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Derivations of ray dependence functions (A > 0 and A < 0) and spectral density
(A>0)
Derivation of d(q) for A\ > 0
This follows simply by noting that Proposition 6 gives that marginal quantile functions are
galtz) = (tz)a(tz), qp(ty) = (ty) ls(ty),

for tx, ty > 1 so that using the same dominated convergence arguments as in lim;_, ., 6(¢) given in the proof
of Proposition 1,

v)_l/)‘ T(l—v)_l/’\
T oy }dFV(v). (1)

Therefore P{A > qa(tq), B > qp(t(1—q))}/P{A > qa(t), B > qp(t)} converges to ¢~ /(1 —q)~/%d(q) with
d the form claimed in Remark 1.
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Derivation of h for A >0
To derive h, consider (1), with dFy (v) = fy(v) dv. This expression can be set equal to
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By differentiating under the integral sign, we have
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so that h is recovered upon setting x = w,y = 1 — w, and dividing by two. Thus we begin with

AL/ /1 min {T(v)l/)\ AUl Bl } fy(w)dv = A"VA /r(w,y) va(v) dv
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with r(z,y) = % Differentiating with respect to z yields
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whilst differentiating what remains with respect to y gives

— /)\ a
_ _1/)\7'{7‘(33,21/)} ! v
A ule fV{T(x7y)}ayr(x7y)
Substituting in 7 and noting that
AR A .V G W A V.
Oy 7 Oy (wpa) + (yp) {(zp)* + (yp2)*}?

gives

A V) () }

), ()Ml M (opn)> + (M)A}va { (ypa)* + (yp2)*

so that substituting + = w,y = 1 —w and dividing by two yields

A A (1= wP ki ; { (wp)® }
T2 ) (- w2 I { wp) + (1 - w2 L)+ (= w))?

which is denoted h(-; A, fy) in Remark 1.

Derivation of d(q) for A <0

This follows firstly by noting that Proposition 9 gives that marginal quantile functions are
qaltz) = A = (tx) a(te), qn(ty) = A — (ty) p(ty),

for tx,ty > 1. The ray dependence function can be found by following the proof of Proposition 4 through
with these ga(tx) and gp(ty), which reveals that
F{,(1/2) N 1+A

tli)m t1=AP{A > qa(tz), B > qp(ty)} = T{min(azm+,ym_) “Tx max(zmy, ym_ )"} max(zmy, ym_) "

1—X

Therefore P{A > qa(tq), B > qp(t(1 — q))}/P{A > qa(t), B > qp(t)} converges to q_%(l —q)" 2 d(q)
with d the form claimed in Remark 2.



Additional figures from Section 5
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Figure 1: Estimates of x(u) (left) and x(u) (right) for dependence levels 1 and 4 of dependence structures
(i)—(iii) using the new model (dotted lines) and the Heffernan—Tawn model (dashed lines). The three lines
represent pointwise means and upper 95% and lower 5% quantiles of the 100 repetitions. Red solid line: true
value for the copula. The dependence structures and levels are given as the figure title.



Additional proofs from Appendix A

Proof of Lemma 1. The expression s — s~ /P (s) defines a strictly increasing continuous map [sg, 00) —
[1,00) which is regularly varying with index 1 (note that ¢—'/# is slowly varying). Let o : [1,00) — [s0, 00)
denote the corresponding inverse, which is also regularly varying with index 1, and set u(t) = t=#o5(t) for
all t > 1; it follows that u is continuous and slowly varying. Setting s = o(t) = tu'/5(t) we then get

t=s¢""P(s) = tuP(t) oV {tu P (1)} = ult) = {tuP (1)} = o(s).

The final part of the result follows (note that tu'/?(t) — oo as t — oo since u is slowly varying). O

Proof of Proposition 6. We have

1
b(s) = s"P(A > M) = / {s7™M ¢ /\T(v)}__irl/A dFy (v).
0
As s increases from 0 to 0o, s~ 4+ A7(v) decreases monotonically to A7(v) > A; hence {s™*% + )\T(v)};l/’\
increases monotonically to {\7(v)}~1/* < A=/, Dominated convergence then gives

lim (s) = [ (r0)} Py (0) = .

§—00

Since this limit is non-zero it follows that ¢ is slowly varying. The result for ¢4 (t*) now follows from Lemma 1
(with 14 = u). The gp(t7) case is similar. O

Proof of Lemma 2. For each 6 > 0 set Js = {v € [0,1] : a(v) < a + J}.

Claim 1: there exists S15 such that |a(v) — a| < 6 when s > Sy 5 and v € I; N Js. The continuity of a implies
U:={v€[0,1] : a(v) > o — d§} is an open neighbourhood of I N Js # (). Since Iy — I as s — oo it follows
that I, N Js C U for all sufficiently large s.

Claim 2: there exists Sa 5 and Cs > 0 such that flané/4 dFy (v) > Cs for all s > Ss 5. Choose ¥ € I and

do > 0 so that a(?) = a and J' := [0 — &9, ¥ + do] € Js/4. Then I N J’" is an interval of length at least
91 = min(dp, [I]) > 0 (recall that I is an interval). Since I, is an interval converging to I it follows that,
for all sufficiently large s, I; N J" is an interval of length at least &;/2, which is contained in I, N J5,4. We
can then let Cs be the infimum of [, dFy(v), taken over all intervals K C [0, 1] of length at least 6;/2; this
quantity is positive by Assumption 1.

Setting

s(s) = / uw W (s)dFy (v) and ws(s) = / u ") (s)dFy (v)
I.NJs Is\Js

we clearly have

¢ (s) = ds(s) + Ps(s)- (2)

Claim 3: there exists S35 such that

P(s)
HE)

Set o = pd/{4(a+6)} € (0, p/4]. Since u is regularly varying with index p there exists S ; > 1 such that

1<

<1+ Cgls_”‘s/4 for s > Ss5. (3)

sP77 <u(s) < sPT7 for s > Si/’)ﬁ'
If v € Js/4 then a(v) < a+6/4 so

a)(p+o)<ap+o(a+d/4)+pi/t<ap+o(a+d)+pd/4=ap+pd/2



so, for any s > S§757
=10 (5) > 5-al0)(p4a) > g-ap—p3/2,

When s > max{Sa,s, Séjé}, Claim 2 then leads to

Ps(s) > ¢s/a(s) = /

u” ) (s) dFy (v) > s_a”_pé/z/ dFy (v) > Cys™P=r0/2,
Ist§/4

IsNJs/a
On the other hand, if v ¢ Js5 then a(v) > o+ d so
a(v)(p—0) = (a+0)(p—0) =ap—o(a+0)+pd=ap+3pi/4,

and thus, for any s > 53 5,
u_“(”)(s) < g—a(w)(p—a) < g—ap—3pd/4

When s > SJIS, s it follows that
Ps(s) = / u W (s)dFy (v) < s—P—800/4 / dFy (v) < s—or=309/4,
I\ Js I\ Js
When s > max(Sz,5, 55 5) our estimates for ¢s(s) and 15(s) can be combined with (2) to give (3).

Let [ > 1 and e > 0. Choose ¢ € (0,1] so that (14 §)**°1?? < 1 +e. Since u is regularly varying with index
p we can find Sy s such that

u(ls

If v e I;NJs and s > max{S1 5, S4,6}, Claim 1 gives @ — 0 < a(v) < a+ ¢ and so

~—

(1+0)7lr < < (1+46)I" for s> Sys.

(1+ 6)—1l—ap <(1+ 5)—(a+5)l—(a+6)p <1+ 5)—a(v)l—a(v)p

—a(v)
< U (15) < (1 + 5)a(v)lfa(v)p < (1 +5)a+617(a76)p < (1 +€)lfap'
u=a)(s)
Integration then gives
¢5(15) 14— _
e[l +e) 17 (1+ el . 4
el g (i ()

Choose S > max{S15,...,S4,5} so that S=r8/4 < Cse. Now

o(ls)  o(ls) ¢s(ls) ¢s(s)

o(s)  ¢sls) ds(s) o(s)’

For s > S the middle term on the right hand side belongs to [(1 4+ €)1~ (1 + €)I~*"] by (4), while the
first and third terms belong to [1,1+ €] and [(1+¢€)~1, 1] respectively by (3) (note that, I > 1s0ls > s > 9).
Thus ¢(Is)/d(s) € [(1 +€)7217, (1 + €)21~27] for any s > S. Since € > 0 was arbitrary it follows that
d(1s)/p(s) = 1P as s — oo; hence ¢ is regularly varying with index —ap. O

Proof of Proposition 7. For s > 1, using (A.1),

1 1
#(s) = s"P(A > Blogs) = sﬁ/ e ATlogs g By, () = / sTAr= g Fy (v).
0 0
Now B{r(v) — 1} > 0 with equality iff v € . Dominated convergence then gives

1
lim 6(s) = / lim s O ap, () = [ dFy () = m..
S oo O

S§—00 Qo

By Lemma 2 we know that ¢ is slowly varying. The result for ¢4(t®) now follows from Lemma 1 (with
la = u). The qp(t7) case is similar. O



Proof of Proposition 8. From (A.2a) and Proposition 7 we have
1
P{A > qs(t?), B> qp(t")} = / min [C_T(U) log{tBlA(t)}, e_T(l_v)log{twlB(t)}] dFy (v).
0
By Proposition 3 we then get 0(t fo gu(t) dFy (v) where
go(t) = t7 min {t= A7 70 (1), gm0 T gy

Now 7 > 1 so l;T(U)(t), l;T(lfv)(t) < C = max{m;',m-'} using Proposition 7. Furthermore 7 <

max{f7(v), y7(1 — v)} (by definition) leading to g,(t) < C for all v and ¢ > 1. If v ¢ Q then ¥ <
max{f87(v), y7(1 —v)} so g,(t) — 0 as t = co. In particular, if w € [1 —v',v'] it follows that 2 = {w} and
hence g,(t) — 0 as t — oo whenever v # w; dominated convergence then gives lim; o 0(t) = 0. O

Proof of Proposition 9. Set So = AY8) For s > Sy we get
1
0(s) = °P(4 > A=) = [ [ 21/A+ M)} dF ()
0

1
_ /0 [(s™ + V{1 = 7(0)} = A] [ dFy (), (5)

using (A.1). For s > Sy we have (s=*? 4+ X\){1 — 7(v)} < 0 (recall that 7(v) > 1) so the integrand in (5) is
bounded above by (—A)~"'/*. Also note that s~*? — 400 as s — 00, 50

Sliﬁn;o[(sf)‘ﬂ +A{1 = 7(v)} - /\]Jr - {(1)\ i :E:; : 1’

As {v: 7(v) =1} = Qp, dominated convergence now gives

tim 6(s) = [ (=N ARy () = (<3

S5— 00

Since this limit is non-zero it follows that ¢ is slowly varying. The result for ¢4 (#*) now follows from Lemma 1
(with 14 = u). The qp(t7) case is similar. O



