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Abstract

In this paper we will consider quantum aspects of a non-local, infinite-
derivative scalar field theory - a toy model depiction of a covariant infinite-
derivative, non-local extension of Einstein’s general relativity which has previ-
ously been shown to be free from ghosts around the Minkowski background.
The graviton propagator in this theory gets an exponential suppression making
it asymptotically free, thus providing strong prospects of resolving various clas-
sical and quantum divergences. In particular, we will find that at 1-loop, the
2-point function is still divergent, but once this amplitude is renormalized by
adding appropriate counter terms, the ultraviolet (UV) behavior of all other 1-
loop diagrams as well as the 2-loop, 2-point function remains well under control.
We will go on to discuss how one may be able to generalize our computations
and arguments to arbitrary loops.ar
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1 Introduction

Formulating a quantum theory of gravity [1, 2, 3] remains one of the most outstanding
challenges of high energy physics. While string theory (ST) [4] remains the most
popular candidate, other notable efforts include Loop Quantum Gravity (LQG) [5, 6],
Causal Set approach [7], and ideas based on asymptotic safety [8]. An interesting
recurrent feature that appears in several of these approaches is non-locality. For
instance, the entire formulation of LQG is based on non-local objects, such as Wilson
loops and fluxes coming from the gravitational field. Strings and branes of ST are, by
their very definition, non-local objects. Even classically they do not interact with each
other at a specific spatial point, but rather over a region in space. Not surprisingly,
non-local structures are a common theme in stringy field theory (SFT) models. For
instance, these appear in noncommutative geometry [9] & SFT [10], for a review, see
[11], and various toy models of SFT such as p-adic strings [12], zeta strings [13], and
strings quantized on a random lattice [14, 15]. A key feature of these models is the
presence of an infinite series of higher-derivative terms incorporating the non-locality
in the form of an exponential kinetic correction. Finally, it is also intriguing to note
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that similar infinite-derivative modifications have also been argued to arise in the
asymptotic safety approach to quantum gravity [16].

Accordingly, in [17, 18, 19] attempts were made to construct ghost-free, infinite-
derivative theories of gravity which may be able to resolve space-time singularities
such as the ones present inside the black holes and at the big bang. For instance,
in [19] a non-singular bouncing cosmological background was obtained within a class
of infinite-derivative gravity theories, around which the sub and super-Hubble per-
turbations are well behaved and do not show instabilities [20, 21, 22]. In fact, such an
action can also modify the famous Raychaudhuri’s equation and alter the Hawking-
Penrose singularity theorem [23], which can yield a non-singular bouncing cosmology
without violating the null energy conditions.

It was not until recently though, that concrete criteria for any covariant grav-
itational theory (including infinite-derivative theories) to be free from ghosts and
tachyons around the Minkowski vacuum was obtained by Biswas, Gerwick, Koivisto
and Mazumdar (BGKM) [24, 25]; see [26] for a detailed exposition of the problem of
instabilities in infinite-derivative theories. In Ref. [24], it was also shown how one can
construct infinite-derivative theories of gravity where no new perturbative states are
introduced and only the graviton propagator is modified by a multiplicative entire
function. In particular, one can choose the entire function to correspond to the gaus-
sian which suppresses the ultraviolet (UV) modes making the theory asymptotically
free. For brevity we will refer to this case as the BGKM model.

Given the prospects of the BGKM model at resolving the classical singularities
of GR, see [27] for an overview, here we are going to explore the possibility of for-
mulating a quantum theory of BGKM, and the various challenges we need to over-
come. For important works on slightly different approaches to quantizing gravity
involving infinite-derivative interactions, see 1 [28, 29, 30, 31, 32, 33]. It’s probably
worth mentioning that in recent years there has been a growing interest in infinite-
derivative gravitational theories in not only addressing the Big bang singularity prob-
lem [19, 20, 21, 22, 35] but also finding other cosmological applications [34] and the
gravitational entropy [36].

Let us start by recalling the canonical examples of infinite-derivative actions that
appear in string literature. These can all be written as

S =

∫
dDx

[
1

2
φK(�)φ− Vint(φ)

]
, (1.1)

1Regarding the differences between the “BGKM” model and Refs. [28, 29], Ref. [28, 29] uses
propagators that go as k−2γ−4, γ ≥ 2, in the UV while our propagator falls off exponentially (the
exponential fall-off in the propagator is also seen as a special case in Ref [29] and in Ref. [37]). In
particular, this changes the degree of divergence, which, in our case, is a modified one counting not
powers of momenta but exponents, and the divergence structure. Furthermore, we had to develop
new techniques for regulating and evaluating the Feynman integrals. Also, the loop integrals are
computed explicitly in our work. The “BGKM” model has also been shown to address cosmological
and black-hole singularities, as [35, 37] also do. Hence, we decided to give these theories a different
name to distinguish them from other non-local/infinite-derivative models in vogue.
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where the kinetic operator K(�) contains an infinite series of higher-derivative terms.
For instance, we find that K(�) = −e�/M2

for stringy toy models based on p-adic
numbers [12], or random lattices [14, 15], and K(�) = −(� +m2)e�/M

2
in SFT [10],

where m2(< 0) and M2(> 0) are proportional to the string tension 2. Apart from its
stringy origin, the above theories are interesting in their own right. Firstly, although
these theories contain higher derivatives, they do not contain ghosts, at least per-
turbative. To see this explicitly, one can consider a fourth-order scalar theory with
K(�) = −�(1 + �

m2 ). The corresponding propagator reads

Π(p2) ∼ 1

p2(p2 −m2)
∼ 1

p2 −m2
− 1

p2
. (1.2)

From the pole structure of the propagator it is clear that the theory contains two phys-
ical states, but unfortunately the massive state has the “wrong” sign for the residue
indicating that it is a ghost. Once interactions are included, it makes the classical
theory unstable, and the quantum theory non-unitary (see Refs. [38, 39] regarding
the issue of unitarity in infinite-derivative theories). The stringy kinetic modifica-
tions combine to be an exponential, which is an entire function without any zeroes.
In other words, it does not introduce any new states, ghosts or otherwise. Indeed, this
property has been exploited to construct various non-local infinite-derivative theory
and particle phenomenology models [40, 41, 42, 43, 44], and scalar field cosmology
with infinite derivatives [45].

Secondly, as mentioned before, the infinite-derivative modification preserves a well
known property of higher-derivative theories, that of making the quantum loop con-
tributions better behaved in the UV. The stringy infinite-derivative scalar theories
not only ameliorates the UV behavior, but the exponential suppression in the prop-
agator actually makes all the quantum loops finite. Such calculations were used to
provide evidence for several stringy phenomena, such as Regge behavior [15] and
thermal duality and Hagedorn transition [41]. It is then natural to wonder whether
such non-local features can help in solving the quantum UV problem of gravity? In
fact, Stelle, in Ref. [46] argued that the simplest higher-derivative theory of gravity,
namely the fourth-order theory is already renormalizable, see also [47, 48]. Unfortu-
nately, the theory contains ghosts and is non-unitary. In contrast, the BGKM model
provides gravitational analogues of Eq. (2.8) where the graviton propagator obtains
an additional exponential suppression just as the scalar models.

So, can this exponential infinite-derivative modification also solve the quantum
UV problem of gravity by making all the Feynman loops finite? The answer is not
straightforward and our paper is essentially an effort to address this question. The
main problem with the gravitational theories, as opposed to a scalar field theory, is
that it is a gauge theory. And, one of the key features of gauge theories is that its free
kinetic action is related to the interaction terms via the gauge symmetry. We will see
that the exponential suppressions in propagators inevitably give rise to exponential
enhancements in the vertex factors. Actually, this compensating interplay between

2Here and hereafter, we are going to use (−+ ++) as our metric signature convention.
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propagators and vertices is not unique to infinite derivative theories, but any covariant
theory of gravity, including Einstein’s theory and Stelle’s 4th order gravity [46], see
also [47, 48]. In particular, the compensation between propagators and vertices is
exact at the 1-loop level making these contributions divergent as in GR. However, for
higher loops, the superficial degree of divergence calculations is different from GR,
because the counting is based on the pre-factors of the exponents rather than the
degree of polynomial divergence; exponentials dominate any polynomial growth in
the UV. In fact, a naive superficial divergence counting does suggest that diagrams
with more than one loop should be finite [28, 29].

The principal aim of this paper is to investigate the validity of such divergence
counting in some details in a simplified toy model which retains the compensating
feature of exponential suppression and enhancements between the propagator and
interaction respectively. We will consider a scalar field action, which maintains a
combination of global scaling and shift symmetries, similar to the residual symmetry
of gravity around the Minkowski background. Although this symmetry manifests
itself only at the level of classical equations of motion, it will allow us to incorporate
the compensating feature of exponential suppression and enhancement in propagators
and interactions, respectively, that is present in the full gravitational theory. We found
that one nice way to introduce this opposing effect in scalar models is to invoke the
scaling symmetry. This is not central to our discussion, but rather than invoking
an action in a completely ad hoc fashion, we felt that this gives us a slightly better
motivation.

We will consider a cubic interaction that respects the symmetry and study 2- and
higher-point functions at 1- and 2-loops. We will first look at the vanishing external
momentum limit, as they are technically easier to analyse and can already tell us
whether a graph will be finite or not. It should be emphasized that we had to develop
new techniques for regulating and evaluating the Feynman integrals. We will next
look at the finite external momentum case, which is important in determining whether
renormalizability arguments can be recursively pursued or not. Although, the cubic
scalar interaction inherits a bad IR behavior - being unbounded from below, still it
serves as a very good example to study the UV aspects of the theory, which is the main
focus of our paper. In particular, we will employ both hard cutoff and dimensional
regularization techniques to regulate the loop integrals, and we will speculate how
higher loops in these theories may also remain finite in the UV.

The paper is organized as follows: In the following section 2, we introduce our
toy quantum gravity model and discuss the expected UV behavior based on naive
superficial degree of divergence. In section 3, we will look at one- and two-loop quan-
tum integrals at zero external momenta to assess whether the divergence structure
confirms to the superficial degree of divergence. In section 4, we will look at 1-
and 2-loop integrals with non-zero external momenta to identify both the divergent
structure as well as the large (external) momentum behavior which is crucial in de-
termining whether the theory can be renormalized loop-by-loop. In section 5, we will
discuss the challenges in the renormalization prescription in the exponential infinite-
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derivative model, and demonstrate how this could be naturally addressed when one
starts to use the dressed propagator instead of the bare propagator. In section 6, we
will conclude by summarizing our results.

2 Quantum gravity toy model

2.1 Superficial degree of divergence

Throughout this paper we will be interested in metric fluctuations, hµν , around the
Minkowski background:

gµν = ηµν + hµν . (2.1)

Gravity being a gauge theory only contains kinetic terms, i.e. terms containing deriva-
tives. In the case of GR all the terms contain two derivatives. In momentum space
this means that the propagators behave as k−2, while each vertex also comes with
a k2 factor. This is the compensating feature discussed in the introduction and is a
hallmark of gauge theories. Further in four dimensions, each momentum loop pro-
vides a k4 factor in a quantum loop integral. The superficial degree of divergence of
a Feynman diagram in GR is therefore given by (see [3, 46]):

D = 4L− 2I + 2V , (2.2)

where L is the number of loops, V is the number of vertices, and I is the number of
internal propagators. Using the topological relation:

L = 1 + I − V , (2.3)

we get
D = 2L+ 2 . (2.4)

Thus, the superficial degree of divergence increases as the number of loops increases,
which is why GR is said to be non-renormalizable.

For Stelle’s 4th-order theory [46], the graviton propagator goes as ∼ k−4, while
the vertices ∼ k4, leading to a constant degree of divergence formula

D = 4 . (2.5)

In other words, the degree of divergence does not increase with loops which enabled
Stelle to prove that such a theory is renormalizable. Unfortunately, such a theory
also contains a Weyl ghost which makes the theory non-unitary. As explained be-
fore, we will follow a different approach where we will introduce an infinite series of
higher-derivative operators in a way that doesn’t introduce any new states, ghosts
or otherwise. We will see that the divergence counting will also be different as it
will be based on the exponents rather than the degree of the polynomial momentum
dependences.
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2.2 Infinite-derivative gravitational action

The “simplest” infinite-derivative action that can modify the propagator of the gravi-
ton without introducing any new states is of the form [24, 25]

S = SEH + SQ , (2.6)

where SEH is the Einstein-Hilbert action,∫
d4x
√
−g R

2
, (2.7)

and SQ is given by 3

SQ =

∫
d4x
√
−g
[
RF1(�)R +RµνF2(�)Rµν +RµνλσF3(�)Rµνλσ

]
, (2.8)

where the Fi’s are analytic functions of � (the covariant d’Alembertian operator):

Fi(�) =
∞∑
n=0

fin�
n , (2.9)

satisfying 4

2F1 + F2 + 2F3 = 0 (2.10)

and the constraint that the combination

a(�) = 1− 1

2
F2(�)�− 2F3(�)� (2.11)

is an entire function, with no zeroes. In Eq. (2.9), the fin ’s are real coefficients.
Eqs. (2.6)-(2.11) define the BGKM gravity models. The classical equations of motion
have been studied for the above action [49], and shown to be free from black-hole
type of singularities for “small” central masses. In this paper therefore, we take the
next logical step of investigating the quantum UV behavior of these theories.

For BGKM-type models, the quadratic (in hµν) or “free” part of the action sim-
plifies considerably, and one obtains 5:

Sfree =
M2

p

2

∫
d4x h⊥µν�a(�)h⊥µν , (2.12)

where h⊥µν is the transverse traceless spin 2 graviton mode, satisfying:

∇µh⊥µν = gµνh⊥µν = 0 . (2.13)

3Around Minkowski space or in any maximally symmetric background it can be shown that F3

is redundant, see [24, 25].
4For other forms of infinite-derivative gravity theories which contain an additional scalar degree

of freedom, see [25, 27].
5There is also a part of action for one of the scalar modes of the metric, but this is a ghost degree

of freedom that is precisely required to cancel the time-like contributions of the spin-two field [50].
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This leads to the propagator [24, 25],

Π(k2) = − i

k2a(−k2)

(
P2 − 1

2
P0
s

)
=

1

a(−k2)
ΠGR , (2.14)

for the physical degrees of freedom for the graviton (see [25, 50] for the definitions of
the spin projector operators P2 and P0

s ).

Ideally, we should now compute the interaction terms for our non-local gravity
theory and then use it to compute the Feynman diagrams. This however turns out
to be an extremely challenging task for several reasons: Gravitational theories are
all order theories and therefore contain interactions of all orders in hµν , and comput-
ing all these interactions is well beyond the scope of the current paper. While one
can argue that all the terms which are higher order in fields have additional Planck
suppressions 6, and that therefore the most relevant piece in the low energy approxi-
mation comes from the cubic terms, unfortunately even computing the complete cubic
interactions for an action such as Eq. (2.8) is challenging. Moreover, the expressions
are rather complicated making further progress in evaluating Feynman diagrams very
difficult.

Therefore, rather than taking on this arduous task, in this paper we wish to
understand whether non-localization can at all help to tame the UV divergences in
gravity theories, given the compensating nature of the exponential suppressions and
enhancements present in the propagators and vertices. To avoid getting muddled in
complex algebra we will try to understand the physics in a simple scalar toy model
which we will arrive at using symmetry principles that helps us to retain some of
the crucial properties of the full gravitational theories, see Appendix A for details.
For a comparative study and future reference we have however included some details
about the gravitational action in Appendix B, where we have calculated some of the
prototype cubic interaction terms that one obtains from Eq. (2.6) 7.

2.3 Motivating scalar toy model of quantum gravity from sym-
metries

It is well known that the field equations of GR exhibit a global scaling symmetry,

gµν → λgµν . (2.15)

6The easiest way to see this is to redefine h⊥µν → Mph
⊥
µν , which is anyway required to make

the free terms, Eq. (2.18), canonical. Then, each additional field comes with an additional Planck
suppressed factor making them sub-leading to the cubic interactions in the low energy limit.

7One way to obtain a toy scalar field model which mimics the gravitational Lagrangian is to
substitute a conformally flat metric hµν = Ω2(x) ηµν in (2.8). The scalar field action that can be
obtained this way is similar to the toy model we will consider, but its kinetic term has the wrong sign
because it basically corresponds to the unphysical ghost degree in P 0

s , and also contains additional
terms involving double sums that again makes the model technically more challenging to deal with.
We therefore adopt a cleaner strategy based on symmetries to obtain the scalar toy model.
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When we expand the metric around the Minkowski vacuum, Eq.(2.1), the scaling
symmetry translates to a symmetry for hµν , whose infinitesimal version is given by

hµν → (1 + ε)hµν + εηµν . (2.16)

While we do not expect the scaling symmetry to be an unbroken fundamental sym-
metry of nature, the symmetry serves a rather useful purpose for us. It relates the
free and interaction terms just like gauge symmetry does. Thus, we are going to use
this combination of shift and scaling symmetry

φ→ (1 + ε)φ+ ε , (2.17)

to arrive at a scalar toy model whose propagator and vertices preserve the compensat-
ing nature found in the full BGKM gravity. Inspired by the discussion in the previous
section, we will now consider a scalar toy model with a string field theory type free
action:

Sfree =
1

2

∫
d4x (φ�a(�)φ) , (2.18)

where for the purpose of this paper, we are going to choose [24, 25]:

a(�) = e−�/M
2

, (2.19)

where M is the mass scale at which the non-local modifications become important.
In general, one is free to choose any entire function, while keeping in mind that
a(k2) → 1 for the IR momentum, k → 0, in order to recover the propagator of the
usual GR. Note that the sign of a(�) is also crucial in order to recover the correct
Newtonian potential as shown in Ref. [24, 25] 8.

The symmetry, Eq. (2.17), then uniquely fixes the cubic interaction term, see
Appendix C,

Sint =
1

Mp

∫
d4x

(
1

4
φ∂µφ∂

µφ+
1

4
φ�φa(�)φ− 1

4
φ∂µφa(�)∂µφ

)
, (2.22)

up to integrations by parts. Our toy model action is then given by:

Sscalar = Sfree + Sint . (2.23)

8If we had chosen a(�) to be

a(�) = e�/M
2

, (2.20)

where M2 > 0, then we can perform the loop integrals for a(�) = e−�/M
2

, assuming M2 > 0, and
then analytically continue to M2 < 0. In this way the Newtonian potentials Φ(r) & Ψ(r) would be
given by

Ψ(r) = Φ(r) =
2imπ2

M2
p r

Erfi

(
Mr

2

)
where Erfi(z) =

Erf(iz)

i
(2.21)

is the imaginary error function and admits real values for real z. Clearly in this case, the Newtonian
potential is purely imaginary indicating an unphysical theory. See also [51] for a discussion of
Newtonian singularities in higher-derivative gravity models.
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It is now time to revisit the superficial degree of divergence for this toy model.

Since an exponential suppression always dominates over a polynomial growth, the
naive expectation is that as long as the exponentials come with a negative power,
the integrals should converge. Thus, rather than computing the power of polynomial
divergence in momentum, we are really interested in calculating the pre-factor in
the exponent, and this radically changes the counting of the superficial degree of
divergence.

Since every propagator comes with an exponential suppression, see Eq. (2.18),
while every vertex comes with an exponential enhancement, Eq. (2.22), the superficial
degree of divergence counting in exponents is given by

E = V − I . (2.24)

By using the topological relation, Eq. (2.3), we obtain:

E = 1− L . (2.25)

Thus, except for the L = 1 loop, E < 0, and the corresponding loop amplitudes are
superficially convergent. In Appendix A, we discuss the analogous calculation in the
complete BRST-invariant quantum infinite-derivative gravitational action. The con-
clusion is exactly the same. The rest of the paper is devoted to investigating whether
the naive expectation about the convergence properties of the Feynman diagrams
hold up in explicit calculations involving quantum loop calculations.

3 Divergence structure with zero external mo-

menta

3.1 Feynman rules

All the Feynman rules and Feynman integral computations in this paper are carried
out in Euclidean space after analytic continuation (k0 → ik0 & k2 → k2

E using the
mostly plus metric signature; we shall drop the E subscript for notational simplicity).
The final results we obtain can then be analytically continued back to Minkowski space
as desired.

The Feynman rules for our action Eqs. (2.18) and (2.22) can be derived rather
straightforwardly. The propagator in momentum space is then given by

Π(k2) =
−i
k2ek̄2

, (3.1)

where barred 4-momentum vectors from now on will denote the momentum divided
by the mass scale M . The vertex factor for three incoming momenta k1, k2, k3

10



satisfying the conservation law:

k1 + k2 + k3 = 0 , (3.2)

is given by

1

Mp

V (k1, k2, k3) =
i

Mp

C(k1, k2, k3)
[
1− ek̄2

1 − ek̄2
2 − ek̄2

3

]
, (3.3)

where

C(k1, k2, k3) =
1

4

(
k2

1 + k2
2 + k2

3

)
. (3.4)

Let us briefly explain how we obtain the vertex factor. The first term originates from
the term, 1

4
φ∂µφ∂

µφ, which using Eq. (3.2) in the momentum space, reads

− i

2
(k1 · k2 + k2 · k3 + k3 · k1) =

i

4

(
k2

1 + k2
2 + k2

3

)
. (3.5)

The second term comes from the terms, 1
4
φ�φa(�)φ, and −1

4
φ∂µφa(�)∂µφ. In the

momentum space, again using Eq. (3.2), we get

i

4

(
k3 · k1 + k1 · k2 − k2

3 − k2
2

)
ek̄

2
1 = − i

4

(
k2

1 + k2
2 + k2

3

)
ek̄

2
1 . (3.6)

The third and the fourth terms in Eq. (3.3) arise in an identical fashion.

For future convenience, let us consider the special case when one of the momenta
is zero. For instance, choosing k3 = 0, we obtain k1 = −k2 = k, which then gives us

V (k) ≡ V (k,−k, 0) = −ik2ek̄
2

. (3.7)

We will also often encounter the square of the vertex factor, which is given by:

V 2 (k1, k2, k3) = i2C2(k1, k2, k3)
[
1− 2ek̄

2
1 − 2ek̄

2
2 − 2ek̄

2
3 + 2ek̄

2
1ek̄

2
2

+ 2ek̄
2
2ek̄

2
3 + 2ek̄

2
3ek̄

2
1 + e2k̄2

1 + e2k̄2
2 + e2k̄2

3

]
. (3.8)

3.2 1-loop, 2-point function with zero external momenta

Let us start with the 1-loop 2-point function. There is only one Feynman diagram as
depicted in Fig. 1 (left). According to the Feynman rules, we have 9,

Γ2 =
i

2M2
p

∫
d4k

(2π)4

V 2(k)

i2k4e2k̄2
. (3.9)

9The mass correction is naively given by δm2 = iΓ2 (which is negative). When we derive the
dressed propagator in section 5, we will get the exact mass correction.
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Figure 1: Left: 1-loop, 2-point diagram Γ2. Right: The 1-loop, N -point diagram ΓN . The

dots indicate an arbitrary number of (bare) vertices and (bare) propagators for the scalar

field.

Note that we are working in an Euclidean space and that the symmetry factor is 2.
The angular integrations can be performed trivially, see Appendix D.1 for details, as
the integrand only depends on the norm of the external momentum, leaving us with

Γ2 =
i

2M2
p

4π

(2π)4

∫ Λ

0

dk
πk3

2
. (3.10)

Integrating with respect to k from 0 to Λ, where Λ is a hard cutoff, we obtain:

Γ2 =
iΛ4

64M2
pπ

2
. (3.11)

We see that the integral goes like
∫

d4k, and is therefore sensitive to the UV cut-
off. This result is in complete accordance with the analysis of superficial degree of
divergence according to which at 1-loop level the exponential non-locality does not
affect the integrals. The divergence structure is exactly the same as that of GR at
1-loop.

3.3 N-point function with zero external momenta

An interesting fact for gravitational theories is that the superficial degree of divergence
does not depend on the number of external vertices. This is true both in GR, see
Eq. (2.4), as well as in BGKM gravity and in infinite-derivative scalar field theory,
see Eq. (2.25). Let us then calculate the N -point function at one loop, see Fig. 1
(right). As one can see, the N -point diagram is not particularly different from the
2-point diagram; it is an N -polygon with N vertices and N edges. Thus, instead of
a square of the propagator and vertex factor, one now has N powers of them:

ΓN =
i

MN
p

∫
d4k

(2π)4

V N(k)

iNk2NeNk̄2
= (−1)N

iΛ4

32MN
p π

2
, (3.12)

where again Λ is the hard cutoff. As expected, its divergence is the same as that of
the 2-point function precisely as predicted by the divergence power-counting. The
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Figure 2: Left: The 2-loop, 2-point diagram Γ2,2a. Right: The 2-loop, 2-point diagram

Γ2,2b.

above diagrams are also known as ring diagrams, and they contribute to the effective
potential. The symmetry factor is 2N 10, and summing all the 1-loop diagrams, one
obtains the one-loop contribution to the effective potential,

V
(1)

eff (φ) = i

∞∑
N=1

ΓNφ
N =

∞∑
N=1

(−1)N+1

2N

Λ4

32MN
p π

2
φN =

Λ4

64π2
ln

(
1 +

φ

Mp

)
, (3.13)

as is typical, see also Refs. [43, 44, 52] for similar computations. In a theory of gravity,
we of course, do not expect to find such an effective potential as that would violate
general covariance, diagrams coming from different order interactions must cancel the
contributions. We obtain these terms in our toy model since the scaling symmetry is
only a symmetry of the field equations and not the entire action, and therefore it is
expected to be broken at the quantum level.

The prescription that was used in Ref. [44] to eliminate these divergent terms while
preserving the pole mass is to simply add an opposing counter term. This is also the
prescription that is followed in standard field theoretic calculations (renormalization
conditions), and we will adopt the same convention as we move on to higher loop
diagrams.

Our calculations corroborated the expected divergence structure, Eq. (2.25), in
infinite-derivative theories, or any covariant theory of gravity for that matter. To
prove renormalizability, the real challenge will be to demonstrate that once these
1-loop divergences (subdivergences) are eliminated by counterterms in higher loop
subdiagrams, the remaining loop integrals yield finite result. At the least this means
that the higher than 1-loop diagrams cannot diverge more than the bare vertex. This
is what we now want to check in the remaining sections.
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3.4 2-point function at 2-loop order

3.4.1 General structure

We wish to now investigate the second feature of the divergence formula, Eq. (2.25),
namely, that for higher than 1-loop no new divergences should emerge. Since there
are always subdivergent 1-loop graphs within a 2-loop diagram, we do not expect in
general finite results, but what we wish to find here is that the 2-loop graph should
have the same divergence behavior as that of the 1-loop counterpart. In other words,
they should diverge at most as Λ4. This result will be in contrast with the GR case,
where the 2-loop diagrams diverge as Λ6.

There are two Feynman diagrams as depicted in Fig. 2. The Feynman diagram
with zero external momenta in Fig. 2 (left) is given by

Γ2,2a =
i2

2i5M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

V (k1)V (k2)V 2(k1, k2, k3)

k2
3k

4
2k

4
1e
k̄2

3e2k̄2
2e2k̄2

1

, (3.14)

where k3 = −k1 − k2, and the expression is symmetric in k1 and k2. The numerator
contains a sum of different exponents, so that the overall integral can be written in
the form

Γ2,2a =
i

2M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

C2

k2
1k

2
2k

2
3

∑
i

λi exp[Ei(k1, k2)] , (3.15)

where Ei’s are quadratic polynomials of k1, k2 and λi are constants taking on the val-
ues −2, −1, +1, +2. Firstly, let us note that one can always find linear combinations
of k1, k2, lets call them q1, q2, such that Ei is diagonal:

Ei = a1q
2
1 + a2q

2
2 . (3.16)

Now, depending upon the value of the ai’s one can classify the terms in three groups:

(I) If both a1, a2 < 0, both the momentum integrals can be performed to provide
a finite answer.

(II) If both ai’s are nonzero, but one of them is positive, then one can obtain the
integrals by suitably analytically continuing results from the ai < 0 to ai > 0
region.

(III) Finally, there are cases when one of the ai’s is zero. We expect that this repre-
sents the divergent contribution from the 1-loop subdiagram embedded within
the 2-loop graph. We shall check whether this provides a Λ4 divergence, or a
Λ6 as in usual GR.

10It should be noted that the symmetry factor is equal to 2N when 1PI corrections to the effective
potential are considered (the external points are not fixed in that case). When computing a Green’s
function, the symmetry factor is equal to 2 for N = 1, 2 and to 1 for N > 2.
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3.4.2 Convergent groups (I) terms

Let us first look at the Group (I) terms. The overall exponential factors for the group
(I) type terms are given by

e−k̄
2
1e−k̄

2
2e−k̄

2
3 , e−k̄

2
2e−k̄

2
1 , e−k̄

2
1e−k̄

2
3 , e−k̄

2
2e−k̄

2
3 . (3.17)

The first integrand evaluates to

3iM6 log (4/3)

4096M4
pπ

4
, (3.18)

while all the other three gives us the same contribution:

− iM6(3 + log(4))

2048M4
pπ

4
. (3.19)

Thus, all together we have

Γ2,2,i =
3iM6

2048M4
pπ

4

[
1

2
log

(
4

3

)
− (3 + log 4)

]
. (3.20)

3.4.3 Group (II) & (III) terms & the divergence structure

Next let us look at the integrals originating from the last three terms in Eq. (3.8).
With overall exponents

ek̄
2
1e−k̄

2
2e−k̄

2
3 , ek̄

2
2e−k̄

2
1e−k̄

2
3 , ek̄

2
3e−k̄

2
1e−k̄

2
2 , (3.21)

these form the group (II) set with one eigenvalue positive and one negative. These
integrals can also be evaluated by employing suitable analytic continuation methods,
please see Appendix D.2 for details.

Again, all the terms contribute equally, and we get

Γ2,2,ii =
3iM4

4096π4M4
p

(
M2 (log(4)− 8)− 4Λ2

)
. (3.22)

We are left to tackle the group (III) terms originating from the fifth, sixth and
seventh terms in Eq. (3.8), whose exponential contributions coming from the vertices
are given by

ek̄
2
1e2k̄2

2ek̄
2
3 , ek̄

2
2e2k̄2

1ek̄
2
3 , e2k̄2

1e2k̄2
2 . (3.23)

Since, the exponential contribution of the propagators is given by:

e−2k̄2
1e−2k̄2

2e−k̄
2
3 , (3.24)
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the overall exponents, Ei, for the three above cases are

− k̄2
1, − k̄2

2, − k̄2
3 . (3.25)

Clearly, there is no exponential damping along the directions orthogonal to k1, k2

and k3 respectively. Accordingly, while one of the momentum integrals is convergent
due to the presence of the exponential, the other one can only be computed using a
hard cutoff. The result is identical for all the three diagrams, and one obtains

Γ2,2,iii =
iM2

4096M4
pπ

4

2M4

(
6 log

(
Λ

M

)
+ 5e−

Λ2

M2 − 3Ei

(
− Λ2

M2

)
+ 3γ − 5

)

+ Λ2M2

(
e−

Λ2

M2 + 15

)
+ Λ4

(
6− e−

Λ2

M2

)
−

Λ6Ei
(
− Λ2

M2

)
M2

 , (3.26)

where

Ei(z) ≡ −−
∫ ∞
−z

dt
e−t

t
(3.27)

is the exponential-integral function, see Ref. [53], and has a branch cut discontinuity
in the complex z-plane running from 0 to ∞. The sign −

∫
indicates that the principal

value of the integral is taken. We note that, for large negative z, the Ei function falls
off as a Gaussian and therefore can be ignored in the Λ → ∞ limit. Therefore, the
surviving divergent pieces read

Γ2,2,iii =
iM2

4096M4
pπ

4

[
12M4 log

(
Λ

M

)
+ 15Λ2M2 + 6Λ4 + 2M4 (3γ − 5)

]
. (3.28)

Firstly, we see that the divergence is indeed ∝ Λ4, as the superficial divergence argu-
ment suggested, and does not grow as Λ6 that one would find in GR.

We note that all the results obtained in this section have been divided by a sym-
metry factor 2 for the diagram. Summing all the integrals, we obtain our final result:

Γ2,2a =
iM2

4096M4
pπ

4

M4

(
12 log

(
Λ

M

)
− 52 + 2 (3γ − 5)− 3 log(3)

)
+ 3Λ2M2 + 6Λ4

 .
(3.29)

To reiterate, Γ2,1 ∼ Γ2,2 ∼ Λ4, as the counting of superficial degree of divergence
would suggest. While we have not explicitly calculated higher than two loop graphs,
we would expect the same pattern to continue to hold, i.e. , we do not expect larger
than quartic divergence in any loop order.
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3.4.4 The other 2-loop diagram

After setting the external momenta equal to zero, the Feynman diagram in Fig. 2
(right) becomes

Γ2,2b =
i2

2i5M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

V 2(k1)V 2(k1,−k1

2
+ k2,−k1

2
− k2)

k6
1(k1

2
+ k2)2(k1

2
− k2)2e3k̄2

1e

(
k̄1
2

+k̄2

)2

e

(
k̄1
2
−k̄2

)2 , (3.30)

where we have assumed symmetrical routing of momenta and the symmetry factor
of the diagram is 2. Again, the numerator contains a sum of different exponents, so
that the overall integral can be written in the form

Γ2,2b =
i

2M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

D2

k2
1(k1

2
+ k2)2(k1

2
− k2)2

∑
i

µi exp[Fi(k1, k2)] , (3.31)

where Fi’s are quadratic polynomials of k1, k2, and µi are constants which take on
the values −2, −1, +1, +2, similar to the first 2-loop diagram. Also,

D =
1

4

(
k2

1 +

(
k1

2
+ k2

)2

+

(
k1

2
− k2

)2
)
. (3.32)

If we change variables k1 → k
′
1, −k1

2
− k2 → k

′
2 (or, equivalently, k1 → k

′
1 and

−k1

2
+ k2 → k

′
2) in Γ2,1, we get Γ2,2, since the Jacobian is 1; i.e. , Eq. (3.31) is exactly

equivalent to Eq. (3.15):
Γ2,2b = Γ2,2a . (3.33)

Hence, the results for both the 2-loop diagrams are exactly the same. To reiterate,
Γ2,1 ∼ Γ2,2 ∼ Λ4, which would seem to corroborate the counting of superficial degree
of divergence (2.25).

4 External momentum dependence and renormal-

izability

4.1 Arbitrary loop diagrams

The calculations in the earlier subsection supported our naive divergence counting
argument in section 2, which suggested that all 1-loop diagrams should be divergent
∼ Λ4, and that this divergence should not increase as we go to higher loops. While
this agreement is encouraging, just the fact that the divergence doesn’t increase at
higher loops doesn’t guarantee renormalizability. To achieve renormalizability, one
has to check, for instance, that once the 1-loop sub-divergences are removed from a
higher loop diagram, the diagram becomes finite. This requires keeping track of the
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Figure 3: Left: 2-loop, 2-point diagram, Γ2,2a, now containing the renormalized 1-loop

3-point function (dark blob), Γ3,1. Right: Second 2-loop, 2-point diagram, Γ2,2b, containing

the renormalized 1-loop 2-point function (dark blob), Γ2,1.

UV behavior of the external momenta while performing the various loops. Let us
illustrate the point with a few examples.

Consider the 2-loop diagram in Fig. 2, left. This contains a sub-divergent 3-
point, 1-loop diagram. If we had found a prescription to make the 1-loop diagram
finite (for instance by adding appropriate counter terms as suggested in the previous
section 11), then the 2-loop diagram should really be replaced by Fig. 3 (left), where
we now have a finite renormalized 3-point function. We then have to perform a loop
integral involving the renormalized 3-point function:

Γ2,3a =
i2

2i5M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

V (k1)V (k2)V 2(k1, k2, k3)

k4
1k

4
2k

2
3e

2k̄2
1+2k̄2

2+k̄2
3

→
∫

d4k1

(2π)4

V (k1)Γ3,1r(k1,−k1, 0)

k4
1e

2k̄2
1

, (4.1)

where k3 = −k1 − k2. The key question then is whether this latter integral is finite?
A very similar reasoning can be applied to the 2-loop diagram in Fig. 2 (right), where
one can think of replacing the 2-point 1-loop subdiagram with the 1-loop renormalized
2-point function, see Fig. 3 (right), and then perform the remaining loop integral:

Γ2,3b =
i2

2i5M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

V 2(k1)V 2(k1,−k1

2
+ k2,−k1

2
− k2)

k6
1(k1

2
+ k2)2(k1

2
− k2)2e

3k̄2
1+

(
k̄1
2

+k̄2

)2
+
(
k̄1
2
−k̄2

)2 (4.2)

→
∫

d4k1

(2π)4

V 2(k1)Γ2,1r(k1,−k1)

k6
1e

3k̄2
1

. (4.3)

Actually, this is a very general prescription, any n-loop diagram can be thought
of as a 1-loop integral over a graph containing renormalized vertex corrections and
dressed propagators, see Fig. 4 (right) for illustration. To prove renormalizability
recursively the challenge then is to prove that if all loops up to n− 1 are finite, then
the remaining 1-loop integral remains finite too!

Now, we have already seen from counting arguments in in the previous section
that if the vertices and the propagators are enhanced and suppressed respectively by

11We will later see that the 3-point function is actually finite once we introduce the dressed
propagator.
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Figure 4: Left: N -point diagram with dressed propagators (shaded blobs). The dots

indicate an arbitrary number of (bare) vertices and dressed propagators. Right: n-loop,

N -point diagram with loop corrections to the vertices (dark blobs) and dressed propagators

(shaded blobs). If each dark blob represents an ni-loop diagram with Ni external lines,

then n =
∑

i ni + 1 and N =
∑

iNi. The internal dots indicate an arbitrary number of

renormalized vertex corrections and dressed propagators. The external dots indicate an

arbitrary number of external lines.

the same exponential factor then a 1-loop diagram remains divergent. This argument
can clearly be applied to n-loop graphs when viewed as 1-loop diagrams involving
renormalized vertices, and (most importantly) renormalized propagators. What the
argument suggests is that to have a chance at renormalizability, the renormalized
vertices must be growing less strongly than the renormalized or the “dressed” prop-
agators. In this section, we are going to compute external momentum dependence of
the 2-point function at 1-loop, and discuss its ramifications.

4.2 1-loop 2-point function with arbitrary external momenta

Calculating the dressed propagator boils down to calculating the 2-point function
with external momenta. At the 1-loop level with external momenta p, −p (we assume
the convention that the external momenta are incoming and sum to zero), and sym-
metrical routing of momenta, the Feynman integral is given by (see Appendix D.1 for
details),

Γ2,1(p2) =
i

2i2M2
p

∫
d4k

(2π)4

V 2(−p, p
2

+ k, p
2
− k)

(p
2

+ k)2(p
2
− k)2e(

p̄
2

+k̄)
2

e(
p̄
2
−k̄)

2 , (4.4)

where

V 2
(
−p, p

2
+ k,

p

2
− k
)

= i2C2
[
1− 2e(

p̄
2

+k̄)
2

− 2e(
p̄
2
−k̄)

2

− 2ep̄
2

+ 2e(
p̄
2

+k̄)
2

e(
p̄
2
−k̄)

2

+ 2e(
p̄
2
−k̄)

2

ep̄
2

+ 2ep̄
2

e(
p̄
2

+k̄)
2

+ e2( p̄2 +k̄)
2

+ e2( p̄2−k̄)
2

+ e2p̄2
]
,

(4.5)

19



and

C =
1

4

[
p2 +

(p
2

+ k
)2

+
(p

2
− k
)2
]
. (4.6)

While using a cut-off scheme to regulate the integral is more instructive to see the
divergent structure, technically it is much more convenient to use dimensional regu-
larization, which is what we will employ from here onwards. The integral in Eq. (4.4)
contains several terms coming from the various sums of exponents that make up the
vertex functions. The different integrals arising from the sum in V 2 can be grouped
in three ways:

(I) When the integrand contains no exponentials, this comes from the fifth term in
Eq. (4.5), and gives a divergent result.

(II) When we have a Gaussian damping term present in Eq. (4.5). This is the
case for all the terms except the fifth, eighth and the ninth terms and gives a
convergent answer.

(III) The eighth and the ninth terms contain a (p.k) in the exponent of Eq. (4.5), and
they are the most difficult to handle analytically, but they are not particularly
important for our discussions as will become clear soon. Let us discuss these
terms separately now.

4.2.1 Group (I) terms

The divergent integral corresponding to the fifth term can again be calculated straight-
forwardly using dimensional regularization (see Appendix E), and one obtains

Γ2,1,i(p
2) =

ip4

256π2M2
p

(
2

ε
− log

(
p2

4πM2

)
− γ + 2

)
. (4.7)

Let us make a couple of comments: Firstly, the p2 → 0 limit is well defined, i.e.,
none of the expressions diverge. If it did, that would make the low energy limit ill-
defined, ruling out such modifications phenomenologically even as an effective theory.
Secondly, the counter term needed to cancel the divergence is given by

Lct = − 1

256επ2M2
p

∫
d4xφ�2φ , (4.8)

or equivalently

Γ2,1,ct(p
2) = − ip4

128π2M2
p

1

ε
. (4.9)

The counter term is clearly not of the same form as the original action Eq. (2.23). This
is not surprising given that the symmetry principle we used to write down the action
Eq. (2.23) was not a symmetry of the action, but only that of the field equations.
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4.2.2 Group (II) terms

The group (II) type integrals are all convergent due to the presence of the exponential
damping factor. They can therefore be evaluated rather straightforwardly to yield

Γ2,1,ii(p
2) =

iM4e−p̄
2

512M2
pπ

2p̄2

[
− 2ep̄

2
(
e2p̄2 − 1

)
p̄6Ei

(
−p̄2

)
+
(
ep̄

2 − 1
)(
− 2

(
p̄4 + 3p̄2 + 2

)
+

(
e

3p̄2

2 − e
p̄2

2

)(
2p̄4 + 5p̄2 + 4

)
+ ep̄

2
(
ep̄

2 − 1
)
p̄6Ei

(
− p̄

2

2

)
+ 2ep̄

2 (
7
(
p̄4 + p̄2

)
+ 2
))]

.

(4.10)

Again, the expression is regular as p2 → 0. This again shows that the theory has a
well defined low energy limit. However, to assess the renormalizability of the theory
we need to look at the UV behavior, and especially track any exponential growth.
With this in mind let us look at the various terms that grow as a Gaussian as p2 →∞:

Γ2,1,ii(p
2) =

iM2

512M2
pπ

2p2

[
e

3p̄2

2

(
4M4 + 5M2p2 + 2p4

)
+ 2ep̄

2 (
2M4 + 7M2p2 + 7p4

)
− 2e

p̄2

2

(
4M4 + 5M2p2 + 2p4

) ]
− iM2p2

256M2
pπ

2

[(
1− 2M2p−2 + 8M4p−4

)
e

3p̄2

2 − 2e
p̄2

2 − ep̄2

]
+ . . . , (4.11)

where the . . . indicate subleading terms or terms which are growing at most as a
polynomial, and we have used the relation,

lim
x→+∞

x2eαx
2

Ei
(
−αx2

)
= − 1

α
, (4.12)

for positive α to obtain the asymptotic behavior. In particular, as p2 →∞, we find

Γ2,1,ii(p
2)→ iM4e

3p̄2

2

512M2
pπ

2

[
9− 12p̄−2 + . . .

]
. (4.13)

As we see, the correction to the propagator grows with a larger exponent than the
“bare” inverse propagator, and this will be crucial in proving finiteness of the 1-loop
diagrams and our arguments on renormalizability of the theory.

4.2.3 Group (III) terms

For the purpose of completeness, let us also compute the group (3) integrals using
dimensional regularization (see Appendix E for details). We find that the ep·k integrals
do not give rise to any poles 12. There is no simple analytical result for the integral,

12We used the relation, Jn(z) = zn

2n 0F̃1

(
;n+ 1;− 1

4z
2
)
, between the Bessel function of the first

kind and the regularized confluent hypergeometric function. Moreover, the Cauchy Principal Value
(CPV) prescription was used to compute some of the irregular integrals.

21



0.1 1 10 100 1000 104
p

-6

-5

-4

-3

-2

-1

A(p2)

2 4 6 8 10

M

10Mp

10

20

30

ΓN

Figure 5: Left: A log-linear plot of A(p̄2) =
Γ2,1,iii(p̄

2)
Γ2,1,ii(p̄2)

. We observe that A(p̄2) goes to 0

as p̄ → ∞. Right: A log-plot for 3-point diagrams Γ3 (in units of iMp), 4-point diagrams

Γ4 (in units of i) and 5-point diagrams Γ5 (in units of iM−1
p ) where M/Mp ranges from 0.1

to 1. The red, green and blue curves represents Eq. (5.5) for N = 3, 4 and 5, respectively.

but it can be expressed as a single integral:

Γ2,1,iii(p̄
2) =

iM4

128πM2
p

∫ 1

0

dr e(1−2r)p̄2
[
t(r, p̄)Y0

(
2
√
r − r2p̄2

)
+ u(r, p̄)

√
r − r2 Y1

(
2
√
r − r2p̄2

)]
,

(4.14)
where

t(r, p̄) = −16p̄4r4 + (32p̄4 + 8p̄2)r3 − (26p̄4 + 12p̄2)r2 + (10p̄4 + 4p̄2)r − 2p̄4 , (4.15)

u(r, p̄) = −16p̄4r3 + (24p̄4 + 4p̄2)r2 − (16p̄4 + 4p̄2 − 8)r + 4p̄4 + 3p̄2 − 4 , (4.16)

and Yn(z) is the Bessel function of the second kind & Yn(z) → 0 as z → ∞. The
above Eq. (4.14) is regular as p̄ → ∞. In Fig. 5 (left), we have plotted the ratio
Γ2,1,iii(p̄

2)/Γ2,1,ii(p̄
2) as a function of p̄. As we can see, the Γ2,1,ii(p̄

2) term dominates
for large momentum, and is therefore going to be the most important for understand-
ing the UV behavior of the quantum theory.

To summarize, from our preceding calculations in the UV limit we have:

Γ2,1(p2) = Γ2,1,i(p
2) + Γ2,1,ii(p

2) + Γ2,1,iii(p
2) ≈ 9iM4e3p̄2/2

512M2
pπ

2
. (4.17)

In other words, the 2-point “vertex” grows more strongly than even the momentum
dependence, ∼ ep̄

2
, of the bare 3-point vertex. Also note that the term is finite and

therefore it is expected to survive even after we have renormalized the divergent part
in the 1-loop 2-point function. Naively, this may seem like a disaster. For instance, it
is easy to see that this leads to an additional divergence in the 2-loop diagram, Fig. 3
(right), which contains the 1-loop 2-pt subdiagram. In Eq. (4.3), since Γ2,1r(k

2) goes

as e
3k̄2

2 , the integrand now diverges exponentially as e
k̄2

2 . This is worse than the
power law divergence of 1-loop! So, does this mean the end of the road for non-local
theories as a candidate for quantum gravity? On the contrary, we will now see that
this apparent strong exponential dependence may, in fact, be exactly what is needed
to make all the higher loops finite!
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Figure 6: Top: The 1-loop, 2-point contribution of 1PI diagrams. The cross denotes a

counter term vertex. Bottom: The dressed propagator as the sum of an infinite geometric

series. The dressed propagator is denoted by the shaded blob.

5 Improved convergence with dressed propagators

5.1 Dressed propagator & 1-loop integrals

We saw in the earlier section that additional divergences may arise in higher loops
from the 1-loop, 2-point functions. However, we know that, in quantum field the-
ory, the 1-loop correction is only the first term in a sequence of graphs, see Figs. 6,
which can be resummed as a geometric series in the region of convergence and then
analytically continued to the entire momentum space. In other words, the bare prop-
agators need to be replaced by the dressed propagator while performing calculations
for higher-point Green’s functions or higher loops. Note, that no such infinite se-
quence exists for interaction vertices, the loop contributions simply add to the bare
vertex. Thus, a rather remarkable consequence of this resummation will be that for
non-local theories the dressed propagators will be more exponentially suppressed than
their bare counterparts at large momentum, and therefore going to overwhelm the
exponential enhancements coming from the vertices 13. In particular, we will explic-
itly see that this will make the UV part of all higher (than two) point 1-loop graphs
finite!

The UV part of the 2-loop integrals, and here we will only illustrate the 2-point
function, will also become finite. We will argue that it should be possible to extend
this reasoning to all higher loop graphs. In other words, we conjecture that except
for the 1-loop, 2-point function, all graphs in this toy-model for quantum gravity
converge in the UV. A more rigorous proof, possibly involving more general coupling
(not just cubic), is beyond the scope of this paper and obviously requires further
investigation.

The 1-loop, 2-point contribution schematically reads (see Fig. 6, top, for a dia-
grammatic representation):

Γ2,1(p2) + Γ2,1,ct(p
2) = Γ2,1r(p

2) =
iM4

M2
p

f(p̄2) , (5.1)

13This property is more general than just the infinite-derivative theories as finite 1-loop results
were also obtained for “local” higher-derivative extensions of gravity [54].
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where

f(p̄2) =
p̄4

256π2

(
− log

(
p̄2

4π

)
− γ + 2

)
+

e−p̄
2

512π2p̄2

[
− 2ep̄

2
(
e2p̄2 − 1

)
p̄6Ei

(
−p̄2

)
+
(
ep̄

2 − 1
)(
− 2

(
p̄4 + 3p̄2 + 2

)
+

(
e

3p̄2

2 − e
p̄2

2

)(
2p̄4 + 5p̄2 + 4

)
+ ep̄

2
(
ep̄

2 − 1
)
p̄6Ei

(
− p̄

2

2

)
+ 2ep̄

2 (
7
(
p̄4 + p̄2

)
+ 2
))]

+
1

128π

∫ 1

0

dr e(1−2r)p̄2
[
t(r, p̄)Y0

(
2
√
r − r2p̄2

)
+ u(r, p̄)

√
r − r2 Y1

(
2
√
r − r2p̄2

)]
.

(5.2)

f(p̄2) is a regular analytic function of p̄2 which grows as e3p̄2/2 as p̄2 →∞. The dressed
propagator then represents the geometric series of all the graphs with 1-loop, 2-point
insertions as shown in Fig. 6 (bottom), analytically continued to the entire complex
p2-plane. Mathematically, this is equivalent to replacing the bare propagator, Π(p2),

with the dressed propagator, Π̃(p2):

Π̃(p2) =
Π(p2)

1− Π(p2)Γ2,1r(p2)
=

−i
p2ep̄2 − M4

M2
p
f (p̄2)

. (5.3)

Since, in our case, Π(p2)Γ2,1r(p
2) grows with large momenta, in the UV limit, we have

Π̃(p2)→ Γ−1
2,1r(p

2) ≈
(
9− 12p̄−2

)−1
e−

3p̄2

2 . (5.4)

Clearly, the dressed propagator is more strongly suppressed than the bare propagator!
This is a very crucial result that is now going to ensure that the UV contribution of
quantum fluctuations for all the other higher-point 1-loop graphs are finite. Since the
cubic interactions are known to cause vacuum instability, the mass squared correction
is, except for very small p̄, negative (as is the case in ordinary φ3 theory) leading to
an artificial pole in the dressed propagator. This makes all the integrals divergent
in the IR. We however, expect this pathology to be cured once higher-order (such as
quartic couplings) interactions are included as they must be in a complete gravita-
tional theory. Here, we are concentrating on the UV behavior, and we can bypass
this problem by evaluating only the UV part of the integrals, from say p̄ = 1 . . .∞
where the dressed propagator can be approximated by Eq. (5.4).

Let us now revisit the 1-loop calculations of the N -point diagrams. Once the
infinite sum of diagrams leading to the dressed propagators are taken into account,
see Fig. 4 (left), the UV part of the 1-loop integral reduces to

ΓN,UV ≈
i

iNMN
p

∫
d4k

(2π)4

V N(k)[
−M4

M2
p
f
(
k̄
)]N =

iM4

MN
p

∫
d4k̄

(2π)4

k̄2NeNk̄
2[

M2

M2
p
f
(
k̄
)]N . (5.5)

This integral is finite and we have provided numerical plots as a function of M/Mp,
see Fig. 5 (right). We note that the amplitudes remain well behaved even in the limits
M �Mp and Mp �M .
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Figure 7: Left: The 2-loop, 2-point diagram Γ2,3a. The shaded blobs denote dressed
propagators. Right: The 2-loop, 2-point diagram Γ2,3b. The shaded blobs denote
dressed propagators.

5.2 UV convergence of 2-loop diagrams

In the previous section we have seen how when we make the transition from the
bare to the dressed propagator, the 1-loop diagrams in non-local theories become
finite. This means that to renormalize at the 1-loop level, all we have to do is to
renormalize the divergence in the 2-point function. This is not very different from
the local field theories. For instance, in λφ4 theory, once the 2-point and 4-point
functions are renormalized, all the higher-point Green’s functions become finite. Can
this procedure be extended to all loops though? If the answer is yes, it would provide
a tremendous encouragement towards the possibility of having a candidate for an
analogue of quantum theory of gravity in the non-local framework. However, in this
paper we have to be content with mostly a study of the convergence properties of the
2-point 2-loop diagrams. We will indeed see that they also become finite as opposed
to the Λ4 divergence found in Eq. (3.29).

Consider first the Fig. 7 (right) that resembles the 1-loop, 2-point Fig. 2 (right),
except that now the bare propagator has been replaced by the dressed propagator.
Again, to determine the finiteness of the graph it is sufficient to focus on the zero
external momenta case. The Feynman integral is given by

Γ2,3b =
i2

2i5M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

V 2(k1)V 2(k1,−k1

2
+ k2,−k1

2
− k2)[

k2
1e
k̄2

1 − M4

M2
p
f
(
k̄2

1

)]3
[
(k1

2
+ k2)2e

(
k̄1
2

+k̄2

)2

− M4

M2
p
f

((
k̄1

2
+ k̄2

)2
)]

× 1[
(k1

2
− k2)2e

(
k̄1
2
−k̄2

)2

− M4

M2
p
f

((
k̄1

2
− k̄2

)2
)] . (5.6)

Making the redefinition k1 → k1, −k1

2
− k2 → k2 and k3 = −k1 − k2, we get

Γ2,3b =
i

2M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

V 2(k1)V 2(k1, k2, k3)[
k2

1e
k̄2

1 − M4

M2
p
f
(
k̄2

1

)]3 [
k2

2e
k̄2

2 − M4

M2
p
f
(
k̄2

2

)] [
k̄2

3e
k̄2

3 − M4

M2
p
f
(
k̄2

3

)] .
(5.7)

To see whether the integrals are convergent or not, we need to look at large values of
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k1, k2 where the exponentials dominate. One can check that the integrand goes as

∼ exp

[
−(
k1

2
− k2)2 − 7

4
k2

1

]
, (5.8)

ensuring that both the k1 and k2 integrals are convergent.

The other 2-loop diagram for the 2-point function, see Fig. 7 (left), reads as:

Γ2,3a =
i2

2i5M4
p

∫
d4k1

(2π)4

d4k2

(2π)4

V (k1)V (k2)V 2(k1, k2, k3)[
k2

1e
k̄2

1 − M4

M2
p
f
(
k̄2

1

)]2 [
k2

2e
k̄2

2 − M4

M2
p
f
(
k̄2

2

)]2 [
k2

3e
k̄2

3 − M4

M2
p
f
(
k̄2

3

)] ,
(5.9)

where k3 = −k1−k2. The exponential dependence of the integrand as |k1|, |k2| → ∞,
goes as

∼ exp

[
−3

2

(
k1 −

k2

3

)2

− 4

3
k2

2

]
, (5.10)

again leading to a convergent integral.

5.3 Higher vertices and prospects for a finite theory

We have just now seen how strong exponential suppression of the dressed propagator
can make the 1-loop and 2-loop integrals finite. We believe that most likely this
remarkable feature continues to higher loops. The basic reason is - even for the 1-
loop diagrams, the suppression coming from the propagators is stronger than the
enhancements coming from the vertices. This ensures two things - first it makes
the loops finite, and second the UV growth of the finite diagrams with respect to
the external momenta becomes weaker in every subsequent loops. Thus, finiteness of
higher loops is guaranteed recursively. A rigorous proof of the above statement is well
beyond the scope of the present paper, but we will now sketch heuristic arguments
to demonstrate finiteness of the particular set of 2- and 3-point diagrams that can be
constructed out of lower-loop 2- and 3-point diagrams, see Fig. 8.

The basic approach is the following - in order to understand whether any diagram
converges in the UV or not, we only need to keep track of the exponential momentum
dependences. We already know that the dressed propagators, represented by the
shaded blobs, decay in the UV as e−3k̄2/2. Conservatively, we are therefore going to

assume Π̃(k2)
UV−→ e−3k̄2/2. The 3-point function (represented by the dark blobs) can,

on the other hand, be written as

Γ3
UV−→

∑
α,β,γ

eαp̄
2
1+βp̄2

2+γp̄2
3 , (5.11)

with the convention
α ≥ β ≥ γ , (5.12)
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Figure 8: Left: 2-point diagram constructed out of lower-loop 2-point & 3-point diagrams.

The shaded blobs indicate dressed propagators and the dark blobs indicate renormalized

vertex corrections. Right: 3-point diagram constructed out of lower-loop 2-point & 3-point

diagrams. The shaded blobs indicate dressed propagators and the dark blobs indicate

renormalized vertex corrections.

where p1, p2, p3 are the three external momenta. This is because once all the (lower-)
loop sub diagrams have been integrated out, what remains are expressions in terms
of the corresponding external momenta. Some of these external momenta can then
become the internal loop momentum in a subsequent higher loop diagram, see Fig. 8
for a pictorial representation of the recursive construction.

The sum over the exponents {α, β, γ} in Eq. (5.11) indicates that there could be
many different exponential terms including the permutations needed to symmetrize
the vertices over the three internal momenta. We are going to assume that these
exponents satisfy certain properties, up to say (n − 1)-loops. These conditions will
allow us to demonstrate that the loops remain finite. Moreover, we will recursively
argue that these properties are also satisfied in the n-th loop.

5.3.1 2-point diagram

First, let us look at the zero external momentum limit. It is easy to see that the most
divergent UV part of the 2-point diagram reads

Γ2,n−→
∫

d4k

(2π)4

e(α1+α2+β1+β2)k̄2

e3k̄2
, (5.13)

where k is the loop momentum variable in Fig. 8 (left). We’ve got two propagators

e
3k̄2

2 while the (most divergent UV parts of the) vertex factors originating from lower-
loop diagrams are eα1k̄2+β1k̄2

and eα2k̄2+β2k̄2
(we get no γ1, γ2 terms in the exponents,

since the external momenta are set equal to zero). Clearly, the integral is finite as
long as

αi + βi <
3

2
, (5.14)

where i = 1, 2. One can check that the same condition ensures finiteness of the
diagram even when one includes non-zero external momenta.
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5.3.2 3-point diagram

First, let us check whether the 3-point diagram (see Fig. 8, right) is finite or not for
zero external momenta. Again the most divergent UV contribution comes when the
momentum associated with exponents, α’s and β’s, run in the internal loop giving
rise to

Γ3,n−→
∫

d4k

(2π)4

e(α1+α2+α3+β1+β2+β3)k̄2

e
9k̄2

2

, (5.15)

where k is the loop momentum variable in Fig. 8, right. Similarly to the argument

for the 2-pt function, we’ve got three propagators e
3k̄2

2 , while the (most divergent
UV parts of the) vertex factors originating from lower-loop diagrams are eα1k̄2+β1k̄2

,
eα2k̄2+β2k̄2

and eα3k̄2+β3k̄2
. Again the integral converges as long as Eq. (5.14) is valid.

To prove the validity of Eq. (5.14), let us try to find out how one can get the
largest exponents for the external momenta. First, let us consider how one can get the
largest sum of all the exponents, i.e., α + β + γ. Although, all the arguments below
can be conducted for three different sets of exponents in the three 3-point vertices
making up the 1-loop triangle, Fig. 8 (right), for simplicity, here we will look at what
happens when all the three vertices have the same exponents. Clearly, the best way
to obtain the largest exponents for the external momenta is to have the α exponent
correspond to the external momenta. For a symmetric distribution of (β, γ) among
the internal loops, we get

Γ3,n−→
∫

d4k

(2π)4

eα
n−1(p̄2

1+p̄2
2+p̄2

3)

e[ 3
2
−βn−1−γn−1][3k̄2+ 1

3
(p̄2

1+p̄2
2+p̄2

3)]
, (5.16)

where p1, p2, p3 are the external momenta for the 1-loop triangle, and the
superscript in the α, β, γ indicates that these are coefficients that one ob-
tains from contributions up to n − 1 loop level. Before proceeding to ob-
tain the n-th loop coefficients, let us briefly explain how we got Eq. (5.16).
Assuming symmetrical routing of momenta in the 1-loop triangle, we get the

propagators e−
3
2(k̄+

p̄1
3
− p̄2

3 )
2

, e−
3
2(k̄+

p̄2
3
− p̄3

3 )
2

and e−
3
2(k̄+

p̄3
3
− p̄1

3 )
2

, and the vertex

factors eα
n−1p̄2

1+βn−1(k̄+
p̄3
3
− p̄1

3 )
2
+γn−1(k̄+

p̄1
3
− p̄2

3 )
2

, eα
n−1p̄2

2+βn−1(k̄+
p̄1
3
− p̄2

3 )
2
+γn−1(k̄+

p̄2
3
− p̄3

3 )
2

and eα
n−1p̄2

3+βn−1(k̄+
p̄2
3
− p̄3

3 )
2
+γn−1(k̄+

p̄3
3
− p̄1

3 )
2

. Conservation of momenta then yields
Eq. (5.16).

By integrating Eq. (5.16), we have

αn = βn = γn = αn−1 +
1

3
(βn−1 + γn−1)− 1

2
. (5.17)

In particular, for the 1-loop, 3-point graph, one has to use the 3-point bare vertices:
α0 = 1 and β0 = γ0 = 0. One then obtains

α1 = β1 = γ1 =
1

2
, (5.18)
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leading to an overall symmetric vertex: e
1
2

(p̄2
1+p̄2

2+p̄2
3) and α1 + β1 + γ1 = 3

2
. Since we

expect the exponents to decrease as we increase loops, we therefore conjecture that
the sum of exponents satisfies the inequality

αn + βn + γn ≤ 3

2
. (5.19)

From Eq. (5.17), we see that this is satisfied provided a further condition is satisfied
by the exponents, i.e. :

αn−1 +
1

3
(βn−1 + γn−1) ≤ 1 . (5.20)

To summarize, so far we have shown that if, up to n− 1 loops, inequality Eq. (5.20)
is satisfied, then, at the n-th loop, Eq. (5.19) is also satisfied. To complete the
recursive proof, we must argue that Eq. (5.20) is also satisfied at n-loops. For the
loop contribution we are discussing, we have

αn +
1

3
(βn + γn) =

5

3

[
αn−1 +

1

3
(βn−1 + γn−1)− 1

2

]
≤ 5

6
< 1 , (5.21)

and Eq. (5.20) is indeed satisfied.

One may wonder whether there are other ways of distributing the exponents which
could violate Eq. (5.19). For instance, one can try to maximize αn by distributing
αn−1 in two of the vertices to run along the internal loop. However, one can check
that Eq. (5.20) still remains valid.

The final point is that the sum of the exponents is maximized by distributing the
largest exponents to all the external momentum, thereby ensuring that Eq. (5.14)
follows from Eq. (5.19). While we do not yet have a rigorous proof of these above
arguments, in all the cases we have looked at so far, the inequalities, Eq. (5.14),
Eq. (5.19) and Eq. (5.20) seem to hold up.

6 Summary & future research directions

In this paper, we studied the quantum loops for an infinite-derivative scalar field the-
ory action as a toy model to mimic the UV properties of the BGKM gravity [24], which
is ghost-free at tree-level (see [38] for a discussion of unitarity in infinite-derivative
theories). Expanding the BGKM action around the Minkowski vacuum, one can ob-
tain, for instance, the “free” part that determines the propagator from the O(h2)
terms, while the O(h3) terms determines the cubic interaction vertices. Unfortu-
nately, O(h3) terms are technically challenging and some of the expression involves
double sums. Instead of getting involved with too many technicalities, we therefore
chose to work with a simple toy model action, Eq. (2.23), that respects a combination
of the shift and scaling symmetry at the level of equation of motion that lets us cap-
ture some of the essential features of BGKM gravity such as the compensating nature
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of the exponential suppression in the propagator and the exponential enhancement
in the vertex factor.

Of course, in order to formulate a consistent, UV-complete nonlocal theory of
quantum gravity, we should discuss the spin-2 part of the graviton propagator (the
corresponding exponential enhancements from the vertices would also include rank-2
tensors). The current paper merely captures some aspects of an infinite-derivative
theory of gravity. By no means is our current analysis complete and can only be con-
sidered as a step towards formulating a nonlocal infinite-derivative theory of gravity.
However, there is a general belief that nonlocality may be able to tame the quantum
divergences in gravity that remain one of the outstanding challenges of theoretical
physics.

Higher-derivative theories, typically, suffer from the problem of ghosts of the
Ostrogradsky instabilities, as discussed quite elaborately by Eliezer & Woodard in
Ref. [26]. The ghosts typically arise as extra poles in the propagator, while the Os-
trogradsky argument relies on having a highest “momentum” associated with the
highest derivative in the theory in which the energy is seen to be linear, as opposed
to quadratic. However, the “BGKM” model contains an infinite set of derivatives
where no such highest momentum operator can be readily identified, nor are their
any extra poles in the propagator which could correspond to new degrees of freedom
ghosts or otherwise. This is the reason why we believe that the BGKM theory may
be ghost-free. We would like to note that the presence of ghosts typically shows up
as classical instabilities. So far, our studies involving certain classical cosmological
backgrounds, Ref. [21], have shown that the perturbations remain under control and
do not show any instabilities. Also, we are currently investigating the issue of uni-
tarity more explicitly by looking into scattering processes and revisiting the optical
theorem for these theories as there remain certain technical and subtle considerations
involving analytic continuation and the use of Cauchy Principal Value theorem.

Even in ordinary field theory, integrals are irregular and one always needs to come
up with prescriptions (such as Wick rotation or the iε prescription) to make sense of
the integrals. In other words, quantum field theories have to be supplemented with
rules that define what an integral is as the usual rules simply don’t work. The same
is true for the nonlocal models, in fact, largely our paper can be thought of as an
attempt to find prescriptions/defining rules that makes the loop integrals well defined
and hopefully (after renormalization of the 1-loop divergences) finite. All we can say
is that, so far, in the loops that we have looked at, our prescription seems to be giving
us well defined results which bodes well for future. Whether these prescriptions can
be carried forward to higher and higher loops and in the actual theory of gravity
obviously remains an open question.

We derived the Feynman rules for our toy model action, i.e., the propagator and
the vertex factors. Consequently, we computed the 1-loop, 2-point diagram, both
with zero and arbitrary external momenta, which gives a Λ4 divergence, where Λ is a
momentum cutoff. The 2-loop diagrams with zero external momenta also give a Λ4
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divergence, suggesting that we do not get new divergences as we proceed from 1-loop
to 2-loop. We repeated our 1-loop and 2-loop computations with external momenta,
and we paid extra care in understanding the 1-loop, 2-point function which appears as
a subdivergence in higher-loop diagrams. Typically, in the 1-loop, 2-point function,

we obtain a e
3p̄2

2 external momentum dependence in the UV which indicates that,
for p̄2 → ∞, the 1-loop, 2-point function tends to infinity. This may appear as an
initial setback, but, actually, this external momentum dependence is what, we believe,
makes all higher-loop and higher-point diagrams finite once the bare propagators are
replaced with the dressed propagators.

This becomes possible because the exponential suppression in the dressed prop-
agator overcomes the exponential enhancement originating from the vertices. The
1-loop, N -point functions with zero external momenta become UV-finite, as do the
2-loop integrals for vanishing external momenta. We believe that, even in the case
of arbitrary external momenta, our results will not change; the higher-loop diagrams
also become UV-finite with the use of the dressed propagators. The basic reason is
that, even for the 1-loop diagrams, the suppression coming from the propagators is
stronger than the enhancements coming from the vertices. This ensures two things -
first, it makes the loops finite and, second, the UV growth of the finite diagrams with
respect to the external momenta becomes weaker in every subsequent loops. Thus,
finiteness of higher loops is ensured recursively.

To illustrate this general argument, we considered the finiteness of n-loop, 2-point
and 3-point diagrams that can be constructed out of lower-loop 2-point and 3-point
diagrams. We found strong arguments, but not rigorous proofs, to support that, once
the 1-loop divergences are tamed, all other higher-loop and higher-point functions
may become finite. Whether these results can be transferred to a complete theory of
gravity is indeed an open question, but it is a question worth exploring, at the very
least. This is already an encouraging sign for an infinite-derivative action of scalar
toy model, which can now make higher loops finite, giving us a ray of hope to tackle
the problem in full glory for the BGKM gravity. However, as a future computation,
it would be interesting to first demonstrate that the finiteness of the diagrams hold
to all orders in loops for any N -point diagrams. A full proof even for an infinite-
derivative toy model is beyond the scope of this current paper, and we will carry on
this computation elsewhere.
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8 Appendices

A The BRST-invariant gravitational action and

superficial degree of divergence

If we consider metric fluctuations around the Minkowski background,

gµν = ηµν + hµν , (A.1)

within the harmonic gauge, we can define the quantum theory with:

∂ν h̄
µν = 0 , (A.2)

where

h̄µν = hµν −
1

2
ηµνh⇒ h̄µν = hµν − 1

2
ηµνh . (A.3)

h̄µν is called the trace-reverse of hµν since h̄ = ηµν h̄µν = −h, where h = ηµνhµν . Note
that hµν = ηµρηνσhρσ ⇒ h̄µν = ηµρηνσh̄ρσ. Furthermore, hµν = h̄µν − 1

2
ηµν h̄.

The quantized BGKM action must contain:

Squantized = S + SGF + Sghost

= SEH + SQ +
1

2ξ

∫
d4xFτF(�)F τ +

∫
d4x C̄τ ~F

τ
µνD

µν
α C

α . (A.4)

where S = SEH + SQ is the gravitational action (see Eq. (2.6)), SEH is given by
Eq. (2.7) and SQ is given by Eq. (2.8). SGF is the gauge-fixing term and Sghost is the

ghost-antighost action while ξ is a finite parameter. We have that F τ = ~F τ
µνh

µν and
~F τ
µν = δτµ

~∂ν − 1
2
δτση

σρηµν~∂ρ (the arrow indicates the direction in which the derivative
acts). Cσ is the ghost field and C̄τ is the antighost field; both are anticommuting.
Dµν
α is the operator generating gauge transformations in the graviton field hµν , given

an arbitrary infinitesimal vector field ξα(x) (corresponding to x
′µ = xµ − ξµ).

That is, δhµν = δgµν = Lξgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gρν∂µξ

ρ = Dµναξ
α, where L

is the Lie derivative and

Dµναξ
α = ∂µξν + ∂νξµ + hαν∂µξ

α + hµα∂νξ
α + ξα∂αhµν .

Accordingly,
Dµνα = ηαν∂µ + ηµα∂ν + hαν∂µ + hµα∂ν + ∂αhµν . (A.5)

We can raise indices in (A.5) using the Minkowski tensors.
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Moreover, F is an analytic function of �:

F(�) =
∞∑
n=0

fn�
n , (A.6)

where fn are real coefficients.

If we change the gauge-fixing term to read F τ = eτ (x) [46], with eτ (x) an arbitrary
4-vector function, we can smear out the gauge condition with a weighting functional.
Choosing the weighting functional

ω(eτ ) = exp

[
i

(
1

2ξ

∫
d4x eτF(�)eτ

)]
, (A.7)

where ξ is a finite parameter, we obtain the gauge-fixing term (see [28, 46] for a
derivation of the gauge-fixing term in non-local theories),

SGF =
1

2ξ

∫
d4xFτF(�)F τ . (A.8)

The ghost-antighost action is given by

Sghost =

∫
d4x C̄τ ~F

τ
µνD

µν
α C

α , (A.9)

following the usual prescription [55, 56].

Hereafter, repeated indices denote both summation over the discrete values of the
indices and integration over the spacetime arguments of the functions or operators
indexed.

The BRST transformations for Yang-Mills theories express a residual symmetry
of the effective action which remains after the original gauge invariance has been
broken by the addition of the gauge-fixing and ghost action terms [46]. The BRST
transformations for BGKM gravity, appropriate for the gauge-fixing term, SGF, are
given by

δBRSTh
µν = Dµν

α C
αδλ , (A.10)

δBRSTC
α = −∂βCαCβδλ , (A.11)

δBRSTC̄τ =
1

ξ
F(�)Fτδλ , (A.12)

where δλ is an infinitesimal anticommuting constant parameter. The BRST trans-
formation of the gravitational field is just a gauge transformation of hµν generated
by Cαδλ; thus, gauge-invariant functionals of hµν , like S, are BRST-invariant. The
transformation of Cσ is nilpotent,

δBRST(∂βC
σCβ) = 0 , (A.13)
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while the transformation of hµν is also nilpotent:

δBRST(D
µν
α C

α) = 0 . (A.14)

Since the only part of the ghost action which varies under the BRST transformations
is the antighost, C̄τ , we have chosen the BRST transformation of the antighost such
that the variation of the ghost action cancels the variation of the gauge-fixing term.
Hence, Squantized is BRST-invariant.

If we also include BRST-invariant couplings of the ghosts and gravitons to some
external fields Kµν (anti-commuting) and Lσ (commuting), we obtain the effective

action S̃, as:
S̃ = Squantized +KµνD

µν
α C

α + Lσ∂βC
σCβ , (A.15)

where S̃ is also BRST-invariant.

Now, we want to compute the superficial degree of divergence for the BRST-
invariant BGKM action, where we have made the choices F3(�) = 0 & F1(�) =
e−�/M2−1

� = −F2(�)
2

in Eqs. (2.8), (2.9) and F(�) = e−�/M
2
. To proceed, let us

introduce the following notations:

• nh is the number of graviton vertices,

• nG is the number of anti-ghost-graviton-ghost vertices,

• nK is the number of K-graviton-ghost vertices,

• nL is the number of L-ghost-ghost vertices,

• Ih is the number of internal graviton propagators,

• IG is the number of internal ghost propagators,

• EC is the number of external ghosts,

• EC̄ is the number of external anti-ghosts.

By counting the exponential contributions of the propagators and the vertex factors,
as discussed in section 2.2, we can now obtain the superficial degree of divergence,
which is given by

E = nh − Ih , (A.16)

where nh is the number of graviton vertices, and Ih is the number of internal graviton
propagators. By using the following topological relation,

L = 1 + Ih + IG − nh − nG − nK − nL , (A.17)

we get
E = 1− L+ IG − nG − nK − nL . (A.18)
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Employing the momentum conservation law for ghost and anti-ghost lines,

2IG − 2nG = 2nL + nK − EC − EC̄ , (A.19)

we obtain

E = 1− L− 1

2
(nK + EC + EC̄) . (A.20)

Note that, as nK , EC and EC̄ increase, the degree of divergence decreases. Therefore,
the most divergent diagrams are those for which nK = EC = EC̄ = 0, i.e. , the
diagrams whose external lines are all gravitons. In this case, the degree of divergence
is given by: E = 1−L. For L ≥ 2, E < 0 and the corresponding loop amplitudes are
superficially convergent.

B Types of terms originating from the gravita-

tional action

If we compute the O(h3) part of the Einstein-Hilbert action, SEH (see Eq. (2.7)), we
obtain the following type of term:

h∂µh∂
µh . (B.1)

Now, let us compute the O(h3) part of the BGKM action, SQ (see Eq. (2.8)), keeping
in mind that

√
−g = 1 + 1

2
h+ 1

8
h2 − 1

4
hµνh

ν
µ +O(h3), where h = hµµ = ηµνhµν .

We shall need the following relation for the double sums appearing in the last two
lines of Eq. (B.3), see below:

Tδ(�n)S =
n−1∑
m=0

�mTδ(�)�n−m−1S , (B.2)

where n ≥ 1. δ (�) indicates the variation of the � operator and δ (�n) indicates the
variation of the �n operator. S and T are tensors constructed out of the Riemann
curvatures and the metric.

Then, by applying integration by parts where appropriate,

S
(3)
Q =

∫
d4x

1

2
h
[
R(1)F1(�)R(1) +R(1)

µνF2(�)R(1)µν +R
(1)
µνλσF3(�)R(1)µνλσ

]
+

∫
d4x

[
2R(2)F1(�)R(1) +R(1)

µνF2(�)R(2)µν +R(2)
µνF2(�)R(1)µν

+ R
(1)
µνλσF3(�)R(2)µνλσ +R

(2)
µνλσF3(�)R(1)µνλσ

]
+
∞∑
n=1

n−1∑
m=0

∫
d4x

[
f1n�

mR(1)δ(�)�n−m−1R(1) + f2n�
mR(1)

µν δ(�)�n−m−1R(1)µν

+ f3n�
mR

(1)
µνλσδ(�)�n−m−1R(1)µνλσ

]
, (B.3)
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where Fi(�) =
∑∞

n=0 fin�
n, i = 1, 2, 3, and � = ηµν∂µ∂ν . We have that Rρ

σµν =
∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. Moreover, Rµν = Rσ

µσν and R = gµνRµν .

When we lower or raise an index in the Riemann tensors, that is always done with
the use of

gµν = ηµν + hµν

and
gµν = ηµν − hµν + . . . ,

respectively. For instance, R(2)µν = ηµρηνσR
(2)
ρσ − 2ηµρhνσR

(1)
ρσ and R(2) = ηµνR

(2)
µν −

hµνR
(1)
µν . Let us mention that

R
(1)
µνλσ =

1

2
(∂ν∂λhµσ + ∂µ∂σhνλ − ∂µ∂λhνσ − ∂ν∂σhµλ) , (B.4)

R(1)
µν =

1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν

)
, (B.5)

R(1) = ∂µ∂νh
µν −�h . (B.6)

Following the same method, we can derive the O(h2) expressions for the Riemann
tensors.

The terms involving double sums give rise to technical complications when evalu-
ating the Feynman loop integrals. While several F ’s can satisfy Eq. (2.10), following
BGKM [24], we have:

a(�) = e−�/M
2

& F3(�) = 0⇒ F1(�) =
e−�/M

2 − 1

�
= −F2(�)

2
, (B.7)

a(�) having been defined in Eq. (2.11) and M being a mass scale at which the
infinite-derivative modifications become important. Hence, we obtain a ghost-free,
infinite-derivative quantum gravitational action, given by Ref. [24, 25]

SQG =

∫
d4x
√
−g

{
R

2
+R

[
e−�/M

2 − 1

�

]
R− 2Rµν

[
e−�/M

2 − 1

�

]
Rµν

}
. (B.8)

Making these assumptions and enforcing a conformal flatness condition, hµν =
Ω2(x) ηµν , where Ω(x) is a smooth, strictly positive function (Ω2 = h/4 in four-
dimensional spacetime), in order to get scalar-type gravitational terms, we obtain the
following types of O(h3) terms:

∂µh∂νh

(
a(�)− 1

�

)
∂µ∂νh , ∂ρh∂

ρh

(
a(�)− 1

�

)
�h ,

h∂µ∂νh

(
a(�)− 1

�

)
∂µ∂νh , h�h

(
a(�)− 1

�

)
�h . (B.9)

Inspired by the BGKM action (B.8), we wish to construct a scalar field theory toy
model that will capture its essential properties and behaviour. After integration by
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parts, the terms in Eq. (B.9) which are relevant to the construction of such a scalar
field theory toy model, are

h∂µh∂
µh , h�ha(�)h , h∂µha(�)∂µh . (B.10)

Therefore, if we choose the free part, Sfree, of the action of our scalar field theory
toy model (φ is the scalar field) of Eq. (2.18) (so that the propagator shall have an
exponential suppression), the interaction part, Sint, will be of the form

Sint =
1

Mp

∫
d4x (α1φ∂µφ∂

µφ+ α2φ�φa(�)φ+ α3φ∂µφa(�)∂µφ) , (B.11)

where α1, α2 and α3 are real coefficients.

C Arriving at the toy model action

We start with

Sfree =
1

2

∫
d4x (φ�a(�)φ) (C.1)

and

Sint =
1

Mp

∫
d4x (α1φ∂µφ∂

µφ+ α2φ�φa(�)φ+ α3φ∂µφa(�)∂µφ) . (C.2)

We want the equation of motion of Sscalar = Sfree + Sint to satisfy the following
symmetry: φ → (1 + ε)φ + ε. This requirement will fix the values of the coefficients
α1, α2 and α3.

After integrating by parts, we can write Sfree and Sint, as follows:

Sfree =

∫
d4x

(
1

2
φ�φ+

1

2
φã(�)φ

)
, (C.3)

Sint =

∫
d4x [(α1 + α3 − 2α2)φ∂µφ∂

µφ+ α2φ�φã(�)φ+ α3φ∂µφã(�)∂µφ] , (C.4)

where
ã(�) = a(�)− 1 . (C.5)

Hence, Sscalar can be written as

Sscalar =

∫
d4x

(
1

2
φ�φ+

1

Mp

(α1 + α3 − 2α2)φ∂µφ∂
µφ

)
+

∫
d4x

(
1

2
φã(�)φ+

1

Mp

(α2φ�φã(�)φ+ α3φ∂µφã(�)∂µφ)

)
. (C.6)
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Each of the two lines in Eq. (C.6), when considered separately, should have invariant
equations of motion under the symmetry: φ→ (1 + ε)φ+ ε. Let us write Sscalar as

Sscalar = S1 + S2 , (C.7)

where S1 is the first line in (C.6), and S2 is the second line in (C.6).

If we vary S1, we obtain

δS1 =

∫
d4x

(
εφ�φ+

ε

2
�φ+

1

Mp

(3ε (α1 + α3 − 2α2)φ∂µφ∂
µφ+ ε (α1 + α3 − 2α2) ∂µφ∂

µφ)

)
=

∫
d4x

(
ε (1 + 2α2 − α1 − α3)φ�φ+

3ε

Mp

(α1 + α3 − 2α2)φ∂µφ∂
µφ

)
, (C.8)

up to a total divergence and after integrating by parts, it should be proportional to
S1. Therefore, we should have

1 + 2α2 − α1 − α3 =
3

2
. (C.9)

Now, varying S2 yields

δS2 =

∫
d4x

(
εφ�ã(�)φ+

ε

2
�ã(�)φ+

3ε

Mp

α2φ�φã(�)φ+ εα2�φã(�)φ

+
3ε

Mp

α3φ∂µφã(�)∂µφ+ εα3∂µφã(�)∂µφ

)
=

∫
d4x

(
ε (1 + α2 − α3)φ�ã(�)φ+

1

Mp

(3εα2φ�φã(�)φ+ 3εα3φ∂µφã(�)∂µφ)

)
,

(C.10)

up to a total divergence and after integration by parts. Again, it should be propor-
tional to the original action, so

1 + α2 − α3 =
3

2
. (C.11)

From Eqs. (C.9) & (C.11), we get

α1 = α2 = −α3 =
1

4
. (C.12)

As a result,

Sint =
1

Mp

∫
d4x

(
1

4
φ∂µφ∂

µφ+
1

4
φ�φa(�)φ− 1

4
φ∂µφa(�)∂µφ

)
. (C.13)
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D Loop integrals

D.1 1-loop integrals with arbitrary external momenta

To compute 1-loop, 2-point integral with arbitrary external momenta, p and −p, we
have: ∫

d4k

(2π)4
f(p, k) , (D.1)

where f is a function of the external momentum p, and the loop momentum k. We
analytically continue the integrand, so that we can work in the Euclidean space,

d4k → i d4k , k2 → k2
E , p · k → (p · k)E , p2 → p2

E , (D.2)

since k0 → ik0, and p0 → ip0
14. Then, by spherical symmetry, we express d4kE, as

4πk3
E

√
1− x2 dx dkE , (D.3)

where x is the angle between pE and kE. We assume pE to be the z-axis, so pE · kE =
pE kE x and pE & kE are the norms of pE and kE.

We then integrate with respect to x from −1 to 1. If the integral converges, we
subsequently integrate with respect to kE from 0 to ∞. If the integral diverges, we
integrate with respect to kE from 0 to Λ, where Λ is the momentum cutoff.

D.2 2-loop integrals with zero external momenta

Let us compute the integral resulting in Eq. (3.22). The integral is given by:∫
d4k1

(2π)4

d4k2

(2π)4

(k2
1 + k2

2 + k2
3)2

16M4
pk

2
1k

2
2k

2
3

ek
2
1/2M

2

e−(k2−k3)2/2M2

. (D.4)

This can be written as

1

16M4
p

∫ Λ

0

da

∫ ∞
0

db

∫ 1

−1

dx

√
1− x2 (4πa32π2b3)

(
3a2

2
+ b2

2

)2

exp
(

a2

2M2

)
exp

(
− b2

2M2

)
16(2π)8a2 1

4
(a2 + b2 + 2abx) 1

4
(a2 + b2 − 2abx)

,

(D.5)
where x is the cosine of the angle between k1 and k2 − k3, a is the norm of k1 in the
Euclidean space, and b is the norm of k2−k3 in the Euclidean space. The factor 1/16

in front of the integral is the Jacobian
(

1
2

)4
.

Integrating with respect to x from −1 to 1, we get

1

2048π5M4
p

∫ Λ

0

da

∫ ∞
0

db
π (a2 + b2 − (a+ b) |a− b|)

4a2b2 (a2 + b2)
ab3
(
3a2 + b2

)2
exp

(
a2

2M2

)
exp

(
− b2

2M2

)
.

(D.6)

14In Minkowski space (mostly plus metric signature), k2 = −k20 + ~k2, where ~k2 = k21 + k22 + k23.

After analytic continuation, k2E = k24 + ~k2, where k4 = −ik0.
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The integration with respect to b is split into two parts: i) from 0 to a and ii) from
a to ∞. The first part becomes (a2 + b2 − (a+ b)(a− b) = 2b2)

1

4096π4M4
p

∫ Λ

0

da

∫ a

0

db
b3

a(a2 + b2)

(
3a2 + b2

)2
exp

(
a2

2M2

)
exp

(
− b2

2M2

)
(D.7)

and gives

1

4096π4M4
p

∫ Λ

0

da
−2

a

(
M2

(
a2M2

(
7− 5e

a2

2M2

)
− 4M4

(
e

a2

2M2 − 1

)
+ a4

(
5− 2e

a2

2M2

))
+a6e

a2

M2Ei

(
− a2

M2

)
− a6e

a2

M2Ei

(
− a2

2M2

))
. (D.8)

The second part becomes (a2 + b2 − (a+ b)(b− a) = 2a2)

1

4096π4M4
p

∫ Λ

0

da

∫ ∞
a

db
ab

a2 + b2

(
3a2 + b2

)2
exp

(
a2

2M2

)
exp

(
− b2

2M2

)
(D.9)

and gives

1

4096π4M4
p

∫ Λ

0

da
1

4
a

(
24a2M2 + 8M4 − 8a4e

a2

M2Ei

(
− a2

M2

))
. (D.10)

In (D.8), there are (four) terms which diverge exponentially; those terms
are the terms in the integrand involving −5ea

2/2M2
, ea

2/2M2 − 1, −2ea
2/2M2

and
−a6ea

2/M2
Ei(−a2/2M2). For those terms, we first write M2 = −M̃2 and then ana-

lytically continue back the integrals to obtain them as a function of M2 15. We should
mention that we get Λ4, Λ2 and log

(
Λ
M

)
divergences after we apply that prescription

in (D.8). The full result is

M2

8192π4M4
p

(
−4Λ4 − 4(5 + γ)M4 − 18Λ2M2 − 2e

Λ2

M2
(
Λ4 − 2Λ2M2 + 2M4

)
Ei

(
− Λ2

M2

)
+ 8M4

(
1

2
Ei

(
− Λ2

2M2

)
+ log

(
2M

Λ

))
+ 20M4e−

Λ2

2M2 − 4Λ2M2e−
Λ2

2M2

+4Λ2M2e−
Λ2

M2Ei

(
Λ2

2M2

)
+ 2Λ4e−

Λ2

M2Ei

(
Λ2

2M2

)
+ 4M4e−

Λ2

M2Ei

(
Λ2

2M2

))
.

(D.11)

15We note that the loop integrals in the type of nonlocal theories we are considering are always ill-
defined in Minkowski space-time; this is because a term such as e−p

2/M2

= ep
2
0/M

2

e−p
2
i /M

2

is always
divergent either in the space or the time direction depending upon the sign of M2. Thus, these
integrals only make sense once appropriately “Euclideanized” and then analytically continued back
to Minkowski space-time. While going to Euclidean space, we always have a choice, either t → it,
or x → ix, and that depends on the overall sign of the exponents. When we write M2 = −M̃2 in
appendix D.2, we simply mean that rather than t → it, we choose x → ix. And, as we have now
checked, once the integrals are evaluated correctly, we do not find any inconsistencies, all the loop
amplitudes are purely imaginary leading to terms that are real in the effective action. Perhaps it
is also worth pointing out that the analytic continuations followed here is not new, and has been
used in previous nonlocal quantum field theory literature with consistent results. In particular, in
both [40, 44], it was also shown that, in the M2 → ∞ limit, one recovers the local field theory
results, as it should.
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Integrating (D.10) with respect to a from 0 to Λ yields

M2

8192π4M4
p

(
−2e

Λ2

M2
(
Λ4 − 2Λ2M2 + 2M4

)
Ei

(
− Λ2

M2

)
+ 4Λ4 + 8M4 log

(
Λ

M

)
+4γM4 − 2Λ2M2

)
. (D.12)

Summing (D.11) and (D.12), we obtain

M2

2048π4M4
p

(
−e

Λ2

M2
(
Λ4 − 2Λ2M2 + 2M4

)
Ei

(
− Λ2

M2

)
− 5M2

(
Λ2 +M2

)
+ 2M4

(
1

2
Ei

(
− Λ2

2M2

)
+ log(2)

)
+ 5M4e−

Λ2

2M2 − Λ2M2e−
Λ2

2M2

+Λ2M2e−
Λ2

M2Ei

(
Λ2

2M2

)
+

1

2
Λ4e−

Λ2

M2Ei

(
Λ2

2M2

)
+M4e−

Λ2

M2Ei

(
Λ2

2M2

))
.

(D.13)

If we expand (D.13) for large Λ, we get a quadratic divergence as expected:

M4

2048π4M4
p

(
M2 (log(4)− 8)− 4Λ2

)
. (D.14)

E Dimensional regularization

If we want to regulate dimensionally an integral, we should follow a certain procedure,
see Refs. [58, 59, 60]. First, we make the following replacement:∫

d4k

(2π)4

g(p, k)

h(p, k)
→
∫

ddk

(2π)d
g(p, k)

h(p, k)
, (E.1)

as we now wish to perform the integral in d dimensions, where d is an arbitrary
complex number. Then we express the terms appearing in the denominator h(p, k)
as integrals, using the following relation for positive x:

1

x
=

∫ ∞
0

dα e−αx ; (E.2)

α is called a Schwinger parameter. We complete the square in the exponent of the
integrand and then shift the loop momentum variable, so we just have to perform a
Gaussian integral. Regarding the numerator g(p, k), we accordingly shift the loop mo-
mentum variable (the integration measure is invariant) in order to be consistent, and
drop terms linear in the (shifted) k as they integrate symmetrically to 0. In the con-
text of dimensional regularization, we can also make the replacement kµkν → δµνk2

d
,

when evaluating the loop integrals (in Euclidean space, after analytic continuation).
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For the sake of convenience, let us list the following generalized Gaussian integrals
(a > 0) in d-dimensional Euclidean space, where d is a complex parameter [58]:∫

ddk

(2π)d
exp

[
−ak2

]
=

1

(4πa)d/2
, (E.3)

∫
ddk

(2π)d
kµ exp

[
−ak2

]
= 0 , (E.4)∫

ddk

(2π)d
kµkν exp

[
−ak2

]
=

δµν
2a(4πa)d/2

, (E.5)∫
ddk

(2π)d
k2 exp

[
−ak2

]
=

d

2a(4πa)d/2
, (E.6)∫

ddk

(2π)d
kµkνkρ exp

[
−ak2

]
= 0 , (E.7)∫

ddk

(2π)d
kµkνkρkσ exp

[
−ak2

]
=
δµνδρσ + δµρδνσ + δµσδνρ

4a2(4πa)d/2
, (E.8)∫

ddk

(2π)d
k4 exp

[
−ak2

]
=

d(d+ 2)

4a2(4πa)d/2
, (E.9)

where kµ is a vector in d-dimensional Euclidean space. Partial differentiation of (E.3)
with respect to a yields the other formulae. All integrals involving odd powers of k
vanish.

After the Gaussian integration, there are only some parameter integrals remaining.
For instance, if there are two parameter integrals remaining

∫∞
0

dα1

∫∞
0

dα2, we can
make the following substitutions:

α1 + α2 = s , α1 = sα , α2 = s(1− α) , (E.10)

where 0 < s <∞ and 0 < α < 1 while dα1dα2 = s ds dα.

If the integral we are trying to regulate dimensionally is very complicated, we may
follow an alternative procedure. We can employ the following relation for the volume
element of a d− 1-dimensional surface:

dΩd = dΩd−1

(
1− z2

) d−3
2 dz , (E.11)

where z ≡ cos(θ) (θ may be defined to be the angle between p and k in 1-loop
Feynman integrals with arbitrary external momenta or the angle between k1 and k2

in 2-loop Feynman integrals with the external momenta set equal to zero) and dΩd

denotes the differential solid angle of the d-dimensional unit sphere:

dΩd = sind−2(φd−1) sind−3(φd−2) · · · sin(φ2)dφ1 · · · dφd−1 , (E.12)

where φi is the angle to the i-th axis, with 0 ≤ φ1 < 2π and 0 ≤ φi < π for i > 1 [59].
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Then we can use ∫
ddk =

∫
dΩd

∫
kd−1dk . (E.13)

and, subsequently, insert Eq. (E.11), for which

Ωd−1 =

∫
dΩd−1 =

2π
(d−1)

2

Γ
(
d−1

2

) ; (E.14)

Γ(x) is the Gamma function.

After all the Gaussian integrals and as many as possible of the parameter integrals
have been carried out, we write d as d = 4− ε and, then, perform a series expansion
in ε about 0. To make the result dimensionally correct, we may have to multiply it by
factors of M ε, where M is a mass scale at which the non-local modifications become
important. If we get a pole in ε, say 1

ε
, this means we have a divergence. Otherwise,

the integral is finite within the framework of dimensional regularization; this does not
necessarily mean that the integral is convergent in the conventional sense.
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