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Derivations of ray dependence functions (λ > 0 and λ < 0) and spectral density
(λ > 0)

Derivation of d(q) for λ > 0

This follows simply by noting that Proposition 6 gives that marginal quantile functions are

qA(tx) = (tx)λlA(tx), qB(ty) = (ty)λlB(ty),

for tx, ty ≥ 1 so that using the same dominated convergence arguments as in limt→∞ θ(t) given in the proof
of Proposition 1,

lim
t→∞

tP{A > qA(tx), B > qB(ty)} = λ−1/λ

∫ 1

0

min

{
τ(v)−1/λ

µ1x
,
τ(1− v)−1/λ

µ2y

}
dFV (v). (1)

Therefore P{A > qA(tq), B > qB(t(1− q))}/P{A > qA(t), B > qB(t)} converges to q−1/2(1− q)−1/2d(q) with
d the form claimed in Remark 1.

Derivation of h for λ > 0

To derive h, consider (1), with dFV (v) = fV (v) dv. This expression can be set equal to∫ 1

0

2 min

(
w∗

x
,

1− w∗

y

)
h(w∗) dw∗ =

∫ x
x+y

0

2w∗

x
h(w∗) dw∗ +

∫ 1

x
x+y

2(1− w∗)
x

h(w∗) dw∗.

By differentiating under the integral sign, we have

∂2

∂x∂y

{∫ x
x+y

0

2w∗

x
h(w∗) dw∗ +

∫ 1

x
x+y

2(1− w∗)
y

h(w∗) dw∗

}
=

2

(x+ y)3
h

(
x

x+ y

)
,

so that h is recovered upon setting x = w, y = 1− w, and dividing by two. Thus we begin with

λ−1/λ

∫ 1

0

min

{
τ(v)−1/λ

µ1x
,
τ(1− v)−1/λ

µ2y

}
fV (v) dv = λ−1/λ

∫ r(x,y)

0

τ(v)−1/λ

µ1x
fV (v) dv

+ λ−1/λ

∫ 1

r(x,y)

τ(1− v)−1/λ

µ2y
fV (v) dv,

with r(x, y) = (xµ1)λ

(xµ1)λ+(yµ2)λ
. Differentiating with respect to x yields

λ−1/λ

{∫ r(x,y)

0

−τ(v)−1/λ

µ1x2
fV (v) dv +

τ{r(x, y)}−1/λ

µ1x
fV {r(x, y)} ∂

∂x
r(x, y)

−τ{1− r(x, y)}−1/λ

µ2y
fV {r(x, y)} ∂

∂x
r(x, y)

}
=

∫ r(x,y)

0

−τ(v)−1/λ

µ1x2
fV (v) dv,
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whilst differentiating what remains with respect to y gives

−λ−1/λ τ{r(x, y)}−1/λ

µ1x2
fV {r(x, y)} ∂

∂y
r(x, y).

Substituting in τ and noting that

∂

∂y
r(x, y) =

∂

∂y

(xµ1)λ

(xµ1)λ + (yµ2)λ
= −λ xλyλ−1µλ1µ

λ
2

{(xµ1)λ + (yµ2)λ}2

gives

xλ−1yλ−1µλ1µ
λ
2

‖(xµ1)λ, (yµ2)λ‖1/λm {(xµ1)λ + (yµ2)λ}2
fV

{
(xµ1)λ

(yµ1)λ + (yµ2)λ

}
,

so that substituting x = w, y = 1− w and dividing by two yields

h(w) =
λ1−1/λ

2

wλ−1(1− w)λ−1µλ1µ
λ
2

‖(wµ1)λ, ((1− w)µ2)λ‖1/λm {(wµ1)λ + ((1− w)µ2)λ}2
fV

{
(wµ1)λ

(wµ1)λ + ((1− w)µ2)λ

}
,

which is denoted h(·;λ, fV ) in Remark 1.

Derivation of d(q) for λ < 0

This follows firstly by noting that Proposition 9 gives that marginal quantile functions are

qA(tx) = Λ− (tx)λlA(tx), qB(ty) = Λ− (ty)λlB(ty),

for tx, ty ≥ 1. The ray dependence function can be found by following the proof of Proposition 4 through
with these qA(tx) and qB(ty), which reveals that

lim
t→∞

t1−λP{A > qA(tx), B > qB(ty)} =
F ′V (1/2)

4

{
min(xm+, ym−)λ − 1 + λ

1− λ
max(xm+, ym−)λ

}
max(xm+, ym−)−1.

Therefore P{A > qA(tq), B > qB(t(1 − q))}/P{A > qA(t), B > qB(t)} converges to q−
1−λ
2 (1 − q)− 1−λ

2 d(q)
with d the form claimed in Remark 2.
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Additional figures from Section 5
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Figure 1: Estimates of χ(u) (left) and χ̄(u) (right) for dependence levels 1 and 4 of dependence structures
(i)–(iii) using the new model (dotted lines) and the Heffernan–Tawn model (dashed lines). The three lines
represent pointwise means and upper 95% and lower 5% quantiles of the 100 repetitions. Red solid line: true
value for the copula. The dependence structures and levels are given as the figure title.
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Additional proofs from Appendix A

Proof of Lemma 1. The expression s 7→ sφ−1/β(s) defines a strictly increasing continuous map [s0,∞) →
[1,∞) which is regularly varying with index 1 (note that φ−1/β is slowly varying). Let σ : [1,∞)→ [s0,∞)
denote the corresponding inverse, which is also regularly varying with index 1, and set u(t) = t−βσβ(t) for
all t ≥ 1; it follows that u is continuous and slowly varying. Setting s = σ(t) = tu1/β(t) we then get

t = sφ−1/β(s) = tu1/β(t)φ−1/β{tu1/β(t)} =⇒ u(t) = φ{tu1/β(t)} = φ(s).

The final part of the result follows (note that tu1/β(t)→∞ as t→∞ since u is slowly varying).

Proof of Proposition 6. We have

φ(s) := sβP(A > sλβ) =

∫ 1

0

{s−λβ + λτ(v)}−1/λ
+ dFV (v).

As s increases from 0 to ∞, s−λβ + λτ(v) decreases monotonically to λτ(v) ≥ λ; hence {s−λβ + λτ(v)}−1/λ
+

increases monotonically to {λτ(v)}−1/λ ≤ λ−1/λ. Dominated convergence then gives

lim
s→∞

φ(s) =

∫ 1

0

{λτ(v)}−1/λ dFV (v) = µ1.

Since this limit is non-zero it follows that φ is slowly varying. The result for qA(tβ) now follows from Lemma 1
(with lA = uλ). The qB(tγ) case is similar.

Proof of Lemma 2. For each δ > 0 set Jδ = {v ∈ [0, 1] : a(v) ≤ α+ δ}.
Claim 1: there exists S1,δ such that |a(v)− α| ≤ δ when s ≥ S1,δ and v ∈ Is ∩ Jδ. The continuity of a implies
U := {v ∈ [0, 1] : a(v) > α − δ} is an open neighbourhood of I ∩ Jδ 6= ∅. Since Is → I as s → ∞ it follows
that Is ∩ Jδ ⊆ U for all sufficiently large s.

Claim 2: there exists S2,δ and Cδ > 0 such that
∫
Is∩Jδ/4

dFV (v) ≥ Cδ for all s ≥ S2,δ. Choose ṽ ∈ I and

δ0 > 0 so that a(ṽ) = α and J ′ := [ṽ − δ0, ṽ + δ0] ⊆ Jδ/4. Then I ∩ J ′ is an interval of length at least
δ1 = min(δ0, |I|) > 0 (recall that I is an interval). Since Is is an interval converging to I it follows that,
for all sufficiently large s, Is ∩ J ′ is an interval of length at least δ1/2, which is contained in Is ∩ Jδ/4. We
can then let Cδ be the infimum of

∫
K

dFV (v), taken over all intervals K ⊆ [0, 1] of length at least δ1/2; this
quantity is positive by Assumption 1.

Setting

φδ(s) =

∫
Is∩Jδ

u−a(v)(s) dFV (v) and ψδ(s) =

∫
Is\Jδ

u−a(v)(s) dFV (v)

we clearly have
φ(s) = φδ(s) + ψδ(s). (2)

Claim 3: there exists S3,δ such that

1 ≤ φ(s)

φδ(s)
≤ 1 + C−1

δ s−ρδ/4 for s ≥ S3,δ. (3)

Set σ = ρδ/{4(α+ δ)} ∈ (0, ρ/4]. Since u is regularly varying with index ρ there exists S′3,δ ≥ 1 such that

sρ−σ ≤ u(s) ≤ sρ+σ for s ≥ S′3,δ.

If v ∈ Jδ/4 then a(v) ≤ α+ δ/4 so

a(v)(ρ+ σ) ≤ αρ+ σ(α+ δ/4) + ρδ/4 ≤ αρ+ σ(α+ δ) + ρδ/4 = αρ+ ρδ/2
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so, for any s ≥ S′3,δ,
u−a(v)(s) ≥ s−a(v)(ρ+σ) ≥ s−αρ−ρδ/2.

When s ≥ max{S2,δ, S
′
3,δ}, Claim 2 then leads to

φδ(s) ≥ φδ/4(s) =

∫
Is∩Jδ/4

u−a(v)(s) dFV (v) ≥ s−αρ−ρδ/2
∫
Is∩Jδ/4

dFV (v) ≥ Cδs−αρ−ρδ/2.

On the other hand, if v /∈ Jδ then a(v) ≥ α+ δ so

a(v)(ρ− σ) ≥ (α+ δ)(ρ− σ) = αρ− σ(α+ δ) + ρδ = αρ+ 3ρδ/4,

and thus, for any s ≥ S′3,δ,
u−a(v)(s) ≤ s−a(v)(ρ−σ) ≤ s−αρ−3ρδ/4.

When s ≥ S′3,δ it follows that

ψδ(s) =

∫
Is\Jδ

u−a(v)(s) dFV (v) ≤ s−αρ−3ρδ/4

∫
Is\Jδ

dFV (v) ≤ s−αρ−3ρδ/4.

When s ≥ max(S2,δ, S
′
3,δ) our estimates for φδ(s) and ψδ(s) can be combined with (2) to give (3).

Let l ≥ 1 and ε > 0. Choose δ ∈ (0, 1] so that (1 + δ)α+δlρδ ≤ 1 + ε. Since u is regularly varying with index
ρ we can find S4,δ such that

(1 + δ)−1lρ ≤ u(ls)

u(s)
≤ (1 + δ)lρ for s ≥ S4,δ.

If v ∈ Is ∩ Jδ and s ≥ max{S1,δ, S4,δ}, Claim 1 gives α− δ ≤ a(v) ≤ α+ δ and so

(1 + ε)−1l−αρ ≤ (1 + δ)−(α+δ)l−(α+δ)ρ ≤ (1 + δ)−a(v)l−a(v)ρ

≤ u−a(v)(ls)

u−a(v)(s)
≤ (1 + δ)a(v)l−a(v)ρ ≤ (1 + δ)α+δl−(α−δ)ρ ≤ (1 + ε)l−αρ.

Integration then gives
φδ(ls)

φδ(s)
∈ [(1 + ε)−1l−αρ, (1 + ε)l−αρ]. (4)

Choose S ≥ max{S1,δ, . . . , S4,δ} so that S−ρδ/4 ≤ Cδε. Now

φ(ls)

φ(s)
=

φ(ls)

φδ(ls)

φδ(ls)

φδ(s)

φδ(s)

φ(s)
.

For s ≥ S the middle term on the right hand side belongs to [(1 + ε)−1l−αρ, (1 + ε)l−αρ] by (4), while the
first and third terms belong to [1, 1 + ε] and [(1 + ε)−1, 1] respectively by (3) (note that, l ≥ 1 so ls ≥ s ≥ S).
Thus φ(ls)/φ(s) ∈ [(1 + ε)−2l−αρ, (1 + ε)2l−αρ] for any s ≥ S. Since ε > 0 was arbitrary it follows that
φ(ls)/φ(s)→ l−αρ as s→∞; hence φ is regularly varying with index −αρ.

Proof of Proposition 7. For s ≥ 1, using (A.1),

φ(s) := sβP(A > β log s) = sβ
∫ 1

0

e−βτ(v) log s dFV (v) =

∫ 1

0

s−β{τ(v)−1} dFV (v).

Now β{τ(v)− 1} ≥ 0 with equality iff v ∈ Ω0. Dominated convergence then gives

lim
s→∞

φ(s) =

∫ 1

0

lim
s→∞

s−β{τ(v)−1} dFV (v) =

∫
Ω0

dFV (v) = m+.

By Lemma 2 we know that φ is slowly varying. The result for qA(tβ) now follows from Lemma 1 (with
lA = u). The qB(tγ) case is similar.
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Proof of Proposition 8. From (A.2a) and Proposition 7 we have

P{A > qA(tβ), B > qB(tγ)} =

∫ 1

0

min
[
e−τ(v) log{tβlA(t)}, e−τ(1−v) log{tγ lB(t)}]dFV (v).

By Proposition 3 we then get θ(t) =
∫ 1

0
gv(t) dFV (v) where

gv(t) = tν̂ min
{
t−βτ(v)l

−τ(v)
A (t), t−γτ(1−v)l

−τ(1−v)
B (t)

}
.

Now τ ≥ 1 so l
−τ(v)
A (t), l

−τ(1−v)
B (t) ≤ C = max{m−1

+ ,m−1
− } using Proposition 7. Furthermore ν̂ ≤

max{βτ(v), γτ(1 − v)} (by definition) leading to gv(t) ≤ C for all v and t ≥ 1. If v /∈ Ω then ν̂ <
max{βτ(v), γτ(1− v)} so gv(t)→ 0 as t→∞. In particular, if ω ∈ [1− v′, v′] it follows that Ω = {ω} and
hence gv(t)→ 0 as t→∞ whenever v 6= ω; dominated convergence then gives limt→∞ θ(t) = 0.

Proof of Proposition 9. Set S0 = Λ1/(λβ). For s ≥ S0 we get

φ(s) := sβP
(
A > Λ− sλβ

)
=

∫ 1

0

[
s−λβ

{
1− λ(1/λ+ sλβ)τ(v)

}]−1/λ

+
dFV (v)

=

∫ 1

0

[
(s−λβ + λ){1− τ(v)} − λ

]−1/λ

+
dFV (v), (5)

using (A.1). For s ≥ S0 we have (s−λβ + λ){1 − τ(v)} ≤ 0 (recall that τ(v) ≥ 1) so the integrand in (5) is
bounded above by (−λ)−1/λ. Also note that s−λβ → +∞ as s→∞, so

lim
s→∞

[
(s−λβ + λ){1− τ(v)} − λ

]
+

=

{
0 if τ(v) > 1,

−λ if τ(v) = 1.

As {v : τ(v) = 1} = Ω0, dominated convergence now gives

lim
s→∞

φ(s) =

∫
Ω0

(−λ)−1/λ dFV (v) = (−λ)−1/λm+.

Since this limit is non-zero it follows that φ is slowly varying. The result for qA(tβ) now follows from Lemma 1
(with lA = uλ). The qB(tγ) case is similar.
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