
A Matheuristic Approach to Solve the

Multi-objective Beam Angle Optimisation

Problem in Intensity Modulated Radiation

Therapy

Guillermo Cabrera G.1,2,∗ , Matthias Ehrgott3, Andrew Mason1,
and Andrea Raith1

1Department of Engineering Science, University of Auckland (New
Zealand)
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de Valparáıso (Chile)

3Management School, Lancaster University (United Kingdom)

Received: date / Accepted: date

Abstract

Selecting a suitable set of beam angles is an important but difficult
task in intensity modulated radiation therapy (IMRT) for cancer treat-
ment. From a single objective point of view this problem, known as beam
angle optimisation (BAO) problem, is solved by finding a beam angle
configuration (BAC) that leads to the best dose distribution, according
to some objective function. Because there exists a trade-off between the
main goals in IMRT (to irradiate the tumour according to some prescrip-
tion and to avoid surrounding healthy tissue) it makes sense to solve this
problem from a multi-objective (MO) point of view. When doing so, a
solution of the BAO problem is no longer a single BAC but instead a
set of BACs which lead to a set of dose distributions that, depending on
both dose prescription and physician preferences, can be selected as the
preferred treatment.

We solve this MO problem using a two-phase strategy. During the
first phase, a deterministic local search algorithm is used to select a set
of locally optimal BACs, according to a single objective function. During
this search, an optimal dose distribution for each BAC, with respect to
the single objective function, is calculated using an exact non-linear pro-
gramming algorithm. During the second phase a set of non-dominated

∗Please address correspondence to guillermo.cabrera@ucv.cl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76957887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


points is generated for each promising locally optimal BAC and a domi-
nance analysis among them is performed. The output of the procedure is
a set of (approximately) efficient BACs that lead to good dose distribu-
tions. To demonstrate the viability of the method, the two-phase strategy
is applied to a prostate case.

Keywords: Multi-objective Beam Angle Optimisation, Deterministic Lo-
cal Search, Mathematical Programming, Intensity Modulated Radiation
Therapy

1 Introduction

Intensity modulated radiation therapy (IMRT) is a common technique applied
in external radiation therapy. Its goal is to eradicate tumour cells by delivering
ionising radiation from an external source to the tumour without compromising
surrounding normal tissue and organs at risk (OARs). Unfortunately, because
of the physics of radiation delivery, there is a trade-off between control of the
tumour and sparing surrounding normal tissue. A distinctive feature of IMRT
is that radiation can be modulated using a device called a multi-leaf collimator
(Romeijn and Dempsey, 2008). Modulation is achieved by moving the metal
leaves of the multi-leaf collimator into the radiation fields, thereby partially
blocking the radiation. Several of these partially blocked radiation fields are
superimposed to generate a fluence map which leads to a dose distribution
that delivers more radiation to the tumour while better sparing surrounding
OARs than unmodulated conformal radiotherapy. Modulation is particularly
important for tumours with non- convex shapes in difficult anatomical situations
(Ehrgott et al, 2009; Romeijn and Dempsey, 2008).

Due to the complexity of designing a treatment plan, the IMRT planning
problem is usually divided into three sequential sub-problems, namely, beam
angle optimisation (BAO), fluence map optimisation (FMO) and multi-leaf col-
limator sequencing. A solution of the BAO problem determines the number
and directions of radiation beam angles, i.e. a beam angle configuration (BAC).
Then, the optimal fluence of radiation for each beam angle needs to be computed
(FMO problem) to give a high quality dose distribution in the organs. Finally, a
sequencing problem needs to be solved to control the movement of the multi-leaf
collimator leaves during delivery of the optimised fluence (Ehrgott et al, 2009).
This sequential approach implies that the quality of the solution obtained at
each step depends to a possibly large extent on the solution obtained in the
previous steps. Therefore, beam angle selection will have a considerable impact
on the fluence map obtained when solving the FMO problem using a specific
BAC.

In this paper, we focus on the BAO problem and the associated FMO prob-
lems, but ignore the collimator sequencing problem, i.e. we consider the problem
of selecting the appropriate beam angles that lead to a clinically acceptable dose
distribution (Pugachev et al, 2000). In radiation therapy practice, treatment
planners usually define the set of beam angles manually based on their ex-
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perience and intuition as well as considering some geometrical features of the
problem. However, as has been pointed out previously in the literature, man-
ual selection may lead to sub-optimal treatment plans (Ehrgott and Johnston,
2003; Pugachev and Xing, 2002; Pugachev et al, 2001; Rowbottom et al, 1998).
Currently, the planning process proceeds as follows: The planner selects a BAC
based on his/her experience and generates the fluence map (i.e. the planner uses
specialised software to solve the FMO problem) for that BAC. If the resulting
fluence map is clinically unacceptable, the treatment planner often defines a new
BAC and repeats the fluence map optimisation for the new BAC. This process
is repeated until a clinically acceptable fluence map is obtained (Ehrgott et al,
2008). It is not uncommon that this process can take several hours. Thus,
solving the BAO problem using automated beam angle selection techniques has
the potential to generate good quality treatment plans independently of planner
experience and to alleviate the tedious repetitive process described above.

Mathematically, the BAO problem can be formulated as follows. Let K be
the set of all possible beam angles around the patient. In this work we consider
K = {kπ/180 : k = 0, 1, 2, . . . , 359}. Coarse angular resolutions can also be used
within our framework to reduce the number of angles in K. Let A ∈ PN(K) be
a BAC where PN(K) is the set of all N -element subsets of K, with N > 0 the
a priori determined number of angles. We denote the i-th angle of A by Ai for
i = 1, . . . , N . The BAO problem seeks to find a BAC A which minimises some
objective function h : PN(K)→ R,

min
A∈PN(K)

h(A ). (1)

The BAO problem is usually stated as a mixed integer (or binary) optimisation
problem (Bangert et al, 2012; Ehrgott and Johnston, 2003; Preciado-Walters
et al, 2004, 2006), as the set of all possible angles K is discrete and only a
subset of them is considered in a BAC A . Furthermore, for most choices of
h, BAO is a non-convex problem with possibly many local optima (Ehrgott
and Johnston, 2003; Ehrgott et al, 2008; Lim and Cao, 2012; Pugachev et al,
2001). The feasible set for the BAO problem has

(|K|
N

)
elements, and since

clinically relevant values of N range from 5 to 15 beam angles, there are between
4.9 × 1010 and 1.3 × 1026 subsets of K (Ehrgott et al, 2008). Moreover, when
BAO and FMO are posed together (i.e. when evaluating h(A ) requires solving
the FMO problem) the set of feasible solutions is highly enlarged (Bortfeld and
Schlegel, 1993; Pugachev and Xing, 2001). Thus, it is not possible to explore
the entire set of feasible solutions in reasonable computational time. Hence, we
need to find some efficient strategy to identify those BACs that minimise h.

The general framework applied so far in the literature considers hybrid
strategies combining mathematical programming and meta-heuristics to solve
the BAO problem. While meta-heuristics are used because of their ability to
avoid getting trapped in local optima, mathematical programming is used to
identify the optimal solution of the corresponding FMO problem for a specific
set of angles. For instance, Li et al (2004) present a genetic algorithm to solve the
BAO problem. In their paper, the objective function of the corresponding FMO
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problem is a commonly used quadratic penalty function which penalises those
sub-volumes in the tumour (OARs) below (above) lower (upper) bounds. The
genetic algorithm selects a subset of angles and a conjugate gradient method is
used to solve the FMO problem, which is modelled as a quadratic optimisation
problem. According to the authors, their genetic algorithm obtains very good
solutions in clinical cases, reaching high radiation uniformity in the tumour and
low radiation in most of the OARs, outperforming manual beam angle selection
consistently. Instead of the genetic algorithm used in Li et al (2004), Li et al
(2005a) present a particle swarm optimisation algorithm to solve the BAO prob-
lem. The corresponding FMO problem in each BAC considered by the particle
swarm optimisation algorithm is solved, again, by a conjugate gradient algo-
rithm. The particle swarm optimisation algorithm is applied to both clinical
and non-clinical cases. According to the authors, the particle swarm optimisa-
tion approach seems to be at least as good as the genetic algorithm strategy
presented in Li et al (2004). Dias et al (2014) present a genetic algorithm com-
bined with a neural network to solve the single objective BAO problem. The
authors make use of a surrogate function to speed up the algorithm. To do that,
the genetic algorithm uses the neural network as a surrogate model to calculate
an approximation of the judgement function value of most of the visited BACs.
The authors highlight that their approach is able to find improved BACs when
compared to the ones used in clinical practice. Another heuristic used to solve
the BAO problem is an ant colony system. While in Li et al (2005b) a pure ant
colony system is combined with a conjugate gradient algorithm, the same au-
thors present a hybrid strategy combining a genetic algorithm and an ant colony
system to solve the BAO problem in Li and Yao (2006). The authors propose
this hybrid approach in order to obtain a balance between exploration and ex-
ploitation attributes of the hybrid algorithm. While the genetic algorithm is
used to explore the set of feasible BACs to initialise the ant colony system (ex-
ploration), the ant colony system is used to fine tune the (locally) optimal BAC
(exploitation). According to the authors, the combined genetic algorithm and
ant colony system algorithm is a more efficient approach than each algorithm
separately. Another meta-heuristic that has been widely implemented to solve
the BAO problem is simulated annealing (Bortfeld and Schlegel, 1993; Djajapu-
tra et al, 2003; Pugachev and Xing, 2002; Stein et al, 1997). Recently, Bertsimas
et al (2013) presented a hybrid implementation of simulated annealing and a
gradient descent method. While the gradient descent method is used to quickly
find a local optimal solution, simulated annealing is used to get the algorithm
out of locally optimal solutions and to search in different parts of the solution
set. One distinctive feature of this approach is the use of gradient information
to refine the BAC. Because they consider a linear objective function, they can
obtain the gradient information using linear programming duality theory (Craft,
2007; Bertsimas et al, 2013).

Local search strategies have also been applied to the BAO problem. Das
et al (2003) present a simple local search strategy based on a “beam picker”
that selects one beam angle at a time from the current BAC and replaces it by
a beam angle from a set of beam angle candidates. Aleman et al (2008) imple-
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ment two different approaches to solve the BAO problem: simulated annealing
and add/drop algorithms. They also propose different neighbourhood defini-
tions for the local search and all of them are tested in both algorithms. The
objective function for their corresponding FMO problem is a convex penalty
function which is solved to optimality by means of an interior point method.
Results show that the neighbourhood choice can be important in order to im-
prove the performance of a particular algorithm implementation. More recently,
Lim et al (2014) present a hybrid framework combining local search and other
optimisation methods such as simulated annealing, genetic algorithms, nested
partitions, to solve the single objective BAO problem. Their framework consists
of two sequential phases. During the first phase, either a heuristic or an exact
method is used to quickly find a good feasible BAC. During the second phase
the BAC obtained during the previous phase is used to warm-start a local search
algorithm. According to the authors, their framework overcomes the weakness
observed when using the optimization methods separately and consistently finds
good solutions.

All these approaches have some characteristics in common. They all use
heuristics to search for new BACs and mathematical programming to find an
optimal solution to the corresponding FMO problem. Solving the associated
FMO problem to optimality is an important feature of all these approaches, as
it allows a fair comparison of different subsets of beam angles. Another shared
characteristic is that they evaluate the quality of a BAC by considering the
dose distribution obtained by the associated FMO problem. Furthermore, they
all model the problem as a single-objective optimisation problem and both the
BAO and the corresponding FMO problem are treated as separate problems.

Unlike the approaches mentioned above, in this paper we propose a heuris-
tic method to solve the BAO problem from a multi-objective (MO) point of
view. While most of the efforts in multi-objective IMRT optimisation have
been focused on the MO-FMO problem (Breedveld et al, 2007; Craft et al, 2007;
Hamacher and Küfer, 2002; Kalantzis and Apte, 2014; Küfer et al, 2003; La-
hanas et al, 2003) only little attention has been paid to the MO-BAO problem.
The MO-BAO was first addressed by Schreibmann et al (2004), who propose an
a posteriori method that consists of a MO genetic algorithm, namely NSGAIIc
(Deb et al, 2002), and an exact solver based on the Broyden-Fletcher-Goldberg-
Shanno algorithm (L-BFGS). While the NSGAIIc algorithm is used to generate
new BACs, the L-BFGS solver is used to calculate one fluence map, optimizing
a weighted sum of objectives, for each individual of the population. Because
genetic algorithms work with a population of solutions, the evaluation of each
individual (BAC) in the population by solving an FMO problem cannot be al-
lowed to consume much computational time. For this reason, Schreibmann et al
(2004) limit the number of iterations the L-BFGS solver is allowed to perform,
leading to sub-optimal fluence maps. Furthermore, only one fluence map is
produced for each BAC. Another genetic algorithm is proposed by Fiege et al
(2011). Their algorithm, called Ferret, simultaneously optimises fluence maps
and beam directions. This is a very distinctive feature as most approaches pro-
posed so far consider an outer loop to find good BACs and an inner loop which
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optimises the corresponding fluence map. Fiege et al (2011) point out that due
to the enlarged feasible set, solving both problems simultaneously is harder than
solving them consecutively. Because of that, and similar to Schreibmann et al
(2004), their algorithm only approximates optimal fluence maps and simplified
objective functions are considered in order to speed up the algorithm. More
recently, Breedveld et al (2012) propose an a priori method to solve the MO-
BAO problem. Their method, called iCycle, starts with an empty BAC, i.e.,
no beams are selected. Then, the best possible beam angle is selected from a
predefined set of candidate beams at each iteration and added to the BAC that
is being generated. The method stops when no further (relevant) improvement
in the obtained BAC is made. The method can also stop if the number of
beams in the current BAC has become impractically large. The iCycle method
determines the best beam angle to be added at each iteration by solving a sin-
gle objective optimization problem where the objective function corresponds to
a weighted sum of the objectives from the original MO problem, as explained
in Breedveld et al (2009). As the method obtains one BAC at each iteration
the treatment planner can select the BAC with the best trade-off between the
number of beams used and the treatment plan quality. A similar approach is
presented in Azizi-Sultan (2010). He presents an algorithm that consists of two
steps that are repeated until the BAC obtained at the end of the second step
has the desired number of beams. During the first step an FMO problem is
solved and the dose deviation from the prescribed dose is calculated for the
current N -BAC (a BAC considering N beam angles). During the second step,
the contribution of every beam angle not in the current N -BAC is calculated,
using a predefined score function. The beam angle with the best contribution
is then added to the new (N + 1)-BAC. The algorithm ends when the desired
number of beam angles in the current BAC is achieved. Finally, a MO-FMO
problem is solved using the obtained BAC.

Unlike previously proposed strategies, in this paper we use a two-phase strat-
egy to solve the MO-BAO problem. In the first phase, we use local search to
select a set of locally optimal BACs (and their associated optimal fluence maps)
according to a pre-defined single objective function. Each of these locally opti-
mal BACs is represented by a sample point in the objective space of the MO-
FMO problem. Each sample point is the image of the fluence map associated
with its corresponding locally optimal BAC. Each coordinate of the sample point
corresponds to one of the objective function values in the MO-FMO problem,
where each objective function is associated with either the tumour or a specific
organ at risk considered in the MO-FMO problem. One key feature of this local
search is that an optimal fluence map of each BAC leads to a non-dominated
point of the associated MO-FMO problem. This is important as we can ensure
we are comparing solutions that are not only optimal in the single objective
sense but are also efficient from a MO point of view, i.e. we cannot further im-
prove any objective without impairing the value of at least one other objective.
Finally, after the set of locally optimal BACs has been generated, a dominance
analysis is performed to find those BACs whose sample points are not dominated
by any other sample point. We expect that these BACs will be used in the set of
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efficient treatment plans. We say that a BAC that occurs in the set of efficient
treatment plans is efficient. A formal definition for efficient BACs is given in
Section 3. As we cannot evaluate all possible BACs we cannot ensure that a
BAC is truly efficient. Thus BACs found by the two-phase approach presented
here are called approximately efficient BACs. During the second phase we gen-
erate a large set of non-dominated points for all the obtained (approximately)
efficient locally optimal BACs by means of the well-known ε-constraint method
(Chankong and Haimes, 1983; Haimes et al, 1971). Some such points will be
dominated by points generated by other BACs. Those dominated points are
deleted leaving a final set of non-dominated points for the treatment planner to
choose from. Hereafter, we will refer to the objective function(s) of the BAO
problem as a judgement function.

To formally describe the BAO problem, Ehrgott et al (2008, p. 1276) de-
fine a judgement function as a function that “describes how well a patient can
be treated with a set of N angles”. Then, they explain that the goal of any
judgement function is “to capture the nature of how the treatment planner de-
cides between good and bad treatments, and the value of such a function is
the [value of the optimal] solution to an optimisation problem that decides a
fluency [map]”(Ehrgott et al, 2008, p. 1276). Therefore, solving the BAO prob-
lem requires solving the FMO problem many times, once for every BAC that is
considered by the BAO problem. Thus, we can say that judgement function h
of the general BAO problem in (1) can be expressed as

h(A ) = min {z(x) : x ∈ X(A )}. (2)

Equation (2) shows the general form of a judgement function, where z
maps a solution x ∈ X(A ) of the corresponding FMO problem into R∗+ :=
{v ∈ R : v ≥ 0}∪{∞} by finding the best fluence map that can be delivered for
given BAC A , according to function z. Fluence map x ∈ Rn is a non-negative
vector with each component xi representing the length of time that a patient is
exposed to sub-beam (or beamlet) i and where n is the total number of beamlets
summed over all 360 possible beam angles. The set X(A ) is the set of all feasi-
ble solutions of the FMO problem when BAC A is considered. Only beamlets
xi that belong to a beam angle in A are allowed to be greater than zero. See
Ehrgott et al (2008) for a comprehensive explanation of the judgement function
concept.

This paper is organised as follows. Section 2 presents the IMRT problem
focusing on the BAO problem. In Section 2 we also present the generalised
equivalent uniform dose (gEUD) concept which is a key element of our model. In
Section 3 the MO-BAO problem is presented. After introducing a mathematical
formulation of the MO-BAO problem in Section 3.1, single objective judgement
functions considered in this work are presented in Section 3.2. Then, in Section
4, the two-phase approach is outlined. The main differences compared to other
approaches for solving the BAO problem are presented in this section. In Section
5 we introduce a test instance and the obtained results are discussed. Finally,
in Section 6 some conclusions are drawn and future work is outlined.
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2 An Overview of IMRT Optimisation Problems

In IMRT, radiation can be delivered from any beam angle k ∈ K. As we
mentioned before, vector x ∈ Rn denotes the fluence map, where n corresponds
to the total number of beamlets summed over all possible 360 beam angles and
its elements xi = 0 correspond to the fluence at beamlet i. To mathematically
model the IMRT problem, each organ is discretised into small sub-volumes called
voxels. A crucial component of all mathematical optimisation models of the
FMO problem is the radiation dose deposited into each voxel j of the tumour
and OARs by fluence map x. This dose d is calculated using expression (3)
(Ehrgott et al, 2009)

drj =

n∑
i=1

Arjixi for all j = 1, 2, ..., mr, (3)

where r ∈ R = {O1, . . . , OQ, T} is an element of the index set of regions (we
use the term region to denote either the tumour, any organ at risk, or normal
tissue), with the tumour indexed by r = T and the organs at risk and normal
tissue indexed by r = Oq with q = 1, . . . , Q. mr is the total number of voxels in
region r, j corresponds to a specific voxel in region r, dr ∈ Rmr is a dose vector
and its elements drj give the total dose delivered to voxel j in region r by the

fluence map x ∈ X(A ). Here, dose deposition matrix Ar ∈ Rmr×n is a given
matrix where Arji = 0 defines the rate at which radiation dose along beamlet i
is deposited into voxel j in region r.

Based on the dose distribution in formula (3), a large number of formulations
for the FMO problem for a specific BAC have been proposed in the literature
during the last decade (see Ehrgott et al (2009) for a survey). On the one
hand there are the so-called physical models, also known as dose-volume mod-
els, which are focused on the percentage of the total volume of either the tumour
or the OARs that is irradiated at a certain level. Dose-volume constraints of the
form no more than x% of the volume of the tumour may receive a dose of less
than y or, for the OAR case, no more than x% of the volume of the OAR may
receive a dose of more than y are usually considered in these models. The ob-
jective function in dose-volume models is usually the maximisation of the dose
delivered to the tumour and/or the minimisation of the dose delivered to the
OARs subject to both bound constraints and dose-volume constraints. Most
of these physical models give rise to linear, mixed- integer, or quadratic opti-
misation models (Ehrgott et al, 2009). This allows researchers and treatment
planners to find clinically acceptable treatment plans using well known exact
optimisation techniques.

On the other hand, biological models, also known as dose-response mod-
els, relate the delivered dose to the biological response of the irradiated struc-
tures. In general, the objective function of a dose-response model is to maximise
the tumour control probability (i.e. the probability of completely eradicating
all cancerous cells from the local tumour site (Webb, 2010)) while minimis-
ing normal tissue complication probabilities of OARs (i.e. the probability of
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inducing some particular complication in a healthy organ (Webb, 2010)). Some
researchers have pointed out advantages of dose-response models over physical
ones (Dirscherl et al, 2011; Nahum and Uzan, 2012; Thomas et al, 2005; Wu
et al, 2002). Although conceptually more appealing (the patient is, after all, a
biological system and not a dosimeter (Amols and Ling, 2002)), they are not
yet widely used because of a lack of consolidated clinical data and also because
the corresponding FMO problems are difficult to solve mathematically.

A well-known biological model is the generalised equivalent uniform dose
(gEUD). Originally proposed in Niemierko (1997) the gEUD can be defined as
the biologically equivalent dose that, if delivered uniformly, would lead to the
same response as the actual non-uniform dose distribution (Niemierko, 1997).
One advantage of gEUD-based models over other dose-response models is that
they do not require many parameters, making the optimisation process less
dependent on parameters that could be difficult to determine. Moreover, gEUD
penalises less (more) irradiated voxels in tumour (OAR) regions which leads
to a more homogeneous dose distribution in the tumour and to avoidance of
overdosed voxels in OARs, two very desirable properties in IMRT. Therefore,
gEUD allows us to evaluate and compare dose distributions even if they are
non-uniform. Several research articles have been devoted to the study of gEUD-
based IMRT planning. Most of them highlight the ability of gEUD- based
models to obtain better OAR sparing while keeping the same or even better
tumour coverage (Thomas et al, 2005; Wu et al, 2000, 2003).

The mathematical expression for gEUD is

gEUDr(x) =

 1

mr

mr∑
j=1

(
drj
)ar1/ar

, (4)

where ar is a region-dependent parameter and drj (which depends on x) is as
given in Equation (3). For the tumour, we put ar < 0, whereas for OARs
we choose ar > 1. As |ar| increases, the gEUD becomes more sensitive to less
(more) irradiated voxels in the tumour (OARs). Therefore, for those OARs that
allow certain levels of radiation without a functional compromise (also called
parallel organs), parameter ar is set close to 1, whereas for serial organs (those
that must be irradiated as little as possible) values for parameter ar are chosen
to be large.

The objective functions of both the BAO and FMO problems considered in
this paper are gEUD-based functions. Mathematical formulations that consider
such functions are presented in the next section. We consider convex gEUD-
based functions which allows us to find optimal solutions using standard mathe-
matical programming solvers. However other formulations could be used within
the two-phase framework that is presented in this work. In case the chosen
objective functions are non-convex, one could seek a suitable decomposition of
the original non-convex objective function into a convex objective function and
an increasing function (Romeijn et al, 2004). Romeijn et al (2004) present a list
of different objectives (both convex and non-convex) and their corresponding
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decompositions into a convex objective and an increasing function. They also
demonstrate that equivalent sets of non-dominated points can be found using
other MO-FMO formulations, i.e. considering other objective functions. Hence,
although our work focuses on gEUD, the solutions we produce are efficient under
any of these objectives as well.

3 The Multi-Objective Beam Angle Optimisa-
tion Problem

In this paper we solve an optimisation problem which we denote the multi-
objective beam angle optimisation problem (MO-BAO). Throughout the paper
we will use the following notation for the comparison of vectors. Let y1, y2 ∈ Rp.
We write y1 5 y2 if y1k 5 y2k for all k = 1, . . . , p; y1 ≤ y2 if y1 5 y2 but y1 6= y2;
and y1 < y2 if y1k < y2k for all k = 1, . . . , p. Thus, we say that a solution x ∈ X
is efficient if there is no x′ ∈ X such that z(x′) ≤ z(x) (assuming that we want
to minimise all the objective functions). Equivalently, the image z(x) of the
efficient solution x is called non-dominated.

3.1 Multi-objective beam angle optimisation

Before we introduce the MO-BAO problem we need to define the associated MO-
FMO problem. For a fixed BAC A ∈ PN(K), the general MO-FMO problem
can be formulated as

f(A ) = min
x∈X(A )

z(x), (5)

where z(x) ∈ R|R| is a vector of |R| objective functions zr, r = 1, . . . , |R| and
|R| is the total number of regions considered in the problem. Unlike the single
objective formulation (2), which requires the determination of a single optimal
solution, the solution to this multi-objective problem is a set XA

E containing
efficient fluence maps of MO-FMO problem (5). We define Y A

N = f(A ) as the
set of associated non-dominated points given by Y A

N =
{
z(x) : x ∈ XA

E

}
.

The MO-BAO problem we are investigating in this paper is

min
A∈PN(K)

min
x∈X(A )

z(x), (6)

the solution of which is a set containing all efficient BACs which use exactly
N angles. Additionally, (6) asks for the generation of a set XE containing the
efficient fluence maps which belong to those efficient BACs and that lead to the
set YN = {z(x) : x ∈ XE}, the associated set of all non-dominated points. We
also write problem (6) as

min
A∈PN(K)

f(A ), (7)

to emphasise the practical need to solve the MO-FMO problem (5) for different
beam angle configurations A ∈ PN(K).
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Unlike in the single objective BAO problem, solving the MO-BAO problem
means finding the set of efficient BACs in PN(K). As we mentioned before,
a BAC A is efficient if X(A ) ∩ XE 6= {}, or equivalently if there is a fluence
map x ∈ X(A ) such that there is no BAC B and fluence map x′ ∈ X(B) with
z(x′) ≤ z(x).

Unfortunately we cannot evaluate all possible BACs in reasonable time.
Therefore, we will only find a set Â that approximates the actual set of ef-
ficient BACs. Similarly, X̂E will denote the approximation to the set of all
efficient fluence maps XE . Images of solutions x ∈ X̂E are denoted by y ∈ ŶN .

Although our two-phase algorithm can be adapted for other models of the
FMO problem, in particular constrained optimization problems, as we explained
in Section 2, gEUD-based models are considered in this work. A special case of
the MO-FMO problem in (5) that is based on the gEUD is

max gEUDT(x) (8)

min gEUDOq(x) for q = 1, . . . , Q,

s.t. x ∈ X(A ),

where X(A ) is, again, the set of feasible fluence maps which is defined by x = 0
and beamlets xi = 0 for all beamlets not belonging to beam angles in A . The
MO-BAO problem considered in this paper is the minimisation (in the sense
explained above) of (8) over all A ∈ PN(K)

The gEUD function has several favourable optimisation properties such as
convexity and positive homogeneity. As Cabrera G. et al (2014) demonstrate,
positively homogeneous multi-objective optimisation problems, such as the one
from Equation (8), with p objective functions can be solved as multi-objective
optimisation problems with p− 1 objectives. This can be done by transforming
one of the objectives into a constraint. Following the procedure presented in
Cabrera G. et al (2014) we can generate an infinite number of efficient solutions
located on a finite number of rays, each of which corresponds to an efficient
solution of the reduced p − 1 objective problem. Thus, the MO-BAO problem
considered in this paper can be re-stated as follows:

min
A∈PN(K)

fOq(A ) = min
A∈PN(K)

min
x∈X(A ):gEUDT(x)=t

gEUDOq(x) for q = 1, . . . , Q, (9)

where t is equal to the prescribed gEUD of the tumour.
The corresponding MO-FMO problem for a fixed BAC A ∈ PN(K) based

on the gEUD is

min gEUDOq(x) for q = 1, . . . , Q, (10)

s.t. gEUDT(x) = t,

x ∈ X(A ).

It is important to note that the problem in (10) is convex, and so we can find
optimal solutions using non-linear solvers such as IPOPT (Wächter and Biegler,
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(c) Final non-dominated set for BACs
A and B from (b)

Figure 1: Dominance relations between sets of non-dominated points. gEUD of
the tumour is fixed

2006). Scalarisation methods such as the well-known ε-constraint method men-
tioned before also give sub-problems that are convex, and so we can use IPOPT
to obtain a set of truly efficient solutions for this problem. Having this guarantee
of optimality for this sub-problem is likely to result in better quality solutions
being produced for the full MO-BAO problem.

In the framework of judgement functions, we are optimising the multi-
objective judgement function fOq (A ) with q = 1, . . . , Q defined in (9) over
all N -element BACs A ∈ PN(K). One difficulty in solving the BAO problem
is to determine whether a BAC is better than another one. When this problem
is tackled from a single objective point of view, a decision about which BAC
is better is made using the single objective judgement function value. Thus,
a BAC will be better than another one if its single objective optimal fluence
map leads to a better judgement function value. However, when this problem is
tackled from a MO point of view, comparison of different BACs is not a trivial
task. In the MO case, we need to decide between two sets Y A

N and Y B
N rather

than single optimal values. Figures 1(a) and 1(b) show two sets Y A
N and Y B

N

for the MO-BAO problem (9) with two OARs. Figure 1(a) shows a situation
where it is easy to decide between A (crosses) and B (circles). There is no
reason to select a vector y′ ∈ Y B

N as there is always a vector y ∈ Y A
N such that

12



y ≤ y′. Therefore, we can say that BAC A completely dominates BAC B and,
consequently, it leads to better fluence maps.

Unfortunately this situation is not as common as the one presented in Figure
1(b). In this case there is at least one y ∈ Y A

N that dominates at least one
y′ ∈ Y B

N and vice versa. Thus, we need to keep all vectors y ∈ Y A
N ∪ Y B

N that
are non-dominated as in Figure 1(c).

As mentioned in Section 2, generating a set containing many non-dominated
points Y A

N for a large number of BACs A ∈ PN(K) is not possible because
of the time that it requires. Therefore, we propose to consider only one non-
dominated point s ∈ Y A

N to represent the BAC A and make the assumption
that the quality of BAC A corresponds to the quality of s. We call s a sample
point. The sample point corresponds to the optimal solution of a single objective
FMO problem. This means that s = z(x) with z being the objective function
of the MO-FMO problem in (10) whereas x is the optimal solution of a single
objective FMO problem using BAC A .

Comparison between two BACs is done by using a single objective judgement
function h as in (2). Thus, a BAC A will be considered better than BAC B
iff h(A ) < h(B). We need to state at this point that the single objective
judgement function h in (2) is only used to determine a subset of “potentially”
good quality BACs. However, the final approximation to the set of efficient
BACs Â and its corresponding set of (approximately) efficient fluence maps X̂E

are calculated using the MO formulation based on the gEUD function presented
in Equations (9) and (10). We would expect that our heuristic approach is
more likely to find useful sample points if h has a strictly monotone objective
function, i.e. if z(x) dominates z(x′) then h(A ) < h(A ′) with x ∈ X(A ) and
x′ ∈ X(A ′), so its optimal solution is also an efficient solution of the MO-FMO
problem in (10) (Miettinen, 1999).

It is clear that using different single objective judgement functions h may
lead to different sample points for the same BAC. The next sub-section presents
two gEUD-based judgement functions that are considered in this paper for the
generation of locally optimal BACs.

3.2 Judgement Functions

In this paper we consider two single objective judgement functions. The first
one is related to an unconstrained FMO model presented originally by Wu et al
(2002) and reformulated by Olafsson et al (2005). This model, also known as
the logistic model, has been widely studied in the literature (Cabrera G. et al,
2012; Choi and Deasy, 2002; Olafsson et al, 2005). According to the majority
of these studies, solutions obtained using this model irradiate the tumour in a
similar way to dose-volume models but with better OAR sparing.

Equations (11), (12), and (13) show this model.

min
x∈X(A )

z1 (x ) = − ln L
(
x ; T , vT , eudT

0

)
−

Q∑
q=1

lnU
(

x ; Oq , vOq
, eud

Oq

0

)
, (11)

13



where

L
(
x ; T , νT , eudT

0

)
=

(
1 +

(
eudT0

gEUDT(x)

)νT)−1
, and (12)

U
(

x ; Oq , νOq , eud
Oq

0

)
=

(
1 +

(
gEUDOq(x)

eud
Oq
0

)νOq)−1
. (13)

Parameters eudT0 and eud
Oq
0 correspond to the prescribed gEUD values for

tumour and OARs, respectively, and νT , νOq > 0 are user-defined parameters
that indicate the importance of the tumour and the q-th OAR, respectively.
While −ln(L) is a convex function of gEUDT (x), function −ln(U) is monoton-
ically increasing in gEUDOq (x), but not convex. However, we observe that the
second derivative of −ln(U) is strictly positive for 0 < gEUDOq(x) < U

′′

+ where

U
′′

+ =
((
νOq − 1

)1/νOq)eudOq0 .

In practice, we would not be interested in values of gEUDOq (x) that exceeded
this upper bound, and so −ln(U) and hence (11) is convex for all x values of
practical interest. We see this in our computational results (see Section 5) where
all the gEUD values obtained by our optimisation runs (see Table 2 and Figure
4a) fall within the convex regions of the U functions we used (see Table 1). For
a comprehensive analysis of the logistic function readers are referred to Olafsson
et al (2005) .

Because the MO-FMO problem (10), and consequently the MO-BAO prob-
lem (9), have a constraint on the gEUD value of the tumour, we need to make
some changes to the logistic model presented in Equations (11), (12), and (13),
in order to include this constraint. We must set the gEUD of the tumour to
be greater than or equal to its prescribed dose eudT

0 , thus we do not need to
consider L in (11) and (12) but, instead we need to include a constraint for the
gEUDT . Due to the conflict between gEUDT (x) and gEUDOq (x), this constraint
will always be active at an optimal solution. Thus, the logistic FMO problem
given some BAC A is now

h1(A ) = min z1(x) = −
Q∑
q=1

lnU
(
x;Oq, vOq , eud

Oq
0

)
s.t. gEUDT(x) = eudT0

x ∈ X(A ),

(14)

where h1 is the judgement function associated with FMO problem with objective
function z1 . Since gEUDT (x) is a convex function of x and −ln(U) is convex in
gEUDT(x) for the region of interest, the problem in (14) is also convex, and so
solutions found by the IPOPT solver will be optimal for problems of practical
interest.

The second judgement function used in this work is associated with an opti-
misation model which minimises the gEUD value of one of the OARs. The idea

14



is to identify the OAR Or which the planner would like to spare the most among
all OARs considered in the treatment planning process. We call this judgement
function lexicographic. Equation (15) shows this FMO model:

h2(A ) = min z2(x) = gEUDOr(x)

s.t. gEUDT(x) = eudT0

x ∈ X(A ),

(15)

where h2 is the judgement function associated with FMO problem with objective
function z2 .

Using mathematical programming techniques we can obtain optimal fluence
maps of a BAC for both single objective FMO problems (14) and (15). As we
mentioned before, one key feature of these problems is that their optimal solu-
tions are also efficient solutions of the MO-FMO problem in (10), as they both
have strongly decreasing objective functions (Miettinen, 1999). Thus, based on
their single objective judgement function value, we can hopefully identify good
BACs. The fact that optimal solutions of (14) and (15) are also efficient solu-
tions to (10) gives us some confidence that we can compare different BACs from
a MO point of view. Sample points are obtained evaluating optimal solutions
of (14) and (15) with the MO function z in (10).

In this paper we propose a two-phase approach which allows us, firstly, to
find a set of locally optimal BACs based on the obtained sample points and,
secondly, to generate a set of approximately efficient BACs of the MO-BAO
problem in (9) and its corresponding set of approximately efficient fluence maps.
This two-phase approach is presented in the next section.

4 The Two-phase Approach

One challenge that algorithms solving the BAO problem must face is the large
number of possible combinations of beam angles to explore. Several strategies
have been proposed in order to improve the computational efficiency of the algo-
rithms proposed so far in the literature. Most of them try to reduce the number
of alternatives by means of rankings or score functions. For instance, Pugachev
and Xing (2002) rank beam angles prior to the optimisation process based on
beam’s-eye-view dosimetrics (Pugachev and Xing, 2001), i.e. the portion of the
target that can be irradiated by each beam angle. Then, based on both geomet-
ric and dosimetric information that is available before the optimisation process
starts, the beam’s-eye-view can guide the search. Although the authors do not
ban any beam angle a priori, they avoid the FMO step for those configurations
that have a low beam’s-eye-view score.

In this paper we do not consider any reduction of the set of possible BACs.
Instead, we propose a two-phase strategy that is based on the concept of sample
points. Before presenting the two-phase approach we need to introduce some
specific notation we will use here. Let A∗ be a set of locally optimal BACs
with respect to some single objective judgement function. Equivalently, let X∗
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be a set containing an optimal fluence map for each BAC in A∗. Let S =
{z(x) : x ∈ X∗}, with z being the objective function of the MO-FMO problem
in (10), be the set of all generated sample points. It is important to note here
that we record only one optimal fluence map for each A ∈ A∗. Consequently,
there is only one sample point in S for each BAC in A∗. In case two BACs have
the same sample point (i.e. the same objective function values) both points
will be considered. Let SN ⊆ S be the set of non-dominated sample points
with respect to points in S under the objectives of the MO-FMO problem in
Equation (10). Thus, all elements of SN are pairwise non-dominated.

Our two-phase approach is presented in the next sections.

4.1 First Phase: Deterministic Local Search

The main goal of the first phase of our strategy is to generate a set of promising
BACs, A∗, using one of the single objective judgement functions presented be-
fore (h1 or h2). In order to generate such a set we perform a deterministic local
search algorithm. As with any other local search approach, our algorithm needs
a neighbourhood N to be defined by means of a neighbourhood movement. Our
local search defines its neighbourhood by a one-degree-move in one of the beam
angles. Mathematically, neighbourhood N (A ), i.e. the neighbourhood of BAC
A , is as follows:

N (A ) = {B ∈ PN(K) : Aj = Bj ± π/180 for some j ∈ {1, . . . , N} and
Ai = Bi for all i = 1, . . . , N, where i 6= j}.

Although in this paper we only consider coplanar angles, our approach can
be extended to non-coplanar angles by changing the neighbourhood definition
N to, for example, one of the neighbourhood definitions used in Lim and Cao
(2012) or Mǐsić et al (2010).

Although we start with a randomly generated initial BAC, the local search
implemented here is deterministic in the sense that, given an initial BAC, it
always converges to the same local optima (see Algorithm 1). The initial BAC
meets some geometric constraints such as having a minimum distance between
any two beam angles and not having any two beam angles with a difference of
180 degrees. Elements of the neighbourhood N (A ) do not need to meet these
constraints. We could also start the local search using BACs commonly used
in clinical practice. If that is the case, the two-phase approach will lead to
a result that is at least as good as the one provided by well-known BACs. In
other words, treatment plans obtained by those BACs commonly used in clinical
practice can be considered as upper bounds of our two-phase approach.

After generating the initial BAC, the algorithm proceeds with the gener-
ation of the entire neighbourhood of the current BAC and the calculation of
corresponding single objective judgement function values (h() in Algorithm 1).
This value is calculated by solving the associated FMO problem in either (14) or
(15). For instance, if we consider five beam angles then the neighbourhood size
will be equal to ten. Once the entire neighbourhood is generated we select the
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BAC with the best judgement function value (A ′ in Algorithm 1). If this value
is better than the judgement function value of the current BAC then we set the
best neighbour as the current BAC. The neighbourhood of the current BAC is
then generated and we repeat this process until the single objective judgement
function value of the best neighbour is no better than that of the current BAC.
In this case, we have found a locally optimal BAC with respect to the judgement
function that was considered. This BAC is added to the set of locally optimal
BACs A∗. We repeat this process several times starting from different randomly
generated initial BACs. Each fluence map x ∈ X∗ is represented as a sample
point s ∈ S in the objective space of the MO-FMO problem. Once we have
generated the entire set of locally optimal BACs (and its corresponding sample
points) we perform a dominance analysis over the set of sample points S so only
sample points that are not dominated by any other sample point are considered
in the next phase (isDominated() function in Algorithm 1). Algorithm 1 shows
the pseudocode of the deterministic local search.

Algorithm 1: Phase 1: Deterministic Beam Angle Local Search

Input: N (Number of angles in a BAC), ` (Number of local optima to be
generated)

Output: A∗ (Set of locally optimal approximately efficient BACs)
begin
A∗ = {}; // initially empty

repeat
A = initialRandomSolution(PN(K)) ;
localOptimum = false;
repeat
N = generateNeighbourhood(A );
A ′ = argmin

B∈N
h(B);

if h(A ′) < h(A ) then
A = A ′

else
localOptimum = true;

until localOptimum;
Add A to A∗;

until ` local optima have been generated;
foreach A ∈ A∗ do

if isDominated(A ,A∗) then
Remove A from A∗;

return (A∗);

We need to point out that the BACs in A∗ obtained during Phase 1 do
not necessarily correspond to the ones with the best single objective judgement
function values. This represents one important difference from single-objective
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approaches that select only the BAC with the best judgement function value.

4.2 Second Phase: Exact Optimisation of the MO-FMO
Problem

During the second phase of our approach we solve the associated MO-FMO
problem for the set of locally optimal BACs found in Phase 1. Figure 2 shows
an example of a set of sample points S generated during Phase 1. This set
includes ` = 100 sample points. Each point corresponds to an optimal solution
of a single objective FMO problem and is associated with a locally optimal BAC
obtained in the previous phase. The area dominated by each non-dominated
sample point s ∈ SN is delimited by dashed lines. BACs associated with the
sample points are locally optimal with respect to the single objective judgement
function considered in Phase 1 of the procedure.

The goal of the second phase is to find a set of BACs Â that approximates
the actual set of efficient BACs. As Algorithm 2 shows, we need, firstly, to
generate a set XA

E of efficient fluence maps of the MO-FMO problem in (10)
for each BAC A ∈ A∗. To do that we can use scalarisation methods such
as the ε-constraint method (Haimes et al, 1971) or the adaptive ε-constraint
method (Eichfelder, 2008) (SolveMO-FMO() method in Algorithm 2). In this
paper we use a procedure similar to the one presented in Cabrera G. et al
(2014) to generate the set XA

E , which is based on the ε-constraint method and
is specific to unconstrained MO-FMO problems with positively homogeneous
objectives. This procedure begins by computing lexicographic solutions for the
MO-FMO problem. After that, a set of non-dominated points is generated using
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Figure 2: An example of a set of sample points. Each point is associated with a
locally optimal BAC found by the deterministic local search. Axes correspond to
the objective functions of the MO-FMO problem in (10). Dashed lines indicate
the area dominated by each of the non-dominated points.
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Algorithm 2: Phase 2: Efficient Set Generation.

Input: A∗ (Set of locally optimal approximately efficient BACs)
Output: Â ⊆ A∗ (Refined set of approximately efficient BACs)
begin

Â = {}; // initially empty set of BACs

X̂E = {};// initially empty set of fluence maps

foreach A ∈ A∗ do
XA
E =SolveMO-FMO(A );

X̂E = merge
(
X̂E , X

A
E

)
;

UpdateÂ
(
X̂E

)
;

return Â;

the ε-constraint method given a predefined set of bounds for each objective to
be used as constraints during the optimisation process. Again, since the MO-
FMO problem in (10) is a convex MO problem, treatment plans found by the
ε-constraint method are truly efficient treatment plans for the corresponding
BAC. Depending on the number of objectives we consider, the ε-constraint
method might need to be performed several times minimising different objective
functions. As a result of applying this procedure on a given BAC A we have
a set of efficient treatment plans XA

E . For each BAC A , we merge both sets

of fluence maps XA
E and X̂E (merge() method in Algorithm 2) by eliminating

those fluence maps that are dominated by another one in the union of the sets
to be merged. After we merge these two sets, only potentially efficient fluence
maps remain in the resulting set X̂E . The set X̂E is initialised empty. Since
fluence maps in X̂E might change at each iteration, set Â is updated so only
BACs that have at least one fluence map x ∈ X̂E will be in Â (UpdateÂ()
in Algorithm 2). Set Â approximates the actual set of efficient BACs of the
MO-BAO problem in Equation (9).

For the example of Figure 2, set A∗ generated during the first phase will only
consider the four non-dominated sample points that have dashed lines indicating
their dominated area.

5 Computational Experiments

A prostate case has been considered in this study. This case is included in the
CERR package (Deasy et al, 2003). Figure 3 shows this case. Boundaries of the
target volume (tumour + margin), rectum and bladder (OARs) are highlighted
as the regions of interest in this study. Table 1 shows the desired gEUD values
(eudr0 column) for both tumour and OARs and the parameters for model z1.
It also shows, for each OAR r, an upper bound U

′′

+ on gEUDr(x) below which
(11) is guaranteed to be convex. These parameters are similar to the ones
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Figure 3: Prostate case from CERR. Two OARs (bladder and rectum) are
considered

used in Olafsson et al (2005). Different values might be needed in clinical
practice. In this prostate case, the target volume has more than 7,000 voxels,

Table 1: Parameters for FMO models

r ar νr eudr0 U
′′

+

Tumour -10 12 75 –
Rectum 8 8 50 63.77
Bladder 2 5 50 65.98

the rectum about 5,500 and the bladder around 9,500. Although the same multi-
leaf collimator is used for all beam angles the number of beamlets considered
in the optimisation process depends on each beam angle. This is because those
beamlets that do not irradiate at least one voxel of the target are not considered
as decision variables in the optimisation process. Thus, the number of decision
variables (beamlets) depends on the BAC and ranges between 160 and 220.
The number of beam angles N considered in a BAC is equal to 5. The dose
deposition matrix A is given. We consider 360 beam angles, all of which are
on the same plane. As we mentioned before, we use IPOPT as a solver for all
non-linear optimisation problems.

During the first phase of our approach a set of locally optimal BACs and its
corresponding set of fluence maps X∗ is generated. The associated set of sample
points is S = {z(x) : x ∈ X∗}. As stated before, one can expect that different
judgement functions lead to different sets S. Figure 4 shows this situation. The
axes correspond to the objectives of the MO-FMO problem (10). Because of
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the positive homogeneity of the gEUD, as was explained in Section 3, one of
the objectives (maximisation of the gEUD of the tumour) was converted into
an inequality constraint which we know to be binding and, consequently, it is
not included as an axis.

Figure 4(a) shows the set S when h1 is used as judgement function. In this
case there are only three non-dominated sample points in SN . Therefore only
three BACs are passed on to the second phase of our approach. Table 2 lists
these three BACs and the corresponding gEUD values for the rectum and the
bladder. Figure 4b shows the set S when the gEUD value of the rectum h2 is
used as a judgement function. In this case there are six non-dominated sample
points in SN . Therefore, only six BACs are considered. These BACs are also
listed in Table 2. In both cases, non-dominated sample points in SN represent
only a small fraction (5 6%) of the entire set S.

Table 3 shows the set of (approximately) efficient BACs obtained by the
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Figure 4: Sample points corresponding to the locally optimal BACs found by
the local search algorithm for the prostate case using five beam angles

Table 2: BACs corresponding to the non-dominated sample points for judgement
function h1 and h2 and the gEUD values of the OARs (i.e. the sample points).

A1 A2 A3 A4 A5 gEUDRectum(x) gEUDBladder(x)
64◦ 85◦ 91◦ 201◦ 278◦ 53.76 24.01

h1 100◦ 151◦ 207◦ 269◦ 311◦ 53.29 24.04
31◦ 91◦ 109◦ 136◦ 222◦ 53.18 24.23

104◦ 134◦ 136◦ 268◦ 298◦ 53.40 29.28
78◦ 105◦ 168◦ 218◦ 274◦ 53.30 31.66

h2 91◦ 140◦ 161◦ 219◦ 343◦ 53.23 33.57
49◦ 102◦ 126◦ 170◦ 221◦ 53.23 34.78
37◦ 100◦ 131◦ 163◦ 269◦ 53.13 34.83
49◦ 91◦ 126◦ 179◦ 255◦ 53.05 35.63
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(a) Approximately non-dominated points
obtained using h1. A (crosses) corresponds
to the first BAC in Table 3 (100◦ − 151◦ −
207◦ − 269◦ − 311◦) and B (circles) corre-
sponds to the second one
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(b) Approximately non-dominated points
obtained using h2. A (crosses) corresponds
to the first BAC in Table 3 (37◦ − 100◦ −
131◦ − 163◦ − 269◦) and B (circles) corre-
sponds to the second one

Figure 5: Final sets of (approximately) non-dominated points obtained using
the two-phase approach and the resulting approximately efficient BACs

two-phase approach using judgement functions h1 and h2 introduced before.
Table 3 also shows the number of non-dominated points (column NDP) for
each (approximately) efficient BAC.

Results in Table 3 show also that (approximately) efficient BACs contribute
five or more non-dominated points to the final set ŶN . This means that those
BACs with a significant number of non-dominated points y ∈ ŶN cover an
important part of the approximation in the objective space of the FMO problem.

We can see this situation in Figure 5. We need to point out that we only
found a finite number of non-dominated points (efficient solutions) of the MO-
FMO problem (10) for each locally optimal BAC found during Phase 1. We
want to recall the fact that the set of efficient BACs we found at the end of
our algorithm is just an approximation of the truly efficient solution set of the
MO-BAO problem, as it is not possible to evaluate the entire set of feasible
BACs.

As we can see in Figure 6, neither does the set of non-dominated points gen-
erated using judgement function h1 completely dominate the one generated by

Table 3: Final set of (approximately) efficient BACs for h1 and h2 and the
number of non-dominated points (NDP) belonging to the corresponding BAC

Function A1 A2 A3 A4 A5 NDP
h1 100◦ 151◦ 207◦ 269◦ 311◦ 9

31◦ 91◦ 109◦ 136◦ 222◦ 27
h2 37◦ 100◦ 131◦ 163◦ 269◦ 26

49◦ 91◦ 126◦ 179◦ 255◦ 11
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Figure 6: Comparison between sets ŶN obtained using h1 and h2

using judgement function h2 nor does the set of non-dominated points generated
using h2 completely dominates the one generated using h1. Thus we cannot say
one judgement function (either h1 or h2) is better than the other.

5.1 ε-dominance

It is clear that including more BACs during Phase 2 will increase our chances of
producing a better approximation to the set of efficient BACs. However, solving
the MO-FMO problem for the entire set of locally optimal BACs obtained during
Phase 1 is quite time consuming. Moreover, our results above suggest that
most of these BACs do not lead to any improvement in the final approximation
obtained at the end of Phase 2. Although the dominance criterion considered
in this study is very effective at finding those BACs that are part of the final
approximation, it could happen that the sample point of a BAC A that should
be part of the final approximation is dominated by the sample point of some
other BAC B and consequently the BAC A is not passed on to Phase 2. Hence
we may not generate the best possible approximation given the set of locally
optimal BACs generated during Phase 1. For this reason we need to find a way
to include BACs that lead to improvements in the final approximation without
making the number of BACs passed on to Phase 2 too large. We seek to achieve
this using the concept of ε-dominance.

In the ε-dominance concept (Loridan, 1984; White, 1986) the main idea is
to make the Pareto dominance criterion presented in Section 3 more (or less)
restrictive. For this study, we want to modify the Pareto dominance test so
that more sample points s ∈ S are passed on to Phase 2. White (1986) and
Laumanns et al (2002) define ε-dominance as follows: Let f, g ∈ Rp and ε > 0.
Then, f is said to ε-dominate g, if
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(1− ε)fr ≤ gr for all r = 1, . . . , |R|. (16)

We denote the set of sample points that are not ε-dominated by any other
sample point as SεN . Unfortunately using a single ε value is not possible in
the context of radiotherapy due to the differences in magnitude among the
objectives. Because of that, we consider a vector ε ∈ R|R| and we slightly
modify the definition in Equation 16 as follows: f is said to ε-dominate g if

(1− εr)fr ≤ gr for all r = 1, . . . , |R|. (17)

Table 4 shows the ε vectors used in this study to show how ε-dominance can
be used to improve the final approximation obtained by the two-phase approach.
In order to measure the improvement obtained when using each ε vector, we
consider the well-known hypervolume metric proposed in Zitzler (1999). The
hypervolume can be defined as the p-dimensional area below some reference
point that is dominated by a set of points in objective space (Zitzler, 1999). The
hypervolume of a set of non-dominated points is expressed as a percentage of the
maximum hypervolume that can be covered. A set with a larger hypervolume
is preferred as it is likely to present a better set of trade-offs than one with
a smaller hypervolume. It is clear that if we set all εr, r = 1, . . . , |R|, large
enough we would obtain the same set of BACs we would get if all sample points
were passed to Phase 2, whereas for εr = 0 this will be the set of nondominated
sample points as suggested in Algorithm 1.

As mentioned before Table 4 shows the hypervolume value obtained for five
different ε vectors. For each ε vector, ε-values for rectum and bladder are shown
(columns εgEUDRectum and εgEUDBladder respectively). |A∗| is the number of
BACs in the set of locally optimal BACs A∗ found at the end of the Phase 1.
|Â| is the number of BACs in the set of (approximately) efficient BACs Â of
the MO-BAO problem.

As Table 4 shows, when h2 is used as the judgement function, the final ap-
proximation does not improve by increasing values of ε. For this case, Pareto
dominance is able to find those BACs that lead to the best possible approxi-
mation given the set of locally optimal BACs found in Phase 1, which is the
same as shown in Figure 5b. A different situation occurs when we consider h1
as the judgement function. As Tables 2 and 3 show, when h1 is used as the
judgement function three locally optimal BACs are passed on to Phase 2. Two
of these three BACs are part of the final approximation obtained by the two-
phase approach. If we now consider an ε large enough to include the all 100
locally optimal BACs we have that the number of BACs included in the final
approximation is equal to five. Figure 7b shows the difference between the hy-
pervolume obtained by the two-phase approach when using Pareto dominance
and the one obtained when using the ε-dominance concept. Table 4 shows how
the hypervolume increases as ε values increase and, consequently, the final ap-
proximation improves. In spite of that, the final difference between the best
possible hypervolume value and the one obtained with ε = 0 is very small (less
than 1% of the maximum hypervolume) which demonstrates the efficiency of our
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Table 4: Different ε vectors and their corresponding hypervolumes for both
judgement functions h1 and h2. For each ε vector the number of BACs in the
set of locally optimal BACs |A∗| and the number of (approximately) efficient
BACs |Â| are shown.

Logistic Function (h1)

εgEUDRectum εgEUDBladder |Â| |A∗| Hypervolume
0 0 2 3 87.87%
0.00025 0.005 3 14 88.49%
0.00050 0.010 4 24 88.59%
0.00130 0.028 5 66 88.62%
≥ 0.015 ≥ 0.16 5 100 88.62%

Lexicographic Function (h2)

εgEUDRectum εgEUDBladder |Â| |A∗| Hypervolume
0 0 2 5 89.55%
≥ 0.017 ≥ 0.34 2 100 89.55%

approach in finding good quality BACs based only on non-dominated sample
points obtained during the Phase 1.
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(b) A more detailed view of figure (a)

Figure 7: Comparison between final approximations using εgEUDRectum = 0,
εgEUDBladder = 0 (ε = 0, circles) and εgEUDRectum = 0.015, εgEUDBladder = 0.16
(ε > 0, crosses) based on S obtained using judgement function h1. Figure
7b is a more detailed view of Figure 7a that also shows the difference in the
hypervolumes for these two cases.

6 Conclusions and Future Work

In this paper the MO-BAO problem is solved using a two-phase approach. Dur-
ing the first phase a set of locally optimal BACs is determined using a single
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objective judgement function. Each locally optimal BAC is represented by a
sample point in the objective space of the MO-FMO problem. The first phase
ends by determining the BACs with pairwise non-dominated sample points
among the set of locally optimal BACs. Then, during the second phase we
generate a large set of non-dominated points of the MO-FMO problem for all
the BACs found in the first phase. As a result, we obtain a set of (approxi-
mately) non-dominated points belonging to one or more BACs. These BACs
are our approximation to the set of truly efficient BACs for the MO-BAO prob-
lem. This is substantially different from previous approaches where only one
BAC is presented as the “best one” based only on its judgement function value.
Unlike those single objective approaches, in this work once a set of locally op-
timal BACs is obtained by means of a single objective local search, a subset
of them is selected based on a dominance criterion. Selected BACs are then
further processed to solve their associated MO-FMO problem to determine a
final approximation to the set of efficient BACs. An ε-dominance strategy was
also considered to relax the dominance-based selection criterion allowing the
algorithm to pass a larger number of promising locally optimal BACs onto the
second phase, which leads to a better quality final set of approximately efficient
BACs.

In our example, we have shown that the non-dominated points we generate
are associated not with just a single BAC, but instead with a set of BACs. Thus,
single-objective optimisation is not enough to find the “right BAC”. By consid-
ering multiple objectives during its search, our algorithm can better describe
the trade-off between objectives and can therefore provide more (and better
quality) alternatives for treatment planners to choose from.

6.1 Future Work

In future work, we intend to use MO judgement functions instead of single ob-
jective ones to find a set of good quality BACs. Using a MO judgement function
would allow us to identify a set of potentially efficient BACs directly in a heuris-
tic algorithm. In that case, MO strategies such as Pareto local search (Paquete
et al, 2004) could be used instead of single objective approaches. Moreover,
results show that different judgement functions lead to different sets of non-
dominated points YN . Thus, other judgement functions should be evaluated
using the two-phase approach. Also, other MO-BAO models such as dosimetric
ones could be tested within our framework.

Positive initial results reported in this paper should motivate more experi-
ments using clinical data. Moreover, testing our approach for different types of
cancer would also be quite useful in order to validate the applicability of our
approach, as location and shape of both tumours and OARs can affect the re-
sult obtained using our approach. Finally, other heuristic methods such as tabu
search, evolutionary algorithms, and their MO variants could also be considered
instead of the deterministic local search.
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