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Abstract 

We examine the effect of a hexagonal boron nitride (hBN) substrate on electron transport 

through graphene nanojunctions just before gap formation. Junctions in vacuum and on hBN are 

formed using classical molecular dynamics to create initial structures, followed by relaxation 

using density functional theory. We find that the hBN only slightly reduces the current through 

the junctions at low biases. Furthermore due to quantum interference at the last moments of 

breaking, the current though a single carbon filament spanning the gap is found to be higher than 

the current through two filaments spanning the gap in parallel. This feature is present both in the 

presence of absence of hBN. 

 

Introduction 

It is a pleasure to write this short paper in memory of Marcus Büttiker. The Lambert group has 

used Landauer-Büttiker formulae for more than 30 years, starting with disordered systems in the 

early 1980’s [1, 2] when the validity of such formulae was hotly debated. Since that time the 

group has applied these formulae to a range of problems in Andreev scattering [3], phonon 

transport [4, 5], tunnelling through single molecules and chains [6, 7], molecular spintronics [8] 

and most recently though nanopores leading to new strategies for DNA sequencing [9, 10]. This 

paper is the latest in this long line and uses the Landauer-Büttiker formula to evaluate the 

electronic properties of electroburnt graphene nanoelectrodes.  

The high thermal and mechanical stability of graphene, combined with its zero band gap 

and two-dimensional lattice [11],  make it an ideal material for use as nano-electrodes [10, 12-
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14]. Recently electroburnt graphene nanojunctions [14] have attracted increasing scientific 

interest, because  their sub-nanometer gaps are sufficiently small to be spanned by single 

molecules. Indeed molecules with planar anchor groups bind particularly strongly to the surface 

of the graphene via π-π and van der Waals interactions and form stable electrode-molecule-

electrode junctions [15]. Electroburnt graphene nanaojunctions can be grown on a silicon oxide 

substrate with a buried gate electrode, which provides a versatile three terminal platform for 

exploring and tuning electron transport through single molecules. However in such junctions, the 

thickness of the oxide barrier between the gate and molecule means that the electrostatic 

coupling of the gate electrode to the molecule is inefficient. Therefore strategies to increase the 

coupling are needed. 

In this paper, our aim is to study the properties of graphene electroburnt junctions formed 

on an insulating hexagonal-boron nitride (hBN) substrate, which would allow a gate electrode 

beneath the hBN layer to be located much closer to the graphene electrode gap, thereby 

increasing the gating efficiency. Even in the absence of a molecule, electroburnt graphene 

junctions on silicon oxide or free-standing in vacuum exhibit unexpected quantum interference 

effects at the last moment of burning, just before the gap forms. In this paper, our aim is to 

examine electron transport through graphene nanojunctions and to determine if such effects 

persist in junctions formed on hBN. 

Using the method described in [14], we used the molecular dynamics code LAMMPS [16] 

to generate 42 different initial examples of graphene electrodes near the moment of breaking. In 

each case the electrodes were covalently connected by a series of randomly generated carbon 

filaments or a constricted neck of graphene. Geometry relaxation was then carried out for each 

structure using the density-functional-theory (DFT) code SIESTA [17] with the same parameters 

as described in [14]. Next the transmission probability T(E) of the electrons with energy E 

passing through the junction was calculated using our GOLLUM transport code [18] and finally 

the Landauer-Büttiker formula [19], was used to compute the electrical conductance and current-

voltage relation for each structure.  

 

Result and discussion 

Figure 1 shows an example of a nanojunction on free standing graphene (fig. 1a) and on a hBN 

substrate (fig. 1b). After geometry relaxation, the graphene is approximately A-B stacked on the 



hBN with a slight lattice mismatch [20]. The separation between the two layers is calculated to 

be approximately 3.4Å in agreement with reported experimental [21] and theoretical values [22]. 

The substrate size is chosen to be larger than graphene to avoid the effect of hBN edges on the 

current. The corresponding transmission coefficient and current through the device is shown in 

figures 1c and 1d respectively. The transmission coefficient around the Fermi energy is almost 

the same in the absence and presence of hBN although at higher energies new resonances due to 

the weak coupling between carbon and boron or nitrogen atoms appear. Due to the fact that the 

transmission is only slightly changed around the neutrality point, the low-bias current is barely 

affected by the hBN. At higher voltages, the presence of additional transmission resonances 

around EF = -0.8V could cause the current in the presence of hBN to increase. 

 

 
Figure 1. Graphene nano-junctions (a) free standing graphene, (b) on hexagonal boron nitride substrate, 
(c) the conductance in different Fermi energies and (d) current – voltage characteristic.  

To create a junction with nano-meter size gap, a sufficiently-high bias voltage is applied to burn 

a pre-patterned constriction of graphene [14]. When the graphene begins to burn, feedback 

control is activated and the bias voltage is dropped. This process is repeated several times to 

break the junction. One complicating feature is the presence of the oxygen atoms around the 

burning site, which can affect the shape and size of the junctions. This oxygen could be supplied 

from air or in vacuum from the SiO2 oxide substrate. The use of hBN could avoid this feature and 

help to form more reproducible junctions. Figure 2 shows five examples of such a junctions 



created in the absence of the oxygen atoms. Structures 3, 4 and 5 are formed from successively 

narrower constrictions, which are stable after DFT relaxation. In contrast, a constriction formed 

from a single chain of hexagons without edge termination is not stable and forms two parallel 

carbon chains, as shown in s structure 2. The most narrow structure 1 is formed from a single 

carbon chain and has relaxed to form a series of single and triple bonds in agreement with the 

known properties of oligoynes  [23-25]. Such chains have been recently observed experimentally 

using TEM on free standing graphene [26].  

 

 
Figure 2. The junctions without termination formed in vacuum condition in the absence of the oxygen 
either from the air or the oxide substrate. (a) current – voltage characteristic of the junctions 1-5, (b) the 
conductance of each junction in different Fermi energies. 

The conductances of devices 1 to 5 are shown in figure 2b. Junctions 1 and 2 of figure 2a are 

interesting, because the low-bias current (ie at voltages less than 0.5V) of the single carbon chain 

(device 1) is higher than device 2 (two parallel carbon chains) in low bias voltages for a wide 

bias window. This is highly non-classical, since one would expect a higher conductance for two 

parallel resistors than for a single resistor. In our recent paper [14], we discussed the origin of 

this counterintuitive phenomenon and demonstrated that it is a signature of room-temperature 

quantum interference and arises from a combination of the semimetallic band structure of 

graphene and a cross-over from electrodes with multiple- path connectivity to single-path 

connectivity just before breaking. In molecular scale objects such room-temperature quantum 

effects also play important role [27, 28].  

We placed all of the 42 different free standing graphene junctions discussed in ref. [14], on 

hBN substrates and relaxed them using DFT. Examples of the relaxed structures are shown in 



figure 3a (the substrate not shown to provide clear picture of the junction, in all junctions the 

hBN is present under graphene junction similar to what shown in figure 1b). For the structure of 

figure 3a, figure 3b shows the current of each configuration in different bias voltage with and 

without hBN substrate. In general in the presence of the hBN, the current slightly drops due to 

the weak coupling between the graphene-hBN double layers. However, it is shown that the 

current trough the graphene is normally higher on the hBN substrate rather than SiO2 [29]. The 

structures 1, 2, 4, 5 and 6, where a broken junction, a junction with multiple paths or a junction 

with very weak coupling is formed, yield in general lower currents than the structure 3, where a 

single path junction formed. This trend remains unchanged even in the presence of the hBN 

substrate although the magnitude of the current in all cases decreased in the presence of the hBN 

substrate. This decrease in the current in the presence of hBN occurs for all of the 42 different 

configurations. 

 

 
Figure 3. Six examples out of 82 different configurations studied in this paper. (a1-6) Graphene nano-
junctions with different carbon filament in the junction, (b1-6) current – voltage characteristic of the 
junction shown in (a) without and with a hBN substrate. 

As noted in [14], for free-standing graphene nanojunctions,  the current in the device 3 is 

expected to be higher than the current in the other devices due to the quantum interference effect, 

because destructive interference occurs in multipath junctions. Figure 3 confirms that this feature 

persists in the presence of hBN. 



 

Conclusion 

We have compared current-voltage characteristics of graphene nanojunctions in the absence and 

presence of a hBN substrate and found that typically the current is decreased by the presence of 

hBN. We have also found that the current flow in a single-filament junction is higher than that of 

a double-filament junction, due to the quantum interference, both in the presence and absence of 

hBN. These results demonstrate that electron transport through electroburnt graphene junctions 

are only slightly perturbed by the presence of a hBN substrate. Since the latter allows a gate 

electrode to be placed in close proximity to the electrode gap, this suggests that graphene 

nanogaps on hBN substrates are a viable route to high-efficiency gated devices.  
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