Supplementary Material to Modelling across extremal dependence classes

J. L. Wadsworth, J. A. Tawn, A. C. Davison and D. M. Elton

November 16, 2015

Derivations of ray dependence functions ($\lambda>0$ and $\lambda<0$) and spectral density

 ($\lambda>0$)Derivation of $d(q)$ for $\lambda>0$
This follows simply by noting that Proposition 6 gives that marginal quantile functions are

$$
q_{A}(t x)=(t x)^{\lambda} l_{A}(t x), \quad q_{B}(t y)=(t y)^{\lambda} l_{B}(t y),
$$

for $t x, t y \geq 1$ so that using the same dominated convergence arguments as in $\lim _{t \rightarrow \infty} \theta(t)$ given in the proof of Proposition 1,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{PP}\left\{A>q_{A}(t x), B>q_{B}(t y)\right\}=\lambda^{-1 / \lambda} \int_{0}^{1} \min \left\{\frac{\tau(v)^{-1 / \lambda}}{\mu_{1} x}, \frac{\tau(1-v)^{-1 / \lambda}}{\mu_{2} y}\right\} \mathrm{d} F_{V}(v) . \tag{1}
\end{equation*}
$$

Therefore $\mathrm{P}\left\{A>q_{A}(t q), B>q_{B}(t(1-q))\right\} / \mathrm{P}\left\{A>q_{A}(t), B>q_{B}(t)\right\}$ converges to $q^{-1 / 2}(1-q)^{-1 / 2} d(q)$ with d the form claimed in Remark 1.

Derivation of h for $\lambda>0$
To derive h, consider (1), with $\mathrm{d} F_{V}(v)=f_{V}(v) \mathrm{d} v$. This expression can be set equal to

$$
\int_{0}^{1} 2 \min \left(\frac{w^{*}}{x}, \frac{1-w^{*}}{y}\right) h\left(w^{*}\right) \mathrm{d} w^{*}=\int_{0}^{\frac{x}{x+y}} \frac{2 w^{*}}{x} h\left(w^{*}\right) \mathrm{d} w^{*}+\int_{\frac{x}{x+y}}^{1} \frac{2\left(1-w^{*}\right)}{x} h\left(w^{*}\right) \mathrm{d} w^{*} .
$$

By differentiating under the integral sign, we have

$$
\frac{\partial^{2}}{\partial x \partial y}\left\{\int_{0}^{\frac{x}{x+y}} \frac{2 w^{*}}{x} h\left(w^{*}\right) \mathrm{d} w^{*}+\int_{\frac{x}{x+y}}^{1} \frac{2\left(1-w^{*}\right)}{y} h\left(w^{*}\right) \mathrm{d} w^{*}\right\}=\frac{2}{(x+y)^{3}} h\left(\frac{x}{x+y}\right),
$$

so that h is recovered upon setting $x=w, y=1-w$, and dividing by two. Thus we begin with

$$
\begin{aligned}
\lambda^{-1 / \lambda} \int_{0}^{1} \min \left\{\frac{\tau(v)^{-1 / \lambda}}{\mu_{1} x}, \frac{\tau(1-v)^{-1 / \lambda}}{\mu_{2} y}\right\} f_{V}(v) \mathrm{d} v & =\lambda^{-1 / \lambda} \int_{0}^{r(x, y)} \frac{\tau(v)^{-1 / \lambda}}{\mu_{1} x} f_{V}(v) \mathrm{d} v \\
& +\lambda^{-1 / \lambda} \int_{r(x, y)}^{1} \frac{\tau(1-v)^{-1 / \lambda}}{\mu_{2} y} f_{V}(v) \mathrm{d} v,
\end{aligned}
$$

with $r(x, y)=\frac{\left(x \mu_{1}\right)^{\lambda}}{\left(x \mu_{1}\right)^{\lambda}+\left(y \mu_{2}\right)^{\lambda}}$. Differentiating with respect to x yields

$$
\begin{aligned}
& \lambda^{-1 / \lambda}\left\{\int_{0}^{r(x, y)}-\frac{\tau(v)^{-1 / \lambda}}{\mu_{1} x^{2}} f_{V}(v) \mathrm{d} v+\frac{\tau\{r(x, y)\}^{-1 / \lambda}}{\mu_{1} x} f_{V}\{r(x, y)\} \frac{\partial}{\partial x} r(x, y)\right. \\
&\left.-\frac{\tau\{1-r(x, y)\}^{-1 / \lambda}}{\mu_{2} y} f_{V}\{r(x, y)\} \frac{\partial}{\partial x} r(x, y)\right\}=\int_{0}^{r(x, y)}-\frac{\tau(v)^{-1 / \lambda}}{\mu_{1} x^{2}} f_{V}(v) \mathrm{d} v,
\end{aligned}
$$

whilst differentiating what remains with respect to y gives

$$
-\lambda^{-1 / \lambda} \frac{\tau\{r(x, y)\}^{-1 / \lambda}}{\mu_{1} x^{2}} f_{V}\{r(x, y)\} \frac{\partial}{\partial y} r(x, y)
$$

Substituting in τ and noting that

$$
\frac{\partial}{\partial y} r(x, y)=\frac{\partial}{\partial y} \frac{\left(x \mu_{1}\right)^{\lambda}}{\left(x \mu_{1}\right)^{\lambda}+\left(y \mu_{2}\right)^{\lambda}}=-\lambda \frac{x^{\lambda} y^{\lambda-1} \mu_{1}^{\lambda} \mu_{2}^{\lambda}}{\left\{\left(x \mu_{1}\right)^{\lambda}+\left(y \mu_{2}\right)^{\lambda}\right\}^{2}}
$$

gives

$$
\frac{x^{\lambda-1} y^{\lambda-1} \mu_{1}^{\lambda} \mu_{2}^{\lambda}}{\left\|\left(x \mu_{1}\right)^{\lambda},\left(y \mu_{2}\right)^{\lambda}\right\|_{m}^{1 / \lambda}\left\{\left(x \mu_{1}\right)^{\lambda}+\left(y \mu_{2}\right)^{\lambda}\right\}^{2}} f_{V}\left\{\frac{\left(x \mu_{1}\right)^{\lambda}}{\left(y \mu_{1}\right)^{\lambda}+\left(y \mu_{2}\right)^{\lambda}}\right\}
$$

so that substituting $x=w, y=1-w$ and dividing by two yields

$$
h(w)=\frac{\lambda^{1-1 / \lambda}}{2} \frac{w^{\lambda-1}(1-w)^{\lambda-1} \mu_{1}^{\lambda} \mu_{2}^{\lambda}}{\left\|\left(w \mu_{1}\right)^{\lambda},\left((1-w) \mu_{2}\right)^{\lambda}\right\|_{m}^{1 / \lambda}\left\{\left(w \mu_{1}\right)^{\lambda}+\left((1-w) \mu_{2}\right)^{\lambda}\right\}^{2}} f_{V}\left\{\frac{\left(w \mu_{1}\right)^{\lambda}}{\left(w \mu_{1}\right)^{\lambda}+\left((1-w) \mu_{2}\right)^{\lambda}}\right\}
$$

which is denoted $h\left(\cdot ; \lambda, f_{V}\right)$ in Remark 1.
Derivation of $d(q)$ for $\lambda<0$
This follows firstly by noting that Proposition 9 gives that marginal quantile functions are

$$
q_{A}(t x)=\Lambda-(t x)^{\lambda} l_{A}(t x), \quad q_{B}(t y)=\Lambda-(t y)^{\lambda} l_{B}(t y)
$$

for $t x, t y \geq 1$. The ray dependence function can be found by following the proof of Proposition 4 through with these $q_{A}(t x)$ and $q_{B}(t y)$, which reveals that
$\lim _{t \rightarrow \infty} t^{1-\lambda} \mathrm{P}\left\{A>q_{A}(t x), B>q_{B}(t y)\right\}=\frac{F_{V}^{\prime}(1 / 2)}{4}\left\{\min \left(x m_{+}, y m_{-}\right)^{\lambda}-\frac{1+\lambda}{1-\lambda} \max \left(x m_{+}, y m_{-}\right)^{\lambda}\right\} \max \left(x m_{+}, y m_{-}\right)^{-1}$.
Therefore $\mathrm{P}\left\{A>q_{A}(t q), B>q_{B}(t(1-q))\right\} / \mathrm{P}\left\{A>q_{A}(t), B>q_{B}(t)\right\}$ converges to $q^{-\frac{1-\lambda}{2}}(1-q)^{-\frac{1-\lambda}{2}} d(q)$ with d the form claimed in Remark 2.

Additional figures from Section 5

Figure 1: Estimates of $\chi(u)$ (left) and $\bar{\chi}(u)$ (right) for dependence levels 1 and 4 of dependence structures (i)-(iii) using the new model (dotted lines) and the Heffernan-Tawn model (dashed lines). The three lines represent pointwise means and upper 95% and lower 5% quantiles of the 100 repetitions. Red solid line: true value for the copula. The dependence structures and levels are given as the figure title.

Additional proofs from Appendix A

Proof of Lemma 1. The expression $s \mapsto s \phi^{-1 / \beta}(s)$ defines a strictly increasing continuous map $\left[s_{0}, \infty\right) \rightarrow$ $[1, \infty)$ which is regularly varying with index 1 (note that $\phi^{-1 / \beta}$ is slowly varying). Let $\sigma:[1, \infty) \rightarrow\left[s_{0}, \infty\right.$) denote the corresponding inverse, which is also regularly varying with index 1 , and set $u(t)=t^{-\beta} \sigma^{\beta}(t)$ for all $t \geq 1$; it follows that u is continuous and slowly varying. Setting $s=\sigma(t)=t u^{1 / \beta}(t)$ we then get

$$
t=s \phi^{-1 / \beta}(s)=t u^{1 / \beta}(t) \phi^{-1 / \beta}\left\{t u^{1 / \beta}(t)\right\} \Longrightarrow u(t)=\phi\left\{t u^{1 / \beta}(t)\right\}=\phi(s) .
$$

The final part of the result follows (note that $t u^{1 / \beta}(t) \rightarrow \infty$ as $t \rightarrow \infty$ since u is slowly varying).

Proof of Proposition 6. We have

$$
\phi(s):=s^{\beta} \mathrm{P}\left(A>s^{\lambda \beta}\right)=\int_{0}^{1}\left\{s^{-\lambda \beta}+\lambda \tau(v)\right\}_{+}^{-1 / \lambda} \mathrm{d} F_{V}(v) .
$$

As s increases from 0 to $\infty, s^{-\lambda \beta}+\lambda \tau(v)$ decreases monotonically to $\lambda \tau(v) \geq \lambda$; hence $\left\{s^{-\lambda \beta}+\lambda \tau(v)\right\}_{+}^{-1 / \lambda}$ increases monotonically to $\{\lambda \tau(v)\}^{-1 / \lambda} \leq \lambda^{-1 / \lambda}$. Dominated convergence then gives

$$
\lim _{s \rightarrow \infty} \phi(s)=\int_{0}^{1}\{\lambda \tau(v)\}^{-1 / \lambda} \mathrm{d} F_{V}(v)=\mu_{1}
$$

Since this limit is non-zero it follows that ϕ is slowly varying. The result for $q_{A}\left(t^{\beta}\right)$ now follows from Lemma 1 (with $l_{A}=u^{\lambda}$). The $q_{B}\left(t^{\gamma}\right)$ case is similar.

Proof of Lemma 2. For each $\delta>0$ set $J_{\delta}=\{v \in[0,1]: a(v) \leq \alpha+\delta\}$.
Claim 1: there exists $S_{1, \delta}$ such that $|a(v)-\alpha| \leq \delta$ when $s \geq S_{1, \delta}$ and $v \in I_{s} \cap J_{\delta}$. The continuity of a implies $U:=\{v \in[0,1]: a(v)>\alpha-\delta\}$ is an open neighbourhood of $I \cap J_{\delta} \neq \emptyset$. Since $I_{s} \rightarrow I$ as $s \rightarrow \infty$ it follows that $I_{s} \cap J_{\delta} \subseteq U$ for all sufficiently large s.
Claim 2: there exists $S_{2, \delta}$ and $C_{\delta}>0$ such that $\int_{I_{s} \cap J_{\delta / 4}} d F_{V}(v) \geq C_{\delta}$ for all $s \geq S_{2, \delta}$. Choose $\tilde{v} \in I$ and $\delta_{0}>0$ so that $a(\tilde{v})=\alpha$ and $J^{\prime}:=\left[\tilde{v}-\delta_{0}, \tilde{v}+\delta_{0}\right] \subseteq J_{\delta / 4}$. Then $I \cap J^{\prime}$ is an interval of length at least $\delta_{1}=\min \left(\delta_{0},|I|\right)>0$ (recall that I is an interval). Since I_{s} is an interval converging to I it follows that, for all sufficiently large $s, I_{s} \cap J^{\prime}$ is an interval of length at least $\delta_{1} / 2$, which is contained in $I_{s} \cap J_{\delta / 4}$. We can then let C_{δ} be the infimum of $\int_{K} \mathrm{~d} F_{V}(v)$, taken over all intervals $K \subseteq[0,1]$ of length at least $\delta_{1} / 2$; this quantity is positive by Assumption 1.
Setting

$$
\phi_{\delta}(s)=\int_{I_{s} \cap J_{\delta}} u^{-a(v)}(s) \mathrm{d} F_{V}(v) \quad \text { and } \quad \psi_{\delta}(s)=\int_{I_{s} \backslash J_{\delta}} u^{-a(v)}(s) \mathrm{d} F_{V}(v)
$$

we clearly have

$$
\begin{equation*}
\phi(s)=\phi_{\delta}(s)+\psi_{\delta}(s) \tag{2}
\end{equation*}
$$

Claim 3: there exists $S_{3, \delta}$ such that

$$
\begin{equation*}
1 \leq \frac{\phi(s)}{\phi_{\delta}(s)} \leq 1+C_{\delta}^{-1} s^{-\rho \delta / 4} \quad \text { for } s \geq S_{3, \delta} \tag{3}
\end{equation*}
$$

Set $\sigma=\rho \delta /\{4(\alpha+\delta)\} \in(0, \rho / 4]$. Since u is regularly varying with index ρ there exists $S_{3, \delta}^{\prime} \geq 1$ such that

$$
s^{\rho-\sigma} \leq u(s) \leq s^{\rho+\sigma} \quad \text { for } s \geq S_{3, \delta}^{\prime}
$$

If $v \in J_{\delta / 4}$ then $a(v) \leq \alpha+\delta / 4$ so

$$
a(v)(\rho+\sigma) \leq \alpha \rho+\sigma(\alpha+\delta / 4)+\rho \delta / 4 \leq \alpha \rho+\sigma(\alpha+\delta)+\rho \delta / 4=\alpha \rho+\rho \delta / 2
$$

so, for any $s \geq S_{3, \delta}^{\prime}$,

$$
u^{-a(v)}(s) \geq s^{-a(v)(\rho+\sigma)} \geq s^{-\alpha \rho-\rho \delta / 2}
$$

When $s \geq \max \left\{S_{2, \delta}, S_{3, \delta}^{\prime}\right\}$, Claim 2 then leads to

$$
\phi_{\delta}(s) \geq \phi_{\delta / 4}(s)=\int_{I_{s} \cap J_{\delta / 4}} u^{-a(v)}(s) \mathrm{d} F_{V}(v) \geq s^{-\alpha \rho-\rho \delta / 2} \int_{I_{s} \cap J_{\delta / 4}} \mathrm{~d} F_{V}(v) \geq C_{\delta} s^{-\alpha \rho-\rho \delta / 2}
$$

On the other hand, if $v \notin J_{\delta}$ then $a(v) \geq \alpha+\delta$ so

$$
a(v)(\rho-\sigma) \geq(\alpha+\delta)(\rho-\sigma)=\alpha \rho-\sigma(\alpha+\delta)+\rho \delta=\alpha \rho+3 \rho \delta / 4
$$

and thus, for any $s \geq S_{3, \delta}^{\prime}$,

$$
u^{-a(v)}(s) \leq s^{-a(v)(\rho-\sigma)} \leq s^{-\alpha \rho-3 \rho \delta / 4}
$$

When $s \geq S_{3, \delta}^{\prime}$ it follows that

$$
\psi_{\delta}(s)=\int_{I_{s} \backslash J_{\delta}} u^{-a(v)}(s) \mathrm{d} F_{V}(v) \leq s^{-\alpha \rho-3 \rho \delta / 4} \int_{I_{s} \backslash J_{\delta}} \mathrm{d} F_{V}(v) \leq s^{-\alpha \rho-3 \rho \delta / 4}
$$

When $s \geq \max \left(S_{2, \delta}, S_{3, \delta}^{\prime}\right)$ our estimates for $\phi_{\delta}(s)$ and $\psi_{\delta}(s)$ can be combined with (2) to give (3).
Let $l \geq 1$ and $\epsilon>0$. Choose $\delta \in(0,1]$ so that $(1+\delta)^{\alpha+\delta} l^{\rho \delta} \leq 1+\epsilon$. Since u is regularly varying with index ρ we can find $S_{4, \delta}$ such that

$$
(1+\delta)^{-1} l^{\rho} \leq \frac{u(l s)}{u(s)} \leq(1+\delta) l^{\rho} \quad \text { for } s \geq S_{4, \delta}
$$

If $v \in I_{s} \cap J_{\delta}$ and $s \geq \max \left\{S_{1, \delta}, S_{4, \delta}\right\}$, Claim 1 gives $\alpha-\delta \leq a(v) \leq \alpha+\delta$ and so

$$
\begin{aligned}
&(1+\epsilon)^{-1} l^{-\alpha \rho} \leq(1+\delta)^{-(\alpha+\delta)} l^{-(\alpha+\delta) \rho} \leq(1+\delta)^{-a(v)} l^{-a(v) \rho} \\
& \quad \leq \frac{u^{-a(v)}(l s)}{u^{-a(v)}(s)} \leq(1+\delta)^{a(v)} l^{-a(v) \rho} \leq(1+\delta)^{\alpha+\delta} l^{-(\alpha-\delta) \rho} \leq(1+\epsilon) l^{-\alpha \rho}
\end{aligned}
$$

Integration then gives

$$
\begin{equation*}
\frac{\phi_{\delta}(l s)}{\phi_{\delta}(s)} \in\left[(1+\epsilon)^{-1} l^{-\alpha \rho},(1+\epsilon) l^{-\alpha \rho}\right] . \tag{4}
\end{equation*}
$$

Choose $S \geq \max \left\{S_{1, \delta}, \ldots, S_{4, \delta}\right\}$ so that $S^{-\rho \delta / 4} \leq C_{\delta} \epsilon$. Now

$$
\frac{\phi(l s)}{\phi(s)}=\frac{\phi(l s)}{\phi_{\delta}(l s)} \frac{\phi_{\delta}(l s)}{\phi_{\delta}(s)} \frac{\phi_{\delta}(s)}{\phi(s)}
$$

For $s \geq S$ the middle term on the right hand side belongs to $\left[(1+\epsilon)^{-1} l^{-\alpha \rho},(1+\epsilon) l^{-\alpha \rho}\right]$ by (4), while the first and third terms belong to $[1,1+\epsilon]$ and $\left[(1+\epsilon)^{-1}, 1\right]$ respectively by (3) (note that, $l \geq 1$ so $l s \geq s \geq S$). Thus $\phi(l s) / \phi(s) \in\left[(1+\epsilon)^{-2} l^{-\alpha \rho},(1+\epsilon)^{2} l^{-\alpha \rho}\right]$ for any $s \geq S$. Since $\epsilon>0$ was arbitrary it follows that $\phi(l s) / \phi(s) \rightarrow l^{-\alpha \rho}$ as $s \rightarrow \infty$; hence ϕ is regularly varying with index $-\alpha \rho$.
Proof of Proposition 7. For $s \geq 1$, using (A.1),

$$
\phi(s):=s^{\beta} \mathrm{P}(A>\beta \log s)=s^{\beta} \int_{0}^{1} e^{-\beta \tau(v) \log s} \mathrm{~d} F_{V}(v)=\int_{0}^{1} s^{-\beta\{\tau(v)-1\}} \mathrm{d} F_{V}(v)
$$

Now $\beta\{\tau(v)-1\} \geq 0$ with equality iff $v \in \Omega_{0}$. Dominated convergence then gives

$$
\lim _{s \rightarrow \infty} \phi(s)=\int_{0}^{1} \lim _{s \rightarrow \infty} s^{-\beta\{\tau(v)-1\}} \mathrm{d} F_{V}(v)=\int_{\Omega_{0}} \mathrm{~d} F_{V}(v)=m_{+}
$$

By Lemma 2 we know that ϕ is slowly varying. The result for $q_{A}\left(t^{\beta}\right)$ now follows from Lemma 1 (with $\left.l_{A}=u\right)$. The $q_{B}\left(t^{\gamma}\right)$ case is similar.

Proof of Proposition 8. From (A.2a) and Proposition 7 we have

$$
\mathrm{P}\left\{A>q_{A}\left(t^{\beta}\right), B>q_{B}\left(t^{\gamma}\right)\right\}=\int_{0}^{1} \min \left[e^{-\tau(v) \log \left\{t^{\beta} l_{A}(t)\right\}}, e^{-\tau(1-v) \log \left\{t^{\gamma} l_{B}(t)\right\}}\right] \mathrm{d} F_{V}(v)
$$

By Proposition 3 we then get $\theta(t)=\int_{0}^{1} g_{v}(t) \mathrm{d} F_{V}(v)$ where

$$
g_{v}(t)=t^{\widehat{\nu}} \min \left\{t^{-\beta \tau(v)} l_{A}^{-\tau(v)}(t), t^{-\gamma \tau(1-v)} l_{B}^{-\tau(1-v)}(t)\right\} .
$$

Now $\tau \geq 1$ so $l_{A}^{-\tau(v)}(t), l_{B}^{-\tau(1-v)}(t) \leq C=\max \left\{m_{+}^{-1}, m_{-}^{-1}\right\}$ using Proposition 7. Furthermore $\widehat{\nu} \leq$ $\max \{\beta \tau(v), \gamma \tau(1-v)\}$ (by definition) leading to $g_{v}(t) \leq C$ for all v and $t \geq 1$. If $v \notin \Omega$ then $\widehat{\nu}<$ $\max \{\beta \tau(v), \gamma \tau(1-v)\}$ so $g_{v}(t) \rightarrow 0$ as $t \rightarrow \infty$. In particular, if $\omega \in\left[1-v^{\prime}, v^{\prime}\right]$ it follows that $\Omega=\{\omega\}$ and hence $g_{v}(t) \rightarrow 0$ as $t \rightarrow \infty$ whenever $v \neq \omega$; dominated convergence then gives $\lim _{t \rightarrow \infty} \theta(t)=0$.

Proof of Proposition 9. Set $S_{0}=\Lambda^{1 /(\lambda \beta)}$. For $s \geq S_{0}$ we get

$$
\begin{align*}
\phi(s):=s^{\beta} \mathrm{P}\left(A>\Lambda-s^{\lambda \beta}\right) & =\int_{0}^{1}\left[s^{-\lambda \beta}\left\{1-\lambda\left(1 / \lambda+s^{\lambda \beta}\right) \tau(v)\right\}\right]_{+}^{-1 / \lambda} \mathrm{d} F_{V}(v) \\
& =\int_{0}^{1}\left[\left(s^{-\lambda \beta}+\lambda\right)\{1-\tau(v)\}-\lambda\right]_{+}^{-1 / \lambda} \mathrm{d} F_{V}(v) \tag{5}
\end{align*}
$$

using (A.1). For $s \geq S_{0}$ we have $\left(s^{-\lambda \beta}+\lambda\right)\{1-\tau(v)\} \leq 0$ (recall that $\tau(v) \geq 1$) so the integrand in (5) is bounded above by $(-\lambda)^{-1 / \lambda}$. Also note that $s^{-\lambda \beta} \rightarrow+\infty$ as $s \rightarrow \infty$, so

$$
\lim _{s \rightarrow \infty}\left[\left(s^{-\lambda \beta}+\lambda\right)\{1-\tau(v)\}-\lambda\right]_{+}= \begin{cases}0 & \text { if } \tau(v)>1 \\ -\lambda & \text { if } \tau(v)=1\end{cases}
$$

As $\{v: \tau(v)=1\}=\Omega_{0}$, dominated convergence now gives

$$
\lim _{s \rightarrow \infty} \phi(s)=\int_{\Omega_{0}}(-\lambda)^{-1 / \lambda} \mathrm{d} F_{V}(v)=(-\lambda)^{-1 / \lambda} m_{+}
$$

Since this limit is non-zero it follows that ϕ is slowly varying. The result for $q_{A}\left(t^{\beta}\right)$ now follows from Lemma 1 (with $l_{A}=u^{\lambda}$). The $q_{B}\left(t^{\gamma}\right)$ case is similar.

