
Economic Theory manuscript No.
(will be inserted by the editor)

Price Caps, Oligopoly, and Entry

Stanley S. Reynolds · David Rietzke

Received: May 8th, 2015 / Accepted: February 11, 2016

Abstract We extend the analysis of price caps in oligopoly markets to allow for sunk
entry costs and endogenous entry. In the case of deterministic demand and constant
marginal cost, reducing a price cap yields increased total output, consumer welfare,
and total welfare; results consistent with those for oligopoly markets with a fixed
number of firms. With deterministic demand and increasing marginal cost these com-
parative static results may be fully reversed, and a welfare-improving cap may not
exist. Recent results in the literature show that for a fixed number of firms, if demand
is stochastic and marginal cost is constant then lowering a price cap may either in-
crease or decrease output and welfare (locally); however, a welfare improving price
cap does exist. In contrast to these recent results, we show that a welfare-improving
cap may not exist if entry is endogenous. However, within this stochastic demand en-
vironment we show that certain restrictions on the curvature of demand are sufficient
to ensure the existence of a welfare-improving cap when entry is endogenous.
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1 Introduction

Price ceilings or caps are relevant in many areas, including: electricity markets, phar-
maceuticals, interest on loans and credit, telecommunications services, taxi services,
and housing in urban areas. Price caps are common in pharmaceutical markets outside
the United States such as in India, where legislation passed in 2013 that significantly
expanded the number of drugs facing price cap regulation.1 Regulators have imposed
price caps in a number of U.S. regional wholesale electricity markets, including ER-
COT (Texas), New England, and PJM. A key goal for price caps in wholesale elec-
tricity markets is to limit the exercise of market power. The principle that a price cap
can limit market power is well understood in the case of a monopolist with constant
marginal cost in a perfect-information environment. A price cap increases marginal
revenue in those situations where it is binding and incentivizes the monopolist to in-
crease output. Total output, consumer surplus, and total welfare increase as the cap
decreases towards marginal cost.

Recent papers by Earle et al. [2007] (hereafter, EST) and Grimm and Zottl [2010]
(hereafter, GZ) examine the effectiveness of price caps in oligopoly markets with con-
stant marginal cost. EST show that while the classic monopoly results for price caps
carry over to Cournot oligopoly when demand is certain, these results do not hold
under demand uncertainty.2 In particular, they show that when firms make output de-
cisions prior to the realization of demand, total output, welfare, and consumer surplus
may be locally increasing in the price cap. This result would seem to raise into ques-
tion the effectiveness of price caps as a welfare-enhancing policy tool. However, GZ
demonstrate that, within the framework of Cournot oligopoly with uncertain demand
analyzed by Earle, et al., there exists an interval of prices such that any price cap in
this interval increases both total market output and welfare compared to the no-cap
case. Thus, while the standard comparative statics results of price caps may not hold
with uncertain demand, there always exists a welfare-improving price cap.

Importantly, prior analyses of oligopoly markets with price caps assume that the
number of firms is held fixed. Yet an important practical concern with the use of
price caps is that a binding cap may decrease the profitability of an industry, deter
potential market entrants, and thereby reduce competition. Once entry incentives are
taken into account, the efficacy of price caps for limiting the exercise of market power
and improving welfare is less clear. In this paper we explore the welfare impact of
price caps, taking firm entry decisions into consideration. We modify the analyses of
EST and GZ by introducing an initial market entry period prior to a second period of
product market competition. Market entry requires a firm to incur a sunk cost. The
inclusion of a sunk entry cost introduces economies of scale into the analysis. This

1 http://in.reuters.com/article/2014/06/24/india-pharmaceuticals-idINKBN0EZ0CT20140624
2 Garcia and Stacchetti [2011] analyze the impact of price caps in a dynamic duopoly model of capacity

investment, uncertain demand, and bidding that captures key features of wholesale electricity markets.
They find that investment incentives are weak due to seller market power, and that price caps are not an
effective tool to incentivize additional investment.

http://in.reuters.com/article/2014/06/24/india-pharmaceuticals-idINKBN0EZ0CT20140624
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would seem to be a natural formulation, since an oligopolistic market structure in a
homogeneous product market may well be present because of economies of scale.3

Given the prominent use of price caps as a regulatory tool in settings with multiple
suppliers, an analysis that fails to consider their impact on market entry decisions may
be missing a vital component. We show that when entry is endogenous, demand is
deterministic, and marginal cost is constant, the standard comparative statics results
continue to hold. In this case, a price cap may result in fewer firms, but the incentive
provided by the cap to increase output overwhelms the incentive to withhold output
due to a decrease in competition. It follows that, regardless of the number of firms that
enter the market, output increases as the cap is lowered. Welfare gains are realized on
two fronts. First, the cap increases total output. Second, the cap may deter entry, and
in doing so, reduce the total cost associated with entry.

We also consider the case of increasing marginal costs of production. When cou-
pled with our sunk entry cost assumption, increasing marginal cost yields a U-shaped
average cost curve for each active firm. The standard comparative statics results hold
for a range of caps when the number of firms is fixed; a lower cap within this range
yields greater output and higher welfare. However, these comparative statics results
need not hold when entry is endogenous. In fact, we show that if marginal cost rises
sufficiently rapidly relative to the demand price elasticity, then the standard compar-
ative statics results may be fully reversed; welfare and output may monotonically
decrease as the cap is lowered. In contrast to results for a fixed number of firms, it
may be the case that any price cap reduces total output and welfare (i.e., there does
not exist a welfare improving cap). We also provide sufficient conditions for the exis-
tence of a welfare-improving cap. These conditions restrict the curvature of demand
and marginal cost.

We then show that a welfare-improving price cap may not exist when demand is
uncertain and entry is endogenous (with firms facing constant marginal cost). Thus,
the results of GZ do not generalize to the case of endogenous entry. On the other
hand, we provide sufficient conditions for existence of a welfare-improving price
cap. These conditions restrict the curvature of inverse demand, which in turn influ-
ences the extent of the business-stealing effect4 when an additional firm enters the
market. We also consider a version of the model with disposal; firms do not have
to sell the entire quantity they produced, but instead may choose the amount to sell
after demand uncertainty has been resolved. We show that the sufficient condition for
existence of a welfare improving price cap for the no-disposal model carries over to
the model with disposal. Our results for the model with disposal are complementary
to results in Lemus and Moreno [2013] on the impact of a price cap on a monopo-
list’s capacity investment. They show that a price cap influences welfare through two
separate channels: an investment effect, and an effect on output choices made after
realization of a demand shock. Our formulation with disposal allows for welfare to
operate through these two channels as well as a third channel; firm entry decisions.

3 Cottle and Wallace [1983] consider a possible reduction in the number of firms in their analysis of a
price ceiling in a perfectly competitive market subject to demand uncertainty. Our interest is in the impact
of price caps in oligopoly markets in which entry is endogenous.

4 The business-stealing effect refers to the tendency of per-firm equilibrium output to decrease in the
number of firms.
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In order to highlight the role of discrete entry decisions in our analysis, we ex-
amine an environment in which the number of firms, n, is continuous. This may
be interpreted as an environment in which the size of firms may easily adjusted.
For the continuous-n case, we provide a sufficient condition under which a welfare-
improving cap exists with either deterministic demand or stochastic demand, allow-
ing for convex costs and free disposal. As in the discrete-n/stochastic demand case,
the sufficient condition restricts the curvature of demand and implies the presence of
the business-stealing effect. The condition is not sufficient to ensure the existence of
a welfare-improving cap when n is discrete, thus highlighting the relevance of the
integer constraint in our model.

Our results imply that policy makers should be aware of the potential impact of
price caps on firm entry decisions. We also bring to light three important consider-
ations for assessing the impact of price caps, which are not apparent in model with
a fixed number of firms. First, our results suggest that industries characterized by a
weak business-stealing effect are less likely to benefit from the imposition of a price
cap than industries where this effect is strong. Second, our results indicate that indus-
tries in which firms face sharply rising marginal cost curves are less likely to benefit
from a price cap, than industries where marginal cost is less steep. Third, our results
suggest that industries in which the size of firms can be easily adjusted are more
likely to benefit from price cap regulation.

Our model of endogenous entry builds on results and insights from Mankiw and
Whinston [1986] and Amir and Lambson [2000]. Mankiw and Whinston show that
when total output is increasing in the number of firms but per-firm output is decreas-
ing in the number of firms (the term for the latter is the business-stealing effect),
the socially optimal number of firms will be less than the free-entry number of firms
when the number of firms, n, is continuous. For discrete n the free entry number of
firms may be less than the socially optimal number of firms, but never by more than
one. Intuitively, when a firm chooses to enter, it does not take into account decreases
in per-firm output and profit of the other active firms. Thus, the social gain from entry
may be less than the private gain to the entrant. Amir and Lambson provide a taxon-
omy of the effects of entry on output in Cournot markets. In particular, they provide
a general condition under which equilibrium total output is increasing in the number
of firms. Our results rely heavily on their approach and results.

2 The Model

We assume an arbitrarily large number, N ∈ N, of symmetric potential market en-
trants, and formulate a two-period game. The N potential entrants are ordered in a
queue and make sequential entry decisions in period one. Each firm’s entry decision
is observed by the other firms. There is a cost of entry K > 0, which is sunk if a firm
enters. If a firm does not enter it receives a payoff of zero.5

5 An alternative formulation involves simultaneous entry decisions in period one. Pure strategy subgame
perfect equilibria for this alternative model formulation are equivalent to those of our sequential entry
model.
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The n market entrants produce a homogeneous good in period two. Each firm
faces a strictly increasing, convex cost function, C : R+ → R+. Output decisions
are made simultaneously. The inverse demand function is given by P(Q,θ) which
depends on total output, Q, and a random variable, θ . The random variable, θ , is con-
tinuously distributed according to CDF F with corresponding density f . The support
of θ is compact and given by Θ ≡ [θ ,θ ]⊂ R. Each firm knows the distribution of θ

but must make its output decision prior to its realization. A regulator may impose a
price cap, denoted p. The following assumption is in effect throughout the paper.

Assumption 1

(a) P is continuous in Q and θ , strictly decreasing in Q for fixed θ , and strictly
increasing in θ for fixed Q.

(b) lim
Q→∞
{QP(Q,θ)−C(Q)}< 0

(c) max
Q∈R+

{QE[P(Q,θ)]−C(Q)}> K

Assumption (1a) matches the assumptions imposed by EST; GZ additionally assume
differentiability of inverse demand in Q and θ . Assumption (1b) ensures that a profit-
maximizing quantity exists for period two decisions.

EST assume that E[P(0,θ)] is greater than marginal cost, which is assumed to
be constant in their analysis. Their assumption ensures that “production is gainful”;
that is, given a fixed number, n > 0, of market participants, there exist price caps
such that equilibrium market output will be strictly positive. Our Assumption (1c) is
a “profitable entry” condition, which guarantees that there exist price caps such that
at least one firm enters the market and that equilibrium output will be strictly positive.
We let P denote the set of price caps which induce at least one market entrant. That
is

P=

{
p > 0 | max

Q∈R+

{QE[min{P(Q,θ), p}]−C(Q)} ≥ K
}

Assumption 1 implies P 6= /0. In this paper we are only concerned with price caps
p ∈ P. We restrict attention to subgame-perfect pure strategy equilibria and focus on
period two subgame equilibria that are symmetric with respect to the set of market
entrants. For a given price cap and a fixed number of firms, there may exist multiple
period two subgame equilibria. As is common in the oligopoly literature we focus
on extremal equilibria - the equilibria with the smallest and largest total output levels
- and comparisons between extremal equilibria. So when there is a change in the
price cap we compare equilibrium outcomes before and after the change, taking into
account the change (if any) in the equilibrium number of firms, while supposing that
subgame equilibria involve either maximal output or minimal output.

One other point to note. Imposing a price cap may require demand rationing.
When rationing occurs, we assume rationing is efficient; i.e., rationed units are al-
located to buyers with the highest willingness-to-pay. This is consistent with prior
analyses of oligopoly with price caps.6

6 Rationing may occur in equilibrium when demand is stochastic. Our propositions regarding welfare-
improving price caps when demand is stochastic build on results from GZ, who assume efficient rationing.
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We denote by Q∗n(p) (q∗n(p)), period two subgame extremal equilibrium total (per-
firm) output7 when n firms enter and the price cap is p. We let π∗n (p) denote each
firm’s expected period two profit in this equilibrium. We also let Q∞

n = Q∗n(∞) be the
period two equilibrium total output when n firms enter with no price cap, and define
q∞

n and π∞
n analogously. Firms are risk neutral and make output decisions to maximize

expected profit. That is, each firm i takes the total output of its rivals, y, as given and
chooses q to maximize

π(q,y, p) = E[qmin{P(q+ y,θ), p}−C(q)]

After being placed in the queue, firms have an incentive to enter as long as their
expected period two equilibrium profit is at least as large as the cost of entry. We
assume that firms whose expected second period profits are exactly equal to the cost
of entry will choose to enter. For a fixed price cap, p, subgame perfection in the
entry period (along with the indifference assumption) implies that the equilibrium
number of firms, n∗, is the largest positive integer less than (or equal to) N such that
π∗n∗(p) ≥ K. Clearly, n∗ exists and is unique. Moreover, for any p ∈ P we also have
n∗ ≥ 1.

3 Deterministic Demand

We begin our analysis by considering a deterministic inverse demand function. That
is, the distribution of θ places unit mass at some particular θ̃ ∈Θ . In this section, we
suppress the second argument in the inverse demand function and simply write P(Q).
We study both the case of constant marginal cost and strictly increasing marginal
cost.

3.1 Constant Marginal Cost

Suppose marginal cost is constant : C(q) = cq, where c ≥ 0. For a given number,
n ∈N, of market participants EST prove the existence of a period two subgame equi-
librium that is symmetric for the n firms. Our main result in this section demonstrates
that the classic results on price caps continue to hold when entry is endogenous; all
proofs are in the Appendix.

Proposition 1 Restrict attention to p ∈ P. In an extremal equilibrium, the number of
firms is non decreasing in the cap, while total output, total welfare, and consumer
surplus are non-increasing in the price cap.

Proposition 1 is similar to Theorem 1 in EST. However, our model takes into
account the effects of price caps on firm entry decisions. As we show in the proof

7 We do not introduce notation to distinguish between maximal and minimal equilibrium output. In
most cases our arguments and results are identical for equilibria with maximal and minimal total outputs.
We will indicate where arguments and/or results differ for the two types of equilibrium.
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of Proposition 1, firm entry decisions are potentially an important consideration as
equilibrium output is non-decreasing in the number of firms (for a fixed cap). This
fact, along with the fact that a lower price cap may deter entry, suggest that a reduction
in the cap could have the effect of lowering the number of firms and reducing total
output. Our result shows that with constant marginal cost and non-stochastic demand,
even if entry is reduced, the incentive for increased production with a cap dominates
the possible reduction in output due to less entry. There are two sources of welfare
gains. First, total output is decreasing in the price cap, so a lower price cap yields
either constant or reduced deadweight loss. Second, a lower price cap may reduce the
number of firms, and thereby decrease the total sunk costs of entry.

In a recent contribution, Amir et al. [2014] show that if demand is log-convex
then, in the absence of a price cap, the free-entry number of firms may be strictly less
than the socially-optimal number of firms. In such instances, one may be particularly
concerned that a price cap that deters entry may lead to a reduction in welfare. It is
worth pointing out, however, that Proposition 1 applies even in this setting. Intuitively,
the incentive provided by the cap to expand output will dominate any potential reduc-
tion in output caused by entry deterrence. The following example, which is based on
Example 1 in Amir et al., illustrates this point.

Example 1 Consider the following inverse demand, and costs:

P(Q) =
1

(Q+1)5 ; c = 0, K = .02592

With no cap, 2 firms enter, total equilibrium output is .6, and the equilibrium
price is approximately .07776. Equilibrium per-firm profit is exactly equal to the cost
of entry, and equilibrium welfare is .16576. Note that the socially-optimal number of
firms without a cap is 3. Any cap, p ∈ (.02302, .07776) results in exactly 1 entrant,
and total output satisfies: P(Q∗(p)) = p; so, Q∗(p) = 1

p5 −1. Any cap in the interval
(.02302, .07776) results in higher total output and welfare than in the absence of a
cap. For instance, a cap equal to .07 results in total output of approximately .70208
and welfare of approximately .19429. As the cap decreases within this interval, it is
easy to see that total output and welfare both (strictly) increase monotonically.

Assumption 1 allows for a very general demand function, and because of this,
there may be multiple equilibria. Proposition 1 provides results for extremal equi-
libria of period two subgames for cases with multiple equilibria. With an additional
restriction on the class of demand functions, the equilibrium is unique and we achieve
a stronger result on the impact of changes in the price cap.

Proposition 2 Suppose P is log-concave in output. Then for any p ∈ P there exists a
unique symmetric subgame equilibrium in the period 2 subgame. Moreover, equilib-
rium output, welfare, and consumer surplus are strictly decreasing in the cap for all
p < P(Q∞) and p ∈ P.

The intuition behind Proposition 2 is straightforward. When inverse demand is
log-concave, there is a unique symmetric period two subgame equilibrium for each n
and p. If p is less than the equilibrium price when there is no cap then p must bind
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in the subgame equilibrium. With no cap, Amir and Lambson [2000] show that the
subgame equilibrium price is non-increasing in n. Any price cap below the no-cap
free-entry equilibrium price must bind in equilibrium, since the number of firms that
enter will be no greater than the number of firms that enter in the absence of a cap. A
lower price cap therefore yields strictly greater total output.

A consequence of our results is that the welfare-maximizing price cap is the low-
est cap that induces exactly one firm to enter. Imposing such a cap both increases
output and reduces entry costs. Since marginal cost is constant, the total industry cost
of producing a given level of total output does not depend on the number of market
entrants.

3.2 Increasing Marginal Cost

The assumption that marginal cost is constant is not innocuous. In this section, we
consider a variation of the deterministic demand model in which firms have sym-
metric, strictly increasing marginal costs of production. This assumption on marginal
cost, coupled with a sunk cost of entry, implies that firms have U-shaped average cost.
We assume that the cost function, C : R+→ R+, is twice continuously differentiable
with C(0) = 0, C′(x)> 0 and C′′(x)> 0 for all x ∈ R+.

Reynolds and Rietzke [2015] show that when the number of firms is fixed, there
exists a range of caps under which extremal equilibrium output and associated welfare
are monotonically non-increasing in the cap.8 This range of caps consists of all price
caps above the n-firm competitive equilibrium price. Intuitively, price caps above this
threshold are high enough that marginal cost in equilibrium is strictly below the price
cap for each firm. A slight decrease in the price cap means the incentive to increase
output created by a lower cap outweighs the fact that marginal cost has increased
(since the cap still lies above marginal cost).9

We now provide an example, which demonstrates that the results for the fixed-n
model do not carry over to our model with endogenous entry. In fact, our example
shows that the comparative statics results for a change in the price cap may be fully
reversed with endogenous entry, and a welfare-improving cap may not exist.

Example 2 Consider the following inverse demand and cost function:

P(Q) = aQ1/η , C(q) =
γ

(1+ γ)
q

(1+γ)
γ

These functions yield iso-elastic demand and competitive, single-firm supply func-
tions with price elasticities η and γ , respectively. Suppose that a =

√
96, η = −2 ,

8 Neither EST nor GZ devote significant attention to the issue of increasing marginal cost. Both papers
state that their main results for stochastic demand hold for increasing marginal cost as well as for constant
marginal cost. Neither paper addresses whether the classical monotonicity results hold for a fixed number
of firms, deterministic demand, and increasing marginal cost.

9 The technical argument reveals that, for price caps above the n-firm competitive price, and output
choices less than the n-firm competitive level, each firm’s profit function satisfies the dual single-crossing
property in (q; p), for fixed y. The proof in Reynolds and Rietzke [2015] relies on results from Milgrom
and Roberts [1994] and Milgrom and Shannon [1994].
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γ = 1, and K = 7.5. Then absent a price cap, two firms enter, each firm produces 3
units of output and the equilibrium price is 4. Each firm earns product market payoff
of 7.5 and zero total profit, since product market payoff is equal to the sunk entry
cost. For price caps between minimum average total cost ATCm of 3.87 and 4, one
firm enters and total output and welfare are strictly less than output and welfare in the
no-cap case.

Duopoly firms exert market power and the equilibrium price exceeds marginal
cost in Example 2. However, profits are completely dissipated through entry. Impos-
ing a price cap in this circumstance does indeed limit market power. However, a price
cap also reduces entry, results in rationing of buyers, and yields lower total output, to-
tal welfare and consumer surplus than the no-cap equilibrium. A welfare-improving
price cap does not exist for this example. In fact, total output and welfare are in-
creasing in the price cap for p ∈ [ATCm,P(Q∞)). A welfare improvement could be
achieved by a policy that combines an entry subsidy - to encourage entry - with a
price cap - to incentivize increased output.

It is worth pointing out that the integer constraint on n plays a role in the example.
In a subgame with n firms, a cap set below the n-firm competitive price results in
demand rationing. If the n∞− 1 firm competitive price is greater than the n∞ firm
Cournot price (as is the case for the parameters given), then a binding cap that deters
entry must therefore lead to rationing. If n is continuous, then a sufficiently high cap
(which results in a small reduction in the number of firms) need not lead to rationing.
This issue is explored further in Section 5.

Proposition 3 below provides sufficient conditions for existence of a welfare-
improving price cap. The key condition is that the equilibrium price in the no-cap
case exceeds the competitive equilibrium price in the event that one less firm enters
the market. This condition rules out outcomes such as that of Example 2 in which a
binding price cap reduces the number of firms and yields a discrete reduction in out-
put. In what follows, we let n∞ denote the equilibrium number of firms when there is
no price cap and let pc

n denote the competitive equilibrium price when n firms enter.

Proposition 3 Suppose that P(·) is log-concave in output. If P(Q∞) > pc
n∞−1 then a

welfare-improving price cap exists.

Proposition 3 is based on two conditions. The first is that demand is log-concave
in output. Log-concavity of demand implies that, in the absence of a price cap, there is
a unique symmetric subgame equilibrium in stage 2. As a result, in a subgame with n
firms, a cap set below the n-firm Cournot price must bind in equilibrium. The second
condition is that the n∞− 1-firm competitive price is strictly less than the n∞-firm
Cournot price. Consider a cap p ∈ (pc

n∞−1,P(Q
∞)), which is also sufficiently high

so as to deter no more than 1 entrant. Log-concave demand implies that such a cap
must bind in equilibrium. Hence, total output must be higher than in the absence of a
cap. As in the case of constant MC, welfare gains are realized on two fronts: greater
production, which increases consumer surplus, and entry cost savings associated with
fewer market participants. Still, the welfare impact of the price cap is not immediately
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obvious since the cap may decrease the number of market entrants; with a convex
cost function, total production costs for a given level of output are higher with fewer
market entrants. We are able to show, however, that for high enough caps the two
sources of welfare gains are large enough to offset the increase in production costs.

The condition in Proposition 3 that equilibrium price with no cap and n∞ firms
exceeds the competitive price with n∞− 1 firms depends on the relative steepness
of demand and supply curves. This condition is satisfied for the parametric demand
and (competitive) supply functions in Example 2 if the elasticity of supply exceeds
a threshold level that is increasing in the (absolute value of) elasticity of demand.
Specifically, elasticities must satisfy:

γ >
ln( n

n−1 )

ln( ηn
ηn+1 )

in order to satisfy this condition.

4 Stochastic Demand

We now investigate the impact of price caps when demand is stochastic. In this
section we assume marginal cost is constant, so C(q) = cq. For the fixed n model
with stochastic demand GZ demonstrate that there exists a range of price caps which
strictly increase output and welfare as compared to the case with no cap. Their result
is driven by the following observation. Fix an extremal symmetric equilibrium of the
game with n firms and no price cap. Let ρ

∞ = P(Q∞
n ,θ) denote the lowest price cap

that does not affect prices; i.e., ρ
∞ is the maximum price in the no-cap equilibrium.

And let MRn be a firm’s maximum marginal revenue in this equilibrium; that is:

MRn = max
θ∈Θ

{
P(Q∞

n ,θ)+
Q∞

n

n
P1(Q∞

n ,θ)

}
If firms choose their equilibrium outputs and a cap is set between MRn and

ρ
∞ then the cap will bind for an interval of high demand shocks; for these shocks

marginal revenue will exceed what marginal revenue would have been in the absence
of a cap, and for other shocks marginal revenue is unchanged. Firms therefore have
an incentive to increase output relative to the no cap case for caps between MRn and
ρ

∞.10 EST provide a quite different result for price caps when demand is stochastic.
They show that decreasing a price cap can decrease both total output and welfare.
This is a comparative static result, holding locally, in contrast to Grimm and Zottl’s
result on the existence of welfare improving price caps. We begin this section by pro-
viding an example, which demonstrates that a welfare improving price cap may not
exist when entry is endogenous.

10 When there are multiple equilibria of the game with no cap, the argument of GZ is tied to a particular
equilibrium. It is possible that there is no single price cap that would increase output and welfare across
multiple equilibria.
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Example 3 Consider the following inverse demand, costs and distribution for θ :

P(Q,θ) = θ + exp(−Q), K = exp(−2), c =
1
2
, θ ∼U [0,1]

With no cap, each firm has a dominant strategy in the period 2 subgame to choose an
output of 1. This leads to 2 market entrants; each earning second period profit exactly
equal to the cost of entry. Total welfare is approximately 0.59, and ρ

∞ = 1+exp(−2).
Imposing a cap p < ρ

∞ will reduce entry by at least one firm. So, consider the sub-
game with one firm and price cap below ρ

∞. With one market entrant, output must
exceed Q≡ 2− ln(2)≈ 1.3 to achieve a welfare improvement. Applying Theorem 4
in GZ, the optimal price cap in the period 2 subgame with one firm satisfies:

p∗ = 1+ exp(−Q∗(p∗))(1−Q∗(p∗))

Imposing such a cap yields total output of Q∗(p∗) ≈ 1.22 and welfare of approxi-
mately .57

Example 3 demonstrates that when demand is stochastic and entry is endogenous,
a welfare improving price cap may not exist. There are two key features of the exam-
ple. First, when demand is stochastic, a price cap creates a weaker incentive for the
monopolist to expand output than when demand is certain. As explained in Earle et
al. (p.95), when demand is uncertain the monopolist maximizes a weighted average
of profit when the cap is non-binding (low demand realizations) and profit when the
cap is binding (high demand realizations). These two scenarios provide conflicting
incentives for the firm. The first effect is that a higher price cap creates an incen-
tive to expand output, as the benefits of increasing quantity increase when the cap
is binding (and are not affected when the cap is not binding). The second effect is
that a higher price cap decreases the probability that the cap will bind, and this re-
duces the incentive to increase quantity. For Example 3, the second effect dominates
the first for caps p ∈ (p∗,ρ∞); in this range, equilibrium output increases as the cap
decreases. For caps, p ∈ (c, p∗) the first effect dominates the second; in this range
equilibrium output decreases as the cap decreases. The second key feature of this ex-
ample is that the particular inverse demand and marginal cost imply that, when there
is no price cap, firms have a dominant strategy to choose an output of exactly one
unit; the business-stealing effect is absent and total output increases linearly in the
number of firms.11 With no business-stealing effect and a binding entry constraint,
it follows from Mankiw and Whinston that the free-entry number of firms is equal
to the socially optimal number of firms. The optimal cap for this example does not
stimulate enough output from the monopolist to account for the welfare lost due to
reduced entry.

Example 3 suggests that a zero or weak business stealing effect is one source of
failure of existence of welfare improving price caps. Our main result for this sec-
tion provides sufficient conditions on demand that ensure the existence of a welfare-
improving cap. Our sufficient conditions ensure that the business stealing effect is
relatively strong, so that reduced entry does not have a large effect on total output.

11 No welfare improving cap would exist for similar examples with a small business-stealing effect.
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Before proceeding, we introduce some key terms for the model. Let θ b(Q, p) be de-
fined as:

θ
b(Q, p)≡max

{
min

{
(θ |θ + p(Q) = p) ,θ

}
,θ
}

θ b(Q, p) is the critical demand scenario where, when total production is Q, and the
cap is p, the cap binds for any θ > θ b(Q, p). This demand scenario is bounded below
by θ and above by θ . The second stage expected profit to some firm i is then given
by:

∫
θ b(Q,p)

θ

qP(Q,θ)dF(θ)+
∫

θ

θ b(Q,p)
qpdF(θ)− cq

GZ show that for any n, at an interior solution, equilibrium total output satisfies the
first-order condition:

∫
θ b(Q∗,p)

θ

(
P(Q∗,θ)+

Q∗

n
P1(Q∗,θ))

)
dF(θ)+

∫
θ

θ b(Q,p)
pdF(θ)− c = 0

Now consider the following additional structure on the model

Assumption 2

(a) f (θ)> 0 and continuous for all θ ∈Θ

(b) For all θ , P is twice continuously differentiable in Q, with P1(·,θ) < 0 and
P11(·,θ)≤ 0.

(c) P is additively or multiplicatively separable in Q and θ : P(Q,θ) = θ + p(Q) or
P(Q,θ) = θh(Q).12

(d) For the case of the additive demand shock: θ + p(0) = 0.13 For the case of the
multiplicative demand shock, restrict attention to positive shocks: θ > 0.

Assumption 2 places fairly strong restrictions on the form of inverse demand, but
no restrictions other than a positive and continuous density on the form of demand
uncertainty.14 We are now ready to state our main results for this section. We first

12 When the demand shock is multiplicative, if h(Q) < 0 then clearly P(Q, ·) is decreasing, which vio-
lates Assumption 1a. For this demand specification, we only require P(Q, ·) to be increasing for values of
Q such that h(Q)> 0.

13 Assumption (2d) is used only for the free disposal case (Section 4.1), and it ensures that for low
enough demand realizations the capacity constraint is non binding. Our results do not depend on this
condition, but it simplifies exposition.

14 Note that Assumption 2 leaves open the possibility of a negative market price. While not frequently
observed, it is worth pointing out that negative prices do arise from time to time in wholesale electricity
markets – markets in which price caps are a relevant policy instrument. One reason why negative prices
arise in these markets, stems from the inability to efficiently store, or dispose of output, once it is produced.
This inflexibility is captured in our setting with stochastic demand without free disposal; and it is in this set-
ting where a non negativity constraint could affect our results. The inclusion of an explicit non-negativity
constraint would not affect our results in the setting with free disposal (Section 4.1), as output decisions
would adjust in equilibrium such that this constraint would never bind. Moreover, a non-negativity con-
straint would not affect our results in the case of the multiplicative demand shock, as the constraint would
not bind in equilibrium. However, when firms make output decisions prior to the realization of demand, a
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state a useful lemma, which pertains to the game with no price cap. In what follows,
we let Wn denote equilibrium expected welfare in the game with no cap when n firms
enter.

Lemma 1 Consider the game with no price cap. Suppose Assumption 2 is satisfied
and π∞ = K, then the socially optimal number of firms is strictly less than the free-
entry number of firms. Moreover, Wn∞−1 >Wn∞ .

Proposition 4 Under Assumptions 1 and 2, there exists a unique symmetric equilib-
rium. Moreover, there exists a price cap that strictly increases equilibrium welfare.

Concavity of P(·,θ) implies a relatively strong business stealing effect. When the
business-stealing effect is present and n is continuous, Mankiw and Whinston show
the free-entry number of firms is strictly greater than the socially optimal number of
firms. This result does not, in general, carry over to the case where n is constrained to
be an integer. When n is integer constrained, the free entry number of firms may be
less than or equal to the socially optimal number of firms.15 Lemma 1 complements
the results of Mankiw and Whinston by providing providing sufficient conditions, in
the case where n is an integer, under which the free entry number of firms is strictly
greater than the socially optimal number of firms. The role of the integer constraint
is explored in more detail in Section 5.

Proposition 4 establishes the existence of a welfare-improving price cap, but
which caps can be guaranteed to increase welfare? To convey the intuition, first sup-
pose the entry constraint is not binding in the absence of a cap (i.e., π∞ > K). In this
case, there is an interval of prices below ρ

∞ and above MRn such that a price cap
chosen from this interval will yield the same number of firms. Any cap in this inter-
val will result in higher total output and welfare; this follows directly from Theorem
1 in GZ. Next, suppose the entry constraint is binding in the absence of a cap (i.e.,
π∞ = K). In this case, the set of welfare-improving price caps consists of all caps that
(a) reduce entry by one firm; and (b) are greater than MRn−1 (the proof of Proposition
4 shows that the set of caps satisfying (a) and (b) is indeed nonempty). The imposition
of a such a price cap has two welfare-enhancing effects. First, the cap deters entry;
due to the result established in Lemma 1, reducing the number of entrants by one is
welfare enhancing. Second, by Theorem 1 in GZ, the cap increases total output and
welfare relative to what output and welfare would be in the new entry scenario (i.e.,
with one less firm) in the absence of a cap.16

non-negativity constraint would bind in equilibrium for low demand realizations in the case of an additive
demand shock. In this setting, an explicit non-negativity constraint would generate a convex kink in inverse
demand, and would violate the concavity assumption, which is important for our results. For a thorough
examination of non-negativity constraints in Cournot models with stochastic demand see Lagerlöf [2007].

15 Although, there is still a tendency towards over-entry. Mankiw and Whinston show that in the integer-
constrained case the socially optimal number of firms never exceeds the free-entry number of firms by
more than 1.

16 The assumption of additively/multiplicatively separable demand shocks is important for the second
effect. It implies that the maximum marginal revenue in symmetric subgame equilibria is invariant to the
number of firms. So if n is the equilibrium number of firms with no cap, maximum marginal revenue in
a subgame with n− 1 firms and no cap is less than the maximum equilibrium price in a subgame with n
firms and no cap (ρ∞). This means that a price cap between maximum marginal revenue and ρ

∞ will both
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4.1 Free Disposal

We now examine a variation of the game examined in Section 4. As in the previous
versions of the model, at the start of the game the regulator may impose a price cap.
The game then proceeds in three periods. In the first period, firms sequentially decide
whether to enter or not (again, with each firm’s entry decision observed by all firms).
Entry entails a sunk cost K > 0. In the second period, before θ is realized, firms
simultaneously choose production, with xi designating the production choice of firm
i; xi is produced at constant marginal cost c > 0. In the third period, firms observe
θ and simultaneously choose how much to sell, with firm i choosing sales quantity
qi ∈ [0,xi]; unsold output may be disposed of at zero cost.17 The effect of price caps
in this model with a fixed number of firms has been analyzed by EST, GZ, and Lemus
and Moreno.

The free disposal model may also be interpreted as one in which the firms that
enter make long run capacity investment decisions prior to observing the level of de-
mand, and then make output decisions after observing demand. Under this interpreta-
tion, c is the marginal cost of capacity investment, and the marginal cost of output is
constant and normalized to zero.18 We use this description of the model with disposal
for the remainder of the paper (i.e. we will refer to xi and qi as the capacity choice
and output choice, respectively, of firm i).

Our results for free disposal parallel the results above for the no-disposal model.
We first extend Example 3 to allow free disposal, and show that a welfare-improving
cap does not exist. We then show that under Assumptions 1 and 2, a welfare improv-
ing price cap always exists in the model with disposal and endogenous entry.

Example 4 Maintain the same setup as in Example 3. In the absence of a price cap,
each firm has a dominant strategy to choose capacity of 1 in the period 2 subgame.
In the period 3 subgame, the capacity constraint binds for each θ ∈ [0,1]. Two firms
enter, each earning third period profit equal to the cost of entry. This yields total
welfare of approximately 0.59; this market behaves exactly as in Example 3 with
no cap. Any binding price cap will reduce entry by at least one firm. So, consider
the subgame with one firm and price cap p < ρ

∞. When total capacity is X , stage 2
expected equilibrium welfare in the model with disposal is always (weakly) less than
equilibrium welfare in the no-disposal model with total output, Q = X , since disposal
may result in lower output for some demand realizations. Thus, in order to achieve
a welfare improvement, total capacity under the cap must exceed the threshold, Q≈
1.3, found in Example 3. Applying Theorem 4 in GZ, the cap that maximizes capacity
satisfies:

p∗ = 1+ exp(−X∗(p∗))(1−X∗(p∗))

reduce the number of entrants and induce the firms that enter to produce more output than they would in
the absence of a cap.

17 In the version of the model examined by EST, disposal has marginal cost δ which may be positive or
negative. Our results continue to hold in this case.

18 The assumption that firms choose outputs in the final period is important. Reynolds and Wilson [2000]
analyze a two period duopoly model in which firms first choose capacities and then choose prices after
observing a demand shock. They show that an equilibrium with symmetric capacities may not exist.
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Imposing such a cap yields X∗ ≈ 1.23 Since X∗ < Q, no welfare-improving price cap
exists.

Before stating the main result for the model with free disposal, we introduce
some of the key expressions. Under Assumptions 1 and 2, GZ show that there exists
a unique symmetric equilibrium level of capacity in the second-stage subgame, and a
unique symmetric equilibrium level of output in the third-stage subgame. In the third
period each firm solves:

max
qi
{qi min{P(qi + y,θ), p}} such that qi ≤ xi

Where y is the total output of the other n− 1 firms. Let X ≡ ∑
n
i=1 xi denote the total

level of capacity. For any n, X and p, define

θ̃n(X , p) = max
{

min
{(

θ |P(X ,θ)+
X
n

P1(X ,θ) = 0
)
,θ b(X , p)

}
,θ

}

θ̃n(·) is the critical demand scenario above which firm output is equal to capacity
in equilibrium. At this critical demand scenario, the price cap may or may not be
binding. For an additive demand shock, Assumption 2d ensures that θ̃n(X , p) > θ

whenever X > 0. We let π0
n (θ , p) denote the equilibrium third-period revenue to a firm

in those demand scenarios where the capacity constraint is non-binding. Equilibrium
expected firm profit in stage two is given by:

π
∗
n (p)=

∫
θ̃n(X∗,p)

θ

π
0
n (θ , p)dF(θ)+

∫
θ b(X∗,p)

θ̃n(X∗,p)
x∗P(X∗,θ)dF(θ)+

∫
θ

θ b(X∗,p)
x∗pdF(θ)−cx∗

GZ show that, for a fixed number of firms, and any cap that induces positive produc-
tion, equilibrium capacity satisfies the first-order condition:

∫
θ b(X∗ ,p)

θ̃n(X∗,p)

[
P(X∗,θ)+

X∗

n
p1(X∗,θ)

]
dF(θ)+

∫
θ

θ̃n(X∗,p)
pdF(θ)− c = 0

We are now ready to state the main results for this section. In what follows, we let Wn
denote equilibrium welfare in the game with no cap when n firms enter.

Lemma 2 Consider the game with no price cap. Suppose Assumption 2 is satisfied
and π∞ = K, then the socially optimal number of firms is strictly less than the free-
entry number of firms. Moreover, Wn∞−1 >Wn∞ .

Proposition 5 In the model with disposal, under Assumptions 1 and 2 there exists a
price cap that strictly improves welfare.
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To understand which price caps are welfare-improving, we refer the reader to the
discussion following Proposition 4. In that discussion, we describe the set of welfare-
improving price caps in the setting without free disposal; however, in the setting with
disposal, the set of welfare-improving caps will be qualitatively similar.

GZ show that, for a fixed number of firms, a high price cap increases welfare by
creating stronger incentives for capacity investment in the second stage, and reducing
the incentive for output withholding in the third stage market game. Our Proposition 5
extends their welfare result to the case of free entry. It is worthwhile comparing these
results to Grimm and Zoettl [2013], who consider the effects of a different form of
price regulation, and also allow consider the case of free entry. The authors study an
environment in which a regulator can impose marginal-cost pricing (i.e., the compet-
itive outcome) in the market game, at each demand scenario (so long as this outcome
is feasible, given firms’ capacities). It is shown that the welfare implications of this
form of regulation are not clear, even for a fixed number of firms, when capacities
are chosen strategically. The reason is that competitive pricing in the market game
leads firms to reduce their capacity investments. The authors thus highlight a tension
between reducing the incentive to withhold output in the market game, and providing
a strong incentive for capacity investment, that may arise from price regulation. This
tension is further complicated by entry effects, as marginal cost pricing will reduce
entry, as compared to the unregulated outcome.

The tension between providing incentives for capacity investment, and reducing
the incentive to withhold output in the market game also arises in our model – where
the regulator commits to a price cap before demand uncertainty is resolved. This fact
is highlighted by Lemus and Moreno, who show that, because of the tension between
output/capacity decisions, the optimal price cap (with a fixed number of firms) will be
well above marginal cost; low price caps provide stronger incentives to reduce output
withholding, but decrease the incentive to invest in capacity. Our results demonstrate
that a high enough price cap can provide an incentive for both increased capacity and
increased output in the market game, even when taking potential entry effects into
account.

5 Continuous n

Thus far in the analysis, firms were taken to be indivisible, discrete entities. In this
section, we modify the model and allow firms to be perfectly divisible, allowing n to
take on any value n ∈ [1,N].19 Our next result identifies sufficient conditions under
which a welfare-improving cap exists when n is continuous. This result allows for
either deterministic or stochastic demand, and either constant or increasing marginal
costs. The sufficient conditions identified in this section to ensure the existence of
a welfare-improving cap are a strict generalization of the conditions identified in
Section 4. After we discuss our result, we provide an example, which shows that

19 When n is continuous Assumption 1c implies that the no-cap equilibrium number of firms is strictly
greater than 1. Moreover, we focus on price caps that result in at least 1 entrant. Therefore we have not
imposed any additional structure on the model by assuming n≥ 1.
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the conditions identified in this section are not sufficient to ensure the existence of a
welfare-improving cap when n is integer constrained.

Proposition 6 In addition to Assumption 1, suppose that P and C are twice continu-
ously differentiable with P1 < 0, P2 > 0, C′> 0, and C′′≥ 0. Also suppose P(0,θ) = 0,
and ∂ 2

∂Q∂θ
[QP(Q,θ)]≥ 0.20 If the number of firms is continuous and

P1(Q,θ)+QP11(Q,θ)≤ 0

then there exists a price cap that strictly improves welfare:

(i) in the model with deterministic demand
(ii) in the model with stochastic demand

(iii) in the model with free disposal

The key condition for Proposition 6 is: P1 +QP11 ≤ 0, which implies the pres-
ence of the business stealing effect. When n is continuous, the presence of the busi-
ness stealing effect implies that the free-entry equilibrium number of firms is strictly
greater than the socially optimal (second-best) number of firms (see Mankiw and
Whinston [1986]). We demonstrate that a high enough cap produces two sources of
welfare gains. First, is the “entry-deterrence effect”; the cap deters entry, which is
welfare enhancing due to the presence of the business stealing effect. Second, is the
“marginal-revenue effect” described by Grimm and Zottl [2010]; a high enough cap
increases marginal revenue for high demand realizations and reduces incentives for
output withholding.

Proposition 6 also brings to light the relevance of the integer constraint on n in
assessing the welfare impact of price caps when entry is endogenous. When n is
constrained to be an integer, a price cap that deters entry will cause a discrete jump in
output and welfare as compared to the no-cap case. Moreover, even in the presence of
the business stealing effect, the free entry number of firms may be less than or equal to
the socially optimal number of firms. As a result, a reduction in the number of firms
may result in a downward jump in welfare,21 and the entry-deterrence effect and
the marginal-revenue effect may work in opposite directions. Further complicating
matters, when marginal cost is strictly increasing, any binding cap that deters entry
may result in in demand rationing, as exemplified by Example 2. Assessing the net
welfare impact of a cap becomes very much dependent on the parameters on the
model, and a result of the sort provided in Proposition 6 does not obtain.

In contrast, when the equilibrium number of firms changes smoothly with changes
in the cap, the presence of the business-stealing effect implies that a small reduction

20 The conditions, P(0,θ) = 0, and ∂ 2

∂Q∂θ
[QP(Q,θ)]≥ 0, are not necessary for our result, but simplify

exposition in the case of stochastic demand. The first condition ensures that, for low enough demand
realizations, the cap is non binding. The second condition is used only in the free-disposal version of the
model; it ensures that when a firm’s capacity constraint is non-binding, it’s optimal output choice is non
decreasing in θ . This simplifies the expression for expected profits. Note that a multiplicative demand
shock (as considered in Propositions 4 and 5) is not consistent with these two conditions; nevertheless, it
is straightforward to show that Proposition 6 (and all associated lemmas in the Appendix) extends to this
case.

21 Although, as we show in Lemmas 1 and 2, when the business stealing effect is sufficiently strong, and
the entry constraint is binding, then a reduction in the number of firms by 1 leads to a welfare-improvement
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in the number of firms results in an increase in overall welfare. For high enough caps,
the entry-deterrence effect and the marginal-revenue effect work in the same direction
to improve welfare.22 Moreover, with convex costs, a small reduction in the number
of firms, say by ε , leaves the n∞− ε competitive price below the n∞-firm Cournot
price. As a result, high caps do not result in rationing.

We conclude this section by presenting an example, which demonstrates that the
hypotheses of Proposition 6 are not sufficient to ensure the existence of a welfare-
improving cap when n is discrete. Our example satisfies the critical assumptions of
Proposition 6, namely the presence of the business stealing effect (implied by P1 +
QP11 ≤ 0), but does not satisfy the hypotheses of Propositions 4 and 5. We show that
a welfare-improving cap exists when n is continuous, but does not exist when n is
integer constrained.

Example 5 Consider the following inverse demand, costs and distribution for θ :

P(Q,θ)= θ−log(Q), K =
1
4

e−3/2, C(q)= 2q, θ = 0 with prob= 0.99; θ = 100 with prob= 0.01

This inverse demand function satisfies the hypothesis of Proposition 6. With no cap,
2 firms enter, total equilibrium output is exp

(
− 3

2

)
≈ .2231 and per-firm profit is

exactly equal to the cost of entry. Total welfare is approximately .2231, and ρ
∞ =

101.5.
With discrete n, imposing a price cap less than 101.5 results in at most 1 entrant.

For caps less than ρ
∞, output is maximized as p ↑ ρ

∞. A cap set just below ρ
∞ yields

total output of approximately .1360; welfare is approximately .2156, which is less
than welfare with no cap. Thus, no welfare-improving cap exists when n is discrete.
If n is continuous, then a cap set at 101.4 will result in approximately 1.992 entrants,
yielding total output of approximately .2236 and welfare of about .2238; slightly
higher than welfare with no cap.

6 Conclusion

This paper analyzes the welfare impact of price caps, taking into account the possi-
bility that a price cap may reduce the number of firms that enter a market. The vehicle
for the analysis is a two period oligopoly model in which product market competition
in quantity choices follows endogenous entry with a sunk cost of entry. First, we an-
alyze the impact of price caps when there is no uncertainty about demand when firms
make their output decisions. Consistent with models with a fixed number of firms,
when marginal cost is constant, we show that output, welfare, and consumer surplus
all increase as the price cap is lowered. If marginal cost is increasing, these compara-
tive statics results may be fully reversed and a welfare-improving cap may not exist.
We provide sufficient conditions, however, under which a welfare-improving cap ex-
ists. Next, we analyze the impact of price caps when demand is stochastic and firms

22 Our results suggest that price caps may be one useful mechanism for reversing the tendency towards
over entry in Cournot oligopolies. Other mechanisms have been explored in the literature; Grimm et al.
[2003], for example, study a Clarke-Groves mechanism as a tool to regulate entry. It is shown that the
optimal mechanism prevents over-entry and is deficit free in the presence of the business-stealing effect.
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must make output decisions prior to the realization of demand. We show that the ex-
istence of a welfare-improving price cap cannot be guaranteed. Our results point to
an important role for entry of firms in response to price caps. It is precisely because
a price cap can reduce entry that a welfare improving cap may fail to exist when
marginal cost is increasing and/or demand is stochastic.

For the case of stochastic demand, we provide sufficient conditions on demand
for which a range of welfare-improving price caps exists. The sufficient conditions
restrict the curvature of the inverse demand function, which in turn influences the
welfare impact of entry. Indeed, these demand conditions are sufficient for the result
so weaker conditions on demand, perhaps coupled with restrictions on the distribu-
tion of demand shocks, may also yield existence of a welfare improving price cap.
We extend this result on welfare improving price caps to an environment with free
disposal. Finally, we identify sufficient conditions under which a welfare-improving
cap exists when the number of firms is continuous, allowing for both deterministic
and stochastic demand and either constant or increasing marginal cost. The condition
identified is not sufficient to ensure the existence of a welfare-improving cap when
the number of firms is integer constrained, highlighting the role played by the integer
constraint in our model.
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Appendix

Proof of Proposition 1

Before we prove the proposition, we state and prove two useful lemmas.

Lemma A1 For fixed p, extremal subgame equilibrium total output, Q∗n(p) is non-decreasing in the num-
ber of firms, n and extremal subgame equilibrium profit π∗n (p) is non-increasing in n.

Proof Assumption (1c) implies there exists M > 0 such that a firm’s best response is bounded by M. We
express a firm’s problem as choosing total output, Q, given total rivals’ output, y. Define a payoff function,

π̃(Q,y, p) = (Q− y)[min{P(Q), p}− c],

and a lattice, Φ ≡ {(Q,y) : 0≤ y≤ (n−1)M,y≤ Q≤ y+M}.
First we show that π̃ has increasing differences (ID) in (Q,y) on Φ . Let Q1 ≥Q2 and y1 ≥ y2 such that

the points (Q1,y1),(Q1,y2),(Q2,y1),(Q2,y2) are all in Φ . Since y1 ≥ y2 and P(Q2)≥ P(Q1), we have,

(y2− y1)min{P(Q1), p} ≥ (y2− y1)min{P(Q2), p}. (1)

Add (Q1−Q1)min{P(Q1), p} = 0 and (Q2−Q2)min{P(Q2), p} = 0 to the left and right hand sides of
(1), respectively, to yield,

(Q1− y1)min{P(Q1), p}− (Q1− y2)min{P(Q1), p} ≥
(Q2− y1)min{P(Q2), p}− (Q2− y2)min{P(Q2), p}. (2)

Subtracting c(y1− y2) from both sides of (2) yields,

π̃(Q1,y1, p)− π̃(Q1,y2, p)≥ π̃(Q2,y1, p)− π̃(Q2,y2, p),

which establishes that π̃ has increasing differences in (Q,y) on Φ .
Note that the choice set Φ is ascending in y and π̃ is continuous in Q and satisfies ID in (Q,y). Then

as shown in Topkis [1978], the maximal and minimal selections of argmaxQ{(Q− y)[min{P(Q), p}− c] :
y≤Q≤ y+M} are nondecreasing in y. The remainder of the proof follows almost directly from the proofs
of Theorems 2.1 and 2.2 in Amir and Lambson. A symmetric equilibrium exists for the subgame; extremal
total output is non-decreasing in n and extremal profit per firm is non-increasing in n for symmetric equi-
libria. It’s worth pointing out, however, that asymmetric subgame equilibria may exist in our formulation,
in contrast to Amir and Lambson, since with a price cap, π̃ does not have strict increasing differences in
(Q,y).

Lemma A2 For fixed n, extremal subgame equilibrium profit π∗n (p) is non-decreasing in the price cap p.

Proof Fix n ∈N. Let p1 > p2 and let qi (Qi) denote an extremal equilibrium output per-firm (total) output
in the subgame with n firms and cap pi. Note that Theorem 1 in EST implies q2 ≥ q1. Then,

π∗n (p1) = q1(min{P(Q1), p1}− c)
≥ q2(min{P(q2 +(n−1)q1), p1}− c)
≥ q2(min{P(q2 +(n−1)q2), p2}− c) = π∗n (p2)

The first inequality follows from the definition of q1. The second inequality holds since q2 ≥ q1 (and P is
strictly decreasing) and since p1 > p2.

We now prove the proposition. We let Q∗n(p) (q∗n(p)) denote extremal equilibrium total (per-firm)
output in the subgame with n firms and cap, p. It is straightforward to show that the equilibrium where
firms play the minimal (maximal) output level corresponds to the equilibrium in which firms earn maximal
(minimal) equilibrium profit. Moreover, the maximal (minimal) equilibrium number of firms corresponds
to the equilibrium in which firms receive maximal (minimal) equilibrium profit in the subsequent market
competition subgame. The fact that the extremal equilibrium number of firms is non deceasing in the cap
is then immediate from Lemmas A1 and A2.



Price Caps, Oligopoly, and Entry 21

Then let p1 > p2. Let ni be the equilibrium number of firms under pi, i∈ {1,2}; we must have n1 ≥ n2.
Let Q̂i = P−1(pi). We must have Q∗ni

(pi)≥ Q̂i, otherwise any one firm could increase output slightly and
increase profit. Moreover, since p1 > p2 Assumption (1a) implies that Q̂2 > Q̂1.

Part (i) We will show that Q∗n2
(p2)≥ Q∗n1

(p1). EST prove in their Theorem 1 that the desired result holds
if n1 = n2. So the remainder of part (i) deals with the case n1 > n2. The arguments for the equilibrium
with the smallest subgame outputs are different from those for the equilibrium with the largest subgame
outputs. We provide the argument for the smallest subgame outputs first, followed by the argument for the
largest subgame outputs. It is straightforward to show that the equilibrium where firms play the minimal
(maximal) output level corresponds to the maximal (minimal) equilibrium profit.

We will proceed by contradiction. So, suppose Q∗n2
(p2)<Q∗n1

(p1). Immediately this implies Q∗n1
(p1)>

Q∗n2
(p2) ≥ Q̂2 > Q̂1. Now, consider the subgame with price cap p2 and n1 active firms; let q be any non-

negative output. We will show that q∗n1
(p1) is an equilibrium output level in the game with n1 firms and

cap p2.

πn1 (q
∗
n1
(p1),(n1−1)q∗n1

(p1), p2) = q∗n1
(p1)(min{P(Q∗n1

(p1)), p2}− c)
= q∗n1

(p1)(min{P(Q∗n1
(p1)), p1}− c)

≥ q(min{P(q+(n1−1)q∗n1
(p1)), p1}− c)

≥ q(min{P(q+(n1−1)q∗n1
(p1)), p2}− c)

= πn1 (q,(n1−1)q∗n1
(p1), p2)

The first equality follows from the definition of subgame payoffs. The second equality follows from the
fact that neither price cap binds when total output is Q∗n1

(p1). The first inequality follows by definition of
q∗n1

(p1). The second inequality holds since p1 > p2. This establishes that Q∗n1
(p1) is an equilibrium total

quantity in the subgame with cap p2 and n1 firms. In addition we know that (1) Q∗n1
(p2) is the extremal

(minimum) equilibrium total output in this subgame, and (2) Q∗n1
(p2) ≥ Q∗n1

(p1) by Theorem 1 in EST.
Taking these results together yields Q∗n1

(p2) = Q∗n1
(p1) (i.e. Q∗n1

(p2) is the minimal equilibrium output
level in the game with n1 firms and cap p1.).

Now since Q∗n1
(p2) = Q∗n1

(p1) and Q∗n1
(p1)> Q̂2 > Q̂1 this means that the extremal (maximal) equi-

librium payoff for the subgame with n1 firms and price cap p2 satisfies the following:

π∗n1
(p2) = q∗n1

(p1)
[
min{P(Q∗n1

(p1)), p2}− c
]

= q∗n1
(p1)

[
min{P(Q∗n1

(p1)), p1}− c
]

= π∗n1
(p1)≥ K

But this contradicts the fact that n2 is the extremal equilibrium number of entering firms when the price
cap is p2; the extremal (maximal) subgame equilibrium payoff for n1 firms and price cap p2 must be less
than K since n1 > n2. So we have the result, Q∗n2

(p2)≥ Q∗n1
(p1).

The argument above explicity relies on the fact that the equilibrium under consideration is the smallest
equilibrium output level. We now provide an alternative proof of this result for the largest equilibrium
output level. As before, let p1 > p2. Let Q∗n(p) be the maximal equilibrium output when the cap is p and
n firms are active. We aim to show that Q∗n2

(p2)≥Q∗n1
(p1). We will proceed by contradiction. So, assume

that Q∗n2
(p2)< Q∗n1

(p1). Immediately it follows Q̂1 < Q̂2 ≤ Q∗n2
(p2)< Q∗n1

(p1)

Claim Q∗n1
(p2) is an equilibrium output level in the subgame with n1 firms and price cap p1

Proo f o f Claim: We proceed by contradiction. So, suppose Q∗n1
(p2) is not an equilibrium in the subgame

with cap p1 and n1 firms. By Theorem 1 in EST it must be that Q∗n1
(p2) > Q∗n1

(p1). Let y∗n(p) = (n−
1)q∗n(p) denote the equilibrium output of the other n−1 in the subgame with n firms and cap, p. Let b(y, p)
be the maximal selection from argmaxQ≥y{π̃(Q,y, p)}, where π̃ is as defined in the proof of Lemma A1.

Since Q∗n1
(p2) is not an equilibrium in the subgame with cap p1 and n1 firms, but is a feasible choice

when y = y∗n1
(p2) we have:

π̃(Q∗n1
(p2),y

∗
n1
(p2), p1)< π̃(b(y∗n1

(p2), p1),y
∗
n1
(p2), p1) (3)
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The inequality Q∗n1
(p1)< Q∗n1

(p2) implies y∗n1
(p1)< y∗n1

(p2). It is shown in the proof of Lemma A1 that
b(·, p) is nondecreasing. Hence, b(y∗n1

(p1), p1) ≤ b(y∗n1
(p2), p1). But by definition of Q∗n1

(p1) we must
have b(y∗n1

(p1), p1) = Q∗n1
(p1). Hence:

Q∗n1
(p1) = b(y∗n1

(p1), p1)≤ b(y∗n1
(p2), p1) (4)

Recall that Q̂1 < Q̂2 < Q∗n1
(p1)< Q∗n1

(p2). Equation (4) therefore implies Q̂1 < Q̂2 < b(y∗n1
(p2), p1).

But then (3) implies,

π̃(Q∗n1
(p2),y

∗
n1
(p2), p2)< π̃(b(y∗n1

(p2), p1),y
∗
n1
(p2), p2)

since neither cap binds under either output level. The above equation contradicts the definition of Q∗n1
(p2).

Hence, the claim is established.

The Claim establishes that Q∗n1
(p2) is an equlibrium total output for the subgame with n1 firms and cap

p1. This output cannot exceed maximal equilibrium output for this subgame, so Q∗n1
(p2) ≤ Q∗n1

(p1). By
Theorem 1 in EST, we must have Q∗n1

(p2)≥Q∗n1
(p1). Combining these two inequalities yields, Q∗n1

(p2) =
Q∗n1

(p1). As in the proof for the minimal equilibrium output level, we can use this equality to show that n1
firms would have an incentive to enter when the cap is p2, contradicting the condition n1 > n2.

Part (ii) We now show that equilibrium welfare is non increasing in the cap. Let W (p) be total welfare in
the equilibrium with the lowest output when the price cap is p. Let Q∗i = Q∗ni

(pi), i ∈ {1,2}. Now note:

W (p2) =
∫ Q∗2

0 [P(z)− c]dz−n2K

≥
∫ Q∗2

0 [P(z)− c]dz−n1K

≥
∫ Q∗1

0 [P(z)− c]dz−n1K
= W (p1)

The first inequality follows since n1 ≥ n2. The second inequality follows from the fact that Q∗2 ≥ Q∗1 and
that P(Q∗2)≥ c (otherwise any firm could increase its period two profit by reducing output).

Part (iii) We now show that equilibrium consumer surplus is non increasing in the cap. Let CS(Q, p) denote
consumer surplus when total production is Q and the price cap is p.

CS(Q, p) =
∫ Q

0
[P(z)−min{P(Q), p}]dz

Note that CS(Q, p) is increasing in Q and is decreasing in p. Since Q∗n2
(p2) ≥ Q∗n1

(p1) and p2 < p1,
immediately we have that CS(Q∗n2

(p2), p2)≥CS(Q∗n1
(p1), p1).

Proof of Proposition 2

Let p < P(Q∞) such that p ∈ P. Let n∗ denote the equilibrium number of firms under this cap. Let Q∞
n∗

(q∞
n∗ ) denote equilibrium total (per-firm) output in the subgame with no cap and n∗ firms. And let y∞

n∗ =

(n∗−1)q∞
n∗ . Let Q̂ satisfy: P(Q̂) = p and let q̂= Q̂

n∗ . Let Q∗ (q∗) be a symmetric equilibrium total (per-firm)
output candidate under the cap, and let y∗ = (n∗−1)q∗. Let πL(q,y) = log(q(P(q+ y)− c)). Note that for
all (q,y) such that P(q+y)> c, πL(·,y) is concave. We first claim q∗ = q̂. By way of contradiction, suppose
q∗ 6= q̂. In particular, it must be that q∗ > q̂. Lemma A1 implies Q̂ > Q∞ ≥ Q∞

n∗ , which means q̂ > q∞
n∗ .

It must hold that P(q∗ + y∞
n∗ ) > c; then since q∗ > q̂ > q∞

n∗ concavity of πL(·,y∞
n∗ ) implies π(q̂,y∞

n∗ ) ≥
π(q∗,y∞

n∗ ).
Log-concavity of P implies π(q,y) has the dual strong single-crossing property in (q;y) (see proof of

Theorem 2.1 in Amir [1996]). As q∗ > q̂ and y∗ > y∞
n∗ it follows that π(q̂,y∞

n∗ )≥ π(q∗,y∞
n∗ ) =⇒ π(q̂,y∗)>

π(q∗,y∗). Equivalently, since P(q∗+ y∗)< p and P(q̂+ y∗)< p, this means:

q̂[min{P(q̂+ y∗), p}− c]> q∗[min{P(q∗+ y∗), p}− c]



Price Caps, Oligopoly, and Entry 23

This contradicts the hypothesis that q∗ is an equilibrium (per-firm) output level. Hence, under any relevant
cap, equilibrium output satisfies P(Q∗(p)) = p. This implies that there is a single symmetric equilibrium,
and since P is strictly decreasing, Q∗(p) is strictly decreasing in the cap. The fact that welfare and consumer
surplus are strictly decreasing in the cap follows along the same lines as in the proof of Proposition 1 parts
(ii) and (iii)

ut

Proof of Proposition 3

We consider two cases. Case (i): suppose π∞ > K. Let π̂(q,n)≡ qP(nq)−C(q). π̂(·,n) is continuous, and
strictly decreasing for q > q∞ if n = n∞. Let qc

n∞ denote the per-firm competitive equilibrium output level
in the subgame with n∞ firms. Consider any qc

n∞ > q′ > q∞ such that π∞ > π(q′,n∞) ≥ K and set p =
P(q′n∞) > pc

n∞ . Given the cap p, if n = n∞ firms enter in stage one then symmetric subgame equilibrium
output per firm in stage two is q′; this holds by log-concavity of P(·), following an argument similar to that
made in the proof of Proposition 2. Since π̂(q′,n∞)≥ K, n∞ firms enter in stage one. By Proposition 3 in
Reynolds and Rietzke [2015], welfare is strictly higher with cap p than with no cap.

Case (ii): suppose π∞ = K. In this case, Assumption (1c) implies n∞ ≥ 2. Any cap p < P(Q∞) results
in fewer than n∞ entrants in stage one. Suppose n∞− 1 firms enter in the first stage and consider a cap
satisfying

P(Q∞)− ε < p < P(Q∞)

where ε > 0. For 0 < ε < P(Q∞)− pc
n∞−1, log-concavity of P(·) implies that, when n = n∞ − 1 firms

enter, the symmetric subgame equilibrium per-firm output level satisfies P(q′n) = p. We claim that is is
profitable for n firms to enter in the first stage under p for ε sufficiently small. To demonstrate the claim,
define: qm = argminq{ATC(q)} where ATC(q) = C(q)+K

q . We consider two subcases.
Subcase (a): q′ ≥ qm. We know that C′(q′) ≤ p = P(q′n), and C′(q′) ≥ ATC(q′) since q′ ≥ qm. So,

P(q′n) = p≥ ATC(q′) and firms earn non-negative profit if n = n∞−1 firms enter.
Subcase (b): q′ < qm. Strict convexity of C(·) implies strict convexity of ATC(·). We know that (n∞−

1)q′ > n∞q∞ = Q∞, and hence:

q′ >
n∞

n∞−1
q∞ (5)

Define δ ≡ ATC(q∞)−ATCm

qm−q∞ > 0. Strict convexity of ATC(·) yields δ < ATC(q∞)−ATC(q′)
q′−q∞ , which implies

ATC(q′) < ATC(q∞)− δ (q′− q∞). But equation (5) then implies: ATC(q′) < ATC(q∞)− δ
( q∞

n∞−1

)
. Let

n = n∞−1, and choose p such that ε < min
{ 1

n δq∞,P(Q∞)− pc
n
}

. We have:

π̂(q′,n)−K = q′p−q′ATC(q′)

> q′P(Q∞)− εq′−q′ATC(q∞)+q′δ
1
n

δq∞

= q′
[

1
n

δq∞− ε

]
> 0

The last equality follows since π∞ =K. Hence, for ε sufficiently small, it is indeed profitable for n= n∞−1
firms to enter in the first stage. To establish the proposition, the final step is to show that welfare is higher
with price cap p ∈ (P(Q∞)− ε,P(Q∞)) than with no cap.

Using n≡ n∞−1, let W (p) = B(nq′)−TCn denote equilibrium welfare under the cap, where B(x)≡∫ x
0 P(z)dz, and TCn ≡ n(C(q′)+K). Analogously, define W ∞ = B(Q∞)−TC∞ as equilibrium welfare with

no cap. To establish the proposition, we must show W (p)>W ∞.
By hypothesis, π∞ =K; we have established that π∗(p) = π̂(q′,n)≥K. It follows that n(π∗(p)−K)≥

(n+1)(π∞−K) = 0, equivalently, letting Q′ = nq′: Q′P(Q′)−Q∞P(Q∞)≥ TCn−TC∞. This implies:

W (p)−W ∞ ≥ B(Q′)−B(Q∞)−
[
Q′P(Q′)−Q∞P(Q∞)

]
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Adding and subtracting Q∞P(Q′) from the RHS of the inequality above gives:

W (p)−W ∞ ≥
∫ Q′

Q∞
P(z)dz−P(Q′)(Q′−Q∞)+Q∞(P(Q∞)−P(Q′))

>
∫ Q′

Q∞
P(Q′)dz−P(Q′)(Q′−Q∞)+Q∞[P(Q∞)−P(Q′)]

= Q∞[P(Q∞)−P(Q′)]

> 0

ut

Proof of Lemma 1

We will prove Lemma 1 for the case of the additive demand shock. The proof for the multiplicative demand
shock is similar. Just for the moment, it will be useful to suppose that n is a continuous variable. Letting
E[θ ] = µ , in a subgame with no cap and n firms, the symmetric equilibrium condition is given by:

µ− c+ p(Qn)+
Qn

n
p′(Qn) = 0 (6)

Using (6) and the implicit function theorem, it is straightforward to show that concavity of p implies
∂Qn
∂n > 0 and ∂qn

∂n < 0. Let Wn denote equilibrium welfare when n firms enter. Using an argument identical
to that used in the proof of Proposition 1 in Mankiw and Whinston it is straightforward to show that
∂Wn
∂n < 0 for all n ≥ n∞

c , where n∞
c is the free-entry number of firms when n is continuous. When n is

integer constrained, equilibrium output and welfare are not smooth functions of n, as in the case where n is
continuous, but are particular points along these corresponding smooth functions. From this observation,
it follows that when n is integer constrained, total equilibrium output is strictly increasing in n, per-firm
equilibrium output is strictly decreasing in n, and Wn is strictly decreasing in n for n ≥ n∞

c . But note that
when the integer-constrained entry condition binds (i.e. π∞

n∞ = K) it follows that n∞ = n∞
c Thus, Wn is

strictly decreasing in n for n≥ n∞. To establish both statements made in the lemma, it therefore suffices to
show Wn∞−1 >Wn∞ .

Assumption 1(c) coupled with the hypothesis of this Lemma that π∞ = K imply that n∞ ≥ 2. So we let
n≥ 2 in the remainder of this proof. To establish the result, we show that π∞

n = K =⇒ Wn−1 >Wn. Define
∆Q ≡ Qn−Qn−1. We claim that ∆Q ≤ 1

n qn. By way of contradiction, suppose ∆Q > 1
n qn; equivalently,

Qn−1 < g where g≡ Qn− 1
n qn. Since g > Qn−1 equation (6) implies that:

0 > µ− c+ p(g)+
g

n−1
p′(g) (7)

Concavity of p implies:

p(g)≥ p(Qn)−
(

1
n

qn

)
p′(g) (8)

Together, (7) and (8) imply 0 > µ − c+ p(Qn)+ qn p′(g). But then Qn > g implies 0 > µ − c+ p(Qn)+
qn p′(Qn), which contradicts (6). So we must have 0≤ ∆Qn ≤ 1

n qn. Then since π∞
n = K, it follows:

Wn−1−Wn =−
[
(µ− c)∆Q+

∫ Qn

Qn−1

p(s)ds
]
+π

∞
n

T (s;x) = p′(x)s+ p(x)− p′(x)x is the equation of the line tangent to p(·) at output x. As p(·) is concave
and decreasing, for all s ∈ [Qn−1,Qn], p(s)≤ T (s,Qn). This means∫ Qn

Qn−1

p(s)ds≤
∫ Qn

Qn−1

T (s;Qn)ds = ∆Qp(Qn)−
1
2
(∆Q)2 p′(Qn)

It follows that:

Wn−1−Wn ≥
1
2

p′(Qn)(∆Qn)
2− (p(Qn)+µ− c)∆Q+π

∞
n
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Using (6), it follows that π∞
n = −p′(Qn)(qn)

2. Combining this with the fact that ∆Q ≤ 1
n qn, p′ < 0 and

n≥ 2 yields:

Wn−1−Wn ≥ 1
2 p′(Qn)(∆Q)2 + p′(Qn)qn∆Q− p′(Qn)(qn)

2

≥ 1
2 p′(Qn)(

1
n qn)

2 + p′(Qm)
1
n (qn)

2− p′(Qn)(qn)
2

= p′(Qn)q2
n

(
1

2n2 +
1
n −1

)
> 0

Which establishes the lemma.

Proof of Proposition 4

We will prove Proposition 4 for the case of the additive demand shock. The proof for the multiplicative
demand shock is similar. We first establish the following lemma.

Lemma A3 For a fixed cap, p > c, and a fixed number of firms, n, there exists a unique symmetric sub-
game equilibrium. For a fixed cap, p > c (possibly non binding), in equilibrium: total output, Q∗n(p), is
strictly increasing in n, per-firm output, q∗n(p), is strictly decreasing in n, and profit, π∗n (p) is strictly de-
creasing in n. Finally, for fixed n, equilibrium profit, π∗n (p), is strictly decreasing in the price cap for caps
c < p < ρ

∞.

Proof See proof of Lemma A6, which is stated and proved in the proof of Proposition 6(ii). The assump-
tions made on demand in this section are a special case of the assumptions considered in the proof of
Lemma A6. Although these proofs take n to be continuous, and exploit the fact that output and profit are
continuous functions of n, we may think of output and profit in the integer-n case as particular points along
these smooth functions.

We now prove the proposition. Concavity of p(·) implies that, for a fixed number of firms, equilibrium
output is continuous in the price cap. Therefore, equilibrium expected profit is continuous in the cap. If
π∞ > K then by the continuity of period two profit in p, there is an interval of price caps below ρ

∞ such
that the equilibrium number of entrants remains at n∞. For any fixed number of firms, n, GZ establish that
any price cap p ∈ [MRn,ρ

∞
n ) both increases output and total welfare. Thus, a price cap in the intersection

of [MRn∞ ,ρ∞) and the set of price caps for which n∞ firms enter will leave the equilibrium number of firms
unchanged and will increase both output and welfare.

If π∞ = K then there exists a range of price caps, p ∈ (ρ∞− ε,ρ∞) such that the equilibrium number
of firms decreases by exactly one; this follows since equilibrium profit is strictly decreasing in n and
strictly increasing in p (by Lemma A3) and since equilibrium profit is continuous in the cap for fixed
n. Also, if π∞ = K then Assumption (1c) implies n∞ ≥ 2. By Lemma 1 welfare is higher in the game
with no cap and n∞− 1 firms than with no cap and n∞ firms. Moreover, GZ’s result implies that any cap
p ∈ (MRn∞−1,ρ

∞
n∞−1), results in a welfare improvement in the subgame with n∞− 1 firms, compared to

the subgame with n∞−1 firms and no cap. So, to establish the existence of a welfare-improving price cap
in the game with endogenous entry, it suffices to show:

(MRn∞−1,ρ
∞
n∞−1)∩ (ρ∞− ε,ρ∞) 6= /0 (9)

Given any n ≥ 2 Lemma A3 implies ρ
∞
n−1 > ρ

∞
n . Thus, to establish (9) we need only show that

MRn−1 < ρ
∞
n for any n≥ 2. See that that ρ

∞
n = θ + p(Q∞

n ). Moreover, by assumptions placed on demand:
MRn = θ + p(Q∞

n )+
Q∞

n
n p′(Q∞

n ). Since p′ < 0 clearly MRn < ρ
∞
n . Finally, using (6) it follows that MRn =

MRn−1 = θ + c−µ , which implies MRn−1 = MRn < ρ
∞
n .

ut
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Proof of Lemma 2

We will prove Lemma 2 for the case of the additive demand shock. The proof for the case of the multi-
plicative shock is similar.

Just for the moment, it will be useful to suppose that n is a continuous variable. Let Wn denote equi-
librium welfare when n firms enter. For continuous n, it is shown under more general conditions in the
proof of Lemma A8 that ∂Wn

∂n < 0 for all n ≥ n∞
c , where n∞

c is the free-entry number of firms when n is
continuous. Using an identical argument as made in the proof of Lemma 1, it therefore suffices to show
that if π∞

n = K for some n≥ 2 then Wn−1 >Wn.
Let n≥ 2 be given such that π∞

n = K. In the subgame with m ∈ {n,n−1} firms let Qm(θ) denote total
third-stage equilibrium output at demand realization θ , and let Xm denote total equilibrium capacity. For
each θ ∈Θ let ∆Q(θ) ≡ Qn(θ)−Qn−1(θ). We will show that for each θ , ∆Q(θ) ≤ 1

n qn(θ). For those
demand realizations where the capacity constraint is non-binding (i.e. θ < θ̃m(Xm)) third-stage equilibrium
total output, Q0

m(θ) satisfies the first-order condition:

θ + p(Q0
m(θ))+

Q0
m(θ)

m
p′(Q0

m(θ)) = 0 (10)

It follows that

Qm(θ) =

{
Q0

m(θ) if θ < θ̃m(Xm)

Xm if θ ≥ θ̃m(Xm)

Equilibrium total capacity satisfies the first-order condition:

∫
θ

θ̃m(Xm)

[
θ + p(Xm)+

Xm

m
p′(Xm)

]
dF(θ) = c (11)

With our assumptions on demand, it holds that θ̃m(Xm) =−p(Xm)− Xm
m p′(Xm). Using this fact, (11) may

be written:

∫
θ

θ̃m(Xm)

[
θ − θ̃m(Xm)

]
dF(θ) = c (12)

For any z < θ the function G(z) =
∫

θ

z [θ − z]dF(θ) is strictly decreasing in z. Equation (12) then implies
θ̃m′ (Xm′ ) = θ̃m(Xm)≡ θ̃ for any m′ and m. Using equation (10), for θ < θ̃ , the proof that ∆Q(θ)≤ 1

n qn(θ)

follows along exactly the same lines as in the proof of Lemma 1. For θ ≥ θ̃ we may use the definition of
θ̃ and write:

θ̃ + p(Xm)+
Xm

m
p′(Xm) = 0 (13)

Using equation (13), the proof that ∆Q(θ) ≤ 1
n qn(θ) for θ ≥ θ̃ is identical to the argument given in

the proof Lemma 1. Thus, for each θ ∆Q(θ)≤ 1
n qn(θ). Now, note that

Wn =
∫

θ̃

θ

[∫ Q0
n(θ)

0
[θ + p(s) ]ds

]
dF(θ)+

∫
θ

θ̃

[∫ Xn

0
[θ + p(s)]ds

]
dF(θ)− cXn−nπ

∞
n

and

Wn−1−Wn =−
∫

θ̃

θ

[∫ Q0
n(θ)

Q0
n−1(θ)

[θ + p(s) ]ds

]
dF(θ)−

∫
θ

θ̃

[∫ Xn

Xn−1

[θ + p(s)]ds
]

dF(θ)+(∆X)c+π
∞
n

Concavity of p implies that for each θ ∈ [θ , θ̃ ]

∫ Q0
n(θ)

Q0
n−1(θ)

[θ + p(s) ]ds≤ ∆Q0(θ)(θ + p(Q0
n(θ)))−

1
2
(
∆Q0(θ)

)2
p(′Q0

n(θ))≡ A(θ)

Where ∆Q0(θ)≡ Q0
n(θ)−Q0

n−1(θ). Moreover, for each θ ∈ [θ̃ ,θ ]
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∫ Xn

Xn−1

[θ + p(s) ]ds≤ ∆X(θ + p(Xn))−
1
2
(∆X)2 p′(Xn)≡ B(θ)

Where ∆X ≡ Xn−Xn−1. Using (10) and (12) we may write:

π
∞
n =

(
−
∫

θ̃

θ

(q0
n(θ))

2 p′(Q0
n(θ))dF(θ)

)
+

(
−
∫

θ

θ̃

(xn)
2 p′(Xn)dF(θ)

)
≡ π

A
n +π

B
n

Hence, it follows that

Wn−1−Wn ≥−
∫

θ̃

θ

A(θ)dF(θ)−
∫

θ

θ̃

B(θ)dF(θ)+(∆X)c+π
A
n +π

B
n

Using (10), and the fact that ∆Q(θ)≤ 1
n qn(θ):

−
∫

θ̃

θ

A(θ)dF(θ)+π
A
n ≥

∫
θ̃

θ

(q0
n(θ))

2 p′(Q0
n(θ)

(
1
n
+

1
2n2 −1

)
dF(θ)> 0

Now also see that

−
∫

θ

θ̃

B(θ)dF(θ)+(∆X)c+π
B
n

=−∆X

[∫
θ

θ̃

(θ + p(Xn))dF(θ)− c

]
+
∫

θ

θ̃

[
1
2
(∆X)2 p′(Xn)− (x∞

n )
2 p′(X∞

n )

]
dF(θ)

From (12) and the definition of θ̃ , it follows that

∫
θ

θ̃

(θ + p(Xn))dF(θ)− c =
∫

θ

θ̃

−xn p′(Xn)dF(θ)

Combined with the fact that ∆X ≤ 1
n xn allows us to write:

−
∫

θ

θ̃

B(θ)dF(θ)+(∆X)c+π
B
n ≥ (x∞

n )
2 p′(Xn)

∫
θ

θ̃

(
1
n
+

1
2n2 −1

)
dF(θ)> 0

It follows immediately that Wn−1−Wn > 0.
ut

Proof of Proposition 5

We will prove Proposition 5 for the case of the additive demand shock. The proof for the case of the
multiplicative shock is similar. We first establish the following lemma.

Lemma A4 For a fixed cap, p > c and fixed n there exists a unique symmetric equilibrium in the capacity
choice subgame. For a fixed cap, p> c (possibly non binding) in equilibrium: total capacity, X∗n (p), is non-
decreasing in n, per-firm capacity, x∗n(p), is strictly decreasing in n, and profit, π∗n (p), is strictly decreasing
in n. Finally, for fixed n, second-stage expected equilibrium profit, π∗n (p), is strictly increasing in the cap
for any c < p < ρ

∞

Proof See proof of Lemma A7, which is stated and proved in the proof of Proposition 6(iii). Note that
concave demand is a special case of the environment considered in the proof of Lemma A7. Although the
proof of Lemma A7 takes n to be continuous, and exploits the fact that output and profit are continuous
functions of n, we may think of output and profit in the integer-n case as particular points along these
smooth functions.
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We now prove the proposition. Concavity of p(·) implies that, for a fixed number of firms, equilibrium
capacity and equilibrium 3rd-stage output decisions are continuous in the cap. Therefore, equilibrium
expected profit is continuous in the price cap. If π∞ > K then by the continuity of period two profit in p,
there is an interval of price caps below ρ

∞
n∞ such that the equilibrium number of entrants remains at n∞. For

any fixed number of firms, n, Theorem 3 in GZ implies that any price cap p ∈ [MRn,ρ
∞
n ) both increases

output and total welfare. Thus, a price cap in the intersection of [MRn∞ ,ρ∞) and the set of price caps for
which n∞ firms enter will leave the equilibrium number of firms unchanged and will increase both output
and welfare.

If π∞ = K then there exists a range of price caps, p ∈ (ρ∞− ε,ρ∞) such that the equilibrium number
of firms decreases by exactly one (this follows from Lemma A4 and continuity of equilibrium profit in the
cap for fixed n). Also, if π∞ = K then Assumption (1c) implies n∞ ≥ 2. By Lemma 2 welfare is higher
in the game with no cap and n∞− 1 firms than with no cap and n∞ firms. Moreover, Theorem 3 in GZ
implies that any price cap p ∈ (MRn∞−1,ρn∞−1), results in a welfare improvement in the subgame with
n∞− 1 firms, compared to the subgame with n∞− 1 firms and no cap. So, to establish the existence of a
welfare-improving price cap in the game with endogenous entry, it suffices to show:

(MRn∞−1,ρ
∞
n∞−1)∩ (ρ∞− ε,ρ∞) 6= /0 (14)

Given any n≥ 2 Lemma A4 implies ρ
∞
n−1 ≥ ρ

∞
n . To establish (14) it therefore suffices to show MRn−1 < ρ

∞
n

for any n ≥ 2. In the proof of Lemma 2 it is shown that, in the absence of a cap, equilibrium capacity
satisfies θ̃m(X∞

m ) = θ̃m′ (X∞

m′ )≡ θ̃ for any m and m′. By assumptions placed on demand, and the definition
of θ̃ :

MRn = θ + p(X∞
n )+

X∞
n
n

p′(X∞
n ) = θ − θ̃ = MRn−1

Note that ρ
∞
n = θ + p(X∞

n ). Then, p′ < 0 =⇒ MRn < ρ
∞
n =⇒ MRn−1 < ρ

∞
n , which establishes the

existence of a welfare-improving cap.
ut

Proof of Proposition 6

We will show each part of Proposition 6 separately. First, some preliminaries. For the case of deterministic
demand/constant MC the existence of a welfare-improving cap follows from Proposition 1. Thus, for
deterministic demand we focus on the case of convex costs. Second, for the case of stochastic demand we
assume P(0,θ) = 0. It is clear that under this condition the cap will not bind for low enough realizations of
θ . This means that for any level of production, and any cap, θ b(Q, p)> θ . Moreover, when θ b(Q, p)< θ

it holds that θ b
1 (Q,θ)> 0 and θ b

2 (Q,θ)> 0. We also point out that for this proof:

P1(Q,θ)+QP11(Q,θ)≤ 0 (15)

Finally, in this section, the equilibrium number of firms, n∗, satisfies:

π
∗
n∗ (p) = K

Proof of Proposition 6(i)

We begin with the following lemma.

Lemma A5 For any fixed cap and fixed n there is a unique symmetric subgame equilibrium. Let pc
n denote

the n-firm competitive price. For any cap p ∈ [pc
n,ρ

∞
n ) equilibrium output satisfies P(Q∗n(p)) = p. For

p < pc
n equilibrium output satisfies: C′(Q∗

n ) = p

Fix n ≥ 1 and let p ∈ (pc
n,ρ

∞
n ). Let Q̂ be the unique solution to P(Q̂) = p. Let Q∗ be a symmetric

equilibrium total (per-firm) output candidate. We will show that Q∗ = Q̂. If Q∗ < Q̂ then the cap is binding,
and moreover, Q∗ < Q̂ < Qc

n where Qc
n is the n firm competitive output level. We must have p > pc =

C′
(Qc

n
n

)
> C′

(Q∗
n

)
. It follows that any one firm could increase output slightly and increase profit. Thus,
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Q∗ < Q̂ cannot be a symmetric total output level. Now suppose Q∗ > Q̂. Total output with no cap satisfies
the first order condition:

P(Q∞
n )+

Q∞
n

n
P′(Q∞

n )−C′
(

Q∞
n

n

)
= 0 (16)

Condition (15) implies that the LHS of (16) is strictly decreasing in total output. Hence for Q∗ > Q̂ > Q∞
n :

π1

(
Q∗

n
,

n−1
n

Q∗, p
)
= P(Q∗)+

Q∗

n
P′(Q∗)−C′

(
Q∗

n

)
< 0

Any individual firm could increase profit by decreasing output slightly. It follows that Q∗n(p) = Q̂. Fi-
nally, the result concerning a cap p < pc is implied by Lemma A6 in Reynolds and Rietzke [2015]. This
establishes the lemma.

ut
We now prove part (i). We will first show that the equilibrium number of firms is differentiable and

strictly increasing in the the cap, for caps close to P(Q∞). Let Q̂ satisfy P(Q̂(p)) = p, and let ρ
∞ ≡ P(Q∞).

Define:

π̂(n, p) =
Q̂(p)

n
p−C

(
Q̂(p)

n

)
Using the fact that Q̂(ρ∞) = Q∞, see that:

π̂1(n, p)|n∞ ,ρ∞ =
q∞

n∞

[
C′(q∞)−ρ

∞
]
< 0

Moreover, note that Q̂′(p) = 1
P′(Q̂(p))

, and hence:

π̂2(n, p)|n∞ ,ρ∞ =
1

P′(Q∞)n∞

[
P(Q∞)+Q∞P′(Q∞)−C′(q∞)

]
> 0

The term in square brackets is strictly negative from (16) and since n∞ > 1. Let n(p) satisfy π̂(n(p), p)=K.
Note that n(ρ∞) = n∞. The Implicit Function Theorem implies that for p close to ρ

∞, n(p) is differentiable
and n′(p)> 0. We will show that for high enough caps, the equilibrium number of firms is in fact given by
n(·).

If pc
n(p) < p< ρ

∞

n(p) then Lemma A5 implies that equilibrium total output is Q̂(p); equilibrium profit in
this subgame is given by π̂(n(p), p). Using (16) it is straightforward to show that ρ

∞
n is strictly decreasing

in n. Since pc
n∞ < ρ

∞, and n(·) is strictly increasing and continuous then pc
n(p) < p < ρ

∞

n(p) for caps close

enough to ρ
∞. Thus, for high enough caps, equilibrium output is Q̂(p) and the equilibrium number of firms

satisfies π̂(n(p), p) = K. For sufficiently high caps welfare is:

W (p) =
∫ Q̂(p)

0
P(z)dz−n(p)C

(
Q̂(p)
n(p)

)
−n(p)K

Using the fact that π∞ = K it may be verified that:

W ′(p)|p=ρ
∞ =

[
P(Q∞)−C′(q∞)

][
Q̂′(ρ∞)−q∞n′(ρ∞)

]
< 0

Hence, there is an interval of caps, (ρ∞−ε,ρ∞) such that any cap in this interval strictly increases welfare.
ut

Proof of Proposition 6(ii)

We begin by establishing the following lemma.

Lemma A6 For a fixed cap, p, and a fixed number of firms, n, there exists a unique symmetric equilibrium.
Moreover, for any fixed cap p > c (possibly non binding), ∂Q∗n(p)

∂n > 0, ∂q∗n(p)
∂n < 0, and ∂π∗n (p)

∂n < 0. Finally,

for fixed n ∂π∗n (p)
∂ p > 0 for caps p < ρ

∞
n .23

23 For the case of constant MC we also require p > c
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For fixed p and n, existence of a symmetric equilibrium follows from Lemma 1 in GZ.24 To show
uniqueness, note that symmetric equilibrium total output must satisfy the first-order condition:

Γn(Q, p) =
∫

θ b(Q,p)

θ

[
P(Q,θ)+

Q
n

P1(Q,θ)

]
dF(θ)+

∫
θ

θ b(Q,p)
pdF(θ)−C′

(
Q
n

)
= 0 (17)

Differentiating Γn(Q, p) with respect to Q we obtain:

∂Γn(Q, p)
∂Q

= θ
b
1 (Q, p)

Q
n

P1(Q,θ b) f (θ b)+
1
n

∫
θ b

θ

[P1(Q,θ)(1+n)+QP11(Q,θ)]dF(θ)−C′′
(

Q
n

)
1
n

The first term above is non positive and is strictly negative if if θ b < θ . Moreover, (15) implies the
second term is strictly negative. Thus, ∂Γn(Q,p)

∂Q < 0; by the implicit function theorem, equilibrium total

output is differentiable in n and p. It is also readily verified that ∂Γn(Q,p)
∂n > 0. Together with the fact that

Γ is strictly decreasing in Q, this implies that ∂Q∗n(p)
∂n > 0. Writing (17) in terms of per-firm outputs and

using similar arguments it can be shown that ∂q∗n(p)
∂n < 0.

We now show that ∂π∗n (p)
∂n < 0. Fix p and let Qn (qn) denote total (per-firm) equilibrium output under

the cap in a subgame with n firms. Also let yn = (n− 1)qn denote the total output of all firms except
some firm i. Since ∂Qn

∂n > 0 and qn
∂n < 0, clearly it must be the case that ∂yn

∂n > 0. Let π(q,y, p) denote the
profit to some firm i if i chooses output q and the other firms choose total output y. Note that for all n:
π∗n (p) = π(qn,yn, p). Hence

∂π∗n (p)
∂n

= π1(qn,yn, p)
∂qn

∂n
+π2(qn,yn, p)

∂yn

∂n
= π2(qn,yn, p)

∂yn

∂n

π1(qn,yn, p) = 0 is the equilibrium first-order condition for firm i. Thus, to demonstrate ∂π∗n (p)
∂n < 0, it

suffices to show that π2(qn,yn, p)< 0. To see this, note that:

π2(qn,yn, p) =
∫

θ b(Qn ,p)

θ

qnP1(Qn,θ)dF(θ)< 0

Finally, we will show that, for fixed n, ∂π∗n (p)
∂ p > 0, for caps below ρ

∞
n . Fix n and let p < ρ

∞
n be

given. Let Q(p) (q(p)) denote total (per-firm) equilibrium output in this subgame with n firms and cap
p. As demonstrated by EST, when demand is stochastic, equilibrium output may be either increasing or
decreasing in the cap, so we must consider either possibility. As already argued, Q(·) is differentiable; first
suppose Q′(p)≤ 0. Note that:

∂π∗n (p)
∂ p

=
Q′(p)

n

[∫
θ b

θ

[P(Q(p),θ)+Q(p)P1(Q(p),θ)]dF(θ)+
∫

θ

θ b
pdF(θ)−C′(q(p))

]
+
∫

θ

θ b
q(p)dF(θ)

Equation (17) implies the term in square brackets is non positive. But p < ρ
∞
n =⇒ θ b(Q(p, p) < θ , and

so the second term is strictly positive. Hence, Q′(p)≤ 0 =⇒ ∂π∗n (p)
∂ p > 0. Next, suppose Q′(p)> 0. Using

(17), expected equilibrium profit can be written:

π
∗
n (p) =−

∫
θ b

θ

q(p)2P1(Q,θ)dF(θ)+q(p)C′(q(p))−C(q(p))

It follows:

∂π∗(p)
∂ p

=−P1(Q,θ b)q2
[
θ

b
1 (·)Q′(p)+θ

b
2 (·)

]
f (θ b)− q

n
Q′(p)

∫
θ b

θ

[2P1(·)+QP11(·)] dF(θ)+qC′′(q)q′(p)

24 Although the proofs in Grimm and Zottl (2010) assume constant marginal cost, Footnote 9 on page 3
states: “The assumption that marginal cost is constant is made for easier exposition. All the results can be
shown to hold also for increasing marginal cost, however, with much higher technical effort.”



Price Caps, Oligopoly, and Entry 31

Note that p < ρ
∞
n =⇒ θ b

1 > 0 and θ b
2 > 0. Moreover, condition (15) implies that the integral in the

expression above is non positive. Hence, Q′(p) > 0 implies the RHS of the expression above is strictly
positive. So, we have the result; for fixed n ∂π∗(p)

∂ p > 0 for all p < ρ
∞
n . This establishes the lemma.

ut
We now establish the proposition. Consider the game with no price cap. Let Q∞

n (q∞
n ) denote total (per-

firm) equilibrium output in the subgame with n firms and no cap. Lemma A6 implies ∂Q∞

∂n > 0, ∂q∞

∂n < 0,
and ∂π∞

∂n < 0.
Let W ∞(n) denote (expected) equilibrium welfare with no cap, when n firms enter. Using nearly

identical arguments as those used in the proof of Proposition 1 in Mankiw and Whinston, it can be shown
that the free-entry equilibrium number of firms, n∞, is strictly greater than the welfare-maximizing (second-
best) number of firms. Moreover, it may also be shown that ∂W ∞(n)

∂n |n=n∞ < 0. Thus, ∃ n1 < n∞ s.t. n ∈
[n1,n∞) =⇒ W ∞(n)>W ∞(n∞).

Now consider the imposition of a price cap, p ∈ P, and let n(p) denote the equilibrium number of
firms under the cap. First, we claim that n(·) is continuous and n(p) < n∞ for any p < ρ

∞. To see these
facts, note that n(p) satisfies the equilibrium entry condition: π∗n(p)(p) = K. Lemma A6 implies that for

any cap ∂π∗n (p)
∂n < 0; The Implicit Function Theorem then implies that n(p) is a differentiable (and hence

continuous) function of the cap. Moreover, in the subgame with n firms, Lemma A6 implies ∂π∗n (p)
∂ p > 0 for

any cap p < ρ
∞
n . This implies n′(p) > 0 for any cap that binds in the subgame with n(p) firms. But since

∂Q∞
n

∂n > 0, a cap that binds in the subgame with n∞ firms will also bind in a subgame with n(p)< n∞ firms,
which means n′(p) > 0 for all p < ρ

∞ and p ∈ P. Finally, since n(ρ∞) = n∞, p < ρ
∞ =⇒ n(p) < n∞.

Now, let

MR(n) = max
θ∈Θ

{
P(Q∞

n ,θ)+
Q∞

n
n

P1(Q∞
n ,θ)

}
(18)

Since P is twice continuously differentiable in Q and θ , and Q∞
n , is differentiable in n then the max-

imand in (18) is continuous in n and θ . The Theorem of the Maximum implies MR(·) is continuous.
In the proof of their Proposition 1, GZ show that for any n: MR(n) < ρ

∞
n . In particular, this means

that MR(n(ρ∞)) < ρ
∞. As MR(·) is continuous, and n(·) is continuous, for high enough caps we have

MR(n(p))< p
Now choose p < ρ

∞ sufficiently high such that such that n(p) ∈ [n1,n∞) and MR(n(p)) < p. Then
n(p) ∈ [n1,n∞) implies that, in the game with no cap, welfare is strictly higher with n(p) firms than in
the subgame with n∞ firms. But since MR(n(p)) < p, Theorem 1 in GZ25 implies that welfare in the
subgame with n(p) firms is higher under the cap than with no cap. This establishes the existence of a
welfare improving cap.

ut

Proof of Proposition 6(iii)

We first establish two lemmas, and then prove the proposition.

Lemma A7 For any cap p, and n, there exists a unique symmetric equilibrium. For any fixed cap (possibly
non binding), ∂Xn(p)

∂n ≥ 0, ∂xn(p)
∂n < 0, and ∂πn(p)

∂n < 0. Finally, for fixed n ∂π∗n (p)
∂ p > 0 for caps p < ρ

∞
n .26

Equilibrium capacity satisfies the first-order condition:

Γn(X) =
∫

θ b(X ,p)

θ̃n(X ,p)

[
P(X ,θ)+

X
n

P1(X ,θ)

]
dF(θ)+

∫
θ

θ b(X ,p)
pdF(θ)−C′

(
X
n

)
= 0 (19)

Note that:

25 GZ assume constant marginal cost. However, it is straightforward to generalize their argument in the
proof of Theorem 1 to allow for convex costs. See also footnote 24.

26 For the case of constant MC we also require p > c
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∂Γn(X)

∂X
= θ

b
1 (X , p)

X
n

P1(X ,θ b) f (θ b)+
∫

θ b

θ̃n

[
P1(X ,θ)

(
1+

1
n

)
+

X
n

P11(X ,θ)

]
dF(θ)− 1

n
C′′
(

X
n

)
Each of the three terms above is non positive. We claim that in fact the RHS of the expression above
is strictly negative. If the cap is binding then θ < θ b < θ ; in this case θ b

1 > 0 and the first term in the
expression above is strictly negative. If the cap is non binding then θ b = θ > θ̃ , (15) then implies that
the second term above is strictly negative. Hence ∂Γn(X)

∂X < 0. Thus, there exists a unique solution to (19).
Moreover, by the Implicit Function Theorem equilibrium capacity, X∗n (p), is differentiable in n and p. Now
note that

∂Γn(X)

∂n
=−

∫
θ b

θ̃n

X
n2 P1(X ,θ)dF(θ)+

X
n2 C′′

(
X
n

)
≥ 0

This inequality holds strictly whenever θ̃n < θ b (as would be the case if the cap is non binding) or when
C′′ > 0. Hence, ∂Xn

∂n ≥ 0. Using (19), and replacing total capacity, X , with per-firm capacity, x = X
n , similar

arguments can be applied to show ∂xn
∂n < 0. Now see that equilibrium profit is given by:

πn(p) =
∫

θ̃

θ

π
0
n (θ , p)dF(θ)+

∫
θ b

θ̃

P(Xn,θ)xn dF(θ)+
∫

θ

θ b
pxn dF(θ)−C(xn)

And so:

∂π∗n (p)
∂n

=
∫

θ̃

θ

∂π0
n (θ , p)
∂n

dF(θ)+
∂xn

∂n

[∫
θ b

θ̃

P(Xn,θ)dF(θ)+
∫

θ

θ b
pdF(θ)−C′(xn)

]

+
∂Xn

∂n
xn

∫
θ b

θ̃

P1(Xn,θ)dF(θ)< 0

To see why this strict inequality holds, first note that the second and third terms above are non positive.
Also note that for θ close to θ the cap is non binding. Using the equilibrium characterized in Lemma
A5 for convex costs and deterministic demand, it can be shown that π0

n is non increasing in n for all
θ ∈ [θ , θ̃ ]. But, for θ sufficiently close to θ , neither the cap nor the capacity constraint will bind. For these

realizations, standard techniques can be used to show that ∂π0
n (θ ,p)
∂n < 0. Hence, the first term is strictly

negative.
Finally, we show ∂π∗n (p)

∂ p > 0 for caps p < p∞
n . Fix n and let X(p) denote equilibrium total capacity

for some cap p < p∞
n . Note that we have already shown that X(·) is differentiable in the cap. Theorem 6

in EST implies that X(·) may either be increasing or decreasing. Thus we must consider both possibilities.
First suppose X ′(p)≤ 0. See that:

∂π∗n (p)
∂ p

=
∫

θ̃

θ

∂π0
n (θ , p)
∂ p

dF(θ)+
X ′(p)

n

[∫
θ b

θ̃

[P(X ,θ)+XP1(X ,θ)] dF(θ)+
∫

θ

θ b
pdF(θ)−C′(x)

]

+
∫

θ

θ b
xdF(θ)

Using the equilibrium constructed in Lemma A5 it can be shown that ∂π0(θ ,p)
∂ p ≥ 0. Moreover, equation

(19) implies that the term in square brackets is non positive, which means the second term above is non
negative. But p < ρ

∞
n =⇒ θ b(X(p), p) < θ , and hence the third term is strictly positive. Thus, X ′(p) ≤

0 =⇒ ∂π∗n (p)
∂ p > 0.

Next, suppose X ′(p)> 0. Using (19), equilibrium profit may be written:

π
∗
n (p) =

∫
θ̃(X ,p)

θ

π
0(θ , p)dF(θ)− x2

∫
θ b(X ,p)

θ̃(X ,p)
P1(X ,θ)dF(θ)+ xC′(x)−C(x)

Using this expression for profit, one finds:
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∂π∗n (p)
∂ p

=
∫

θ̃

θ

∂π0
n (θ , p)
∂ p

dF(θ)−
[
θ

b
1 (·)X ′(p)+θ

b
2 (·)

]
x2P1(X ,θ b) f (θ b)

−x
X ′(p)

n

[∫
θ b

θ̃

[2P1(X ,θ)+XP11(X ,θ)] dF(θ)

]
+ xC′′(x)x′(p)

For a cap p < p∞
n it holds that θ b

1 > 0 and θ b
2 > 0. Moreover, condition (15) implies that the term in large

square brackets is non positive. It follows that the RHS of the expression above is strictly positive. Thus,
we have the result; ∂π∗n (p)

∂ p > 0 for all caps p < p∞
n , and the lemma is established.

Lemma A8 Let nW denote the welfare-maximizing (second best) number of firms and n∞ the free-entry
number of firms with no cap. Then nW < n∞ and n≥ n∞ =⇒ ∂Wn

∂n < 0

If n firms enter equilibrium welfare is given by:

Wn =
∫

θ̃n(Xn)

θ

[∫ Q0
n(θ)

0
P(z,θ)dz

]
dF(θ)+

∫
θ

θ̃n(Xn)

[∫ Xn

0
P(z,θ)dz

]
dF(θ)−nC(xn)−nK

Differentiating Wn with respect to n, and using the definition of π∞
n we obtain:

∂Wn

∂n
= π

∞
n −K +

∫
θ̃n(Xn)

θ

n
∂q0

n(θ)

∂n
P(Q0

n(θ),θ)dF(θ)+n
∂xn

∂n

[∫
θ

θ̃n(Xn)
P(Xn,θ)dF(θ)−C′(xn)

]

By definition of n∞ it follows that n≥ n∞ =⇒ π∞
n ≤ K, and hence:

∂Wn

∂n
≤
∫

θ̃n(Xn)

θ

n
∂q0

n(θ)

∂n
P(Qn(θ),θ)dF(θ)+n

∂xn

∂n

[∫
θ

θ̃n(Xn)
P(Xn,θ)dF(θ)−C′(xn)

]
< 0

To see why this strict inequality holds, first note that standard techniques can be used to show that: ∂q0
n(θ)
∂n <

0. Moreover, by Lemma A7 ∂xn
∂n < 0. Finally, using the first-order condition in (19), with θ b = θ , it can be

verified that the term in square brackets must be strictly positive. Thus, ∂Wn
∂n < 0 for all n≥ n∞, and hence

nW < n∞. This establishes the lemma.
ut

We now prove the proposition. Lemma A8 implies ∂Wn
∂n |n=n∞ < 0. Moreover, GZ show that for any n:

MR(n)< ρ
∞
n and that for fixed n any cap p ∈ [MR(n),ρ∞

n ) increases welfare. Where,

MR(n) = max
θ

{
P(X∞

n ,θ)+
X∞

n
n

P1(X∞
n ,θ)

}
The remainder of the proof follows exactly along the same lines as the proof of Proposition 6(ii).

ut
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