
Repurposing Web Analytics to Support the IoT

Mateusz Mikusz, Sarah Clinch, Rachel Jones, Mike Harding, Chris Winstanley and Nigel Davies
School of Computing & Communications

Lancaster University, Lancaster, UK
m.mikusz | s.clinch | r.jones1 | m.harding | c.winstanley | n.davies @ lancaster.ac.uk

ABSTRACT
The widespread use of free analytics tools has helped revo-
lutionise the web – enabling developers to gain deep insights
into user behaviour. Analytics are also perceived as critical to
enabling the next generation of the Internet of Things. How-
ever, despite the existence of numerous IoT analytics engines
none have had the catalytic effect of web analytics in helping
to transform developers’ understanding of the systems they
create. In this paper we report on our experiences of creating
and using a system that looks to repurpose web analytics to
enable growth in the future IoT.

INTRODUCTION
Web analytics have helped revolutionise the development and
use of web-based applications and services. Services such as
Google Analytics are freely available and provide developers
and website owners with comprehensive data on how users
interact with their sites. In particular, web analytics go far be-
yond simple monitoring of attributes such as “hits” on a web-
site and allow detailed analysis of user behaviour – enabling
sites to be rapidly adapted to address interaction problems,
thus helping to maximise the potential for users to achieve
the desired goal.

Drawing significantly on web technologies, the Internet
of Things (IoT) is emerging as an increasingly important
paradigm for creating a world of connected devices. Com-
pelling use cases have been articulated in domains includ-
ing health, transport, logistics, domestic energy control and
“smart’ cities. These use cases have been supported by the
development of a wide range of technologies in each do-
main [1]. To provide core support for the IoT a significant
number of distributed platforms have been developed in both
academia and industry. These platforms offer a range of
services from simple IoT device brokering to complex data
cleansing and prediction capabilities. However, while signifi-
cant work has been carried out on the plumbing necessary for
the creation of the IoT, significantly less research has been in-
vested in the creation of tools for understanding the data cre-
ated by the IoT. Data visualisations and analytics often tend
to be optimised for a single domain (e.g. smart cities [3]) or

form part of complex IoT infrastructures that are in marked
contrast to the ease of use and ubiquity of web analytics.

In this paper we explore the concept of repurposing an exist-
ing, widely available, web analytics system for use in the IoT
domain. We describe a simple cloud-based mapping service
that can translate IoT events into corresponding Google Ana-
lytics events and we provide detailed examples that illustrate
the use of such a service. In particular, we show how generic
web analytics can be used to support a number of distinct IoT
analytics use cases ranging from simple device and sensor
data monitoring to complex user interactions with multiple
IoT objects.

While we do not believe that web analytics provide the to-
tal solution for IoT data visualisation and reporting, in this
paper we show that current platforms can be successfully re-
purposed in a range of scenarios, enabling the emerging IoT
to leverage the significant investment in today’s global web
analytics services.

THE ANALYTICS LANDSCAPE

Web Analytics
Historically web analytics were dominated by server-side
analytics based on access log files. Modern web analyt-
ics include comprehensive client-side data collected using
JavaScript embedded in each web page. Each type of user
interaction can be described using specific attributes such as
“page views” and “events” consisting of different features
(table 1). To enable general tracking of browsing activity,
web analytics uses page views—each time a user opens a
page, a page view event is reported to the analytics service.
Page view events consist of information about the page vis-
ited (title, host and full path), the path of the referring web-
site, and can be optionally extended by a unique user iden-
tifier for cross-device tracking. If no user identifier is spec-
ified, the backend recognises users through client-side cook-
ies allowing the analytics service to track the user across
multiple pages and provide visualisations of navigation pat-
terns. Additionally other information such as the number of
page views, unique and returning visitor numbers and referral
paths is visualised.

Customisable “event” hit types can be used to express on-
page events. Each event hit type consists of four attributes:
category (required), action (required), label (optional) and
value (optional). Together the category and action attributes
describe the action that was performed on the page—for ex-
ample, a user clicking on a play-button on the page. If a value
is supplied, it must be a non-negative integer; the analytics

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/76956263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

backend dynamically generates appropriate graph visualisa-
tions for incoming values and displays the number of incom-
ing events in an overview. Users can filter for specific cate-
gories, actions and labels and specify goals to be met based
on the value attribute.

Client-side analytics data is typically communicated to a
cloud-based analytics service using a protocol such as the
Universal Measurement Protocol (UMP) [6]. In addition to
events and page views, UMP supports an additional set of
hit types for mobile applications, e-commerce systems, and
social interactions, and can be extended using custom dimen-
sions and metrics.

IoT Analytics
Much of the value of the Internet of Things is expected to be
derived from the capture and analysis of data from embed-
ded sensors. In the commercial world IoT applications often
represent complex, end-to-end vertical systems that integrate
both hardware and software components in domains such as
transport, industrial automation and smart cities [1, 7].

Enterprise cloud-based IoT platforms such as
Mnubo (http://mnubo.com/), SAP IoT Solutions
(http://go.sap.com/solution/internet-of-things.html)
and Thingworx (http://www.thingworx.com/) aim to ease
development and deployment by reducing the complexity,
time and cost required to implement IoT applications,
providing off-the-shelf services including data storage,
machine learning and data analytics. However, in con-
trast to web analytics, analytics for the IoT is a heavily
fragmented market place with a large number of players
offering a diverse set of capabilities. Several state-
of-the-art IoT cloud platforms such as AGT (https:
//www.agtinternational.com/iot-analytics/iot-

analytics/iota-agts-iot-analytics-platform/) pro-
vide integrated IoT analytics capabilities but these are
typically closed systems. Platforms such as ParStream
(https://www.parstream.com/product/) provide analytics
for IoT applications but require developers to integrate
with proprietary data storage to generate analytics over
incoming data streams. Similarly, Intel’s IoT Cloud Analyt-
ics (https://software.intel.com/en-us/iot) platform is
compatible with Intel accredited IoT devices (i.e. sensors)
and agents.

In addition to general IoT analytics platforms, researchers
have also developed analytics tools for specific domains. For
example, for signage analytics and audience measurement In-
tel’s AIM suite (https://aimsuite.intel.com/) provides a
visual analytics tool for realtime audience tracking captur-
ing both demographics and behaviour. A similar system by
IBM enables the creation of behaviour analysis reports for
people inside buildings or public spaces [8]. In domains such
as smart cities researchers have created visualisations that en-
able the public to understand the flow of information within
their city [3].

Analysis
There are marked differences between the web and IoT an-
alytics landscapes. In the former there is a dominant player

Figure 1: Pheme architecture diagram.

with a freely available offering used by over 60% of the For-
tune 500 websites regardless of their application domain (e.g.
e-commerce, blogs, news sites). The development overhead
for incorporating analytics into a website is very low and most
developers are familiar with the steps required. Moreover,
understanding the basic analytics provided is easy and there
exists a large community of specialists able to provide more
detailed analysis. In contrast, the IoT domain is characterised
by complex platform and analytics offerings and as a result
many developers end up developing their own analytics dash-
boards using visualisation toolkits such as D3.js (d3js.org).
The emergence of research into pervasive analytics (e.g. [2])
and analytics for the IoT [5] demonstrates new application
domains for data analytics but has not explored the repurpos-
ing of an existing web analytics system to provide the neces-
sary capabilities.

In this paper we consider whether existing web analytics ser-
vices can be repurposed to support a reasonable subset of IoT
application domains and associated analytics requirements. If
such repurposing can be shown to be viable then IoT develop-
ers could benefit from an existing analytics platform that can
clearly operate at global scale, has a low barrier to entry, and
brings a large user base that understands how to use the tools
and interpret the results. Perhaps more critically, such an ap-
proach would lay the foundation for the development of tools
to explore user interaction with the IoT. As such our work is
designed to help accelerate the adoption of the IoT through
the use of web technologies and builds on a significant body
of research on systems such as Cooltown [10] that explored
the integration of web technologies with people, places and
things in the physical world and that continues to have signif-
icant traction in the community [11].

PHEME: AN ANALYTICS REPURPOSING SERVICE

Overview
We have designed and developed a cloud-based service,
Pheme, that allows existing web analytics systems to be re-
purposed for data collection in the IoT. Our architecture con-
sists of four components (Figure 1): an Import module, a pre-
processing and data integration module, a visualisation and
reporting engine, and an Export module.

http://mnubo.com/
http://go.sap.com/solution/internet-of-things.html
http://www.thingworx.com/
https://www.agtinternational.com/iot-analytics/iot-analytics/iota-agts-iot-analytics-platform/
https://www.agtinternational.com/iot-analytics/iot-analytics/iota-agts-iot-analytics-platform/
https://www.agtinternational.com/iot-analytics/iot-analytics/iota-agts-iot-analytics-platform/
https://www.parstream.com/product/
https://software.intel.com/en-us/iot
https://aimsuite.intel.com/
d3js.org

Page Views Events
Time on site Category, action, label, value
Bounce rate Grouping across attributes
Funnels Non-negative integer values
Entry & exit points Graphs visualisation for values
Content Link events to pages
Heirarchical URI / drill down
Value is 1
Referrer
Graph visualisation for page views

User ID, Time

Table 1: Comparison of features provided by Google Analytics when using Page View and Event hit types.

The flow of data through Pheme is as follows. Client devices
and sensors report their data to the Import module using an
extension to UMP that provides a richer set of data types for
describing interaction with IoT components. In common with
most web analytics systems, in order to correctly associate
incoming data with user accounts every UMP message must
include a tracking ID obtained from Pheme through a simple
user interface.

Each incoming dataset triggers pre-processing and data in-
tegration modules that parse incoming data, creating objects
for use by other components of the system (e.g. for data val-
idation or filtering). A modular design allows Pheme to be
extended with additional pre-processors at any time; for ex-
ample, modules may be written to fuse datasets from multiple
data sources, enable cross-device analytics or enrich datasets
based on historical data.

Following pre-processing and integration, data may then be
automatically exported and injected into third-party analyt-
ics engines (e.g. Google Analytics). The Export component
allows developers to plug in multiple “injectors”—each of
which provides a specific mapping to make the data compati-
ble with a third-party service. Since each user may have mul-
tiple tracking instances with unique tracking IDs registered
to Pheme, each instance can be associated with one or more
injectors. For example, multiple injectors representing dif-
ferent mappings can be used to provide support for different
reporting requirements simultaneously.

Finally, if the third-party web analytics service does not pro-
vide sufficient visualisations and reporting, the data may be
fed to Pheme’s visualisation and reporting engine to provide
specific extensions to visualise the pre-processed data. In this
way we utilise existing web analytics reporting tools but can
also support custom IoT-specific reporting as needed.

Implementation
Pheme is implemented in Python on the Google AppEngine
cloud service. The import module provides a RESTful API
that accepts extended UMP data. Different event and report-
ing types are distinguished using specific UMP attributes—all
events are reported to a single API.

The pre-processing and export of data is implemented
through provision of a set of injectors. Registering new map-

pings with the system consists of creating a new Python class
in the backend by inheriting from provided base classes and
simply writing the mapping. For the end user, we offer a user
interface to set up their own tracking IDs and to configure
each ID with appropriate injectors. During this assignment
users can provide a third-party tracking ID (e.g. for Google
Web Analytics) to be used for every dataset injected to the
service. Two injectors are currently supported. The “Datas-
tore Injector” writes each dataset to a local datastore within
Pheme. The “Google Analytics Injector” maps datasets to
web analytics terminology and pushes these in real-time to
Google Analytics using vanilla UMP. Injector assignments
can be removed by the user. For example, removing the Data-
store Injector will turn Pheme into a simple analytics mapping
proxy and prevent it from storing the raw data.

To allow easy integration into existing IoT deployments,
we provide client libraries for Python 2.7 and 3, PHP, and
JavaScript. These libraries provide a common set of event
types and methods for reporting to Pheme.

As an example, for analytics tracking in Python, the li-
brary is first initialised by providing a unique tracking
ID (previously registered with the system using the back-
end UI): analytics = IoTAnalytics(‘tracking

id’). The library then generates a client UUID to be in-
cluded with each request; optionally, this ID may be over-
written by the user to, for example, track corresponding val-
ues across multiple devices and sensors.

In order to submit relevant data, for example, to
track specific content, the “track page view” method
can be used to provide parameters about the docu-
ment: track pageview(location, host, path,

title, description, id, hash). Alternatively,
users may use the event type to track sensor val-
ues: track event(category, action, value,

label). Choosing the correct method and attributes is im-
portant to achieving the right mappings and reporting (de-
scribed in more detail later).

CASE STUDIES OF USE
We have used our generalised mapping service to support an-
alytics in four distinct IoT application domains.

IoT Energy Sensors
Our first example focuses on the use of web analytics to pro-
vide visualisation of IoT energy sensors used in domestic en-
ergy consumption research. While smart meters can provide
an overall measure of the power consumption of a household,
fine-grained insight into energy use requires the deployment
of multiple sensors – ideally one for each plug in a household.
The researchers we collaborated with wished to have an an-
alytics system that supported a range of sensor types, named
groups of sensors, and fault monitoring. The Plugwise do-
mestic energy sensors used transmit readings wirelessly to a
gateway device in each household; this gateway was mod-
ified to include calls to Pheme’s client library that reported
each sensor reading.

Each sensor reading consists of a MAC address, user-
specified sensor name, a timestamp, and the current power
consumption (a float value). For analytics provision, these
sensor readings must be mapped onto appropriate Google An-
alytics parameters. One possibility would be for each sen-
sor reading to be mapped onto one “page view”. This would
allow tracking of whether sensors are “alive” and reporting
values, but the values themselves would not be expressed
through this type. Instead we use the “event” type with its
user-defined attributes: category, action, label and value.

We map each sensor’s MAC address to the client ID attribute.
In this way the number of sensors reporting to the analyt-
ics backend maps directly to the number of “active users on
site”. Each user-specified sensor name is mapped to the label
attribute such that the Google Analytics backend represents
each sensor appears under a friendly name for easy naviga-
tion. To report sensor readings themselves we map reported
power consumption onto the value attribute. However, since
Google Analytics only allows positive integer values for this
attribute, Pheme scales and rounds float values. Sensors are
grouped using category value; for example, categories such
as “bedroom” and “kitchen” can allow the user to view the
cumulative power consumption in these rooms.

This mapping provides simple yet useful analytics features
for researchers with support for real-time and historical view-
ing of sensor data. Users can easily determine whether all
sensors are reporting through the total number of “active users
on site”. Each of the event values can be directly viewed to,
for example, determine the cumulated energy consumption
for a given time frame. Erroneous sensor readings can be au-
tomatically detected in the analytics service by specifying and
checking progress against goals for incoming event values.

IoT Cloud Data Services
A common IoT use case involves adding value to sensor data
through additional (cloud-based) processing; for example,
data cleansing or combination of multiple data sources and
historic traces in order to predict future sensor states. In this
example we focus on the use of analytics to provide insights

into a system designed to report current and predicted future
states of IoT sensors.

Our use case focuses on environmental monitoring, in partic-
ular the monitoring and prediction of river water levels. We
wanted to provide an analytics service that provided a view
on the data being produced by river level sensors and the ac-
tivities of a custom IoT hub that provided a prediction capa-
bility for these sensors. In particular, we needed to support
threshold monitoring of sensor values, spatial and temporal
reporting and fault monitoring.

Where the previous use case focussed on raw sensor data as
input to the analytics service, here the problem centres on
understanding processed IoT data using analytics. For this
reason, the analytics library was integrated directly into the
prediction hub. Rather than have each each sensor separately
report raw data, each time a new prediction is generated, the
hub reports to Pheme with the predicted sensor state.

We again reported sensor readings and predictions as events
rather than page views. In contrast to the previous example
we chose to map river names to the category attribute, sensor
identifiers to the label attribute, and predictions as actions.
This enabled us to use the client ID to report the hub pro-
ducing the prediction, and to allow filtering of predictions for
specific rivers and sensors. This mapping gives an insight into
the overall number of predictions (expressed as “active users
on site”) created in a specified time frame. River levels them-
selves are mapped onto the event’s value attribute—enabling
Google Analytics to compute an average values and graph
visualisations; scaling was again used to overcome the limi-
tation of only being able to report integer values.

A common feature of web analytics is the geographic map-
ping of requests based on IP. At present, manipulation of the
location attribute for requests is not supported through UMP.
Proxying can allow the IP address to be set in order to gen-
erate a location, but the accuracy of the reverse IP lookup
is likely to be poor and in many cases a sensor’s location is
known or measured by the sensor itself. In order to address
this, our extended UMP includes attributes for latitude and
longitude. A custom visualisation on our analytics backend
maps out the sensor data based on these additional attributes.

Sign Analytics
While our first two use cases focused on traditional IoT ana-
lytics we now explore the use of Pheme to support reporting
of both IoT analytics and user engagement. Our example is
based on the increasingly pervasive digital signs that illustrate
the way in which the presence of IoT devices can change how
people engage with space. Analytics offer value to sign own-
ers by providing insights into the operation and success of a
deployment (e.g. content shown, level of audience engage-
ment).

We have operated a campus-wide signage network for over
ten years and in this use case we describe how we have
exploited web analytics to provide simple signage analytics
to report faults, content impressions, and user interactions.
By integrating Pheme’s client library calls into existing open

Figure 2: Using Google Analytics for visualising currently
played content items on digital signs.

source signage software, we developed a sign analytics sys-
tem to monitor a campus deployment of approximately 30
displays [4].

To describe content shown on a display, we report each transi-
tion of a content item onto the display as a page view for that
item. This enables Google Analytics to report the typical con-
tent duration for media (across a deployment or single sign),
as shown in Figure 2. In addition, user funnels can be used
to visualise content change patterns (for example, identifying
when display owners typically create a schedule in which a
specific content item is always followed by another specific
item).

Video analytics are a useful tool to understanding the real im-
pact of displays (for example, to count the number of people
looking at a display) and can be implemented using relatively
simple image processing software (e.g. OpenCV). We iden-
tified two approaches to handling this data. In the first, each
passerby looking at a display is classed as one “page view”.
Arguably the most natural mapping, this means that reports
of “active users” directly correlate to people currently ob-
serving the screen. However, this approach makes it impos-
sible to simultaneously report content changes as page views.
The second approach instead reports face counts as custom
events, thereby maintaining compatibility with the previously
described technique of reporting content using page views.
Our implementation uses this second approach, which also
offers the potential for additional reporting (e.g. of demo-
graphics, gesture patterns) through the addition of new event
categories.

To understand the pattern of content shown on a display, and
to provide support for monitoring and reporting, it is neces-
sary to make displays visible as first class entities in the an-
alytics reporting tools. However, in most web analytics plat-
forms users generating the hit data are typically anonymised
and invisible, meaning that the origin of a request (i.e. the dis-
play) would not be visible in our display analytics. To over-

come this, we introduce an additional mapping from display
name to the referrer attribute. Each display is additionally
mapped as a user and client ID in the analytics backend mean-
ing that the “total number of (active) users” correlates to the
count of distinct displays, and the number of unique visitors
to the number of (active) displays.

For additional reporting we use custom events for informa-
tion such as the physical power state of the signs. Combining
this physical power state information with page views within
Pheme can lead to a more reliable page count (e.g. “only re-
port page views if the display is turned on”).

Finally, we note that the use of “goals” can provide auto-
mated monitoring. For example, setting goals for page view
counts can automatically identify whether content item has
been shown the expected number of times.

Multi-Device Interaction
As the IoT becomes more pervasive, user interaction with the
IoT will span not one but many devices. Analytics provide
an opportunity to understand the relationships between inter-
actions with multiple distinct IoT devices. Our final use case
focuses on how users engage with multi-screen ecosystems,
and how attention flows transfer between devices during those
engagements.

To explore multi-device engagement monitoring we created a
system called ENGAGE [9] that provides a set of independent
engagement sensors. We equipped laptops and digital signs
with web cameras and OpenCV face counters to determine
the level of user engagement. For engagement monitoring of
smartphones we developed a simple simple background ap-
plication. We integrated these ENGAGE tools with Pheme
for basic reporting capabilities. Each device reported the face
count, interaction or content change using an extended UMP
hit type “device interaction” consisting of the application or
content name, path, device type, user ID, type of interac-
tion (“touch” or “move”) and the physical state of the device
(whether the screen was turned on).

We generated a mapping for the translation of multi-device
engagement flow events to traditional web-analytics termi-
nology. First, to support cross-device tracking of the same
individual, a unique user ID was shared accross devices and
mapped onto both the user ID and referrer attribute of Google
Analytics. Thus, current engagements correlate directly to
one session and can be retrieved as “session time.” Second,
we mapped engagement and interaction with devices and ap-
plications as page views. This enables us to take advantage of
the “user funnel” created automatically by Google Analtyics
for visualising cross-device interaction patterns.

Within the page view model, we composed
the content URI using a hierarchical scheme
(device type/application name/content thus
allowing “content drilldown”: users could first look at all
device types in general, having the option to drill down into
more detail. New device types can be dynamically created
and reported to the analytics backend without any further
mapping rules. Although not currently pushed to Google

Analytics, detailed information about interaction type is also
collected by the client library.

Scalability
One advantage of leveraging web analytics is the ability to
leverage a highly scalable infrastructure. Google Analytics
itself has a large user base and is capable of handling 1
billion hits per month per property (limited to 10 million
for non-premium accounts) and 200,000 hits per user (e.g.
client or sensor) per day (https://developers.google.com/
analytics/devguides/collection/gajs/limits-quotas).
The latter equals to approximately 2.31 hits per user per
second. Deployed as a cloud service, Pheme was built with
scalability in mind and benefits from the scalability of App
Engine including unlimited storage and the ability to handle
large numbers of requests. To date, Pheme has run for eight
months supporting our signage use case with an average
of 30 clients generating ⇠114,000 requests per day (⇠1.3
requests per second, and a total of 97 GB of data). Our
environmental monitoring use case featured over 3,100 water
level sensors.

CONSIDERATIONS WHEN USING WEB ANALYTICS FOR
IOT DATA
Our experiences with four distinct use cases suggest that
when choosing to use a web analytics service for IoT appli-
cations a number of detailed considerations must be borne in
mind. A key design decision is the selection of either page
view or event hit types to represent data (the features of these
hit types are described in Table 1). If the data to be recorded is
not binary then the lack of a value attribute for page views dic-
tates that the event type should be used. Multiple variable val-
ues for the same entity can be mapped using separate events,
each event sharing a common label (i.e. sensor identifier) and
having a unique action that describes the value type. The val-
ues themselves can be mapped onto the value attribute (but
must be given as positive integers). Thus, additional readings
and states can be added in the future by pushing a new action/
value pair with the same label. An event’s category attribute
can be used for grouping multiple entities (e.g. all sensors in
a household).

By contrast, if the IoT data simply reflects an occurrence of
an event (where the important points are the start and end of
that occurrence) then page views may be more appropriate;
using page views in this way gives access to additional aggre-
gations (e.g. time on site, bounce rate, funnels). For example,
using page views in a domestic energy setting might allow ob-
servation of patterns in device use, such as the turning on of
a kettle frequently being followed by use of the oven. How-
ever, the submission of a new page view event has the effect
of ending any previous page view from the same user; in some
cases household energy events may occur simultaneously (i.e.
when the kettle and toaster are running concurrently) and this
is not well represented by page views.

Page views may also be an appropriate reporting mecha-
nism if the IoT entity being monitored can be described as
a hierarchical association of elements that can be mapped
onto a url-style path. For example, sensors installed in

a certain room of an apartment could be described as
apartment/room/sensor enabling content drill-down
through these different levels.

Care should be taken when considering using web analytics
to monitor IoT event data that is not reported in a timely fash-
ion. Specifically, Google Analytics allows small time offsets
to be reported using UMP to enable capture of events during
periods of temporary disconnection (up to 4 hours). How-
ever, Google Analytics does not allow historical data or fu-
ture, predicted events to be reported. Our extensions to UMP
in Pheme do allow such events to be reported for local visual-
isation but these events cannot easily be injected into Google
Analytics.

Web analytics aggregate and anonymise individual user
(client) behaviours. However, when used in the IoT domain,
it is common to want to filter and report hit events based on a
specific client ID. Since this is unsupported, we found a com-
mon practice across our use cases was the mapping of sensor/
device ID to both client ID and referrer – thus making the
entity’s underlying identifier visible in the web analytics UI.

We note that the provision of client libraries allowed easy in-
tegration of analytics into IoT-related services similar to the
JavaScript snippet approach for web analytics. A standard set
of methods allows developers to track page views or events;
mapping is performed both client-side (by deciding which
values should be reported as events or page view paths) and
on Pheme (by mapping onto standard UMP and injecting data
into Google Analytics).

CONCLUSIONS
Web analytics have revolutionised the development and use
of web-based applications and services. In this paper we have
shown that these same technologies can be repurposed to sup-
port IoT applications. In particular, through four distinct use
cases we have demonstrated the implementation of a range
of analytics services including sensor monitoring and user
engagement tracking that have been successfully used over
a number of months in an IoT deployment. Clearly Pheme
does not provide the type of detailed domain-specific analyt-
ics that a comprehensive IoT analytics package offers. More-
over, our decision to use a RESTful API for Pheme coupled
with the inherent limitations of the analytics system that we
use means that we have limited support for streaming data and
that data may require processing prior to injection (e.g. to ac-
commodate negative numbers). However, we are able to add
useful analytics to IoT deployments with minimal develop-
ment effort and cost – thus addressing a significant barrier to
widespread implementation of the IoT. Where more sophisti-
cated analytics are required the architecture of Pheme enables
data to be easily routed to domain specific visualisation and
reporting tools.

In addition to providing a generally useful approach to IoT
analytics, we believe that considering IoT in the context of
web analytics will also help trigger a debate on the form that
user-oriented analytics will take in the future IoT. If we are
able to successfully capture user interactions with the IoT at
scale this will enable developers to rapidly refine their device

https://developers.google.com/analytics/devguides/collection/gajs/limits-quotas
https://developers.google.com/analytics/devguides/collection/gajs/limits-quotas

and application designs to meet user needs – helping to enable
the future IoT.

ACKNOWLEDGMENTS
This research was partially funded through FET grant num-
ber: 612933 (RECALL) and was made possible with the sup-
port of a Google Faculty Research Award.

REFERENCES
1. Atzori, L., Iera, A., and Morabito, G. The internet of

things: A survey. Comput. Netw. 54, 15 (Oct. 2010),
2787–2805.

2. Balan, R. K., Misra, A., and Lee, Y. Livelabs: Building
an in-situ real-time mobile experimentation testbed. In
Proceedings of the 15th Workshop on Mobile Computing
Systems and Applications, ACM (2014).

3. Batty, M., and Hudson-Smith, A. Visual analytics for
urban design. Urban Design 132 (2014).

4. Friday, A., Davies, N., and Efstratiou, C. Reflections on
long-term experiments with public displays. Computer,
IEEE 45, 5 (May 2012), 34–41.

5. Funk, M., van der Putten, P., and Corporaal, H.
Analytics for the internet of things. In CHI ’09 Extended
Abstracts on Human Factors in Computing Systems,
ACM (2009), 4195–4200.

6. Google Inc. Measurement protocol parameter reference.
https://developers.google.com/analytics/

devguides/collection/protocol/v1/parameters,
March 2015.

7. Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
Internet of things (iot): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 29, 7
(Sept. 2013), 1645–1660.

8. Hampapur, A., Bobbitt, R., Brown, L., Desimone, M.,
Feris, R., Kjeldsen, R., Lu, M., Mercier, C., Milite, C.,
Russo, S., Shu, C.-F., and Zhai, Y. Video analytics in
urban environments. In Proceedings of the 6th IEEE
International Conference on Advanced Video and Signal
Based Surveillance (2009), 128–133.

9. Jones, R., Clinch, S., Alexander, J., Davies, N., and
Mikusz, M. Engage: Early insights in measuring
multi-device engagements. In Proceedings of the 2015
International Symposium on Pervasive Displays, ACM
(2015).

10. Kindberg, T., Barton, J., Morgan, J., Becker, G.,
Caswell, D., Debaty, P., Gopal, G., Frid, M., Krishnan,
V., Morris, H., Schettino, J., Serra, B., and Spasojevic,
M. People, places, things: Web presence for the real
world. In Proceedings of the Third IEEE Workshop on
Mobile Computing Systems and Applications, IEEE
Computer Society (2000).

11. Want, R., Schilit, B., and Jenson, S. Enabling the
internet of things. Computer 48, 1 (Jan 2015), 28–35.

https://developers.google.com/analytics/devguides/collection/protocol/v1/parameters
https://developers.google.com/analytics/devguides/collection/protocol/v1/parameters

	Abstract
	Introduction
	The Analytics Landscape
	Web Analytics
	IoT Analytics
	Analysis

	PHEME: An Analytics Repurposing Service
	Overview
	Implementation

	Case Studies of Use
	IoT Energy Sensors
	IoT Cloud Data Services
	Sign Analytics
	Multi-Device Interaction
	Scalability

	Considerations When Using Web Analytics for IoT Data
	Conclusions
	Acknowledgments
	REFERENCES

