gave enough time to achieve good counting statisics whilst remaining 

a small percentage of the overall experimental duration. 

 

Figure 2. The NaI(Tl) well counter used in this work. The lead blocks have been removed from the top of the 

instrument to provide a better view of the detector. 
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Figure 3. The relationship between the gross count and potassium concentration of a 40ml KCl sample, where y 

= mx + c, m = 4.74 ± 0.1, c = 9609 ± 28.2, R2 = 0.9994. 

Calibration experiments were conducted by detecting 40 ml sample KCl solutions of known 

concentration (between 0-400 mol m-3) for four hours in the detection setup. The results of 

the calibration are shown in Figure 3. Using the calibration relationship derived from Figure 

3 it is possible to convert gross count data from the analysis of cathode solutions to solution 

concentrations. Caesium concentration values are determined based on the uni-univalent ion 

exchange mechanism described by Equation (1). 

Results and Discussion 

Potassium Transport 

The effect that the application of the electric field had on the rate of K+ transport through the 

concrete samples can be seen in Figure 4. 
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Figure 4. Change in net count from 40 ml catholyte samples taken to determine K+ transport across 20, 35, and 

65 mm concrete samples with a 60 V 35 mA electric field applied. 

Using the experimental data of Figure 4, the ionic flux and diffusion coefficient were 

calculated for each sample using a simplified Nernst-Planck equation derived by Andrade [5]: 
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𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽
𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

 (2) 

where z is the valence of the ionic species, c is the initial anodic concentration (mol m-3), F 

the Faraday constant (96484.6 C mol-1), R the ideal gas constant (8.314 J mol-1 k), E the 

electric potential (V), l the thickness of the concrete sample (m), and J is the steady state 

ionic flux (mol m-2 s-1). J is determined using the following equation [5]: 

𝐽𝐽 =  
∆𝑐𝑐𝑐𝑐
𝑆𝑆∆𝑡𝑡

 (3) 

where ∆c is the change in cathodic concentration (mol m-3) over the time interval ∆t (s), V is 

the cathodic volume (m3) and S is the surface area of the concrete exposed for ionic transport 

(m2).  

Given the requirement that the system should be in a steady-state of flux for the correct 

application of Equations (2 and (3, only data points recorded during the 200 hours sampling 

time immediately following the point of detectable potassium breakthrough into the catholyte 

– subsequently referred to as the point of ionic breakthrough (PIB) – were used in the 

calculation of J and DSNP. In this range, gross count shows a linear or near linear dependence 

on time, indicating accordance with the Andrade assumptions above [5]. Shown in Figure 5 

are the data points recorded during the pre-PIB period and for the 200 hour period after the 

observed PIB. Also shown in the figure are the linear steady-state regression fits of the post-

PIB data and their associated error. The slope of the straight line derived from the regression 

analysis provides the basis for the calculation of ionic flux and the simplified Nernst-Planck 

theory-derived diffusion coefficient. The calculated values, and the associated error, for the 

different concrete samples are shown in Table 1. 
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Figure 5. Change in gross count as a function of experimental time and the steady-state linear regression of 

data recorded after the point of ionic breakthrough, indicative of the K+ flux through concrete samples. 
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Table 1. The derived steady-state ionic flux values and Simplified-Nernst-Planck diffusion coefficient. Values 

taken from electrokinetic transport experiments using 70 mol m-3 CsCl solutions, with other experimental 

parameters shown in the table. 

Ion 
Anolyte 
Conc. 

(mol m-3) 

Sample 
Thickness 

(mm) 

Applied 
Potential 

(V) 

Measured 
Potential 

(V) 

Current 
(mA) 

J 
(mol m-2 s-1) 

DSNP 
(mol m-2) 

K+ 396 
20 60.1 59.3 35 2.71 (±0.18) × 10-5 5.81 (±0.38)× 10-13 
35 60.1 58.9 35 2.15 (±0.38) × 10-5 8.07 (±0.39) × 10-13 
65 60.1 59.2 35 5.65 (±0.76 )× 10-6 3.93 (±0.76) × 10-13 

 

The consistency of these results, relative to both each other and the literature, is demonstrated 

by the derived simplified-Nernst-Planck diffusion coefficients (DSNP) for electrokinetic 

transport experiments. All DSNP values for K+ reported in Table 1 are in the same order of 

magnitude, 1 × 10-13 mol m-2. There is a slight variation in the values, outside of the calculated 

uncertainty (± 0.38 – 0.76 × 10-13 mol m-2). This, however, is consistent with the findings of 

Castellote et al. and Andrade et al. who observed wider variations, by an order of magnitude, 

in calculated electromigration diffusion coefficients through concrete samples with nominally 

identical compositions [6], [7]. Observed differences in diffusion coefficients, within this 

study and the work of Andrade et al., are likely to be a result of local variations in the 

composition of the concrete samples [6]. The individual compositions (i.e. coarse aggregate, 

sand, cement, water ratio) will still vary between the concrete samples used in this work, 

despite being cut from the same larger concrete cylinder.  

Concerns relating to the concrete composition variation aside, the observed DSNP values for 

K+ are broadly consistent with those reported by Andrade et al. and Frizon et al. for the 

single valence elements; Cl- and Cs+ respectively  [6], [8], [9]. The experimental setups 

employed in the current study, the work of Frizon et al., and to a lesser extent Andrade et al., 

are all comparatively similar. The transport study performed by Frizon et al. is the closest in 
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design to this work where quantitative values are also defined. In the work by Frizon et al. a 

DSNP of 7.5 × 10-12 mol m-2  was observed for an initial anolyte concentration of 100 mol m-3 

[8]. Thus, the relative similarity of DSNP with values obtained for Cl-, K+, and Cs+ within 

these works provides support to the idea of using 40K as a radiological surrogate for 137Cs. 

Furthermore, the ionic transport results have shown that the radiological phantom provides a 

sound experimental design for studying the decontamination of active samples. 

Caesium Transport 

The effect that the application of the electric field had on the rate of Cs+ transport through the 

concrete samples can be seen in Figure 6. 
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Figure 6. Change in gross count detected in catholyte as a result of K+ displacement from the receiving ion 

exchange resin by electro-migrating Cs+. In each figure, the horizontal blue line represents the catholyte count 

that would be expected if all K+ were to be displaced from the receiving resin into the cathode chamber.  

In Figure 6 the solid blue lines indicate the maximum count expected should the total mass of 

K+ initially loaded on the ion exchange barrier be exchanged with the migrating caesium and 

enter the catholyte. It can be seen that for both the 20 and 35 mm sample a plateau on the 

gross count is reached when the experiment is ended at approximately 800 hours. 
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Furthermore, in both cases it appears that the maximum amount of potassium has been 

exchanged from the resin with the migrating caesium.  

Like the K+ transport study the simplified Nernst-Plank approach was used to evaluate the 

flux of ionic transport. Using the same steady-state assumption, only data points from the first 

200 hours after the point of ionic breakthrough (PIB) were used. Shown in Figure 7 are the 

data points for the 200 hour period after the observed PIB. Also shown in the figure are the 

linear steady-state regression fits of the post-PIB data and their associated error. Again, the 

slope of the regression analysis provides the basis for the calculation of the flux of ionic 

transport and the simplified Nernst-Plank theory-derived diffusion coefficient, Equations (2 

and (3. The calculated values, and the associated error, for the 20 and 35 mm concrete 

samples are shown in Table 2.  



15 

 

0 50 100 150 200 250 300
9500

9600

9700

9800

9900

10000

10100

10200

10300

0 50 100 150 200 250 300
9500

9600

9700

9800

9900

10000

10100

10200

10300

0 50 100 150 200 250 300
9500

9600

9700

9800

9900

10000

10100

10200

10300

0 50 100 150 200 250 300
9500

9600

9700

9800

9900

10000

10100

10200

10300

G
ro

ss
 C

ou
nt

∆ Time / Hours

 20 mm
 Fit
 Background

G
ro

ss
 C

ou
nt

∆ Time / Hours

 20 mm Fit
 Error
 Background

G
ro

ss
 C

ou
nt

∆ Time / Hours

 35 mm
 Fit
 Background

G
ro

ss
 C

ou
nt

∆ Time / Hours

 Linear Fit
 Error
 Background

 

Figure 7. Steady State displaced K+ flux as a result of Cs+ migration through the samples as a function of total 

experiment time, and the linear regression showing the time of ionic breakthrough. 

Not shown in Table 2 are the associated uncertainties. For Cs+ transport experiments the 

calculated error, for both J and DSNP, are in the region of two orders of magnitude greater 

than the derived values. Given this high degree of uncertainty, conclusions are difficult to 

implicitly state however there is an apparent consistency with DSNP values for Cs+ in 

literature. Frizon et al. recorded a DSNP for Cs+ of 7.5 × 10-12 m2 s-1 when electrokinetically 

transported through an 18 mm thick concrete sample [8].  
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Table 2. The derived steady-state ionic flux values and Simplified-Nernst-Planck diffusion coefficient. Values 

taken from electrokinetic transport experiments using 70 mol m-3 CsCl solutions, with other experimental 

parameters shown in the table. 

Ion 
Anolyte 
Conc. 

(mol m-3) 

Sample 
Thickness 

(mm) 

Applied 
Potential 

(V) 

Measured 
Potential 

(V) 

Current 
(mA) 

J 
(mol m-2 s-1) 

DSNP 
(mol m-2) 

Cs+ 71 
20 60.1 59.2 35 8.90 × 10-6 1.09 × 10-12 
35 60.1 58.8 35 1.02 × 10-5 2.18 × 10-12 

 

Given the difference in the starting anolyte concentrations between the K+ and Cs+ trials, the 

ionic flux and DSNP values for the Cs+ transport experiments appear similar to those observed 

in the K+ electromigration study. However, definite comparisons between the two studies and 

consequent conclusions cannot be made due to the magnitude of the calculated uncertainty in 

the final J and DSNP values. The calculated ionic flux and diffusion in the K+ study produced 

coefficient of variation (CoV) values in the range (0.066-0.177), where CoV is a normalised 

measure of dispersion [10]. Using the same measure of dispersion, CoV values for the non-

active Cs+ study were 5153 and 4713 for the 20 and 35 mm samples respectively. Such a 

large dispersion, in the case of the Cs+ study, puts the calculated values for J and DSNP on a 

much less sound statistical footing.  

The source of this uncertainty is a compound of two experimental factors. Firstly, there is 

significantly less radiological content available for detection in the system. The total activity 

present in the non-active Cs+ study was over five times less than the total activity in the K+ 

study, ~92 Bq compared to ~492 Bq. The lower activity results in a decrease in the quality of 

counting statistics when using the same radiometric counting regime, i.e. 2 hour counts. 

Secondly, taking into account the reduction in quality of counting statistics, the majority of 

the statistical uncertainty arises from the modification to the experimental setup necessary for 
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the detection of non-active Cs+, i.e. the use of a K+ saturated ion exchange (IX) barrier 

located immediately adjacent to the concrete on the cathodic side of the phantom. The IX 

barrier, containing saturated K+ form resin, provides a radiological titration to determine the 

flux of migrating non-active Cs+ ions; migrating Cs+ ions enter the IX resin and displace K+ 

ions from the matrix which then enter the catholyte for counting. 

This radiological titration, though allowing for the detection of a non-active substance, has an 

additional experimental uncertainty than that exhibited for direct measurement of 

electrokinetically transported ions as per the K+ transport study. The propagation of these two 

errors through to the final calculation of ionic flux and simplified-Nernst-Planck diffusion 

coefficient values results in the CoV values reported for this system. As stated above, the 

final magnitude of the uncertainty associated with this method essentially renders accurate 

quantitative comparison difficult. However, this is the first description of such a radiological 

titration technique in literature and, as such, is still in its infancy. It has shown clear evidence 

for the flux of Cs+, solely based on the detection of displaced potassium ions from the IX 

matrix. It therefore has significant potential as a bench-top method for teaching and nuclear 

decommissioning technique development. 

Conclusion  

This study has demonstrated the possibility of detecting the transport of non-active caesium 

using radiometric methods without the hazards normally associated with laboratory study of 

radioactive caesium. Though further development of the ion exchange barrier and detection 

regime are needed to reduce the experimental error, the results indicate that such techniques 

could be invaluable in proof-of-concept studies necessary for the development of future 

decommissioning technologies. 
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