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We study a single server queuing model with multiple classes and impatient customers. The goal is to

determine a service policy to maximise the long-run reward rate earned from serving customers net of holding

costs and penalties respectively due to customers waiting for and leaving before receiving service. We first

show that it is without loss of generality to study a pure-reward model. Since standard methods can usually

only compute the optimal policy for problems with up to three customer classes, our focus is to develop a suite

of heuristic approaches, with a preference for operationally simple policies with good reward characteristics.

One such heuristic is the Rµθ rule—a priority policy that ranks all customer classes based on the product

of reward R, service rate µ, and abandonment rate θ. We show that the Rµθ rule is asymptotically optimal

as customer abandonment rates approach zero, and often performs well in cases where the simpler Rµ rule

performs poorly. The paper also develops an approximate policy improvement method that uses simulation

and interpolation to estimate the bias function for use in a dynamic programming recursion. For systems

with two or three customer classes, our numerical study indicates that the best of our simple priority policies

is near optimal in most cases, and when it is not, the approximate policy improvement method invariably

tightens up the gap substantially. For systems with five customer classes, our heuristics typically achieve

within 4% of an upper bound for the optimal value, which is computed via a linear program that relies on

a relaxation of the original system. The computational requirement of the approximate policy improvement

method grows rapidly when the number of customer classes or the traffic intensity increases.
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1. Introduction

This paper considers a setting in which a single server must preemptively serve impatient

customers across k customer classes. Different classes of customers arrive according to

independent Poisson processes, with the arrival rate being λi for class i customers, 1≤ i≤ k.

The service time for a class i customer follows an exponential distribution with rate µi.

However, each class i customer will only remain available for service for a random time

that follows an exponential distribution with rate θi, after which the customer will abandon

the system, whether the customer is still waiting in the queue or is already in service. If a

class i customer is served to completion, then a reward Ri is earned, but if he abandons

the system before service completion, then a penalty Di is incurred. In addition, each class

i customer in the system incurs a linear holding cost at rate ci per time unit. We seek to

determine a service policy that maximizes the long-run reward rate earned net of penalties

and holding costs incurred.

Our model has real-world applications. For security surveillance, a customer in a class

corresponds to a suspect in a particular area, with service being the screening of suspects

by a security resource. The penalties Di represent the expected damage incurred when

suspects leave the area and evade screening, while it is most natural to set Ri = ci = 0.

For call centres, the class of a customer indicates a particular service need, while the

server corresponds to an agent. The rewards Ri represent the revenue received by serving a

customer, while ci and Di respectively model the loss of goodwill incurred due to customers

waiting and hang up. Customer abandonments are a key feature in both applications.

The first step of our analysis is to show that the three parameters in the reward

structure—namely Ri, Di, and ci—can be consolidated into a single parameter through

proper transformation. As it turns out, it is without loss of generality to consider a reward

structure with only one of these three parameters while setting the other two equal to 0.

In this paper, we choose the pure reward model (with Di = ci = 0 for all i). Although it

is possible to formulate our model as a Markov Decision Process (MDP), and use stan-

dard methods of dynamic programming (DP) to compute the optimal policy by truncating

the state space, the computation is usually only practical for problems with up to three
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customer classes. Hence, the paper focuses on developing strongly performing heuristic

policies, with a preference for operationally simple policies with strong reward character-

istics.

Our first approach is to develop a suite of simple priority policies, which are effective

across much of the problem’s parameter space. Such policies serve customers according

to a strict priority ordering among the customer classes. In the case where the system is

overloaded, it has been shown in the literature that the Rµ rule—a priority policy that

ranks all customer classes based on the product of reward R and service rate µ—performs

well, since it maximizes the instantaneous reward rate (Atar et al. 2010, Ayesta et al. 2011,

Verloop 2014, Larrañaga et al. 2014). To complement the Rµ rule in the light-traffic case,

we study the Rµθ rule, which ranks all customer classes based on the product of R, µ,

and the abandonment rate θ. This ranking was proposed in Section 2 of Glazebrook et al.

(2004) for batch problems, and our paper extends its application to systems with customer

arrivals. We prove that the Rµθ rule is asymptotically optimal as customer abandonment

rates approach zero in light traffic systems. Finally, we apply a pairwise-swapping (PaS)

mechanism to both the Rµ rule and the Rµθ rule to search for an improved priority policy.

Our second approach—after having produced a set of simple priority policies—is to

develop an effective approximate policy improvement (API) method. For a given policy, the

API method uses simulation to estimate bias values for a set of carefully chosen states, and

then uses these values to interpolate the bias function for all states. This approximate bias

function allows us to run policy improvement to obtain a new policy. Our numerical results

indicate that, in most cases, the best priority policy is nearly optimal in systems with 2

or 3 customer classes; in the cases where it is not, the API method invariably tightens

up the gap substantially. In one instance, the API method improves our best priority

policy—which is 4.26% suboptimal—in yielding a policy that is only 0.04% suboptimal.

In some applications such as security surveillance, even a small difference in reward rate

performance can be of practical importance.

In order to evaluate our heuristic approaches for systems with more than 3 customer

classes, where obtaining the optimal policy is computationally too intensive, we also

develop a novel upper bound for the maximal long-run reward rate using linear program-

ming methods. The linear program relies on a relaxation of the original system, and its

tightness degrades as the number of customer classes increases. In our numerical study
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with 5 customer classes, our best heuristic is typically within 4% of the upper bound for

the maximal long-run reward rate.

Our model has been studied in Glazebrook et al. (2004), which develops a heuristic policy

via a two-stage process. The first stage analyzes a policy that allocates a fixed-service

effort to each class at all time, and computes the optimal allocation, while the second stage

performs an exact policy improvement (PI). The parametric optimisation involved at the

first stage can pose computational challenges, especially when the number of customer

classes increases, and was only implemented for cases with 2 customer classes in Glazebrook

et al. (2004). Numerical tests show that our API method performs considerably better for

a wide range of parameters. Down et al. (2011) studied a special case of our model with

2 customer classes, and µ1 = µ2. They proved that the priority policy that serves a class 1

customer whenever possible is optimal, if R1 ≥R2 and θ1 ≥ θ2.

There are some recent works on control of queueing systems with impatient customers.

An approach based on approximating Brownian control problems in heavy traffic has been

explored by Harrison and Zeevi (2004), Ata and Tongarlak (2013), and Kim and Ward

(2013). The latter article considers general arrival, service, and abandonment processes.

Recent studies of controlled stochastic systems with customer abandonments have featured

a range of application domains. Garnett et al. (2002), Jouini et al. (2010), and Bassamboo

et al. (2005) consider call centre applications. Abandonments have been used in military

applications to model targets that move out of range of defensive forces. See, for example,

Gaver et al. (2006), Lin et al. (2009), and Glazebrook and Punton (2008). In patient

triage applications, abandonments have been used to model medical emergency patients

in danger of dying while awaiting treatment. See, for example, Argon et al. (2008) and Li

and Glazebrook (2010).

There are also some recent works on approximate approaches to DP seeking to overcome

computational intractability. See, for example, Section 1.2 of Powell (2011). Contributions

that deploy value function approximations within a PI approach include those of Krish-

nan (1987), Glazebrook et al. (2004), and Li and Glazebrook (2010), while API methods

which utilise simulation are discussed in Section 10.5 of Powell (2011) and Chapters 6

and 7 of Bertsekas (2012). Our API approach can be viewed as a refined approximate

dynamic programming (ADP) implementation with two distinctive features: (1) a suite
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of strongly-performing priority policies to initialise the API algorithm, and (2) a simula-

tion/interpolation methodology to fit the bias surface by estimating biases both at states

that are frequently visited, and also at a carefully chosen set of widely spread states.

The rest of the paper proceeds as follows. Section 2 first shows that it is without loss

of generality to consider a pure reward model, and then formulates the problem as an

MDP and describes how, in principle, to compute the optimal policy. Section 3 presents

the service policies based on class prioritisation, including the Rµθ rule, the Rµ rule, and

a potentially improved priority policy achieved by pairwise swapping. Section 4 describes

the API method. Section 5 presents a linear program to compute an upper bound for the

maximal long-run reward rate in order to evaluate our heuristics where the optimal policy

is not available. Section 6 offers a numerical study, and Section 7 concludes the paper.

2. Model and MDP Formulation

Recall that our model has three reward parameters. For a class i customer, there is a

reward Ri for service completion, a penalty Di for customer abandonment, and a linear

holding cost rate ci per time unit, for 1≤ i≤ k. If we write Nπ
i,θ for the number of class i

customers in the system and απ
i , β

π
i for, respectively, the rate of class i service completions

and abandonments under policy π in steady state, then the optimal long-run system reward

rate net of holding costs and abandonment penalties can be written as

max
π

k
∑

i=1

(

Riα
π
i −Diβ

π
i − ciE[Nπ

i,θ]
)

. (1)

However, the guaranteed stability of the system implies that, for all choices of class i and

policy π, we have that

λi = απ
i +βπ

i , (2)

and

βπ
i = θiE[Nπ

i,θ]. (3)

Using (2) and (3), we can rewrite (1) in three different ways:

max
π

k
∑

i=1

((

Ri +Di +
ci
θi

)

απ
i −

(

Di +
ci
θi

)

λi

)

(4)

=max
π

k
∑

i=1

(

Riλi −

(

Ri +Di +
ci
θi

)

βπ
i

)

(5)

=max
π

k
∑

i=1

(

Riλi − ((Ri+Di)θi+ ci)E[Nπ
i,θ]

)

. (6)
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Equation (4) transforms the original model into an equivalent pure-reward model with

Ri+Di+ ci/θi earned upon every class i service completion. Similarly, equation (5) shows

an equivalent model with only penalties upon customer abandonment, while equation (6)

shows an equivalent model with only linear holding costs. Without loss of generality, we

shall focus on the pure-reward model (Di = ci = 0 for all i) for the remainder of the paper.

Denote the system state by n = (n1, . . . , nk), with ni the number of class i customers

present in the system. We further write n (t) for the system state at time t. Further details

of the model are as follows:

1. Decision epochs occur at time zero and at all transitions of the system state.

2. At each decision epoch, the server must decide which waiting customer to serve next

across all customer classes. The set of admissible actions for state n is given by

A (n) = {a : na ≥ 1,1≤ a≤ k} .

We use ei for the system state in which only a single customer of class i is present in the

system.

3. In state n 6= 0 under admissible action a ∈ A (n), the effective transition rate is

Λ (n, a) = µa +
∑k

i=1 (λi +niθi) . Transitions to states n + ei,n− ea, and n− ej, j 6=

a, respectively, occur with probabilities λi {Λ(n, a)}−1, (µa +naθa){Λ(n, a)}−1, and

njθj {Λ(n, a)}−1 . The effective transition rate in the empty state 0 is Λ (0) =
∑k

i=1 λi with

a transition from 0 to state ei occurring with probability λi {Λ(0)}−1. When a transition

from n to n− ea occurs at a class a service completion, a reward Ra is earned.

4. A service policy is a rule for choosing admissible actions using the history of the pro-

cess (past states and actions) only. An admissible, deterministic, stationary, and Markov

policy is determined by a function π :Nk →{1, . . . , k} satisfying π (n)∈A (n) ,∀n. The the-

ory of MDPs (see, for example, Chapter 8 of Puterman (1994)) implies that, to determine

the optimal policy, it is sufficient to consider only policies in this class.

5. The goal of analysis is to determine a policy that maximises the long-run reward rate

earned or that will come close to doing so.

A standard approach to determine the ǫ-optimal policies is through the application of

DP to a version of the above system with finite state space ×k
i=1 {0,1, . . . ,Ni}. In this

truncated version, new class i customers are blocked from entering the system when Ni

are already present. The Ni must be chosen large enough to ensure that this system
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approximates the original model well enough for the purpose at hand. With a finite state

space, it becomes possible to convert the problem to one in discrete time through the

process of uniformisation. We write ∆ =
∑k

i=1 (λi +µi +Niθi), a uniform upper bound

on the rate of state transitions in the finite state system. By the addition of fictitious

transitions from a state to itself, we develop a uniformised system that makes transitions

at a uniform rate ∆. We write V π (n, t) and V (n, t) for the expected reward earned under

the application of policy π and an optimal policy, respectively, over t transitions of the

uniformised process, beginning at time zero in system state n. Standard theory enables us

to write V π (n, t) = gπ

∆
t+ ωπ (n) + o (1) and V (n, t) = g

∆
t+ ω (n) + o (1) as t→∞, where

gπ and g are the long-run reward rates or gains earned, and ωπ and ω the bias functions

under application of π and an optimal policy, respectively. Bias functions yield an estimate

of the transient effect on rewards of the starting state n and will be further discussed in

Section 4. Bellman’s equation for the finite state system can now be written

g

∆
+ω(n) =max

a

{

Raµa

∆
+

∑

n
′∈S

p(n′|n, a)ω(n′)

}

, (7)

where the p (n′ | n,a) are transition probabilities under the uniformisation. It is now possible

to compute the optimal gain and associated optimal policy for the finite state approxima-

tion by a recursive scheme such as DP value iteration or by linear programming; further

details may be found in Chapter 8 of Puterman (1994). However, since the state space

grows exponentially in k, in practice, the computations quickly become intractable for

k ≥ 4. Hence, the focus of our paper is to develop near-optimal heuristic policies that

require much less computation.

3. Service Policies Based on Class Prioritisation

A policy that is easy to implement is for the server to prioritize all customer classes in an

ordered list, and always serve a customer highest on the list among all customers present in

the system. In the case of an overloaded system, there are almost always many customers

present in the system. It is therefore intuitive that the server should pay little attention to

the possibility of idling, and focus on continuously maximizing the instantaneous reward

rate. To do so, the server simply needs to always serve a customer having the maximal

Rµ value among all customers present in the system—hence the Rµ rule. As seen in

equations (4) and (6), the Rµ rule in our pure-reward model is equivalent to the cµ/θ rule
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in the linear-holding-cost only model. The strong performance of this rule in heavy traffic

is affirmed in the work of Atar et al. (2010), Ayesta et al. (2011), Verloop (2014), and

Larrañaga et al. (2014).

Away from heavy traffic, lost reward opportunities due to an empty system become a

much more important concern. Motivated by this observation, Section 3.1 introduces the

Rµθ rule, and establishes its asymptotic optimality. Section 3.2 compares the Rµθ and

the Rµ rules. Section 3.3 presents a mechanism to explore local improvements on a given

priority policy.

3.1. The Rµθ Rule

If a system is not overloaded with customers, then it becomes important to take into

account the lost reward opportunities when the system becomes empty due to customer

abandonment. For example, consider a two-class system, with R1µ1 =R2µ2 and θ1 < θ2. If

there is one customer present from each class, then intuition suggests that the server should

first serve the class 2 customer, since there is a better chance that the class 1 customer will

still be available later on. Consequently, a class’s priority should go up as its abandonment

rate θ increases. We call the rule in which the server always serves a customer having the

maximal Rµθ value among all customers present in the system, the Rµθ rule. As seen in

equations (4) and (6), the Rµθ rule in our pure-reward model is equivalent to the cµ rule

in the linear-holding-cost only model. Whereas the cµ rule is optimal in queueing systems

with no customer abandonment (see, for example, Section 5.2 in Gittins et al. (2011)), it

is not optimal in systems with customer abandonment (Down et al. 2011).

The main result of this section is to show that the Rµθ rule is asymptotically optimal

as θ→ 0. First, write Rπ(θ) for the reward rate achieved by policy π, and RRµθ(θ) for the

reward rate achieved by the Rµθ rule. To describe the limiting regime, we suppose that

the abandonment rate of each customer class is the multiple of some underlying rate θ,

such that θi = θνi, where νi > 0, 1≤ i≤ k.

Theorem 1. If
∑k

i=1 λi/µi < 1, then

max
π

Rπ(θ)−RRµθ(θ)≤O(θ2).
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The proof of Theorem 1 is given in full in Appendix A in the Online Supplement, but we

summarise the key elements here to facilitate the subsequent discussion. The main idea

of the proof is to bound Rπ(θ) below for priority policies and above for general nonidling

policies. If we write W π
i for the waiting time (time to achieve completed service) of a class i

job in steady state under π for the no abandonment case (θ= 0), then for a priority policy

̟, we show that under the conditions of the result,

R̟(θ)≥

k
∑

i=1

λiRi − θ

k
∑

i=1

λiRiνiE[W̟
i ] +O(θ2), (8)

while for all nonidling policies π, we have that

Rπ(θ)≤

k
∑

i=1

λiRi − θ

k
∑

i=1

λiRiνiE[W π
i ] +O(θ2). (9)

It must then follow that

max
π

Rπ (θ)−RRµθ (θ)≤ θ

{

k
∑

i=1

λiRiνiE[WRµθ
i ]−min

π

k
∑

i=1

λiRiνiE[W π
i ]

}

+O(θ2), (10)

where the maximum and minimum in (10) are over all policies π. By Little’s law, the min-

imisation in (10) is of a holding cost rate objective for the system without abandonments.

A classical queueing control result (the cµ rule) implies that this minimum is achieved by

the Rµθ rule. Theorem 1 now follows easily.

In heavy traffic, the Rµ rule appropriately greedily chooses processing actions to max-

imise the instantaneous reward rate achieved. In the regime of Theorem 1, the focus is on

choices of policy π that minimise reward rate loss from the system through abandonments.

From the preceding proof, this loss rate is given by θhπ +O(θ2), where

hπ =

k
∑

i=1

λiRiνiE[W π
i ].

The strong performance of the Rµθ rule resides in its minimisation of the dominant O(θ)

component of this loss rate—a consequence of the optimality of the cµ rule for linear

holding costs in the absence of abandonments.

Close inspection of the proof of Theorem 1 in the Online Supplement will reveal that

we make little use of the stochastic structure of the system’s service mechanism. The Rµθ

rule emerges as a priority policy which minimises a holding cost-type objective for the no
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abandonment system (θ= 0). It is therefore unsurprising that the result can be generalised

to more complex service situations, provided that a priority policy continues to optimise

an appropriate holding cost. An important model class to which a natural extension of

Theorem 1 applies are Klimov Networks (see Klimov (1974) and Klimov (1978)), in which

each customer service has a sequence of phases, with movement between phases and toward

service completion determined by customer class-specific Markovian routing matrices. This

class inter alia provides an extension of Theorem 1 to a model in which service requirements

are independent, have finite second moment, and are identically distributed within each

class. Further details can be found in Appendix B in the Online Supplement.

All of the extensions to Theorem 1 mentioned above concern single-server systems. If we

move to a multiserver version of our system with abandonments, with m servers working

in parallel, then the required stability condition becomes ρ=
∑k

i=1 λi/µi <m and the Rµθ

rule now allocates preemptive service to the m customers present in the system whose

associated Rµθ are maximal. The proof of a suitable version of Theorem 1 for this system

goes through up to (10). However, it is no longer true that the Rµθ rule achieves the

minimum in (10), though it does come close to doing so. To give a theoretical result for

this system we need the quantity

B (m) = ρ (Rµν)max

(

1

µ

)

max

I (m> 1) ,

where I is an indicator and the maxima in the expression are taken over the customer

classes. The following result makes use of Theorem 3 in Glazebrook and Niño-Mora (2001),

which shows that B(m) bounds above the quantity multiplying θ on the right-hand side

of (10) when there are m servers. It generalises Theorem 1 to multiserver systems.

Proposition 1. When there are m servers and
∑k

i=1 λi/µi <m, we have that

max
π

Rπ (θ)−RRµθ(θ)≤ θB (m)+O
(

θ2
)

.

3.2. Comparing the Rµθ and Rµ Rules

It follows from calculations in the proof of Theorem 1 that when
∑k

i=1 λi/µi < 1, we have

Rπ(θ) →
∑k

i=1 λiRi, as θ → 0, for all priority policies (and hence both the Rµθ and Rµ

rules). Unsurprisingly, all priority policies achieve the maximal reward rate
∑k

i=1 λiRi in
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the no abandonment limit, since in the limit all jobs are served. Think of a surveillance

problem in which abandonments of the system are rare, but very damaging, and attention

focuses on making the O (θ) loss rate from abandonments as small as possible. Now consider

a situation in which the class orderings determined by the Rµθ and Rµ rules are distinct.

It follows from (8) and (9) that

RRµθ (θ)−RRµ (θ) = θ(hRµ−hRµθ)+O
(

θ2
)

.

When Rµθ and Rµ are distinct, the quantity that multiplies θ in the above expression is

strictly positive. Consequently, there exists θ∗, such that for θ < θ∗, we have that RRµθ (θ)>

RRµ (θ). Therefore,
maxπR

π(θ)−RRµθ(θ)

maxπRπ(θ)−RRµ(θ)
→ 0, as θ→ 0.

It follows that the percentage loss of reward rate due to abandonment from the use of

Rµθ relative to that experienced from the use of Rµ becomes negligible in the limit θ→ 0.

Numerical support for this conclusion can be found in Appendix C in the Online Supple-

ment.

A similar conclusion can be drawn for a multiserver system, if the condition in Propo-

sition 1 is met. It follows from the analysis in Glazebrook and Niño-Mora (2001) that, for

any case in which Rµ and Rµθ rules differ in their choice of lowest priority customer class,

the difference hRµ−minπ h
π diverges in the limit. It then follows from (8), (9), and Propo-

sition 1 that, when θ is small for problems close to the ρ→m limit, the suboptimality gap

maxπR
π(θ)−RRµθ(θ) will be negligible compared to maxπR

π(θ)−RRµ(θ).

In the special case with k= 2, µ1 = µ2, R1 ≥R2, and θ1 ≥ θ2, both the Rµθ and Rµ rules

prescribe the priority policy 1→ 2, which is optimal according to Down et al. (2011).

3.3. The PaS Class of Priority Policies

We conclude this section by describing a simple pairwise-swapping mechanism to explore

local improvements in any given priority policy. Given any class ordering (π1, π2, . . . , πk),

we take the classes in order from π2 to πk and explore, in turn, whether each class should be

promoted up the order. This is achieved for each class by a sequence of pairwise comparisons

with the next highest class in the list to determine how high up the list the class can be

promoted. In comparing classes i and j, we consider the two-class subsystem comprising

them alone (with their class parameters inherited from the full problem) and use value
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iteration to compute the respective performance of the two priority policies i → j and

j → i. If the better policy contradicts the current class ordering, then a pairwise swap is

performed, and the procedure is repeated until a comparison does not result in a swapping.

We then examine the potential promotion for the next class on the original list π2 to πk.

We label this priority policy PaS.

4. Approximate Policy Improvement Algorithm

This section introduces an approximate policy improvement (API) algorithm to improve

our suite of simple priority policies. Section 4.1 overviews the methodology, and Section 4.2

discusses the algorithm in detail.

4.1. Heuristic Based on Policy Improvement

Policy improvement (PI) develops optimal policies for MDPs by using the DP recursion

to produce a sequence of successively improving policies (Howard 1960). In our problem,

we truncate the state space and uniformise, as in Section 2, to develop an ergodic system

with optimality equation in (7). To develop a PI step from policy π, let ωπ (n) be the

bias associated with system state n under policy π. A new policy PIπ, say, is obtained as

follows:

PIπ(n) = argmax
a

{

Raµa

∆
+

∑

n
′∈S

p(n′|n, a)ωπ(n′)

}

. (11)

Accordingly, policy PIπ always takes the current decision optimally, given that all future

decisions are made according to π. Tijms (1994) noted that the first few PI iterations

usually yield the greatest improvement.

The challenge to implementation of PI in large systems lies in the intractability of the

computation of the bias ωπ. Hence, approximations are required, and the PI step in (11)

can be replaced by

APIπ(n) = argmax
a

{

Raµa

∆
+

∑

n
′∈S

p(n′|n, a)ω̃π(n′)

}

, (12)

where ω̃π approximates ωπ.

Computation of the bias ωπ involves specification of a reference state m, which we take

to be one frequently visited under π. We introduce the following quantities:

• rπ (n) is the expected reward received starting from state n until the system enters

the reference state m for the first time, if policy π is used.
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• tπ (n) is the expected time starting from state n until the system enters the reference

state m for the first time, if policy π is used.

The system evolving under policy π is ergodic, so rπ(n) and tπ(n) are guaranteed to be

finite for all states. Using the fact that the system regenerates upon entry to the reference

state, the theory of regenerative processes (Tijms 1994) indicates that

ωπ(n) = rπ(n)− gπtπ(n), (13)

where gπ is the gain of policy π.

From (13), the approximations ω̃π(n) can then be obtained by approximating the quan-

tities rπ(n), tπ(n), and gπ. The heuristic policy can then be defined from (12).

4.2. The Algorithm

The implementation of an API step depends crucially on the approximation scheme used

for the bias function. As the bias function does not have an analytical form, we use simula-

tion to estimate it. However, since simulation carries a computational cost, our constrained

computational resource needs to be effectively managed through a carefully designed algo-

rithm. The algorithm consists of five sequential, complementary stages, taking an initial

policy π as an input to produce a new policy APIπ. The five steps are summarized below,

with more details to follow.

1. Pilot: Simulate the steady state of initial policy π to estimate its gain, and the fre-

quency each state is visited.

2. Selection: Based on the pilot run, select a set of states at which we estimate the bias

function via simulation.

3. Sampling: For each state n selected, simulate the system under π from that state

until some chosen reference state m is entered and estimate ωπ (n) using (13).

4. Interpolation: Use the simulation results for selected states to interpolate the bias

function for all other unselected states.

5. Improvement: Use (12) to produce a new policy APIπ.

In step 1, we run a pilot steady state simulation to estimate the gain gπ required to estimate

ωπ from (13). To facilitate steps 2 and 3, we also collect data on how often each state is

visited in steady state under π.

Step 2 consists of the selection of a small number of states, denoted Ssel, at which the bias

ωπ will be estimated by simulation in step 3. Interpolation of ωπ at other states will follow
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in step 4. The set Ssel consists of the anchor set together with a support set. The anchor

set consists of the states most frequently visited in the pilot and hence influential to policy

performance. However, anchor states are likely to be tightly grouped together, so alone

they will not create an adequate basis for the construction of an effective interpolation

scheme. The support set will complement the anchor set to ensure adequate coverage and

wider exploration of the state space.

To select M support states, we adopt lattice points of the following form:

PM = {((zj mod M)/M) = ((z1j mod M)/M, ..., (zkj mod M)/M) | 0≤ j ≤M − 1},

where z is an integer vector modulo M . The components of z are chosen to be relatively

prime to each other and to M . In what follows, policies will be constructed for numerous

problems with k= 2,3, and 5 making use of the choices z= (2,3) , (2,3,5), and (2,3,5,7,11),

respectively. These lattice points are then appropriately scaled and rounded from the unit

hypercube to the state space to obtain the support states. Such well-spread points were

proposed in the field of Quasi-Monte Carlo methods for numerical integration and shown

to enable good approximations of integrals (Niederreiter 1978).

In step 3, we choose reference state m to be the one most visited in the pilot and use

Monte Carlo simulation to estimate rπ (n) and tπ (n) for each n ∈ Ssel. In what follows,

we use n for the size of Ssel and m for the number of simulated realisations of the system

from each n∈ Ssel until entry into reference state m. If we write Rπ (n) and T π (n) for the

simulation-based estimators of rπ (n) and tπ (n), respectively, and Gπ for the estimator of

gπ available from the pilot, then from (13) our estimator of ωπ (n) for n ∈ Ssel is Ω
π (n) =

Rπ (n)−GπT π (n). Since all estimators are unbiased, and Gπ is independent of Rπ(n) and

T π(n), we conclude by conditioning on Gπ, that

Var{Ωπ (n)}=Var{Rπ (n)− gπT π (n)}+Var (Gπ)E[(T π (n))2]. (14)

Equation (14) decomposes the variance of the bias estimators into two terms. The first

term is controlled by the number of replicates m used in the simulation relating to state

n in step 3, and the second term is controlled by the size of the pilot study in step 1.

The computational challenge is dominated by the need to control the first term in (14), as

designing a pilot study large enough to control the second term has not proved to be an

issue. One feature that helps reduce the first term is that Rπ(n) and T π(n) are positively
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associated. In addition, our choice of reference state m means that the biases at anchor

states (with smaller Rπ(n) and T π(n)) tend to be estimated with greater precision than

those at support states, which is a feature shared with other approaches to ADP (see

Section 10.10 of Powell (2011)). The central trade-off for the quality of the method for given

computational effort is that between large n supporting the quality of the interpolation,

and large m supporting precision at the selected states.

In step 4, we use the bias estimates in Ssel to interpolate a bias function approximation for

the entire state space S. While there are many interpolation algorithms, we use the radial

basis function method (see Powell (1987)) for its simplicity. Assume that some function

f : S →R has known values at each xi ∈ Ssel. An augmented radial basis function h : S →R

which takes the form

h(x) =
n

∑

i=1

αiφ(‖x−xi‖)+
d

∑

j=1

βjpj(x), x∈R
k, (15)

will be designed as a smooth interpolator of f , taking the values f (xi) for xi ∈ Ssel. From

(15), h (x) is a weighted sum of n= |Ssel| radial basis functions φ (·), one centred on each

xi ∈ Ssel, together with d low order polynomials pj(·). Note that ‖·‖ denotes the Euclidean

norm. For φ (·), we take the thin plate spline φ (r) = r2 log(r); for low order polynomials,

we set d= k+ 1 and use p1 (x) = 1, pj (x) = xj−1, 2≤ j ≤ k+ 1. These choices produce a

surface which minimises a measure of smoothness (Powell 1999).

We write A for the n× n matrix with elements Aij = φ (‖xi −xj‖), 1≤ i, j ≤ n and P

for the n× (k+1) matrix with elements Pij = pj (xi), 1 ≤ i ≤ n, 1 ≤ j ≤ k + 1. We write

f for the n-vector with fi = f (xi), 1 ≤ i ≤ n. Let α and β be corresponding vectors of

coefficients. The matrix form of the interpolation problem is




A P

P T 0









α

β



=





f

0



 .

The equations Aα+Pβ= f ensure that h (xi) = f (xi), xi ∈ Ssel, while the k+1 equations

P Tα = 0 take up the extra degrees of freedom in the problem, which ensures the radial

basis function h(·) is conditionally positive definite and the interpolation problem solvable.

Consequently, the interpolation matrix delivers a unique solution in the coefficients and

hence in h. If we take f (xi), xi ∈ Ssel, in the above to be the estimates of bias from step

3, we can then use the resulting h (x), x∈ S, as bias estimates for all states.
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In step 5, we design a new policy APIπ by using the function h from step 4 in place of

ω̃π in (12) to obtain

APIπ(n) = argmax
a

{

Raµa

∆
+

∑

n
′∈S

p(n′|s, a)h(n′)

}

.

In principle, the preceding procedure can be repeated multiple times. Although obtain-

ing progressively better policies—a feature of exact PI—can no longer be guaranteed, we

have found that, in practice, improvement in policy performance is indeed achieved. To

highlight key design choices, we denote the preceding procedure by API(π,n,m, r, t). The

parametrising arguments offer great flexibility and are as follows: the initial policy π, n the

number of states selected for bias estimation via simulation, m the number of replicated

simulations at each selected state, r the fraction of selected states in the anchor set (so 1−r

the fraction in the support set), and t the number of iterations of the algorithm. In what

follows, we write APIπ for the best-performing policy from t iterations of the algorithm,

including the initial policy, which ensures that we only consider policies which improve as

t increases. The trade-off between different choices of the parameters will be explored in

Section 6.2, where we will give a recommendation for their selection.

We now present an example to illustrate the algorithm. Consider a k= 2 example with

the parameters: λ1 = 2.5, λ2 = 3, µ1 = 3.5, µ2 = 4, θ1 = 0.75, θ2 = 2.5,R1 = 2.5,R2 = 1.7. We

use truncation levels N1 =N2 = 20 throughout. Please note that for this example the Rµ

rule gives priority to class 1, while the Rµθ rule gives priority to class 2. We use algorithms

of the form API
(

Rµθ,45,m, 32
45
,1
)

to construct policies. Figure 1 illustrates the selection

and interpolation stages of the algorithm for the case m = 105. Figure 1(a) shows Ssel,

with anchor states shown as diamonds and support states as circles. Figure 1(b) shows

the interpolated bias estimates over the entire state space. Although not shown here, the

surfaces of exact biases ωπ and simulated bias estimates throughout S closely resemble

the interpolated surface, capturing its shape and curvature well, especially so around the

anchor set. Figure 2 shows the actions taken in each state by the optimal policy for this

example, along with the actions resulting from use of the above algorithm with m set at

103, 104, and 105. We observe that as m increases, the corresponding policies approach

more closely the switching curve structure of the optimal policy.
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Figure 1 Illustration of the selection and interpolation stages of the algorithm in the example system.
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Figure 2 Class 1 (diamonds) and class 2 (circles) actions in each state under various policies in the example

system.

5. An Upper Bound on Achievable Rewards

In order to evaluate heuristic policies when the optimal solution in (7) is not available,

we derive an upper bound for the long-run reward rate. For a given feasible policy, if xi
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represents the implied fraction of time the server spends on class i customers, then

k
∑

i=1

Riµixi (16)

is the long-run reward rate for the feasible policy. To compute an upper bound for the

optimal long-run reward rate, we formulate a linear program with the variables xi ≥ 0, 1≤

i≤ k, and the objective function to maximize (16), subject to the constraint
∑k

i=1 xi ≤ 1.

The key to get a tight upper bound is to impose additional constraints on the xi so that

the resulting optimal policies come as close as possible to those implied by a feasible policy.

First, denote by A{i} the long-run fraction of time the server is busy if he serves only class

i customers and ignores all other classes, 1≤ i≤ k. Taking the number of class i customers

as the state, we have a birth-and-death process, so it is straightforward to compute

A{i} = 1−

[

∞
∑

n=0

(λi)
n

{

n
∏

m=1

(µi +mθi)

}−1 ]−1

,1≤ i≤ k.

We can add xi ≤A{i} as a constraint in the aforementioned linear program, 1≤ i≤ k, or a

total of k constraints.

To extend this idea, for T ⊆ {1, . . . , k}, we can add a constraint
∑

i∈T xi ≤AT , where AT

denotes the maximal long-run fraction of time that the server serves customer classes in

T by ignoring all other classes. To compute AT , consider the same MDP model in Section

2 with customer class set T , and substitute Ri = µ−1
i , i ∈ T , so that the long-run reward

rate becomes equivalent to the long-run fraction of time that the server is busy. Using DP

value iteration to compute the optimal solution when |T |= 2 or |T |= 3 is computationally

viable, resulting in
(

k

2

)

+
(

k

3

)

additional constraints.

Computing AT when |T | ≥ 4 is computationally infeasible, but we can still impose con-

straints derived from relaxed systems. To do so, we create a single fictitious class by aggre-

gation and relaxation of the customer classes in T . Denote the arrival, service, and aban-

donment rates of this fictitious class by λ=
∑

i∈T λi, µ=mini∈T{µi}, and θ=mini∈T{θi},

respectively. Since the server can only be busier with this fictitious class, the long-run

fraction of time that the server is busy in this relaxed system is a legitimate upper bound

for
∑

i∈T xi.

Taking this idea further, we could improve this upper bound by formulating a number of

two-class MDPs. Divide customer classes in T into two groups and aggregate the classes in
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each group into a fictitious class, as before. We then use DP value iteration to compute the

maximal fraction of time that the server is busy dealing with these two fictitious classes.

When |T | ≥ 4, we write BT for the tightest upper bound for
∑

i∈T xi derived with this

method, and add it as one constraint. Although it is possible to divide T into three or

more groups, the marginal benefit is outweighed by the increased computational burden.

To formulate a linear program to compute an upper bound for the optimal long-run

reward rate, define Sk′ ≡ {T ⊆ {1, . . . , k} : |T | = k′}, which is the set of all subsets of

{1, ..., k} whose cardinality is k′. This linear program is thus given by

max
k

∑

i=1

Riµixi

subject to

k
∑

i=1

xi ≤ 1, xi ≥ 0, 1≤ i≤ k;

∑

i∈T

xi ≤AT for all T ∈ Sk′ , k′ = 1,2,3;

∑

i∈T

xi ≤BT for all T ∈ Sk′ , 4≤ k′ ≤ k.

We would expect the upper bound to come close to the optimal long-run reward rate

in smaller systems k ≤ 3, mainly because of the optimized upper bounds AT . The upper

bounds BT in subsystems of size k′ > 3 will worsen as k′ increases, due to a greater relax-

ation when creating more customer classes. Consequently, the quality of the upper bound

tends to degrade as the size of the system k increases.

6. Numerical Study

In this section, we conduct extensive numerical experiments to assess the impact and design

of our API method, as well as the performance of a range of heuristics which includes

our suite of priority policies. Section 6.1 uses a numerical study based on cases with two

customer classes to explore design choices for our API heuristics. We assess, inter alia,

the relative performance of the candidate initialising priority rules Rµ and Rµθ as well as

testing different choices of parameters for our API method. This test yields a recommended

API policy which we denote rAPI. Using numerical studies based on cases with three and

five customer classes, Section 6.2 compares the performance of rAPI with that of other

heuristics. Section 6.3 contains a brief discussion of the computational burden of developing

rAPI and the upper bound discussed in Section 5.
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6.1. Selecting Parameters for the API Algorithm

To explore the trade-off between different choices of parameters for our API algorithm, we

test the algorithm on systems with k = 2 customer classes. Problems were randomly gen-

erated to reflect a wide range of conditions with regard to (1) the length of job lifetimes in

relation to service times (reflected in the categorisation A,B,C in (17c)–(17e) below); and

(2) the traffic intensity or workload in the corresponding system without abandonments.

There are three categories of traffic—namely light, moderate, and heavy—as determined

by the value of ρ=
∑k

i=1 λi/µi; see (17f)–(17h) below. For all nine combinations of A,B,C

with the traffic categorisation light, moderate, heavy, 500 problems were generated at

random. Parameters were sampled as follows:

µi ∼U [0.2,5] (all cases); (17a)

λi ∼U [0.2,5] (all cases); (17b)

θ−1
i µi|µi ∼U [0.5,2] (short lifetimes, A); (17c)

θ−1
i µi|µi ∼U [5,10] (moderate lifetimes, B); (17d)

θ−1
i µi|µi ∼U [20,200] (long lifetimes, C); (17e)

ρ∈ [0.6,0.8] (light traffic); (17f)

ρ∈ [0.9,1.1] (moderate traffic); (17g)

ρ∈ [1.2,1.4] (heavy traffic); (17h)

In the parameter generation, µi and λi were sampled according to (17a) and (17b)

by means of a rejection algorithm until a desired ρ condition (17f)–(17h) was met. An

additional rejection step ensured that the Rµθ and Rµ rules of each parameter set were

distinct; otherwise, all parameters were resampled. In all cases, rewards were sampled as

follows: R2 ∼U [1,3] and R1R
−1
2 |R2 ∼U [1.25,2]. To compute the optimal policy, we use DP

value iteration by truncating the state space at Ni = 40 for each class i with case A, and

Ni = 60 with cases B and C, as discussed in Section 2.

Table 1 reports the numerical results with k= 2 customer classes. In comparing the Rµθ

and Rµ rules, please recall that we use the descriptors ‘light’, ‘moderate’, and ‘heavy’ as

a shorthand for ranges of the traffic intensity ρ. The actual volume of traffic in the system

will also be strongly influenced by the abandonment rate θ, with case C (small θ) yielding

higher volumes than case A (large θ). Hence, while the Rµθ rule performs very well in the
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case {C, light}, as is consistent with Theorem 1, it performs poorly in the heaviest traffic

case of all, namely {C, heavy}. Its performance under A is less variable than under C, as

larger abandonment rates act as a moderator on traffic levels, though it still performs best

under A when ρ is small. The Rµθ rule clearly outperforms the Rµ rule when ρ is small

and θ not too large, while Rµ is the better policy when ρ is large, increasingly so as θ

declines in value and the traffic levels increase. It is worth noting that at least one of these

two priority rules delivers a median performance less than 1% suboptimal across all cases,

so they complement each other well.

Table 1 also reports the performance of the policy PI-Rµθ, which is derived from exact

application of a single PI step to the Rµθ rule. The fact that the PI-Rµθ is nearly optimal

shows promise of the API method, if the bias function can be approximated satisfactorily.

The policy GADL—due to Glazebrook et al. (2004), with GADL referring to the paper’s

four coauthors—requires much computational effort but is typically not as good as the

better between the Rµθ and Rµ rules.

The next seven columns in Table 1 explore the trade-off between different choices of

parameters of the API(Rµθ,n,m, r, t) proposed in Section 4.2. We use n= 45 selected states

throughout, with r = 32
45
. As one would expect, increasing m and t improves performance

whilst increasing computational effort. For a given level of computational effort, the strong

performance of PI-Rµθ suggests that the policy API(π,n,m, r, t) may perform better with

a single, more detailed iteration. Based on our wider experimentation, there appears to

be a degree of indifference in performance between multiple, less detailed iterations and a

single, more detailed iteration. Further, and unsurprisingly, a strongly performing initial

policy π usually improves performance. Based on these observations, to choose parameters

in API(π,n,m, r, t) for general k class systems, we recommend t = 1, a large value of m

(105, say) and allow n, the number of selected states, to scale roughly linearly with k, so

that 20k ≤ n ≤ 25k. To choose the initial policy π in general, we first run the pairwise-

swapping mechanism in Section 3.3 on the Rµθ rule, and on the Rµ rule, separately. It

turns out that in all numerical tests in this section, the final orderings are the same, which

we label PaS. The initial policy π in the API method is thus set to be the best performing

among Rµθ, Rµ, and PaS. We shall denote our recommended API policy by rAPI. As seen

in Table 1, the rAPI is nearly optimal in all our k = 2 class cases. The final column in

Table 1 reports the quality of the upper bound presented in Section 5. The upper bound

typically sits about 1–2% above the optimal value.
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Table 1 Percentage suboptimalities in k= 2 class systems of various traffic and abandonment level combinations. Variations of API using Rµθ as the initial policy with
n= 45 are denoted by (t,m), where t∈ {1,2,3} and m∈ {m1,m2,m3} with m1 = 103,m2 = 104,m3 = 105. In the last column, we report the percentage of the upper bound

above the optimal policy. Median, 75th, and 90th percentiles are shown.

API

Case Workload Rµθ Rµ PI-Rµθ GADL (1,m1) (2,m1) (3,m1) (1,m2) (2,m2) (3,m2) (1,m3) rAPI UB

A Light 90th 1.07 1.17 0.00 0.80 0.12 0.10 0.08 0.00 0.00 0.00 0.00 0.00 1.30
75th 0.59 0.45 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95

Median 0.17 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65

Moderate 90th 1.69 1.29 0.00 1.08 0.13 0.07 0.05 0.00 0.00 0.00 0.00 0.00 1.89
75th 1.03 0.38 0.00 0.52 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.34

Median 0.36 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90

Heavy 90th 3.64 1.39 0.00 1.61 0.12 0.07 0.06 0.02 0.01 0.01 0.00 0.00 2.41
75th 2.01 0.35 0.00 0.90 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.77

Median 0.76 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.13

B Light 90th 0.52 1.51 0.00 0.79 0.15 0.11 0.10 0.07 0.04 0.03 0.02 0.01 1.37
75th 0.21 0.82 0.00 0.39 0.06 0.05 0.05 0.03 0.02 0.01 0.00 0.00 1.00

Median 0.00 0.25 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65

Moderate 90th 1.70 1.81 0.00 0.99 0.40 0.32 0.30 0.18 0.10 0.08 0.04 0.03 2.17
75th 0.93 0.67 0.00 0.67 0.27 0.20 0.18 0.10 0.06 0.04 0.02 0.00 1.53

Median 0.28 0.01 0.00 0.35 0.10 0.09 0.08 0.03 0.01 0.01 0.00 0.00 0.97

Heavy 90th 6.16 1.10 0.01 1.97 1.41 0.88 0.77 0.65 0.36 0.32 0.31 0.05 2.23
75th 3.75 0.11 0.00 1.41 0.81 0.59 0.54 0.36 0.21 0.17 0.17 0.00 1.67

Median 1.71 0.00 0.00 0.77 0.40 0.35 0.32 0.14 0.09 0.07 0.02 0.00 1.11

C Light 90th 0.00 1.79 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45
75th 0.00 0.96 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31

Median 0.00 0.41 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18

Moderate 90th 0.97 2.92 0.03 1.09 0.34 0.28 0.24 0.33 0.24 0.21 0.27 0.09 1.75
75th 0.33 1.71 0.01 0.62 0.14 0.12 0.11 0.13 0.11 0.10 0.11 0.04 1.25

Median 0.04 0.62 0.00 0.33 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.00 0.79

Heavy 90th 16.48 0.01 0.00 2.16 1.53 0.96 0.80 0.69 0.25 0.19 0.29 0.01 0.26
75th 11.57 0.00 0.00 1.65 0.79 0.40 0.33 0.14 0.07 0.06 0.06 0.00 0.04

Median 7.38 0.00 0.00 1.08 0.08 0.06 0.04 0.00 0.00 0.00 0.00 0.00 0.00
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6.2. Comparing the rAPI and Other Heuristics

This section compares the rAPI and other heuristics in systems with k = 3 and 5 cus-

tomer classes. Problem parameters were again generated according to (17a)–(17h), along

with suitable rejection algorithms. We now use Ri ∼U [1,4] for sampled rewards. For each

lifetime/traffic combination, 100 problems were generated at random.

Table 2 reports the performance of various service policies against the optimal solution

for systems with k = 3 customer classes. The rAPI was constructed with t= 1, m= 105,

n = 75, and r = 52
75
. As seen in the table, the rAPI delivers near-optimal performance in

all cases, which reaffirms the strength of policies based on a single, well-estimated (but

nonetheless approximate) PI step applied to a well-chosen priority policy. Table 2 also

shows that a naive heuristic that always serves the longest queue (labeled SLQ) can perform

poorly. In most cases, PaS improves on both Rµθ and Rµ, though this is not universal. The

quality of the upper bound for k= 3 customer classes is similar to that for k= 2 customer

classes.

Table 3 reports the performance of various service policies against an upper bound on the

optimal solution, as discussed in Section 5, for systems with k= 5 customer classes. Since

value iteration is not computationally feasible, the gain of each heuristic is estimated as

the mean of 1000 Monte Carlo realisations, which is then compared with the upper bound

presented in Section 5. The policy rAPI was constructed with t = 1, m = 105, n = 100,

and r = 69
100

. As seen in Table 3, the relative quality among Rµθ, Rµ, PaS, and rAPI, is

consistent with that in Table 2. The PaS typically improves Rµθ and Rµ, and then the

rAPI further improves the PaS, although the improvement, on average, is rather marginal.

The rAPI is the best-performing policy in all cases, and its median performance is within

4% of the upper bound derived in Section 5. Although it is difficult to judge how the rAPI

compares with the optimal policy, the fact that the rAPI is much closer to the optimal

value than it is to the upper bound in Tables 1 and 2 suggests that the figures in Table 3

are a conservative statement of where the policies stand in relation to the optimal value.

Whereas our numerical experiments in Tables 1–3 show that the suite of priority policies

(Rµ, Rµθ, and PaS) generally perform very well and, in several cases the API method

offers only marginal improvement on average, it is not always the case. To conclude our

numerical study, we offer one example where the improvement of the rAPI method is

substantial. Consider a k = 3 example in which the class parameters (λj, µj, θj, Rj) are



James, Glazebrook, and Lin: Developing Effective Service Policies for Multiclass Queues with Abandonment
24 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2014-04-OA-084

Table 2 Percentage suboptimalities in k= 3 class systems of various traffic and abandonment level combinations.

In the last column, we report the percentage above the optimal policy of the upper bound. Median, 75th, and 90th
percentiles are shown.

Case Workload Rµθ Rµ PaS SLQ rAPI UB

A Light 90th 0.76 0.46 0.01 5.54 0.00 1.03
75th 0.23 0.23 0.00 3.29 0.00 0.70

Median 0.03 0.07 0.00 1.20 0.00 0.34

Moderate 90th 1.30 0.75 0.01 6.64 0.00 1.25
75th 0.62 0.39 0.00 3.25 0.00 0.94

Median 0.11 0.03 0.00 1.50 0.00 0.51

Heavy 90th 1.32 0.86 0.02 8.52 0.00 1.54
75th 0.62 0.32 0.00 5.28 0.00 0.99

Median 0.11 0.02 0.00 2.41 0.00 0.61

B Light 90th 0.26 0.69 0.04 3.39 0.01 1.15
75th 0.07 0.24 0.01 2.32 0.00 0.76

Median 0.01 0.09 0.00 1.43 0.00 0.45

Moderate 90th 0.85 0.89 0.08 6.03 0.02 1.58
75th 0.38 0.30 0.01 4.27 0.00 0.92

Median 0.10 0.05 0.00 2.58 0.00 0.55

Heavy 90th 1.52 0.86 0.16 10.10 0.03 1.65
75th 0.84 0.32 0.04 7.15 0.01 1.03

Median 0.13 0.02 0.00 3.70 0.00 0.58

C Light 90th 0.01 0.97 0.00 1.44 0.00 0.63
75th 0.00 0.50 0.00 0.90 0.00 0.29

Median 0.00 0.21 0.00 0.50 0.00 0.14

Moderate 90th 0.67 1.52 0.29 4.76 0.10 1.51
75th 0.24 0.70 0.07 3.28 0.02 0.93

Median 0.02 0.22 0.00 1.88 0.00 0.56

Heavy 90th 6.62 0.45 3.02 13.48 0.09 0.80
75th 2.78 0.13 1.03 8.83 0.01 0.38

Median 0.76 0.00 0.09 5.23 0.00 0.17

given for classes 1, 2, and 3 by (λ, 3, 0.1, 5), (5λ/3, 5, 1, 2), and (4λ/3, 4, 5, 1), respectively.

With these parameters we have λ = ρ, and the Rµθ rule gives class ordering 321, while

the Rµ rule gives 123. As seen in Figure 3, the Rµθ rule performs well for small ρ, while

the Rµ rule performs well for large ρ, which coincides with intuition. For intermediate ρ

values, however, there is a substantial gap between the suite of priority policies (Rµ, Rµθ,

and PaS) and the rAPI method (with t= 1, m= 105, n= 75). In particular, when ρ= 1.7,

the Rµ rule is 4.26% suboptimal, while the rAPI is 0.04% suboptimal.

6.3. Computational Time for rAPI and the Upper Bound

Table 4 summarizes the time needed to compute the rAPI heuristic. Please note that the

algorithm was coded in the C programming language and carried out on a High Perfor-

mance Computing cluster, with a typical node specification of 2.26Ghz Intel Xeon E5520
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Table 3 Percentage below the upper bound in k= 5 class systems of various traffic and

abandonment level combinations. Median, 75th, and 90th percentiles are shown.

Case Workload Rµθ Rµ PaS SLQ rAPI

A Light 90th 3.86 4.05 3.76 7.95 3.72
75th 3.40 3.43 3.24 6.28 3.23

Median 2.88 2.89 2.73 5.46 2.73

Moderate 90th 5.47 4.91 4.91 11.63 4.89
75th 4.08 3.92 3.86 9.86 3.86

Median 3.32 3.19 3.13 7.38 3.13

Heavy 90th 6.00 5.86 5.52 13.39 5.52
75th 5.16 4.97 4.80 10.60 4.80

Median 4.38 4.05 3.94 8.79 3.94

B Light 90th 3.76 3.97 3.74 7.85 3.74
75th 3.25 3.51 3.25 6.52 3.25

Median 2.74 2.88 2.70 5.36 2.70

Moderate 90th 5.76 5.96 5.73 13.30 5.73
75th 4.77 5.15 4.71 11.34 4.67

Median 3.40 3.41 3.37 9.30 3.37

Heavy 90th 6.45 6.29 6.08 17.56 6.07
75th 4.86 4.94 4.75 14.64 4.74

Median 3.87 3.82 3.78 11.66 3.64

C Light 90th 1.00 1.55 1.00 2.85 1.00
75th 0.80 1.23 0.80 2.32 0.80

Median 0.59 0.77 0.59 1.81 0.59

Moderate 90th 3.85 4.09 3.85 9.21 3.65
75th 2.53 3.29 2.53 7.23 2.51

Median 2.03 2.25 2.03 5.82 2.02

Heavy 90th 4.73 1.77 4.40 19.11 1.51
75th 2.92 1.01 2.24 15.09 0.88

Median 1.20 0.48 1.04 11.03 0.41

processor. Unsurprisingly, the computational burden grows with the number of customer

classes k. Recall that the number of selected states n used in the approximate PI step grows

roughly linearly in k. Further, as k increases, the balance of computational effort moves

toward the sampling stage of the API algorithm and, within the sampling stage, toward

the estimation of bias at the support states. These trends particularly reflect the nature

of the growth in the mean times tπ (n) for a single simulation run during the estimation of

the bias ωπ (n). The mean computation times for the upper bound in each problem are in

the order of 10 seconds, 400 seconds, and 3000 seconds for systems with 2, 3, and 5 cus-

tomer classes, respectively. This growth in the computational burden reflects the growth

in the number of MDP subproblems that must be solved through DP methods to generate

the constraints for the linear program in Section 5, when the number of customer classes

increases.
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Figure 3 Percentage suboptimality for six heuristics for the example at the end of Section 6.2. The variations of

API shown denote the initialising policy.

7. Conclusions

This paper studies the problem of developing effective service policies for multiclass queues

with abandonment in a computationally efficient manner. Whereas it is known in the

literature that the server can do well simply by maximizing the instantaneous reward

rate using the Rµ rule in heavy-traffic systems, we show that in light-traffic systems it

becomes important to take into account the abandonment rate using the Rµθ rule. We also

consider an approximate policy improvement algorithm to improve a given service policy.

Our numerical study shows that the Rµθ rule complements the Rµ rule, and applying a

pairwise-swapping mechanism to each often yields an even stronger priority policy. The

best priority policy that we compute is often nearly optimal; in the cases where it is not,

the approximate policy improvement algorithm invariably substantially tightens up either

the optimality gap, or the gap relative to the upper bound that we compute.

There are several interesting future research directions. If a customer’s lifetime in the

system does not follow an exponential distribution, then the server needs to take into

account the arrival time of each customer when selecting which customer to serve. The
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Table 4 Mean computation time (secs) needed to generate the rAPI policy in each problem

of various k class systems. Also shown are the mean proportions of overall computation time
spent on the pilot study, sampling of the anchor set, and sampling of the support set.

Proportion

k Case Workload Time Pilot Anchor Support

2

A Light 25 0.07 0.54 0.39

Moderate 26 0.07 0.54 0.39

Heavy 29 0.06 0.54 0.39

B Light 39 0.05 0.43 0.52

Moderate 49 0.04 0.44 0.52

Heavy 73 0.03 0.47 0.50

C Light 69 0.03 0.36 0.61

Moderate 233 0.01 0.45 0.54

Heavy 291 0.01 0.50 0.48

3

A Light 76 0.04 0.30 0.67

Moderate 81 0.03 0.31 0.66

Heavy 87 0.03 0.31 0.65

B Light 127 0.02 0.24 0.74

Moderate 157 0.02 0.27 0.71

Heavy 209 0.02 0.31 0.67

C Light 249 0.01 0.19 0.80

Moderate 806 0.01 0.32 0.68

Heavy 1822 0.00 0.45 0.54

5

A Light 198 0.02 0.17 0.81

Moderate 210 0.02 0.18 0.80

Heavy 224 0.02 0.19 0.79

B Light 338 0.01 0.14 0.84

Moderate 422 0.01 0.18 0.81

Heavy 559 0.01 0.24 0.75

C Light 810 0.01 0.11 0.88

Moderate 2371 0.00 0.29 0.71

Heavy 8786 0.00 0.49 0.51

problem will be further complicated if the time needed for the server to switch to another

queue cannot be ignored. Still another research direction is to allow the customers to be

active decision makers. For example, in military applications, an adversarial customer may

not select a queue to join at random as assumed in our model, but instead chooses the one

that maximizes the expected gain from his standpoint.
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