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Abstract

We examine the optimal scaling and the efficiency of the pseudo-marginal random walk

Metropolis algorithm using a recently-derived result on the limiting efficiency as the dimen-

sion, d → ∞. We prove that the optimal scaling for a given target varies by less than 20%

across a wide range of distributions for the noise in the estimate of the target, and that any

scaling that is within 20% of the optimal one will be at least 70% efficient. We demonstrate

that this phenomenon occurs even outside the range of noise distributions for which we rig-

orously prove it. We then conduct a simulation study on an example with d = 10 where

importance sampling is used to estimate the target density; we also examine results available

from an existing simulation study with d = 5 and where a particle filter was used. Our key

conclusions are found to hold in these examples also.
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1 Introduction

The pseudo-marginal Metropolis-Hastings algorithm (PsMMH) (Beaumont, 2003; Andrieu

and Roberts, 2009) supposes that it is impossible or infeasible to evaluate a target density,

π(x), x ∈ X ⊆ Rd, but that an estimator π̂W (x) = π(x)eW can be constructed.

A Markov chain is created from an initial value x(0) and a noisy estimate of the target

π̂w(0)(x(0)) as follows. At iteration i, given the current value x and π̂w(x), a new value x∗ is

proposed from some density q(x∗|x). An estimate,

π̂w∗(x
∗) = π(x∗)ew

∗
(1)

is then constructed by, effectively, sampling from g(w∗|x∗). The proposed value, x∗, and the

estimate, π̂w∗(x
∗), are then accepted with probability 1 ∧ [π̂w∗(x

∗)q(x|x∗)] / [π̂w(x)q(x∗|x)].

The proposal density for the noise, g(w|x), w ∈ (−∞,∞) must possess the property that∫∞
−∞ dw ewg(w|x) = c > 0. Provided that c > 0 its exact value is irrelevant in all that follows

and so without loss of generality we take c = 1 and refer to π̂W ∗(x
∗) as ‘the unbiased estimator

of the target’. Both w and w∗ are unknown since π(x) and π(x∗) are unknown; nevertheless,

the above algorithm can be viewed as constructing a Markov chain {(Xk,Wk)}k≥0. The

stationary density of this Markov chain is

π(x)g(w|x)ew, (2)

which admits π(x) as a marginal. Samples from the Markov chain may therefore be used to

approximately compute expectations with respect to π(x). The additive noises in the log-

target at the current and proposed values, respectively W and W ∗, are henceforth simply

referred to as additive noises.

The pseudo-marginal random walk Metropolis (PsMRWM) is a special case of the PsMMH

with q(x∗|x) = q(x∗ − x) = q(x − x∗), so that the acceptance probability simplifies to

1 ∧ π̂w∗ (x∗)
π̂w(x)

. One common practice is to set

X∗|x ∼ N(x, λ2V̂ ), (3)

for a scaling parameter, λ, and where V̂ is an estimate of the posterior variance, obtained

from an initial run of the algorithm. The PsMRWM is one of the most popular forms of

PsMMH (e.g. Golightly and Wilkinson, 2011; Knape and de Valpine, 2012; Sherlock et al.,

2014) because it does not require the computation or estimation of other properties of the

target, such as local gradients.
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Often the method of producing an unbiased estimator of the target has a tuning parameter,

m, such as the number of particles in a particle filter (Andrieu et al., 2010) or the number

of Monte Carlo samples when importance sampling. As part of a general tuning strategy

for optimising the efficiency of the algorithm, for a particular m∗, a practitioner might find,

using repeated runs, the optimal scaling, λ̂∗: the scaling which maximises the efficiency of

the algorithm. They would then wish to know whether or not λ̂∗ might be a sensible value

to use for other choices of m, or whether ‘retuning’ would be necessary.

Sherlock et al. (2015) derive an expression, which is valid in the limit as the dimension of

the target approaches infinity (see Section 2.1), for the efficiency of a pseudo-marginal RWM

algorithm as a function of the scaling and the form of the additive noise: the limiting expected

squared jumping distance (ESJD). Sherlock et al. (2015) then examine two particular forms

for the distribution of the additive noise in the estimate of the logarithm of the target,

Gaussian and Laplace, and find that the theoretical optimal scaling is insensitive to the

variance of the noise and even to which of the two distributions is used.

We consider the form of efficiency derived in Sherlock et al. (2015). Provided that across

the range of m values to be considered the density of the additive noise, g, is always log-

concave, our theoretical result implies that λ̂∗ will be within 20% of the optimal scaling for

any other choice of m. Furthermore, for any given m, the efficiency at λ̂∗ will be at least

70% of the maximum achievable efficiency. The two-dimensional optimisation problem of

choosing λ and m values that approximately maximise the efficiency can therefore effectively

be reduced to two one-dimensional optimisation problems.

This introduction concludes with Section 1.1 which discusses a property that is, in a sense,

the converse to the insensitivity of optimal scaling to the noise distribution: the insensitivity

of the optimal variance of the noise distribution to the proposal kernel q(x∗|x). The main

theoretical result of this article, Theorem 1, is stated and proved in Section 2. Given that∫
dw g(w)ew is finite, g cannot, at least in terms of its tail behaviour, be ‘too far’ from

log-concave. In Section 3 we demonstrate empirically that the statement in Theorem 1 that

relies on the log-concavity appears to hold more generally. The efficiency measure upon

which Theorem 1 is based relies on several assumptions; in particular it is a limit result

for high-dimensional targets and it relies on the noise in the proposal and the proposed

position in the target being independent. Section 4 examines two simulation studies for the

insensitivity properties predicted by Theorem 1. Firstly, the simulation study of Sherlock

et al. (2015), where the estimate of the target was obtained from a particle filter, then a new

simulation study where the estimate of the target is obtained by importance sampling; both

3



studies support the heuristics of Theorem 1. The article concludes with a discussion.

1.1 Sensitivity of noise choice to the form of MH proposal

The key contribution of this article is on the robustness of the choice of scaling for a PsM-

RWM algorithm, or equivalently of the optimal choice from a particular restricted class of

Metropolis-Hastings (MH) kernels, to the form of the noise distribution. However, it is nat-

ural to ask whether or not a converse property might hold: an insensitivity of the optimal

choice from a restricted class of noise distributions to the choice of Metropolis Hastings (MH)

kernel, q. The example function f(x, y) = −(x−y)2−9× (x−1)2 demonstrates that neither

insensitivity need imply the other, yet both are of interest.

Research into the choice of noise distribution was initiated in Pitt et al. (2012) using particle

filters to generate the noisy approximations to the likelihood. Several assumptions were made

on the distribution of the noise in the logarithm of a new estimate of the target, g(w∗|x∗).

1. The Markov chain on (X,W ) is stationary.

2. The distribution is independent of position: g(w∗|x∗) = g(w∗).

3. g(w∗) = N(w∗;−σ2/2, σ2), for some variance, σ2.

4. σ2 is inversely proportional to the computational cost of the algorithm.

Assumption 2 was made for tractability and an heuristic argument was provided as to why

it should hold in the large data limit provided the posterior for all parameters becomes

tight. It has also been found to hold approximately in simuation studies on real statistical

examples (Sherlock et al., 2015; Doucet et al., 2015). Assumptions 3 and 4 were found to hold

empirically and have since been justified formally for a particle filter with a large number of

particles and a large number of observations and where the computational cost is proportional

to the number of particles (Bérard et al., 2014). Considering a perfect independence sampler

and minimising the variance of an arbitrary functional of the Markov chain in this case leads

to an optimal variance of 0.85. Simulations showed this to be the case, but also that the

optimal variance for a tuned RWM (in two dimensions) was only slightly larger, suggesting

an insensitivity of the optimal variance to the choice of algorithm. Following this line of

research, Doucet et al. (2015) considered an upper bound on the mixing efficiency of any

pseudo-marginal MH algorithm. Combined with the same noise assumptions as in Pitt et al.

(2012) this leads to a bound on the overall efficiency of the algorithm. The bound on overall

efficiency is a function of the noise variance and it was shown that the variance at which
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it is optimised lies between 0.85 and 2.82, with the exact value depending on the efficiency

of the idealised marginal algorithm. Since this applies to any algorithm it therefore applies

to the PsMRWM across any range of scalings and, subject to the assumptions on the noise,

implies a degree of insensitivity of the optimal variance to the choice of scaling.

Andrieu and Vihola (2014) studied the relative mixing efficiencies of any pair of pseudo-

marginal algorithms which have the same MH proposal kernel q(x∗|x) but different noise

generating mechanisms g1(w|x) and g2(w|x). It was shown that provided the expectation of

any convex function φ(W ) under g2 exceeds that under g1 then the Markov chain that uses g1

will mix more efficiently. Bornn et al. (2014) leveraged this result for a particular special case

of pseudo-marginal MCMC where importance sampling is used to estimate the (smoothed)

posterior: approximate Bayesian computation with a positive MH kernel and a uniform error

distribution. It was shown that in this scenario the optimal number of importance samples

was either 1 or 2 whatever the variance of the noise. This result complements investigations

into importance sampling for the pseudo-marginal RWM under a gamma noise distribution as

d→∞ in an early version of Sherlock et al. (2015) (http://arxiv.org/abs/1309.7209v1)

where it is shown that a single importance sample is always best.

The results described in the first and second paragraphs do not contradict each other since

the former rely, in particular, on Assumptions 3 and 4, a set up which is justified for the

particle filter as already discussed. When importance sampling is used instead of a particle

filter then, using the Central Limit Theorem and the delta method it can be shown (e.g.

Pitt et al., 2012, Lemma 2) that as the number of samples m→∞, the distribution of the

estimate of the log-posterior will be approximately Gaussian, N(−σ2/2, σ2), with σ2 ∝ 1/m

as, apparently, required. However, straightforward examination of the error terms shows

that the delta method requires σ2 << 1, so that the assumptions on the form and cost are

not appropriate for the optimal variances of O(1) that are suggested in Pitt et al. (2012),

Doucet et al. (2015) and Sherlock et al. (2015).

This converse insensitivity, or its lack, is investigated further in our simulation studies and

is discussed further in Section 5.
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2 Set-up and main theoretical result

2.1 The efficiency function

Sherlock et al. (2015) consider a sequence of targets
{
π(d)(x(d))

}∞
d=1

. In each dimension, d,

an unbiased estimator is available, exactly as described in and around Equation (1). It is

assumed that there exists a constant, s(d) such that

lim
d→∞

1

s(d)

∣∣∣∣∇ log π(d)(X(d))
∣∣∣∣2 = 1 and lim

d→∞

1

s(d)
∇2 log π(d)(X(d)) = −1,

where X(d) ∼ π(d), and a regularity condition on the target allows same s(d) to be used in

both expressions. The constant s(d) is a measure of the roughness of log π(d); for example, if

π(d)(x(d)) = exp

(
d∑
i=1

f
(
x

(d)
i

))
(4)

then s(d) = −d/E [f ′′(X)], where X has density exp(f(x)). The scaling for the RWM algo-

rithm in dimension d is then set to

λ(d) = `/
√
s(d), (5)

for some fixed `, and the proposal is X∗(d) = x(d) + λ(d)Z(d), Z(d) ∼ N(0, I). Assumptions 1

and 2 from Section 1.1 are also made.

Perhaps the most natural measure of efficiency of an MCMC algorithm is the effective sample

size (ESS, e.g. Carlin and Louis, 2009, Ch.3) of each component; the number of independent

samples that would lead to the same variance in the estimator of the posterior mean of the

component as that arising from the correlated sample of points obtained from the MCMC

algorithm. Even this measure, however, has its drawbacks, since it is not invariant to the

functional of the target that is being considered. Sherlock et al. (2015) examine the efficiency

of the RWM in terms of expected squared jumping distance (ESJD) on the sequence of

targets. Subject to further technical conditions on the sequence it is shown that the limiting

ESJD has the form

Jm(`) = 2`2E
[
Φ

(
B

`
− `

2

)]
. (6)

Here B := W ∗ −W is the difference in the additive noise in the estimate of log π at the

proposed value and at the current value, and Φ denotes the cumulative distribution function

of a standard Gaussian random variable. Maximising ESJD is equivalent to minimising

the lag-1 autocorrelation of the chain. The following result (proved in Appendix A) extends
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results on the positivity of Metropolis-Hastings algorithms in Lemma 3.1 of Baxendale (2005)

and Proposition 3 of Doucet et al. (2015) to the pseudo-marginal RWM. It shows that for

jump proposal distributions such as the Gaussian or Student-t all of the eigenvalues of the

algorithm are non-negative; hence, minimising the lag-1 autocorrelation is a sensible goal.

Proposition 1. If the proposal in a Metropolis-Hastings algorithm satisfies

q(x∗|x) =

∫
r(x, z)r(x∗, z)dz, (7)

then the corresponding pseudo-marginal Metropolis-Hastings algorithm is positive.

Further justification for the use of ESJD as a measure of efficiency is provided in Sherlock

et al. (2015) where it is shown that for the product target in (4), and subject to further

technical conditions, as d → ∞ a scaled version of the first component of each element in

the sequence of Markov chains converges to a diffusion, the speed of which is proportional to

Jm(`). When a limiting diffusion exists, then in that limit Jm(`) is also proportional to the

ESS and is invariant (up to a multiplicative constant) to any transformation, hence Jm(`) is

unambiguously the right measure of efficiency.

2.2 Insensitivity

Our main result refers to the situation when there is no noise in the estimate of π, B = 0,

when the limiting ESJD simplifies to

J∞(`) = 2`2Φ

(
− `

2

)
. (8)

In this case, as noted in Roberts et al. (1997), the optimal scaling is ˆ̀∞ ≈ 2.38.

When the additive noise in the log-target is Gaussian then (6) is particularly tractable and

Sherlock et al. (2015) suggest through a plot and an asymptotic argument that ˆ̀ is between
ˆ̀∞ and 2

√
2, where the exact value depends on the variance of the Gaussian distribution.

We show this rigorously, and for a more general form of noise distribution. We also provide

bounds on the potential loss of efficiency suffered by choosing a different scaling between ˆ̀∞

and 2
√

2.

Theorem 1. Let ˆ̀
m and ˆ̀∞ ≈ 2.38 be the values which optimise the efficiency functions

Jm(`) and J∞(`) that are defined in (6) and (8). Let g(w∗) be the density of W ∗, the noise
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in the log-target at a proposed new target value, and assume that W ∗ is independent of that

target value. Then

1. ˆ̀
m ≥ ˆ̀∞.

2. If g(w∗) is log-concave then l̂m ≤ 2
√

2.

3. For any two scalings, `1 and `2, both in [ˆ̀∞, 2
√

2], Jm(`1)/Jm(`2) > 0.70.

Proof of Theorem 1

For simplicity of notation we suppress the subscript m throughout this proof. From (2) and

the independence of W ∗ from X∗, the density of the noise in the log-target at the current

value, W , is ewg(w). Let B have density ρ(b) and note that

h(b) := eb/2ρ(b) =

∫ ∞
−∞

dw g(w)eb/2+wg(w + b) =

∫ ∞
−∞

dw g(w + b/2)g(w − b/2)ew (9)

is a symmetric function, h(b) = h(−b). Define

f(b, `) := `2

[
e−b/2Φ

(
b

`
− `

2

)
+ eb/2Φ

(
−b
`
− `

2

)]
. (10)

Using (6) and (9), the squared jumping distance is

J(`) = 2`2

∫ ∞
−∞

db ρ(b) Φ

(
b

`
− `

2

)
= 2`2

∫ ∞
−∞

db h(b) e−b/2Φ

(
b

`
− `

2

)
= 2

∫ ∞
0

db h(b) f(b, `), (11)

by the symmetry of h. From (8), straightforward differentiation gives:

d

d`
(log J∞) =

2

`
− φ(`/2)

2Φ(−`/2)
, (12)

d2

d`2
(log J∞) = − 2

`2
− φ(`/2)

4Φ(−`/2)2

[
φ(`/2)− `

2
Φ(−`/2)

]
< 0 ∀ ` > 0, (13)

so that (for ` > 0) J∞ has a single stationary point (at ˆ̀∞), which is a maximum.

Lemma 1 provides key properties of f . Its proof is non-trivial but uninteresting and so is

deferred to Appendix B.
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Lemma 1. For all b ≥ 0, the following hold.

1.
2

`
− φ(`/2)

2Φ(−`/2)
<

1

f

∂f

∂`
<

2

`
.

2.
∂f

∂`
= `

∂2f

∂b2
+

(
2

`
− `

4

)
f.

3. ∂f/∂b→ 0 as b→ 0 and as b→∞, whatever the value of ` > 0.

4. For all ` > 0, ∂f/∂b ≤ 0.

Combining Part 1 of Lemma 1 with (12) gives f d log J∞/d` < ∂f/∂` < 2f/`. Multiplying

by h, which is non-negative, integrating and using (11) we then obtain

d

d`
(log J∞) <

d

d`
(log J) <

2

l
. (14)

We now proceed with the proof of Theorem 1.

Proof of Part 1 of Theorem 1: by (13), for ` < ˆ̀∞, dJ∞/d` > 0 and so d log J∞/d` > 0. The

result then follows from (14).

Proof of Part 2 of Theorem 1: from the definition in (9),

∂h

∂b
=

1

2

∫ ∞
−∞

dw g(w − b/2)g(w + b/2)ew
(
g′(w + b/2)

g(w + b/2)
− g′(w − b/2)

g(w − b/2)

)
≤ 0 for b ≥ 0 (15)

by the log-concavity of g.

Furthermore, ∃ g s.t. g(w) ≤ g <∞ (since g is a log-concave density) and hence by (9)

h(0) ≤ g

∫ ∞
−∞

dw g(w)ew = g, and (16)

h(b) ≤ g

∫ ∞
−∞

dw g(w + b)eb/2+w = ge−b/2
∫ ∞
−∞

dw g(w)ew = ge−b/2. (17)

By Part 2 of Lemma 1,

dJ

d`
= 2`

∫ ∞
0

db h(b)
∂2f

∂b2
+

(
4

`
− `

2

)∫ ∞
0

db h(b) f(b, `). (18)
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The first term is

2`

[
h(b)

∂f

∂b

]∞
0

− 2`

∫ ∞
0

db
∂h

∂b

∂f

∂b
.

Now
[
h(b)∂f

∂b

]∞
0

= 0 by (16), (17) and Part 3 of Lemma 1. Also ∂f/∂b ≤ 0 by Part 4 of

Lemma 1, and ∂h/∂b ≤ 0 by (15); thus the first term in (18) cannot be positive. The second

term in (18) is guaranteed to be negative provided ` > 2
√

2.

Proof of Part 3 of Theorem 1: by (13), for ` ∈ [ˆ̀∞, 2
√

2] (and, indeed, above this), the

lower bound in (14) is always negative; also the upper bound is always positive. Supposing,

without loss of generality, that `2 > `1, we therefore have

[log J∞]2
√

2
ˆ̀∞
≤ [log J∞]`2`1 < [log J ]`2`1 < [2 log `]`2`1 ≤ [2 log `]2

√
2

ˆ̀∞
.

Evaluating the outer-most terms and exponentiating gives (to 3dp)

0.949 J(`1) < J(`2) < 1.411 J(`1).

3 The log-concavity condition

The lower bound for ˆ̀ in Theorem 1 holds for all noise distributions whereas the upper

bound has only been shown to hold when W ∗ has a log-concave density. This condition is

weaker than might be thought, holding, for example, when the unbiased multiplicative noise,

eW
∗
, has a (left-truncated) t distribution or a Gamma distribution, even if the Gamma shape

parameter is less than unity. Nonetheless it is natural to ask whether or not the upper bound

holds more generally. The key consequence of the log-concavity of g∗ is that ∂h/∂b ≤ 0 for

b ≥ 0. However it is clear from the proof that a weaker (yet still sufficient) condition for the

upper bound is ∫ ∞
0

db
∂h

∂b

∂f

∂b
> 0.

Clearly there is scope for ∂h/∂b > 0 over some regions whilst the whole expression in (18)

remains negative, so log-concavity is certainly not a necessary condition.

We investigate the following set of discrete noise distributions, indexed by p ∈ (0, 1) and

ε ∈ (0, 1):

eW
∗

=

{
ε w.p. p∗

a w.p. 1− p∗.
,
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where a = (1− p∗ε)/(1− p∗). In this case

Jε,p∗ = 2`2 [p∗(1− p)Φ(−k/`− `/2) + (p∗p+ (1− p∗)(1− p))Φ(−`/2) + (1− p∗)pΦ(k/`− `/2)] ,

where k = log a− log ε, and p = p∗ε.

The top-left panel of Figure 1 shows the optimal scaling as a function of the two noise

parameters ˆ̀(ε, p∗) and demonstrates that for this set of noise distributions 2.38 < ˆ̀< 2.64.

Indeed, we have not been able to find a model for W ∗ where ˆ̀ > 2
√

2 and we conjecture

that ˆ̀≤ 2
√

2 whatever the distribution of W .

4 Simulation study

The efficiency measure upon which Theorem 1 is based relies on several assumptions; in

particular it is a limit result for high-dimensional targets and it relies on the noise in the

proposal and the proposed position in the target being independent. Furthermore, as dis-

cussed in Section 2.1, in low dimensions our theoretical measure of mixing efficiency, ESJD,

and a more practically relevant measure, ESS, are no longer necessarily equivalent and it

is possible that insensitivity when optimising ESJD may not translate to insensitivity when

optimising ESS. To test the applicability of Theorem 1 in practice we now examine two real

examples where the parameter space has a dimension of 5 and 10 respectively. We first de-

scribe the evidence of insensitivity arising from the simulation study in Sherlock et al. (2015),

which used a particle filter, before describing a new simulation study that uses importance

sampling.

Sherlock et al. (2015) examined the five-dimensional target distribution that arises from

a continuous-time Markov jump process (the Lotka-Volterra predator-prey model), noisy

observations of which are available at a set of 50 time points. A pilot run provided an

estimate of the posterior variance matrix, V̂ , for the five parameters, and the jump proposal

was as in (3).

Since ` ∝ λ, with the constant of proportionality unknown for any real target, to test Parts

1 and 2 of Theorem 1 we must consider the ratio of upper and lower end points and compare

against 2
√

2/ˆ̀∞ ≈ 1.19. There is considerable Monte Carlo variability in the efficiencies

displayed in Figure 6 in Sherlock et al. (2015); nonetheless, over the large range of m values

considered, the largest optimal scaling was no more than twice the smallest optimal scaling.
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It is also clear from the same figure that over the range of optimal scalings, for each m the

efficiency over this range is at least 70% of the maximum. Finally, the insensitivity result

of Doucet et al. (2015) is also supported as the optimal variance (estimated at the posterior

mean for x) ranges between 0.97 and 2.15.

The simulation study of Sherlock et al. (2015) had d = 5 and an additive noise distribution

that was close to Gaussian and with a variance that was inversely proportional to the com-

putational cost. The theory in Sherlock et al. (2015) is strictly valid in the limit as d→∞,

yet even with this low dimension there is evidence that the optimal scaling was relatively

insensitive to the choice of m. The range of variation was not as narrow as predicted by

Theorem 1, although some of the excess could have been due to Monte Carlo error.

We wish to investigate the applicability of Theorem 1 further. We therefore conduct a

simulation study based on a real statistical model but using importance sampling rather

than a particle filter so that the additive noise is not expected to be Gaussian nor, indeed,

is its variance expected to be inversely proportional to the computational cost.

4.1 Logistic regression using a latent Gaussian process

Filippone and Girolami (2014) use pseudo-marginal Metropolis-Hastings to obtain the pos-

terior distribution of the parameters of a latent Gaussian process (GP) where the observed

response is Bernoulli with a success probability determined from the GP via the probit

link function. Giorgi et al. (2015) use Monte Carlo maximum likelihood to estimate the

parameters of a generalised linear geostatistical model for binomial data where the success

probability depends on a latent GP and on fixed effects via the logistic link function. In

both of the above articles the likelihood for a particular set of parameter values is estimated

using importance sampling with the proposal based upon the Laplace approximation or the

Expectation Propagation algorithm (Filippone and Girolami, 2014) or a variation on the

Laplace approximation (Giorgi et al., 2015). Our statistical model is motivated by these two

applications.

Let zi (i = 1, . . . , l) be a set of points in Ra with components zik, (k = 1, . . . a) and let Z

be the l× a matrix with ith row z′i. We use the logistic link function and denote the overall

mean on the logit scale by µ ∈ R and covariate effects by β ∈ Ra. The variance of the GP is

τ 2 ∈ R+ and the range parameters (one for each dimension of the process) are φ ∈ (R+)
a
, so

that the correlation between the values of the GP at the l points is the l × l matrix R with
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elements

Rij = exp

−
√√√√ a∑

k=1

(
zik − zjk

φk

)2
 .

We consider the following statistical model:

S|φ, τ 2 ∼ Nl(0, τ
2R)

pi =
exp(si + µ+ ztiβ)

1 + exp(si + µ+ ztiβ)

Yi|si, µ, β ∼ Bin(n, pi).

Since all of the importance sampling algorithms in (Filippone and Girolami, 2014) and

(Giorgi et al., 2015) require an iterative scheme to obtain the proposal distribution, we opt

instead for a simpler approach based on ideas for Poisson data in Haran and Tierney (2012)

and Lampaki (2015). We first transform the data as follows:

y+
i =


1/2 if yi = 0,

n− 1/2 if yi = n,

yi otherwise

, y∗i = logit

(
y+
i

n

)
.

Using the delta method, the expectation and variance of Y ∗i given the GP are respectively

E [Y ∗i |si] ≈ si + µ+ z′iβ and Var [Y ∗i |si] ≈
1

npi(1− pi)
.

For tractability we approximate pi in the variance term using the observed data: pi ≈ y+
i /n.

This leads to a Gaussian approximation of

Y ∗|s ∼ Nl (s+ µ1 + Zβ,D) ,

where D is a diagonal matrix with 1/Dii = y+
i (1 − y+

i /n), and 1 is an l-vector of ones.

Combining this with the Gaussian prior for S leads to a Gaussian approximation for S|y∗

with mean µc and variance Σc, obtained via standard formulae. The proposal distribution

for our importance sampler is a Student-t distribution with ν = 20 degrees of freedom and

density

q(s|y) ∝
(

1 +
1

ν
(s− µc)′Σ−1

c (s− µc)
)− ν+`

2

.

We consider a = 4 so that d = 10, and apply the following map:

(µ, β1, . . . , β4, log(τ 2), log(φ1), . . . , log(φ4))↔ x.

We place 81 points, zi, uniformly on a hypergrid with oppposite corners at (−1
2
,−1

2
,−1

2
,−1

2
)

and (1
2
, 1

2
, 1

2
, 1

2
). A data set was simulated using n = 10 and x = (1

2
,−1, 0, 0, 1, 0, 0, 0, 0, 0).
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For the analysis we assume a priori X ∼ N10(0, I); this prior is tight enough to prohibit

difficult tail behaviour (the investigation of which is not the point of this simulation study),

yet relaxed enough that the main influence is due to the likelihood (the mean diagonal term

of the posterior variance matrix was 0.35, and none of the terms was larger than 0.5).

Define the sets of possible scalings, Λ, and number of importance samples, M as

Λ := {0.2, 0.4, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6}, and M := {10, 20, 40, 100, 200, 400, 1000}.

The posterior variance matrix, V̂ , was estimated from a trial run and for each combination

of λ ∈ Λ and m ∈ M, a pseudo marginal RWM was run using the proposal in (3). At least

2× 105 iterations were used, with the number increasing as m decreased so as to ensure that

the effective sample size of any component was always greater than 1000.

For each m ∈M and λ ∈ Λ define the relative efficiencies over λ and over m, respectively as

ESS∗m,λ :=
ESSm,λ/Tm,λ

maxλ∈Λ(ESSm,λ/Tm,λ)
and ESS∗∗m,λ :=

ESSm,λ/Tm,λ
maxm∈M(ESSm,λ/Tm,λ)

,

where ESSm,λ is the minimum effective sample size over the d = 10 components of x, and

Tm,λ is the CPU time for the run.

The top-right panel in Figure 1 shows, for each m ∈M, a plot of ESS∗m,λ against λ. For each

m, the optimal scaling always lies in the narrow range between 0.6 and 0.8. Furthermore, the

efficiency is always at least 70% of the optimal obtainable efficiency over a much wider range

than this, approximately between 0.4 and 1.0. This provides evidence that the insensitivity

and robustness predicted by Theorem 1 can continue hold for moderate dimensions and when

the target is not estimated using a particle filter.

The bottom left panel in Figure 1 shows kernel density plots of the estimated log-posterior

at the posterior mean for x, when m = 40 and m = 200, two values that bound the range of

sensible values for m for this problem (see the discussion of the bottom-right panel, below).

Unlike the discrepancy from a Gaussian distribution that was found in the particle filter

example in Sherlock et al. (2015) (and indeed in the particle filter example in Doucet et al.

(2015) with m = 4) it is the right tail that is too heavy and the left tail that is too light

(skewness=0.22 and 0.62 respectively), and this persists across the range of useful m values.

To gauge the variability of the variance and skewness across the posterior for one of the

most efficient m values, 1000 independent samples of x from the posterior were obtained

by thinning a run of 106 iterations, which had a minimum ESS of 12 634, by a factor of

1000. For each x value, the log-target was estimated a thousand times using m = 100,

14
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Figure 1: Top-left panel: optimal scaling for the Bernoulli noise model as a function of

the two noise parameters, ε and p∗. Remaining panels: results from the Gaussian Process

regression; top-right: ESS∗ against scaling for each m ∈ M; bottom-left: kernel density

estimate of the distribution of the noise in the log-posterior (at the posterior mean) for

m = 40 and m = 200 using 105 samples; bottom-right: ESS∗∗ against m (bottom axis) and

variance of the additive noise (top axis) for each value of λ ∈ Λ.
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and the variance and skewness were noted. The (0.025, 0.5, 0.975) quantiles for the variance

and skewness were, respectively, (0.54, 0.74, 0.96) and (0.32, 0.52, 0.75), showing a moderate

amount of variability over the main posterior mass.

The bottom right panel in Figure 1 shows, for each λ ∈ Λ, a plot of ESS∗∗m,λ against m. For

each scaling, the optimal value of m lies between 40 and 100, corresponding to variances of

approximately 1.26 or 0.71 respectively. Interestingly, also, the efficiency is around 70% or

higher for all m between 20 and 200. This provides evidence that the insensitivity predicted

in Doucet et al. (2015) can continue to hold even when the target is moderately skewed and,

as is clear from the parallel scales for m and the variance of the additive noise, σ2, that

the variance is not inversely proportional to m (indeed a log-log plot and a simple linear

regression show that, approximately, σ2 ∝ m−0.65).

5 Discussion

The thrust of this article is that the optimal scaling of a pseudo-marginal RWM algorithm

is insensitive to the noise distribution, and hence, when the noise is generated by an im-

portance sampler or a particle filter, it is insensitive to the number of samples or particles,

m. Moreover, for a particular m, the loss in efficiency over the range of optimal scalings,

compared with the optimal efficiency for that m is small.

Theorem 1 is limited to the pseudo-marginal RWM and is strictly only proved in the limiting

regime of Sherlock et al. (2015) which specifies, in particular, that the distribution of the

additive noise in the proposal should be independent of the proposed position. However

Theorem 1 requires only the mild log-concavity assumptions on the form of the noise dis-

tribution. There is an implicit assumption that, for any fixed noise generating mechanism

(e.g. choice of m), the computational cost of the algorithm does not depend on the scaling.

This is certainly true for the example considered in Section 4.1 (and similarly in Filippone

and Girolami (2014)) and for many other examples such as inference for partially observed

stochastic differential equations using a particle filter (e.g. Golightly and Wilkinson, 2011);

however it is unlikely to hold in other scenarios such as inference for a Markov jump process

(e.g. Golightly and Wilkinson, 2011; Sherlock et al., 2015), where doubling all of the rate

parameters effectively doubles the CPU time required for simulations. Even in this scenario,

however, the dependence on scaling of the total CPU time for a run will be small provided

the scaling is much smaller than the width of the main posterior mass, as happens in mod-
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erate to high dimensions. This is because the average CPU time per iteration is an average

of the costs over a smoothed version of π:∫
π(x)q(x∗|x;λ)c(x∗)dxdx∗,

where c(x∗) is the computational cost of estimating the target at x∗.

A simulation study in the literature (Sherlock et al., 2015) with d = 5 and where the likeli-

hood was estimated using a particle filter showed the optimal scaling to exhibit an insensi-

tivity to the number of particles similar to, though weaker than, that predicted. For each m

value, the CPU time varied with λ by less than 1% from its mean value and no trend was

evident (personal communication), suggesting that the mechanism discussed above played

no role in the larger-than-expected variability; we conjecture that Monte Carlo variability

is at least partly responsible. A new simulation study in this article chose d = 10 and used

importance sampling to estimate the likelihood; here both the variance and skewness of the

distribution of the additive noise were shown to vary by a factor of approximately 2 over the

main posterior mass, yet the insensitivity of the optimal scaling to the number of importance

samples was striking.

In Section 1.1 we discussed a converse result to Theorem 1, that the optimal choice of the

variance of the estimate in the log-posterior is insensitive to the MCMC algorithm and

hence, for an RWM algorithm, to the choice of scaling. We noted that current theory and

simulation results suggest that this holds when the noise is generated using a particle filter, so

that the noise in the log-posterior is approximately Gaussian with a variance that is inversely

proportional to the computational cost, but that it might not hold when importance sampling

is used and where the computational cost is proportional to the number of samples. In the

latter setting m = 1 or m = 2 might be optimal whatever the variance. We examined the

simulation study in Sherlock et al. (2015), which used a particle filter, and we found evidence

of this insensitivity. Curiously, in our new simulation study, which uses importance sampling

and where the additive noise and the relationship between variance and computational cost

do not satisfy these assumptions, the insensitivity of the optimal choice of m to λ still

appears to hold. With the particular example used, there is a considerable start-up cost

at each iteration of the MCMC algorithm; this is the same whatever the value of m and

a comparison of timings show that it is approximately equal to the cost of subsequently

generating approximately 200 samples. Hence in our example it is worthwhile increasing the

number of importance samples beyond 1 or 2.

As pointed out by a reviewer, as the dimension of the target increases, typically, many more

observations are required to maintain a certain ‘tightness’ in the posterior. With a relatively
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broad posterior and a relatively large range of possible values for x, although it need not

be the case, there is far greater potential for substantial changes in the distribution of the

noise in the estimate of the log-posterior as the Markov chain moves around the posterior,

violating Assumption 2 of Section 1.1. One might, therefore, wish to imagine hypothetical

sets of observations increasing suitably quickly in size as our series of hypothetical targets

increases in dimension. In practice there is typically one data set, one associated model on

which inference is to be performed, and hence once particular dimension for the parameter

space. As with all limit results, when using our result in practice one hopes that the model

is sufficiently close to one that is sufficiently far along our hypothetical limiting sequence for

the limit to be approximately applicable. In the real examples we have studied this appears

to be the case.

Acknowledgements I am grateful for the comments of two anonymous referees which un-

doubtedly improved the simulation study and the overall clarity of this article and increased

its breadth to include detailed discussion of the converse insensitivity to that in the title.

A Proof of Proposition 1

Following (2), define the extended target as π̃(x,w) := π(x)g(w|x)ew and let

c :=

∫
dxdw π̃(x,w)[1− α(x,w)]f(x,w)2 ≥ 0,

where α(x,w) is the average acceptance probability from (x,w).

As in Baxendale (2005), note that for a ≥ 0 and b ≥ 0, a∧b =
∫∞

0
dt I[0,a](t)I[0,b](t). Denoting

the pseudo-marginal MH kernel by P (x,w;x∗, w∗), for any f ∈ L2(π̃) we have∫
dxdwdx∗dw∗ π̃(x,w)P (x,w;x∗, w∗)f(x,w)f(x∗, w∗)

= c+
∫

dxdwdx∗dw∗ g(w|x)q(x∗|x)g(w∗|x∗)
[
ewπ(x) ∧ ew∗π(x∗)

]
f(x,w)f(x∗, w∗)

= c+
∫

dz
∫∞

0
dt b(t, z)2 ≥ 0,

where

b(t, z) :=

∫
dxdw g(w|x)f(x,w)r(z, x)I[0,vπ(x)](t).
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B Proof of Lemma 1

Proof. Differentiation from the definition of f in (10) shows that

∂f

∂`
=

2

`
f − `2φ(`/2)e−b

2/(2`2), (19)

∂f

∂b
=

1

2
`2
[
eb/2Φ(−b/`− `/2)− e−b/2Φ(b/`− `/2)

]
. (20)

We also note that

eb/2Φ

(
−b
`
− `

2

)
= eb/2

1√
2π

∫ −b/`−`/2
−∞

dt e−t
2/2

= φ

(
`

2

)
e−b

2/(2`2)

∫ ∞
0

du e−u
2/2−u`/2 × e−ub/`, (21)

and similarly

e−b/2Φ

(
b

`
− `

2

)
= φ

(
`

2

)
e−b

2/(2`2)

∫ ∞
0

du e−u
2/2−u`/2 × eub/`. (22)

Proof of Part 1: combining (21) and (22) gives

f(b, `) = 2`2φ

(
`

2

)
e−b

2/(2`2)

∫ ∞
0

du e−u
2/2−u`/2 × cosh (ub/`) .

Thus, f(b, `) = 2`2φ
(
`
2

)
e−b

2/(2`2) × I(b, `), where

I(b, `) ≥
∫ ∞

0

du e−u
2/2−u`/2 =

Φ(−`/2)

φ(`/2)
.

The result follows on dividing through by f in (19) and applying the above inequality.

Proof of Part 2: combine (10), (19) and the fact that

∂2f

∂b2
=

1

4
f − `φ(`/2)e−b

2/(2`2).

Proof of Part 3: this follows directly from (20).

Proof of Part 4: combining (21) and (22) gives

eb/2Φ

(
b

`
− `

2

)
−e−b/2Φ

(
−b
`
− `

2

)
= φ

(
`

2

)
e−b

2/(2`2)

∫ ∞
0

du e−u
2/2−u`/2×

(
e−ub/` − eub/`

)
< 0

since the integrand is negative. The result then follows from this and (20).
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