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Abstract

The classic approach in robust optimization is to optimize the solution
with respect to the worst case scenario. This pessimistic approach yields
solutions that perform best if the worst scenario happens, but also usually
perform bad for an average case scenario. On the other hand, a solution
that optimizes the performance of this average case scenario may lack in
the worst-case performance guarantee.

In practice it is important to find a good compromise between these
two solutions. We propose to deal with this problem by considering it
from a bicriteria perspective. The Pareto curve of the bicriteria problem
visualizes exactly how costly it is to ensure robustness and helps to choose
the solution with the best balance between expected and guaranteed per-
formance.

In this paper we consider linear programming problems with uncertain
cost functions. Building upon a theoretical observation on the structure
of Pareto solutions for these problems, we present a column generation
approach that requires no direct solution of the computationally expensive
worst-case problem. In computational experiments we demonstrate the
effectiveness of both the proposed algorithm, and the bicriteria perspective
in general.

Keywords Robust optimization; Column Generation; Minimum Cost Flow
Problem; Bicriteria Optimization; Linear Programming.

1 Introduction

Robust and stochastic optimization are paradigms for optimization under un-
certainty, that have been receiving increasing attention over the last two decades
(see the recent textbook [3]). Optimization under uncertainty means that the
exact parameters that describe the optimization problem are not known exactly
and can only be estimated. In contrast to stochastic optimization, where one
assumes to have enough knowledge to estimate the probability distribution of
the input data, robust optimization deals with problems without any or only
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very little information about the underlying distributions. In robust optimiza-
tion one defines an uncertainty set that describes all possible realizations of the
input data. This can be done, for example, by defining a finite set of different
scenarios for the parameter values, but also continuous uncertainty sets are pos-
sible. The aim is to find a solution that is feasible for all realization of input data
and also yields the best performance if the worst possible realization occurs.

This approach follows a pessimistic point of view and, hence, it is not sur-
prising that optimizing only the worst case performance yields in most cases
a solution that performs poorly in the average case, which makes the solution
impractical for many applications. Even though it may not be clear what the
average realization of the data is, as there is no information about the distri-
bution of data available, a lot of effort has been put into the development of
robustness concepts that reduce the conservatism of the solution and give a
better performance in the average case.

Several such approaches to overcome this conservatism have been proposed.
Following the ideas of Ben-Tal and Nemirovski [4] it is a matter of choosing
the right uncertainty set to get a solution that performs well in the average
case and in the worst case. Bertsimas and Sim [8] introduce a parameter Γ
that allows controlling the conservatism of a solution. Fischetti and Monaci
[11] propose to identify a nominal scenario and to demand from the robust
solution a performance guarantee for this scenario. For general surveys on robust
optimization, we refer to [2, 3, 7, 12]. In this paper, we take a simpler and
more direct approach to relax the conservatism of a solution: We propose to
include the average case performance as an objective function, thus resulting in
a bicriteria optimization problem.

A frequently used assumption is that the objective function of the optimiza-
tion problem is certain, as every objective function can be represented as a
constraint by using the epigraph transformation. While this is a valid method,
it has the drawback that feasibility and performance guarantee are mixed into
one criterion, which is questionable for most practical problems. Therefore, we
focus in this paper explicitly on problems that are affected by uncertainty only
in the objective function. This can be done by restricting the set of feasible
solutions to solutions that are feasible for all possible parameter values. We
define the bicriteria optimization problem with the two objective functions av-
erage and worst case performance, and the Pareto front of this problem as the
average case–worst case curve (AC–WC curve). We argue that the AC–WC
curve is a valuable tool to assess the trade-off between average and worst-case
performance, and should play a vital role within a robust decision making pro-
cess. Note that we do not start with an uncertain multicriteria optimization
problem, as considered in [10, 13]. Instead, we begin with an uncertain single
criterion optimization problem and extend it to a robust bicriteria optimization
problem.

To compute the AC–WC curve, we make algorithmic use of the observation
that the average and worst case performance of a robust solution can be in-
terpreted as a special point on the Pareto front of a multicriteria optimization
problem where every possible scenario outcome leads to its own objective (see
[2, 15]). To the best of our knowledge, this is the first time that this observation
is used.

The paper is organized as follows. In Section 2 we introduce basic definitions

2



and notations that are used throughout the paper. In Section 3 we show a
theoretical result that allows us to develop a column generation approach to
compute the AC–WC curve. We evaluate different experiments in Section 4.
The first experiment compares the newly developed column generation approach
to compute the AC–WC curve with a straightforward approach. The second
experiment uses an approximation algorithm from the literature to approximate
the AC–WC curve. The gains that can be obtained by using the AC–WC curve
instead of only considering the average and worst case solutions are shown in
the third experiment, and in the last experiment we use the AC–WC curve to
directly compare the performance of two frequently used robustness concepts
from the literature. For all experiments we use the minimum cost flow problem
as a benchmark. We conclude the paper and point to further research questions
in Section 5.

2 Notation and Definitions

We consider single criterion linear programming problems (LP ) of the form

min cTx

s.t. Ax = b (LP)

x ≥ 0,

where x ∈ RN are the decision variables. Such a problem can be solved by
general linear programming solvers; however, for many problems, (e.g., the
minimum cost flow problem, the maximum flow problem, or the transporta-
tion problem), there exist specialized algorithms that outperform general linear
programming solvers. Note that these specialized algorithms usually need the
exact structure of problem (LP ).

The uncertainty is introduced by an uncertainty set U . A frequently used
uncertainty set is the interval uncertainty, which is given as a hyperrectangle

U = ×N
i=1[ci, ci]. It is a standard assumption that the average scenario is

given by the midpoint of the interval ĉ = 0.5(c + c). A second important
kind of uncertainty are discrete uncertainty sets of the form U = {c1, . . . , cn}
that specify n different cost vectors for the objective function for each scenario.
Denote by ĉ = 1

n

∑n
i=1 ci the average cost vector, assuming a uniform probability

distribution. If any other probability distribution p is available, where pi is the
probability that scenario i is realized, and one is interested in optimizing the
expected value, the cost vector ĉ(p) =

∑n
i=1 pici can be used instead. As there

is no structural difference between these two cases, we will deal in the following
only with vectors ĉ that implicitly assume that every scenario is equally likely.
We assume in this section to have discrete uncertainty to be able to exploit
the discrete structure of U . Using this notation, the average case optimization
problem (AC) has the form

min ĉTx

s.t. Ax = b (AC)

x ≥ 0.

Note that solving problem (AC) has the same computational complexity as
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solving the original problem (LP ). In general, this does not hold for the worst-
case (robust) optimization problem (WC) that looks as follows.

min z

s.t. cTk x ≤ z k = 1, . . . , n (WC)

Ax = b

x ≥ 0

Both problems (AC) and (WC) are tractable, as they are formulated as linear
programs. Both optimization goals – the average case as well as the worst case
– are important criteria to evaluate. But in most cases these two functions are
contradicting. A good performance in the average case often has to be paid
with worse performance in a single scenario and vice versa: good performance
in the worst case objective leads to a bad performance in the average case. A
common approach to deal with contradicting objective functions is to translate
the problem into a multicriteria optimization problem. Applied to our situation
this yields a bicriteria optimization problem (BILP ) with the two objective
functions average and worst case performance.

vec−min (z, ĉTx)

s.t. cTk x ≤ z k = 1, . . . , n (BILP)

Ax = b

x ≥ 0

Note that in most cases there is not a single solution that optimizes problem
(BILP ); on the contrary, there may be many solutions that can be seen as
optimal solutions for problem (BILP ). A common approach to solve such a
multicriteria optimization problem is to compute the set of all solutions that are
Pareto efficient. A solution x is called Pareto efficient if there exists no solution
y that performs as least as well as x in every objective function and is strictly
better in at least one objective function. The Pareto front of a multicriteria
optimization problem is obtained by mapping all Pareto efficient solutions of
the problem into the objective space with the corresponding objective functions.
We define the AC–WC curve as the Pareto front of problem (BILP ).

Example 2.1. We illustrate the concept of the AC–WC curve using the follow-
ing uncertain linear program that can be seen as a diversification problem:

min c1x1 + c2x2 + c3x3 + c4x4 (EX)

s.t. x1 + x2 + x3 + x4 = 10

x ≥ 0,

where c = (c1, c2, c3, c4) is a cost parameter coming from the discrete uncertainty
set

U = {(86, 12, 86, 23), (47, 33, 97, 33), (55, 94, 21, 76), (67, 40, 98, 56)}.

The average case is then given as ĉ = (63.75, 44.75, 75.50, 47.00). An optimal
solution to the average case is therefore xac := (0, 10, 0, 0) with an average case
objective of 447.5. Its worst case perfomance is 940.0. Intuitively, this solution
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is not robust, as it only uses a single item. An optimal worst case solution
xwc := (5.50, 3.15, 1.35, 0.00) on the other hand has a worst case perfomance of
626.9 and an average case performance of 593.5.

A feasible method to generate a solution that yields a compromise between
average case and worst case performance is to choose a convex combination of
solution xac and xwc. The solutions values of these combinations are shown in
Figure 1.

But by calculating the complete AC–WC curve, also presented in Figure 1,
we can make a more detailed analysis of the trade-off between average and worst
case performance of these solutions. In particular, we can see that already a
small loss in worst case performance may yield a large improvement in average
case performance, yielding a valuable alternative to the original robust solution.
The decision maker can now evaluate which solution he prefers most.
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Figure 1: Every convex combination of solution xac and xwc yields a feasible
solution the corresponding performances of these combinations are shown as the
dotted, blue line. The AC–WC curve is shown as the straight, red line.

3 Computing the AC–WC Curve

The set of Pareto efficient solutions of a convex bicriteria optimization problem
can be computed effectively, e.g., by the SANDWICH algorithm [16]. This
algorithm basically solves a sequence of single criterion optimization problems
that have as objective function a weighted sum of the two objective functions of
the bicriteria problem. Hence, for the problem types under consideration, only
linear programs need to be solved. We call this approach the straightforward
approach. The drawback of the straightforward approach is that problems of
the type (WC) need to be solved and the original problem structure of problem
(LP ) is lost. Hence, specialized algorithms for problems of type (LP ) cannot
be used, but one usually needs to rely on general linear programming solvers.
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In the next section we show how we can overcome this drawback. We explain
the theoretical principles that allow us to compute the AC–WC curve without
solving problems that have the same structure as problem (WC). Instead, we
only need to solve problems that maintain the structure of the original problem
(LP ), and one additional linear master program with easily solvable structure.
This has the practical advantage that specialized algorithms for problems of
type (LP ) can be reused.

3.1 Dantzig-Wolfe Decomposition in the Objective Space

In [2] it is shown that the set of efficient solutions of the problem

vec−min (cT1 x, . . . , c
T
nx)

s.t. Ax = b

x ≥ 0

contains an optimal solution for (WC). Following a similar idea, we introduce
a second multicriteria optimization problem besides problem (BILP ). It uses
the same constraints as problem (LP ) but the objective function is lifted to a
vector valued function that represents the performance in every scenario as well
as the performance in the average case scenario. So, we get a (n + 1)−criteria
optimization problem (MOLP ).

vec−min (cT1 x, . . . , c
T
nx, ĉ

Tx)

s.t. Ax = b (MOLP)

x ≥ 0

Denote by PMO and PBI the set of all Pareto efficient solutions of problems
(MOLP ) and (BILP ), respectively. Note that a solution of problem (BILP )
is a tuple of the form (x, z). Nevertheless we can identify all Pareto efficient
solutions of problem (BILP ) with the x component, as component z is uniquely
determined by x. We arrive at the following first observation.

Lemma 3.1. PBI ⊆ PMO

Proof. Let x be an arbitrary element of PBI . Hence, for all solutions x′ of
problem (BILP ) with ĉTx′ < ĉTx it follows that the worst case performance of
x′ is worse than that of x, i.e. ∃k : cTk x

′ > cTk x. We assume that x 6∈ PMO.
It is trivial that x is feasible for (MOLP ), hence, there must exist a solution

x′′ of (MOLP ) with cTi x
′′ ≤ cTi x for i = 1, . . . , n and ĉTx′′ ≤ ĉTx where

at least one inequality is strict. Summing up over all scenarios we get that
ĉTx′′ = 1

n

∑n
i=1 c

T
i x
′′ < 1

n

∑n
i=1 c

T
i x = ĉTx. As x′′ is feasible for (BILP ) it

follows from the efficiency property of x that ∃k : cTk x
′′ > cTk x, which yields a

contradiction.

In the following we use the assumption that the set of feasible solutions
X = {x ∈ RN | Ax = b, x ≥ 0} is bounded. Therefore, there exists a finite set
X ′ = {x′1, . . . , x′s} of vertices of X such that X = conv{X ′}, where conv denotes
the convex hull of a set of points.

Lemma 3.2. PMO ⊆ conv{PMO ∩ X ′}
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Proof. Let x be an arbitrary element of PMO. As x ∈ X it follows that ∃I ⊆
{1, . . . , s}, λ ∈ R|I|>0 : x =

∑
j∈I λjx

′
j and

∑
j∈I λj = 1. Assume that ∃k ∈ I :

x′k /∈ PMO. From this follows that there must exist another feasible solution x̂k
that dominates x′k, i.e. cTi x̂k ≤ cTi x′k for i = 1, . . . , n and ĉT x̂k ≤ ĉTx′k where at
least one inequality is strict. As λk > 0 it follows that x̂ =

∑
j∈I\{k} λjx

′
j+λkx̂k

dominates x, which is a contradiction. Therefore, the assumption was wrong and
it holds that ∀i ∈ I : x′i ∈ PMO. Hence, it follows that {x′j | j ∈ I} ⊆ PMO∩X ′.
Therefore, x ∈ conv{{x′j | j ∈ I}} ⊆ conv{PMO ∩ X ′}.

We define the set of Pareto efficient vertices of the polytope X by P ′MO =
PMO ∩X ′ and the linear map C(x) = (cT1 x, . . . , c

T
nx, ĉ

Tx)T . The next lemma is
a direct consequence of Lemma 3.1 and Lemma 3.2.

Lemma 3.3. C(PBI) ⊆ conv{C(P ′MO)}

Proof. It holds that C(PBI) ⊆ C(PMO) ⊆ C(conv{P ′MO}) = conv{C(P ′MO)}.
The first and second step follow from Lemma 3.1 and Lemma 3.2 and the

last step uses the linearity of map C.

Next consider the parametric problem (λ − ACWC) (λ ∈ [0, 1]) that opti-
mizes a weighted sum of average and worst case performance.

min λĉTx+ (1− λ)z

s.t. cTk x ≤ z k = 1, . . . , n (λ−ACWC)

Ax = b

x ≥ 0

Observation 3.4. The AC−WC curve can be computed by solving a sequence
of (λ−ACWC) problems, where λ ∈ [0, 1].

To see that Observation 3.4 holds we refer to [14]. The authors of [16] deal
with the approximate computation of the Pareto front of bicriteria optimization
problems. They define the algorithms SANDWICH and ε−SANDWICH that
can be used to compute the complete Pareto front of a bicriteria problem respec-
tively only a set that approximates this Pareto front. As the exact description
of SANDWICH and ε−SANDWICH is beyond the scope of this paper we refer
to [16] for more information. The crucial observation for our theoretical result
is that the application of these algorithms in our context leads to a sequence of
(λ−ACWC) problems.

The main idea is to translate problem (λ−ACWC) into the objective space
of problem (BILP). We use variables a and z, where a represents the average
case and z the worst case performance.

min λa+ (1− λ)z

s.t. yn+1 = a (OBJ)

yi ≤ z i = 1, . . . , n

y ∈ C(PBI)

We define a new problem (OBJ′) by replacing C(PBI) with the set conv{C(P ′MO)}.
Denote by (a∗, z∗, y∗) an optimal solution of problem (OBJ). As C(PBI) ⊆
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conv{C(P ′MO)} due to Lemma 3.3, it is evident that (a∗, z∗, y∗) is feasible for
(OBJ′). On the other hand, for every optimal solution (a∗∗, z∗∗, y∗∗) of (OBJ′)
it must hold that y∗∗ ∈ C(PBI). Hence, the optimal objective values of (OBJ)
and (OBJ′) are equal.

min λa+ (1− λ)z

s.t. yn+1 = a (OBJ′)

yi ≤ z i = 1, . . . , n

y ∈ conv{C(P ′MO)}

If we know the set C(P ′MO) = {y1, . . . , yr} completely, we can reformulate the
problem in the following way.

min λa+ (1− λ)z

s.t. ŷ =

r∑
i=1

αiy
i

r∑
i=1

αi = 1

ŷn+1 = a

ŷi ≤ z i = 1, . . . , n

α ≥ 0

Introducing slack variables and removing the superfluous variable ŷ we get the
parameterized master program (λ−M).

min λa+ (1− λ)z

s.t.


−1
...
−1

0
...
0

1
. . .

1

y11
...
y1n

. . .

yr1
...
yrn

0 −1 0 y1n+1 . . . yrn+1

0 0 0 1 . . . 1





z
a
s1
...
sn
α1

...
αr


=


0
...
0
0
1



(z, a, α, s) ≥ 0

Note that the linear program (λ−M) might contain exponentially many vari-
ables but we can still solve it to optimality by using column generation. In
column generation one does not solve (λ − M) directly instead one solves a
restricted problem that contains only a subset of all columns and adds columns
if they have negative reduced costs. If no columns with negative reduced cost
exist anymore the problem is solved to optimality. For a successful application
of the column generation idea it is necessary that one can find columns with
negative reduced costs very fast. It is easy to see that the problem of finding
the column with the smallest reduced cost value is an original problem of type
(LP ). This result combined with Theorem 3.4 gives the main theorem of the
section.
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Theorem 3.5. The AC−WC curve can be computed by solving linear programs
of the form (λ−M) and instances of the original problem (LP ).

3.2 Algorithmic Details

In this section we discuss the benefits and the drawbacks of solving (λ −M)
using column generation instead of (λ − ACWC) directly as linear programs.
The most obvious benefit is the fact that the original problem structure (LP )
remains preserved. Hence, the column generation approach is especially useful
if there exist specialized algorithms for problem (LP ) that allow to solve (LP )
faster than it could be solved by linear programming solvers (e.g., one can use
the network simplex algorithm to solve uncertain network flow problems). But
note that it is necessary to solve several problems of type (LP ) to solve a single
(λ −M) problem – for every column we generate in the master program, we
need to solve one subproblem. To solve (λ− ACWC) directly we have only to
solve a single linear program.

The drawback of the column generation approach to generate a possibly large
number of columns to solve problem (λ −M) can be compensated by the fact
that columns that are generated to solve (λ−M) can be reused in the master
program to solve another problem (λ̃−M). This makes the column generation
approach valuable for computing the AC–WC curve, as in the SANDWICH
algorithm a probably long sequence of these problems (λ − M) needs to be
solved for different values of λ.

In the case where computation time is limited and, therefore, one cannot
compute the complete AC–WC curve, another benefit from the column gen-
eration approach can be obtained. If the SANDWICH algorithm is stopped
prematurely, an incomplete set of Pareto efficient solutions is provided by the
algorithm. Using the column generation approach one can still try to gener-
ate some additional Pareto efficient solutions by solving the remaining (λ−M)
problems heuristically using only the columns that were generated so far. As the
restricted programs (λ −M) can be solved effectively even for a large number
of columns due to the relatively small number of rows, the heuristic solution of
(λ−M) needs little additional computation time.

The performance of the column generation method depends heavily on the
number of scenarios. Whereas one additional scenario increases the dimension
of the Pareto front of (MOLP ) and also the number of rows of (λ−M) by one,
the additional scenario can be represented by just one additional inequality in
the linear programming formulation of (λ − ACWC). Hence, one can expect
the column generation approach to perform relatively well for a small number
of scenarios and relatively badly for a large number of scenarios.

4 Experiments

4.1 Setup and Instances

As a benchmark for the following experiments we use the minimum cost flow
problem [1] on randomly generated graphs. An instance of the minimum cost
flow problem is described by the quadruple (G, c, u, b), where G = (V,A) is
a directed graph, ca is the cost of sending one unit of flow over arc a ∈ A,
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ua is the capacity of flow that can be sent over arc a ∈ A, and bv is the
supply/demand of node v ∈ V . The goal is to find a flow with minimal costs
that fulfills the capacity constraints on all arcs as well as the supply and the
demand constraints of every node. This well-known problem can be stated as
the following linear program

min
∑
a∈A

caxa

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V

0 ≤ xa ≤ ua ∀ a ∈ A,

where we denote by δ+(v) (δ−(v)) the set of all arcs leaving (entering) node v.
The instances for the minimum cost flow problems are generated randomly.

We consider two types of instances: One with discrete uncertainty, and one
with interval-based uncertainty. The instances R with discrete cost scenarios
are described by six parametersR-N -p-n-cmax-umax-bmax. The number of nodes
is given by N . We create an arc between two arbitrary nodes with probability
p. The number of different scenarios is given by n. The costs cj(a) of an arc a
in scenario j are generated by the formula

cj(a) =

{
Y · cmax ·

(
j
n

)2
, if D ≤ 1

2

Y · cmax ·
(
n−j
n

)2
, else

∀a ∈ A, j = 1, . . . , n,

where Y and D are independent and uniformly distributed in [0, 1]. We use
this formula to generate a cost structure with varying spreads. The capacity ua
of an arc a is set to umax for all arcs. The supply/demand bv of a node v is
chosen uniformly from the interval [−bmax, bmax], except for the supply/demand
bvN = −

∑
v 6=vN bv of the last node vN . Note that the choice of bvN is necessary

to get a feasible minimum cost flow instance.
The instances I with interval uncertainty for the arc costs are also described

by six parameters I-N -p-var-cmax-umax-bmax. The parameters N, p, umax, and
bmax are used in the same way as for R instances to generate the arcs and their
capacities as well as the nodes and their corresponding demands/supplies. The
average costs ĉ(a) of an arc a are chosen uniformly at random from the interval
[0, cmax]. Next, the worst case cost c(a) of an arc a are chosen uniformly at
random from the interval [ĉ(a), ĉ(a)(1 + var)].

All experiments were conducted on an Intel Core i5-3470 processor, running
at 3.20 GHz, 8 GB RAM under Windows 7. The linear and quadratic programs
(see Section 4.3.2) are solved with CPLEX version 12.6. The minimum cost flow
problems are solved with the network simplex algorithm of the LEMON graph
library [9] version 1.3.1. Algorithms were implemented with Microsoft Visual
C++ 2010 Express.

4.2 Computation of the AC–WC curve

4.2.1 Exact Computation

In this section we want to compare the straightforward implementation of the
SANDWICH algorithm to compute the AC–WC curve with the version we have
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introduced in this paper that is based on column generation. We compare the
times needed for both algorithms to compute the complete AC–WC curve.

In the first experiment, we fix the underlying graph of the minimum cost
flow problem and vary the number of scenarios. In the second experiment, we
fix the number of scenarios and vary the number of nodes in the graph. The
values are averaged over 10 runs per instance.
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(a) All graphs are of the type R-300-0.05-x-1000-100-100. The x-axis
shows the different number of scenarios and the y-axis the time (in
seconds) needed to compute the complete AC–WC curve.
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Figure 2: Comparison of computation times.

Discussion. The results of the first experiment, shown in Figure 2(a), confirm
that the column generation approach outperforms the straightforward approach
if the number of scenarios is small. It is interesting to note that the computa-
tion time decreases for the straightforward approach if the number of scenarios
increases. This is explained by the observation that an increasing amount of
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scenarios can lead to a decreasing number of solutions that need to be computed
to represent the AC–WC curve.

The second experiment (Figure 2(b)) confirms that the column genera-
tion approach outperforms the straightforward approach if the instance size
increases, assuming that the number of scenarios is small.

4.2.2 Approximate Computation

As the number of solutions that need to be computed to represent the AC–WC
curve is not polynomially bounded in the input size, the exact computation of
the AC–WC curve might be an unreasonable approach. This problem can be
resolved in practice by computing only a subset of these solutions.

Denote by P the set of all points of the AC–WC curve. We call a set S ⊆ P
an ε−AC–WC curve if ∀ p ∈ P ∃s ∈ S : sac ≤ (1 + ε)pac and swc ≤ (1 + ε)pwc.

For any practical application one should be able to choose an appropriate
ε such that the ε−AC–WC curve is sufficient in comparison to the AC–WC
curve. Note that there exist efficient algorithms to compute the ε−AC–WC
curve. We use the ε−SANDWICH algorithm [16] that is very similar to the
SANDWICH algorithm. The main difference is the choice of the weights used
for the weighted sum computations. We used the column generation method to
solve the weighted sum problems that have to be solved during the execution of
the ε−SANDWICH algorithm.

We did three different experiments. In the first experiment we bounded the
running time of the ε−SANDWICH algorithm by a multiple of the time needed
to compute the average and worst case solution. In the second experiment we
bounded the number of iterations used in the ε−SANDWICH algorithm. In the
last experiment we stopped the generation of new columns after 5 steps of the
algorithm (where one step of the ε−SANDWICH algorithm corresponds to the
exact solution of one (λ−ACWC) problem) and solved all remaining weighted
sum problems only approximately by solving the restricted master program.

Note that the set consisting only of the average and worst case solution
is also an ε−AC–WC curve for an ε that is sufficiently large. The values are
averaged over 10 runs per instance.

0 % 50 % 100 % 500 % 1000 %
R-300-0.05-4-1000-100-100 1.16e-01 3.50e-02 8.78e-03 1.16e-04 1.83e-05
R-400-0.05-4-1000-100-100 1.28e-01 3.83e-02 7.68e-03 2.32e-04 3.74e-05
R-500-0.05-4-1000-100-100 1.31e-01 4.41e-02 1.18e-02 3.30e-04 6.82e-05
R-1000-0.05-10-1000-100-100 5.38e-02 2.22e-02 5.57e-03 1.12e-04 1.46e-05
R-1000-0.05-20-1000-100-100 1.18e-02 3.32e-03 1.54e-03 2.27e-05 5.32e-06
R-1000-0.05-40-1000-100-100 9.87e-03 7.82e-03 4.07e-03 2.96e-04 8.66e-05

Table 1: The numbers in the columns 2-6 give the approximation guarantee ε
of the ε−AC–WC curve that can be obtained depending on the additional time
in % of the time needed to compute the average and worst case solution.
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0 1 5 10 100
R-300-0.05-4-1000-100-100 1.16e-01 5.12e-02 2.87e-03 8.07e-04 6.16e-06
R-400-0.05-4-1000-100-100 1.28e-01 5.48e-02 3.27e-03 8.50e-04 7.50e-06
R-500-0.05-4-1000-100-100 1.31e-01 4.98e-02 3.24e-03 7.02e-04 8.43e-06
R-1000-0.05-10-1000-100-100 5.38e-02 2.61e-02 1.40e-03 3.93e-04 3.51e-06
R-1000-0.05-20-1000-100-100 1.18e-02 6.47e-03 3.20e-04 8.20e-05 1.02e-07
R-1000-0.05-40-1000-100-100 9.87e-03 4.30e-03 3.07e-04 8.97e-05 7.48e-07

Table 2: The numbers in the columns 2-6 give the approximation guarantee ε
of the ε−AC–WC curve that can be obtained depending on the number of steps
of the ε−SANDWICH algorithm.

After 5 steps of With additional
ε−SANDWICH solutions

R-300-0.05-4-1000-100-100 2.87e-03 1.88e-03
R-400-0.05-4-1000-100-100 3.72e-03 2.49e-03
R-500-0.05-4-1000-100-100 3.24e-03 2.31e-03
R-1000-0.05-10-1000-100-100 1.40e-03 7.26e-04
R-1000-0.05-20-1000-100-100 3.20e-04 2.25e-04
R-1000-0.05-40-1000-100-100 3.07e-04 2.39e-04

Table 3: The numbers in the second column give the approximation guar-
antee ε of the ε−AC–WC curve that can be obtained within 5 steps of the
ε−SANDWICH algorithm. The third column gives the improved guarantee af-
ter additional solutions are computed using the already generated columns of
the master programs (λ−M).

Discussion. The second column in Table 1 and Table 2 describes how well the
AC–WC curve is approximated by the set that consists only of the average and
worst case solution. We observe that an increasing number of scenarios improves
the approximation guarantee of the average and worst case solution. We observe
in general that already relatively few steps of the ε− SANDWICH algorithm
suffice to get a ε−AC–WC curve with a good approximation guarantee. Note
especially the values for ε in Table 1. They indicate that the time needed to
compute a reasonable good ε−AC–WC curve is in the same order as the time
needed to compute the average and worst case solution. In a practical setting
this means that whenever one is able to compute the average and the worst case
solution of a problem, one should also be able to compute an ε−AC–WC curve
that provides on the one hand clear insight in the different trade-offs between
average and worst case objective and on the other hand a rich set of alternative
solutions where the decision maker can choose from.

The last experiment (Table 3) shows a benefit of using the column generation
method for generating an ε−AC–WC curve. The already generated columns can
be used to compute additional solutions that can improve the approximation
guarantee considerably. Remember that the computational effort to compute
these additional solutions is negligible as no further instances of the original
problem (LP ) need to be solved.
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4.3 Properties of the AC–WC curve

In the first part of this section we show how the AC–WC curve can be used
to find compromise solutions that are reasonable for the average and the worst
case objective. In the second part we compare two common robustness concepts
and measure how they perform in comparison with the AC–WC curve.

4.3.1 Gains by using the AC–WC curve

In this section we compare the trade-offs between the average case and the worst
case solution. We use the AC–WC curve to answer the questions: Starting from
the worst case solution, allowing the worst case value to increase, by how much
can we decrease the average case value? And vice versa: Starting from the
average case solution, allowing the average case value to increase, by how much
decreases the worst case value? The numbers in the tables are averaged over
100 runs per instance.

WC value increased by
+0.1 % +1.0 % +5.0 % +10 %

R-200-0.05-2-1000-100-100 99.80 98.06 91.34 84.94
R-200-0.05-3-1000-100-100 99.88 98.86 95.26 92.48
R-200-0.05-4-1000-100-100 99.90 99.08 96.43 94.42
R-200-0.05-5-1000-100-100 99.92 99.32 97.58 96.34
R-200-0.05-6-1000-100-100 99.92 99.35 97.99 97.17
R-300-0.05-2-1000-100-100 99.77 97.72 89.81 82.37
R-300-0.05-3-1000-100-100 99.83 98.39 93.25 89.24
R-300-0.05-4-1000-100-100 99.88 98.89 95.62 93.21
R-300-0.05-5-1000-100-100 99.90 99.06 96.46 94.46
R-300-0.05-6-1000-100-100 99.92 99.26 97.32 95.87

Table 4: The numbers in columns 2-5 give the average case performance of a
solution that has a higher worst case value than the worst case solution. The
average case performance of the worst case solution is normalized to 100.

AC value increased by
+0.1 % +1.0 % +5.0 % +10 %

R-200-0.05-2-1000-100-100 98.63 95.46 89.99 86.06
R-200-0.05-3-1000-100-100 96.93 91.70 85.15 81.75
R-200-0.05-4-1000-100-100 96.62 89.65 79.52 75.46
R-200-0.05-5-1000-100-100 95.96 88.58 80.92 79.95
R-200-0.05-6-1000-100-100 95.79 89.01 83.60 83.32
R-300-0.05-2-1000-100-100 98.72 96.12 91.44 88.06
R-300-0.05-3-1000-100-100 97.08 92.86 87.40 84.03
R-300-0.05-4-1000-100-100 96.42 89.20 77.74 71.96
R-300-0.05-5-1000-100-100 95.81 88.83 79.64 76.00
R-300-0.05-6-1000-100-100 96.04 88.54 79.63 77.86

Table 5: The numbers in the columns 2-5 give the worst case performance of
a solution that has a higher average case value than the average case solution.
The worst case performance of the average case solution is normalized to 100.
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Discussion. The most obvious observation by comparing Tables 4 and 5 is
the fact that almost all numbers of Table 4 are bigger than the corresponding
numbers of Table 5. This yields to the following statement. Decreasing the worst
case value of the average case solution is cheaper than decreasing the average
case value of the worst case solution. Small increases of the average case value of
the average case solution guarantee in most cases already considerably decreases
of the worst case value. But also an increase of the worst case value of the worst
case solution of x% can lead to reductions of the average case value that are
above x%. Note that an increasing number of scenarios reduces this positive
effect.

4.3.2 Comparison with Other Robustness Concepts

In contrast to the other experiments where we assumed to have a discrete un-
certainty set, we consider interval uncertainty in this section. This kind of
uncertainty is typical if the data is obtained, e.g., by measurements. Also more
general versions of uncertainty sets are studied in the literature, e.g. polyhedral
or ellipsoidal uncertainty sets [5]. These uncertainty sets are important if the
values of the parameters are correlated and, therefore, a hyperrectangle is not
the correct form for the uncertainty set.

The drawback of interval uncertainty or continuous uncertainty sets in gen-
eral is that the uncertainty sets can contain very unlikely scenarios and, there-
fore, solutions that should perform well for all scenarios in these uncertainty sets
are in general over-conservative and perform bad in the average case. Therefore,
researchers have tried to find robustness concepts that improve the average case
performance of the solution and still give a rather good protection against most
realizations of the uncertainty set.

Note that most robustness concepts normally only deal with uncertainty
in the constraints and not in the objective function, as it is claimed that the
objective function can be represented by a constraint.

The goal of this section is to compare two different robustness approaches
that define a parameter that helps the modeler to control the conservatism
of the solution with the AC–WC curve. We analyze if the transformation of
an uncertain objective to an uncertain constraint has undesired side effects.
As benchmark problem we use the minimum cost flow problem on randomly
generated graphs.

Γ−Robustness. The concept of Γ−robustness was introduced by Bertsimas
and Sim [8]. They motivate their concept by the observation that the situation
where all parameters take their worst case value simultaneously should be rather
unlikely. Hence, they propose to use a parameter Γ that defines an upper bound
for the number of parameters that can deviate from their nominal value.

The application of the Γ-robustness concept to the minimum cost flow prob-
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lem leads to the following linear program.

min
∑
a∈A

ĉaxa + pa + Γz (Γ−P)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = b(v) ∀ v ∈ V

(ca − ĉa)xa ≤ pa + z ∀ a ∈ A
0 ≤ xa ≤ ua ∀ a ∈ A
0 ≤ pa ∀ a ∈ A
0 ≤ z

Controlling parameter Γ allows the modeler to control the conservatism of the
solution. If Γ is chosen to be 0, z can be chosen arbitrary large in an optimal
solution and, therefore, pa = 0 ∀a ∈ A. In this case the objective function
is equal to the average case objective function ĉTx. If, on the other hand, Γ
is chosen to be as large as the number of uncertain parameters, z = 0 in an
optimal solution and pa = (ca − ĉa)xa ∀a ∈ A. Hence, the objective function is
equal to the worst case objective function cTx.

Ω−Robustness. The second concept was proposed by Ben-Tal and Nemirovski
[6]. We call it Ω−robustness as the problems are parameterized by Ω. The main
idea of the concept is to include chance constraints to deal with possible con-
straint violations. There might exist a parameter realization such that a feasible
solution of the Ω–robust problem is infeasible for the original problem. How-
ever, the probability that such a parameter realization happens should be small
under the assumption that the parameters are distributed symmetrically and
independently. Additionally, a value κ has to be specified as a bound for the
probability of constraint violation. Ben-Tal and Nemirovski showed how the
probability constraint can be relaxed by a second order cone constraint. The
value κ is then replaced by Ω =

√
−2ln(κ). The application of the Ω-robustness

concept to the minimum cost flow problem leads to the following quadratically
constraint program.

min
∑
a∈A

caxa − (ca − ĉa)za + Ωq (Ω−P)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = b(v) ∀ v ∈ V

∑
a∈A

(ca − ĉa)2z2a ≤ q2

0 ≤ za ≤ xa ≤ ua ∀ a ∈ A
0 ≤ q

Ignoring the relation between Ω and κ one can interpret Ω as a parameter
that can be used to control the conservatism of the solution. If Ω is set to 0,
za = xa ∀a ∈ A in an optimal solution and, hence, the objective function is
equal to the average case objective function ĉTx. On the other hand for large
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enough values for Ω, za = 0 ∀a ∈ A in an optimal solution and, therefore, the
objective function is equal to the worst case objective function cTx.

Hence, we see that the parameter Ω plays a similar role for Ω−robustness
as Γ for Γ−robustness.

Experiment description. For every set of parameter values we generate 5
graphs and compute for each the AC–WC curve. We define the Γ\Ω−curves
as all points that are obtained by solving (Γ−P)\(Ω−P) if Γ\Ω is integral.
To compute the Γ\Ω−curves we set Γ\Ω = 0 and compute the solution of
(Γ−P)\(Ω−P). Next, we increase both parameters by 1 and resolve the problem.
We repeat this process until an optimal solution of the worst case problem is
found. For every solution found so far we compute the average and worst case
performance and compare it to the AC–WC curve. As the AC–WC curve is
the Pareto front of a minimization problem it is clear that all points of the
Γ\Ω−curves must lie on or above the AC–WC curve.

To measure the distance between the AC–WC curve and the Γ\Ω−curves
we use two different measures. First we choose the solution of the AC–WC
curve that minimizes the sum of average and worst case performance. We call
this solution in the following the compromise solution. Next, we select the
points from the Γ\Ω−curves that have the same average case performance as
the compromise solution and compare the worst case performance of these points
with the worst case performance of the compromise solution. We repeat this
step and compare the average case performances if we require equal worst case
performance. The values obtained by this computation indicate how close the
Γ\Ω−curves is to the center of the AC–WC curve.

As second measure we use a more pessimistic measurement to represent
the maximum distance between the Γ\Ω−curves and the AC–WC curve. Ev-
ery point of the Γ\Ω−curves could become a point of the AC–WC curve if it
would be scaled by a factor of 1

(1+ε) for large enough ε. For every point of the

Γ\Ω−curves we compute the smallest ε such that the scaled version of the point
belongs to the AC–WC curve. To measure the furthest distance between the
curves we take the maximum over all such computed ε’s.

Γ−curve Ω−curve
Same AC Same WC Same AC Same WC

I-100-0.05-1-1000-100-100 102.2 102.2 101.2 102.1
I-200-0.05-1-1000-100-100 103.5 103.0 101.9 102.8
I-300-0.05-1-1000-100-100 102.7 102.7 101.5 102.6
I-400-0.05-1-1000-100-100 103.0 102.7 101.8 102.7
I-500-0.05-1-1000-100-100 103.2 103.1 101.6 103.1

Table 6: Comparison of the compromise solution with the Γ\Ω−curves. The
numbers in the columns with label ”Same AC” give the worst case value of the
solution of the Γ\Ω−curve that has the same average case performance as the
compromise solution. The number in the columns with label ”Same WC” are
defined vice versa. The corresponding performance of the compromise solution
is normalized to 100.
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Γ−curve Ω−curve
I-100-0.05-1-1000-100-100 0.029 0.012
I-200-0.05-1-1000-100-100 0.037 0.018
I-300-0.05-1-1000-100-100 0.032 0.014
I-400-0.05-1-1000-100-100 0.034 0.016
I-500-0.05-1-1000-100-100 0.037 0.017

Table 7: We scale every point of the Γ\Ω−curves by 1
(1+ε) . The numbers in

columns 2\3 give the smallest ε such that every scaled point of the corresponding
Γ\Ω− curves lies below or on the AC–WC curve.

Discussion. Assume that instead of computing the AC–WC curve one would
rely on Γ\Ω−robustness. If one is asked to provide a solution that has a certain
average case or worst case performance one would provide in most cases a solu-
tion that is strictly dominated by a point of the AC–WC curve. The resulting
loss is given in Table 6 where the ac−wc solution defines the demanded average
or worst case performance. We see that if a fixed worst case value is required
both robustness concepts perform almost equally. But if a certain average case
value is demanded the Γ−robustness concept provides a solution that is worse
in the worst case as the solution provided by the Ω−robustness concept.

The second measure, shown in Table 7, indicates how far the Γ\Ω−curves
can deviate from the AC–WC curve. It is obvious that the Ω−curve sticks
rather close to the AC–WC curve compared to the Γ−curve.

We conjecture that the relatively bad performance of the Γ−robustness con-
cept in this experiment is due to the fact that the underlying minimum cost flow
problem tends to generate solutions that are rather dense and the Γ−robustness
on the contrary is more effective for problems with sparse solutions.

We plot the Γ\Ω−curves and the AC–WC curve for the instances I-400-0.05-
1.0-1000-100-100 and I-500-0.05-1.0-1000-100-100 in Figures 3 and 4 to visualize
the last statements. Note that both robustness concepts generate solutions that
are strictly dominated by the worst case solution.

Furthermore, note the different complexities for computing the Ω\Γ\AC–
WC curve. A point of the Ω−curve need the solution of a quadratically con-
straint program, whereas points of the Γ\AC–WC curve needs the solution of
a linear program. Furthermore, the linear program for computing a point of
the Γ−curve needs m+ 1 additional variables and 2m+ 1 additional constraints
compared with the linear program of the minimum cost flow problem, whereas
the linear program for computing a point of the AC–WC curve contains only
one additional variable and n additional constraints. The presented figures are
both highly surprising and representative for other instances. They underline
the value for the AC–WC perspective in the decision process for a practitioner.

5 Conclusions and Future Research

In this paper we considered linear programs with uncertainty in the objective
function. To deal with the uncertainty we propose to consider the problem as a
bicriteria optimization problem with the two objectives average and worst case
performance. We call the Pareto front of the resulting optimization problem
the AC–WC curve. We developed a column generation approach that can be
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Figure 3: The AC–WC curve and the Γ\Ω− curves for an graph of type I-400-
0.05-1.0-1000-100-100. The axis are scaled by 1000.

combined with existing methods from the literature to compute the AC–WC
curve efficiently.

Using computational experiments, we found that: Firstly, the newly devel-
oped algorithm is effective, especially for a small number of scenarios. Secondly,
the time needed to compute a reasonably good approximate version of the AC–
WC curve is of the same magnitude as the time needed to compute the average
and the worst case solution. Thirdly, the AC–WC curve provides valuable in-
formation for a decision maker and allows him to choose the solution that gives
the best trade-off between average and worst case performance in his situation.

In the last experiment we recall two well-known robustness concepts from
literature and use the AC–WC curve to compare them. We observe that the
approach suggested by Ben-Tal and Nemirovski is closer to the AC–WC curve
than the approach suggested by Bertsimas and Sim. But both approaches reveal
a considerable gap to the AC–WC curve.

For future research it will be interesting to compare the described approaches
to compute the AC–WC curve with other approaches like the parametric simplex
algorithm or the dichotomic method. Furthermore, it is interesting to investi-
gate the AC–WC curve of more complex problems that have discrete feasibility
sets. Another interesting question is whether the observed gap between common
robustness concepts and the AC–WC curve can be re-observed for problems that
have a certain objective function but uncertain constraints.
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