
DISCONNECTED RATIONAL HOMOTOPY THEORY

ANDREY LAZAREV AND MARTIN MARKL

Abstract. We construct two algebraic versions of homotopy theory of rational discon-
nected topological spaces, one based on differential graded commutative associative algebras
and the other one on complete differential graded Lie algebras. As an application of the de-
veloped technology we obtain results on the structure of Maurer-Cartan spaces of complete
differential graded Lie algebras.

Contents

Introduction 2

1. Main results 5

Part 1. The de Rham-Sullivan approach. 9

2. Homotopy properties of the localization and proof of Theorem 1.4 10

3. Maps of direct products of dg commutative associative algebras 14

4. DG commutative associative algebras of finite type 18

5. Proofs of Theorems A, B and C 20

6. Augmented dg commutative associative algebras and pointed spaces. 21

Part 2. The Lie-Quillen approach 23

7. The simplicial Maurer-Cartan space 23

8. Proof of Theorem 1.7 29

9. Dual Hinich correspondence 34

10. Disconnected spaces and dg Lie algebras 42

Appendix A. Cohomology of free products of dg Lie algebras 45

References 49

The first author was partially supported by the EPSRC grant EP/J008451/1. The second author was sup-
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2 ANDREY LAZAREV AND MARTIN MARKL

Introduction

The purpose of this paper is to construct an algebraic theory of rational disconnected

topological spaces (or simplicial sets), alluded to in [23, p. 67]. The corresponding theory

for connected spaces was constructed in the seminal papers [26, 27]. The paper [26] related

rational connected spaces to differential graded Lie algebras (dglas) whereas [27] took the

perspective of commutative differential graded algebras (cdgas). In the present paper we

pursue both points of view and construct both the dgla and cdga algebraic models for dis-

connected spaces. It is interesting that the differences between the two algebraic categories

(which were somewhat hidden in the Quillen and Sullivan approaches) become more pro-

nounced in our more general context; in particular we are naturally led to consider dglas

endowed with a linearly compact topology, while our cdgas are still discrete.

The definitive reference establishing a correspondence between rational connected spaces

and cdgas is [5], and our treatment relies heavily on the results of that paper. Recall that

op. cit. constructed a closed model category structure on non-negatively graded cdgas and a

Quillen adjunction between this category and the category of simplicial sets. This adjunction

restricts to an equivalence between the homotopy categories of connected cdgas of finite Q-

type and connected rational nilpotent simplicial sets of finite Q-type.

Our main innovation in establishing a cdga version of disconnected rational homotopy

theory is that we remove the restriction that our cdgas be non-negatively graded and use

the closed model structure on the category of Z-graded cdgas [14]. This seemingly innocent

modification has quite dramatic consequences. For example, any commutative algebra con-

centrated in degree zero is cofibrant in the Bousfield-Gugenheim category, but not in this

extended category, unless it is a retract of a polynomial algebra. The closed model category

of all cdgas appears more natural than the Bousfield-Gugenheim category; for instance it

allows one to define Harrison-André-Quillen cohomology, cf. [3].

There is still a Quillen adjoint pair of functors between the categories of Z-graded cdgas

and simplicial sets giving rise to an adjunction on the level of homotopy categories. This

adjunction restricts to an equivalence between the homotopy category of simplicial sets

having finite number of connected components, each being rational, nilpotent and of finite

Q-type, and a certain subcategory of the homotopy category of Z-graded cdgas. We give an

explicit characterization of this subcategory.

To construct the second version of the disconnected rational homotopy theory (based

on dglas) we need to relate the homotopy theory of commutative and Lie algebras. This

relationship, which is sometimes referred to as Koszul duality was established in the work of

Quillen [26]; it was formulated as the duality between differential graded coalgebras and dglas

under certain (fairly severe) restrictions on the grading of the objects under consideration.

These restrictions were subsequently removed in the seminal paper of Hinich [15]. In our

context we need a result that is Koszul dual to Hinich’s; it can be regarded as a Quillen

equivalence between the categories of cdgas and differential graded Lie coalgebras (which can

be dualized and viewed as complete dglas). We prove this result by a suitable adaptation of

Hinich’s methods. As a consequence we obtain an algebraic model of disconnected rational

homotopy theory based on complete dglas. The condition of completeness is essential; it
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DISCONNECTED RATIONAL HOMOTOPY THEORY 3

cannot be removed even when restricted to connected spaces (or simplicial sets). In the

latter case our theory is close to, but still different from, the one constructed in the papers

by Neisendorfer and Baues-Lemaire [2, 24]. In particular, our complete dglas admit minimal

models even in the nonsimply-connected case, whereas simply-connectedness is an essential

requirement for the existence of minimal models constructed by Neisendorfer and Baues-

Lemaire.

One important application of the developed theory that we give in this paper, concerns

the structure of Maurer-Cartan spaces. Recall (cf. [11]) that associated to any dgla g is

a simplicial set MC•(g); in the case when g is non-negatively graded and nilpotent, this

is a simplicial set corresponding to g under the Quillen-Sullivan correspondence. When g

is not non-negatively graded, the simplicial set MC•(g) is much more mysterious; this is a

fundamental object of study for deformation theory [17, 21, 23] and also comes up in modern

approaches to quantum field theory [8]. It turns out that for differential graded Lie algebras

satisfying an appropriate completeness condition there exists an operation of disjoint product

corresponding to the operation of disjoint union of simplicial sets. The disjoint product of

two dglas is never non-negatively graded and we prove that the Maurer-Cartan simplicial

set of the disjoint product of complete dglas is weakly equivalent to the disjoint union of the

corresponding simplicial sets. Furthermore, for an arbitrary complete dgla g the simplicial

set MC•(g) naturally decomposes up to homotopy as a disjoint union of Maurer-Cartan

spaces of certain connected dglas naturally associated with g. Along the way we establish

a general result of independent interest, expressing the Chevalley-Eilenberg cohomology of

free products of dglas through the Chevalley-Eilenberg cohomology of the individual pieces.

It appears that this result is new even for ordinary Lie algebras.

Similar results on the Maurer-Cartan spaces of dglas were contained in the recent paper

[6] by U. Buijs and A. Murillo, who used completely different methods, see, in particular,

Theorem 5.5, Proposition 6.2 and Theorem 6.4 in op. cit. Their statements do not include

any completeness assumptions. We have been unable to verify the claims made in that paper.

M. Golasiński published a series of papers, see e.g. [12], studying the equivariant ratio-

nal homotopy type of spaces X with an action of a finite group G with possibly discon-

nected fixed-point sets XH . When G is trivial, his theory describes spaces whose connected

components are rational nilpotent via families of non-negatively graded complete nilpotent

homologically connected cdgas indexed by the components of X. We do not think that

Golasiński’s theory implies any of our results.

Notation and conventions. All algebraic objects will be considered over a fixed field k

of characteristic zero, at some places we require specifically k to be the field Q of rational

numbers. The abbreviation ‘dg’ stands for ‘differential graded’. Further, we will write ‘cdga’

and ‘dgla’ for ‘commutative differential graded unital associative algebra’ and ‘differential

graded Lie algebra’ respectively. We allow also the terminal algebra 0 in which 1 = 0. For

a (co)cycle c, the symbol [c] denotes its cohomology class. The degree of a homogeneous

element a is denoted |a|.
All our cdgas will have cohomological grading with upper indices while dglas will have

homological grading with lower indices. There will, however, be one important exception
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4 ANDREY LAZAREV AND MARTIN MARKL

from this rule. At some places, we will need the tensor product of a homologically graded

Lie algebra with the cohomologically graded cdga Ω of the Sullivan-de Rham forms. In this

context, we consider Ω as homologically graded by Ω∗ := Ω−∗. The tensor product will then

be a homologically graded dgla as expected.

The suspension ΣV of a homologically graded vector space V is defined by the convention

ΣVi = Vi−1 resp. ΣV i = V i−1 for V cohomologically graded. The functor of taking the

linear dual takes homologically graded vector spaces into cohomologically graded ones so

that (V ∗)i = (Vi)
∗; further we will write ΣV ∗ for Σ(V ∗); with this convention there is an

isomorphism (ΣV )∗ ∼= ΣV ∗. Regarding spectral sequences, we will use the terminology of [4].

We will often refer to a duality between the category of discrete vector spaces (colimits of

finite-dimensional ones) and linearly compact spaces (limits of finite-dimensional ones), see

e.g. [20].

Let A be the category of unital cdgas and A≥0 its full subcategory consisting of non-

negatively graded cdgas. By [14] and [5] respectively, both A and A≥0 are closed model

categories whose weak equivalences are morphisms inducing isomorphisms of cohomology,

and fibrations are surjective morphisms.

Note that a cofibration between algebras in A≥0 need not be a cofibration in A , therefore an

algebra cofibrant in A≥0 need not be cofibrant in A . For instance, every cdga concentrated

in degree 0 is cofibrant in A≥0. Proposition 3.1 presents a wide class of cdgas that are

cofibrant in A≥0 but not in A .

As usual, a cdga A = (A, d) is connected (resp. homologically connected)1 if A0 = k

(resp. H0(A, d) = k) and An = 0 (resp. Hn(A) = 0) for n < 0. Each connected algebra

A ∈ A≥0 admits a unique minimal model [5, §7]. Such an algebra A is of finite Q-type

if A is defined over Q and its minimal model has finitely many generators in each degree.

Equivalently, the cohomology ofH(I/I2), where I ⊂ A is the ideal of positive-degree elements

of A, is finite-dimensional in each degree, see [5, §9.2].
Let us recall some definitions of [5, §9]. The lower central series G = Γ1G ⊃ Γ2G ⊃ · · ·

of a group G is defined inductively by letting Γq+1G be the subgroup of G generated by

the commutators {xyx−1y−1; x ∈ G, y ∈ ΓqG}. A group G is nilpotent if ΓqG = ∗ for

some q ≥ 1. The lower central series N = Γ1N ⊃ Γ2N ⊃ · · · of a G-module N is defined

inductively by letting Γq+1N be the sub-module of N generated by {gn−n; g ∈ G,n ∈ ΓqN}.
A G-module N is nilpotent if ΓqN = 0 for some q ≥ 1.

A connected (pointed) Kan simplicial set S is nilpotent if π1(S) is a nilpotent group and

πn(S) is a nilpotent π1(S)-module for each n ≥ 2.2 This definition clearly does not depend

on the choice of the base point.

A nilpotent simplicial set is rational if the groups πn(S) or, equivalently, the groups

Hn(S;Z), are uniquely divisible for each n ≥ 1. Such a simplicial set is of finite Q-type

if the Q-vector spaces H1(S;Q) and Q⊗πn(S) for n ≥ 2 or, equivalently, the Q-vector spaces

Hn(S;Q) for n ≥ 1, are finite-dimensional.

1It would be more logical to say cohomologically connected, but we keep our terminology compatible
with [5].

2So “nilpotent” always implies “Kan.”
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DISCONNECTED RATIONAL HOMOTOPY THEORY 5

Let S denote the category of simplicial sets and fNQ-S c its subcategory of connected

nilpotent rational simplicial sets of finite Q-type. We denote fQ-A c
≥0 ⊂ A≥0 the subcategory

of homologically connected cdgas of finite Q-type. It is well-known [5, Theorem 9.4] that

there exists a pair of adjoint functors

(0.1) F : A≥0 i
q

S : A

that, for k = Q, induces an equivalence of the homotopy categories fQ-hoA c
≥0 and fNQ-hoS c.

A similar adjunction and induced equivalence hold also for augmented and pointed versions

of the above categories, see again Theorem 9.4 in op. cit.

We denote by L the category of dglas and by L̂ the category of complete dglas, i.e. inverse

limits of finite-dimensional nilpotent dglas; the morphisms in L̂ are, naturally, continuous

dgla maps. We will show in Section 9 that L̂ is a closed model category whose weak

equivalences are maps f : g′ → g′′ such that C(f) : C(g′′) → C(g′) is a weak equivalence;

here C(−) is the Chevalley-Eilenberg functor recalled in Definition 7.3. Fibrations in L̂ are

surjective morphisms.

The free product of two dglas g and h will be denoted by g ∗ h. If g and h are complete

dglas then g ∗ h will stand for the completed free product of g and h; it is thus a categorical

coproduct of g and h. Given a dgla g, a Maurer-Cartan element in g is an element ξ ∈ g−1

satisfying the Maurer-Cartan equation: dξ + 1
2
[ξ, ξ] = 0. We will abbreviate the expression

‘Maurer-Cartan’ as ‘MC’. The set of all MC elements in g will be denoted by MC(g). This

definition can be extended to give a simplicial set MC•(g) whose vertices are just the MC

elements in g; a precise definition is recalled in the main text. Furthermore, given a dgla g

and an MC element ξ ∈ MC(g) we can define a twisted differential dξ in g by the formula

dξ(?) = d(?) + [?, ξ]; we will write gξ for the dgla g supplied with the twisted differential.

Given a dgla g, we denote by g⟨x⟩ the dgla obtained from g by freely adjoining the variable

x with |x| = −1 and d(x) = −1
2
[x, x]. Clearly, x ∈ MC(g⟨x⟩) and we will write g ⊔ 0 for

the twisted dgla (g⟨x⟩)x. One should view the construction g ⊔ 0 as the Lie analogue of

adjoining an isolated base point to a topological space. Furthermore, for two dglas g and h

we set g ⊔ h := (g ⊔ 0) ∗ h. The dgla g ⊔ h will be called the disjoint product of g and h; in

the case when g and h are complete we will write g ⊔ h for the corresponding completion.

The operation of disjoint product equips the category of complete dglas with a non-unital

monoidal structure. A non-complete version of the disjoint product was considered in [6].

For convenience of the reader, we include a glossary of notation at the end of Section 1.

1. Main results

We call a cdga A = (A, d) ∈ A homologically disconnected if Hn(A) = 0 for n < 0 and if

H0(A) is isomorphic to the direct product
∏

i∈J k of copies of the ground field indexed by

some finite set J . Let us denote by A dc (resp. A dc
≥0) the full subcategory of A (resp. A≥0)

consisting of homologically disconnected cdgas. We also denote by hoA dc (resp. hoA dc
≥0) the

full subcategory of hoA (resp. hoA≥0) whose objects are homologically disconnected cdgas.3

3Model categories and their localizations are briefly recalled at the beginning of Section 2.
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6 ANDREY LAZAREV AND MARTIN MARKL

Theorem A. The inclusion A≥0 ⊂ A induces an equivalence of the homotopy categories

hoA dc
≥0 and hoA dc.

1.1. Remark. A related question is whether hoA≥0 is a full subcategory of hoA . It is not

difficult to show, for example, that for cdgas A and B with A concentrated in degree zero,

the sets hoA≥0(A,B) and hoA (A,B) are in natural bijective correspondence. In general

however, we see no compelling reason for the homotopy classes of maps in both categories

to be the same.

For a category C denote by coProd(C) the category whose objects are formal finite coprod-

ucts A1 ⊔ · · · ⊔ As, s ≥ 1, of objects of C and the Hom-sets are

coProd(C)
(
A1 ⊔ · · · ⊔ As, B1 ⊔ · · · ⊔Bt

)
:=

∏
1≤i≤s

∪
1≤j≤t

C(Ai, Bj),

with the obvious composition law.

1.2. Remark. The nature of our category coProd(C) bears some similarity to the category

inj-C of direct systems in C, see e.g. [10, page 8]. This resemblance is however merely

superficial, as in the definitions of inj-C as well as in the dual definition of the category

proj-C of inverse systems in C, one assumes the indexing small category to be left filtering,

while we use discrete finite categories.

1.3. Example. Denote by S c the category of connected simplicial sets and by S dc the

category of simplicial sets with finitely many components. Then clearly S dc ∼= coProd(S c)

and the same is obviously true also for the homotopy categories, i.e. hoS dc ∼= coProd(hoS c).

Our next main theorem that states a similar result also for homotopy categories of cdgas re-

quires a contravariant version of coProd(C). Namely, denote by Prod(C) the category4 whose

objects are formal finite products A1×· · ·×As, s ≥ 1, of objects of C, and morphisms are

Prod(C)
(
A1 × · · · × As, B1 × · · · ×Bt

)
:=

∏
1≤j≤t

∪
1≤i≤s

C(Ai, Bj).

In the following theorem, A c (resp. A c
≥0) denotes the full subcategory of A (resp. A≥0)

consisting of homologically connected cdgas.

Theorem B. Each homologically disconnected non-negatively graded cdga A ∈ A dc
≥0 is iso-

morphic to a finite product
∏

i∈J Ai of homologically connected non-negatively graded cdgas

Ai ∈ A c
≥0. This isomorphism extends to a natural equivalence of categories

hoA dc
≥0 ∼ Prod(hoA c

≥0).

Each homologically disconnected cdga A ∈ A dc is weakly equivalent to a finite product∏
i∈J Ai of homologically connected cdgas Ai ∈ A c. As above, one has an equivalence

hoA dc ∼ Prod(hoA c).

4The similarity of this category to the category of inverse systems is addressed in Remark 1.2.
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DISCONNECTED RATIONAL HOMOTOPY THEORY 7

Our proofs of the above theorems use a proposition describing homotopy classes of maps
whose domain is a localization of a cdga. We believe that this statement is of independent in-
terest.

For a cocycle u of a cdga A we denote by A[u−1] the localization of A at u, i.e. at the
multiplicative subset generated by u, see [1, Section 3]. Since u is a cocycle, A[u−1] bears the
induced differential. Notice that each χ ∈ [A,D]A := hoA (A,D), for A,D ∈ A , induces
a map χ∗ : H(A) → H(D).

1.4. Theorem. Let A,D ∈ A be cdga and u ∈ A a cocycle. Denote

[A,D]uA :=
{
χ ∈ [A,D]A | χ∗([u]) ∈ H(D) is invertible

}
.

There is a natural isomorphism
[
A[u−1], D

]
A

∼= [A,D]uA .

Observe that each invertible odd-degree element x of a graded commutative algebra, i.e. one
for which there exists y such that xy = 1, equals zero since x2 = 0 by graded commutativity.
So the only graded commutative algebra admitting invertible elements in odd degrees is the
terminal one. Theorem 1.4 is thus meaningful only when the degree |u| is even.
The next two applications of our theory describe the homotopy category of spaces with

finitely many rational nilpotent components of finite Q-type. We need the following definition
related to the algebraic side.

1.5. Definition. Let A be a cdga. We say that a dg ideal I in A is an augmentation ideal if
A/I ∼= k, the ground field. Further, A is said to have a finite type if for any augmentation
ideal I of A the space H(I/I2) is finite dimensional in every degree.

Assume that the ground field k is the field Q of rational numbers and denote by fQ-A dc
≥0 ,

resp. fQ-A dc, the subcategory of A dc
≥0 , resp. A dc, consisting of algebras having a cofibrant

replacement of finite type. In Section 4 we prove that this definition does not depend on the
choice of a cofibrant replacement and relate it to the definition of finite Q-type given in [5].

Theorem C. The following three categories are equivalent.

– The homotopy category fNQ-hoS dc of simplicial sets with finitely many components
that are nilpotent, rational and of finite Q-type,

– the homotopy category fQ-hoA dc
≥0 of homologically disconnected non-negatively graded

cdgas of finite type over Q, and
– the homotopy category fQ-hoA dc of homologically disconnected Z-graded cdgas of
finite type over Q.

Let us denote by fQ-hoL̂ dc the full subcategory of the homotopy category of L̂ con-
sisting of disjoint products of complete non-negatively graded dglas with finite-dimensional
homology in each dimension. We call objects of fQ-hoL̂ dc disconnected dglas. We have

Theorem D. The following categories are equivalent:

– the homotopy category fNQ-hoS dc
+ of pointed simplicial sets with finitely many com-

ponents that are nilpotent, rational and of finite Q-type, and
– the homotopy category fQ-hoL̂ dc of disconnected complete dglas of finite type.

[June 7, 2014]



8 ANDREY LAZAREV AND MARTIN MARKL

Neisendorfer in [24, Proposition 7.3] proved that the subcategory fNQ-hoS c
+ of fNQ-hoS dc

+

consisting of connected spaces is equivalent to the homotopy category ho(nDGLA) of non-

negatively graded (discrete) dglas L whose homology H(L) is of finite type and nilpotent.

As a particular case of Theorem D we get another description of fNQ-hoS c
+. Denote by

fQ-hoL̂≥0 the full subcategory of fQ-hoL̂ dc of complete non-negatively graded dglas with

finite dimensional homology in each degree.

1.6. Corollary. The simplicial MC functor MC•(−) induces an equivalence between the cat-

egories fQ-hoL̂≥0 and fNQ-hoS c
+.

A nice feature of the category L̂ is that each g ∈ L̂ has a minimal model , unique up to

isomorphism, see Definition 9.17 and Theorem 9.18. To objects of fQ-hoL̂≥0 there correspond

non-negatively graded minimal dglas M with homology of finite type. Corollary 1.6 implies

a one-to-one correspondence between rational homotopy types of connected nilpotent spaces

of finite Q-type and isomorphism classes of minimal dglas M as above.

The description of fNQ-hoS c
+ given in Corollary 1.6 substantially differs from Neisendor-

fer’s. Notice, for instance, that the category ho(nDGLA) has more objects than fQ-hoL̂≥0.

For example, the contractible free Lie algebra L(x, ∂x), |x| = 1, belongs to ho(nDGLA) but

not to fQ-hoL̂≥0; L(x, ∂x) is not complete.

Tracing the functors in [24], one can associate to a dgla g ∈ fQ-L̂≥0 the corresponding

L ∈ nDGLA as follows. The cdga C(g) is connected and non-negatively graded, so it has the

minimal model MA. By assumption, MA is a cdga of finite type, so we may take L := L(MA),

the uncompleted Quillen functor.

On the other hand, starting from L ∈ nDGLA, we take the cobar construction Cc(L) on

the dgla A, i.e. the obvious coalgebra version of the uncompleted functor C(−), and its linear

dual Cc(L)∗.5 Then g := L̂
(
Cc(L)∗

)
is the corresponding dgla in fQ-L̂≥0.

Another application concerns the general structure of the MC simplicial sets. The ground

field k may again be an arbitrary field of characteristic zero.

1.7. Theorem. Let gi, i ∈ J , be a collection of complete dglas indexed by a finite set J . Then

the simplicial set MC•
(⊔

i∈J gi
)
is weakly equivalent to the disjoint union

∪
i∈J MC•(gi).

Theorem 1.7 yields the following elementary corollary on the sets MC (−) := π0 MC•(−) of

connected components of the simplicial MC spaces. We do not know if it has a direct proof.

1.8. Corollary. Let gi, i ∈ J , be a collection of complete dglas indexed by a finite set J .

Then there is a bijection MC
(⊔

i∈J gi
) ∼= ∪

i∈J MC (gi) of the MC moduli sets.

The following theorem in a certain sense reverses Theorem 1.7. It uses the twisting gξ of

a complete dgla g by an MC element ξ ∈ MC(g) and its connected cover gξ defined in (7.6).

5Observe that Cc(L)∗ exists while C(L) may not.
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DISCONNECTED RATIONAL HOMOTOPY THEORY 9

1.9. Theorem. For a complete dgla g, one has a weak equivalence

(1.1) MC•(g) ∼
∪

[ξ]∈MC (g)

MC•(gξ)

where the disjoint union in the right hand side runs over chosen representatives of the iso-

morphism classes in MC (g). If MC (g) is finite, one furthermore has a weak equivalence

MC•(g) ∼ MC•

( ⊔
[ξ]∈MC (g)

gξ
)

of simplicial sets.

Theorems A, B and C are proved in Section 5, Theorem D in Section 10. Theorem 1.4

is proved in Section 2 and Theorem 1.9 in Section 7. The proof of Theorem 1.7 occupies

Section 8; it is surprisingly involved in that it relies, essentially, on all of the technology

developed in the previous sections and the Appendix. The pointed (or augmented) versions

of Theorems A, B and C are formulated in Section 6. We finish this part by a

Glossary of notation. We use the following notation for various categories:

A , the category of (Z-graded) cdgas,

A≥0, the category of non-negatively graded cdgas,

A c, the category of homologically connected cdgas,

A c
≥0, the category of non-negatively graded homologically connected cdgas,

A dc, the category of homologically disconnected cdgas,

A dc
≥0 , the category of non-negatively graded homologically disconnected cdgas,

L , the category of dglas

L̂ , the category of complete dglas,

S , the category of simplicial sets,

S c, the category of connected simplicial sets,

S dc, the category of simplicial sets with finitely many components.

The prefix ‘fQ-’ applied to a category of algebras means ‘finite type over Q’ while the prefix

‘fNQ-’ applied to a category of simplicial sets abbreviates ‘nilpotent, rational components

of finite Q-type.’ The subscript ‘+’ means ‘pointed’ for simplicial sets and ‘augmented’

for algebras.

Part 1. The de Rham-Sullivan approach.

In this part we describe our first version of disconnected rational homotopy theory based

on cdgas.

[June 7, 2014]



10 ANDREY LAZAREV AND MARTIN MARKL

2. Homotopy properties of the localization and proof of Theorem 1.4

Recall [9, Sections 5,6] that the homotopy category hoA of the model category A of
Z-graded unital cdgas has the same objects as A , and the morphism sets [X, Y ]A defined as

[X,Y ]A := π(QX,QY )A , X, Y ∈ A ,

where QX resp. QY is a cofibrant replacement of X resp. Y 6 and π(−,−)A denotes the set
of homotopy classes. By [9, Proposition 5.11], if A is cofibrant and Y fibrant, which in our
situation means that Y is arbitrary, one has an isomorphism

(2.1) [A, Y ]A ∼= π(A, Y )A .

There is a functor γ : A → hoA which is the identity on objects and, for a morphism
f : X → Y in A , γ(f) is the homotopy class of a lift f̃ : QX → QY of f . The homotopy
category hoA≥0 of A≥0 has an obvious similar description.

Let A be a cdga and S ⊂ A a multiplicative subset of cocycles. Then the localization [1,
Section 3]7 S−1A of A is a cdga and the canonical map A → S−1A is a morphism of cdgas.
The property crucial for us is the exactness [1, Proposition 3.3] of the functor A 7→ S−1A.
If S is multiplicatively generated by a cocycle u ∈ A we will write A[u−1] for S−1A.

2.1. Remark. It is easy to see, using the exactness of the localization, that the homotopy
type of A[u−1] depends only on the cohomology class of u in H(A).

Let us prove Theorem 1.4 which we formulate in a slightly extended form as:

2.2. Theorem. Let A,D ∈ A , u ∈ A a cocycle and p : A → A[u−1] the localization map.
Denote

[A,D]uA :=
{
χ ∈ [A,D]A | χ∗([u]) ∈ H(D) is invertible

}
.

Then the map p♯ :
[
A[u−1], D

]
A

→ [A,D]A , p♯(χ) := χ ◦ γ(p), induces an isomorphism[
A[u−1], D

]
A

∼= [A,D]uA .

2.3. Example. A curious particular case is when u is cohomologous to zero 0 in A. Then
H
(
A[u−1]

)
is the terminal algebra 0 in which 1 = 0. By Remark 2.1, A[u−1] is isomorphic,

in the homotopy category, to 0, so clearly[
A[u−1], D

]
A

=

{
∅, if 1 ̸= 0 in H(D), and
the one-point set, if H(D) = 0.

It is immediate to see that the set [A,D]uA has the same description.

The rest of this section is devoted to the proof of Theorem 2.2. We say that ϕ ∈ [X,Y ]A
is represented by f ∈ A (X, Y ) if ϕ = γ(f). We call a cocycle u ∈ X ∈ A cohomologically
invertible if its cohomology class [u] ∈ H(X) is invertible.

2.4. Proposition. Assume that A ∈ A is cofibrant and D ∈ A an cdga whose each cohomo-
logically invertible cocycle is invertible. Let u ∈ A be a cocycle. Then each ϕ ∈

[
A[u−1], D

]
A

is represented by some f : A[u−1] → D.

6All objects in A are fibrant. In a general model category, the cofibrant replacement must be followed
by the fibrant replacement.

7Notice that S−1A is in [1] called ‘the ring of fractions with respect to the multiplicative subset S.’
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Proof. Let us look at the left half of the diagram

(2.2)

q

c

f

f̄

ϕ̃

@
@R
@

@I
r

i

�
�

�	

1

PPPPPPPPPPPq

?

- D.
(
A[u−1][s, ds], d′

)
(
A[y, z], d′′

)

(
A[u−1], d̄

)
The symbols y, z, s, ds are new free generators with |z| = |s| := −1, |y| := −|u|. The cdga(
A[u−1], d̄

)
is the localization of A = (A, d) at u with the induced differential. The differential

d′ of A[u−1][s, ds] is defined by

d′(ā) := d̄(ā) for ā ∈ A[u−1], d′(s) := ds and d′(ds) := 0,

and the differential d′′ of A[y, z] by

d′′(a) := d(a) for a ∈ A, d′′(z) := uy − 1 and d′′(y) := 0.

Let ā denote the image of a ∈ A under the localization map A → A[u−1]. The map

c : A[y, z] → A[u−1] is then defined by

c(a) := ā, c(y) := u−1 and c(z) = 0.

The map q : A[y, z] → A[u−1][s, ds] is given by

q(a) := ā, q(y) := u−1(ds+ 1) and q(z) := s.

Finally, i : A[u−1] → A[u−1][s, ds] is the inclusion and r : A[u−1][s, ds] → A[u−1] the obvious

retraction. It is routine to verify that all the maps above commute with the differentials,

that c = rq and that ri is the identity.

Since
(
A[u−1][s, ds], d′

)
is the tensor product of

(
A[u−1], d̄

)
with the ‘standard’ acyclic

cdga k[s, ds], one sees that both i and r are weak equivalences. A simple spectral sequence

argument shows that also c is a weak equivalence. The cdga
(
A[y, z], d′′

)
was created from

a cofibrant A by a cell attachment, it is therefore also cofibrant. As A[u−1] is generated by

the image of A under the localization map and by u−1, c is an epimorphism, i.e. a fibration

in A . The map c thus can be taken as a cofibrant replacement of A[u−1].

Let us inspect the localization of
(
A[y, z], d′′

)
at u. It is clear that A[y, z][u−1] ∼= A[u−1][y, z]

with the differential d̄′ given by

d̄′(ā) := d̄(ā) for ā ∈ A[u−1], d̄′(z) := uy − 1 and d̄′(y) := 0.

It is simple to check that the formulas

α(ā) := ā for ā ∈ A[u−1], α(y) := u−1(ds+ 1) and α(z) := s

define an isomorphism

α :
(
A[u−1][y, z], d̄′

) ∼=−→
(
A[u−1][s, ds], d′

)
such that αp = q, where p : A[y, z] → A[u−1][y, z] is the localization map. We can therefore

take
(
A[u−1][y, z], d′

)
as the localization of

(
A[y, z], d′′

)
at u, with q the localization map.
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Let ϕ̃ : A[y, z] → D as in (2.2) represents ϕ ∈
[
A[u−1], D

]
A
, i.e. ϕ = γ(ϕ̄). By definition,

ϕ∗([u]) ∈ H(D) is invertible, therefore the cocycle ϕ̃(u) ∈ D representing ϕ∗([u]) is invertible,

so ϕ̃ factorizes via the localization map q : A[y, z] → A[u−1][s, ds]. We get, in (2.2), a unique

map f̄ : A[u−1][s, ds] → D such that ϕ̃ = f̄ q. Let finally f := f̄ i : A[u−1] → D.

We are going to prove that f represents ϕ. Applying the functor γ to the equation fc =

f̄ irq gives

(2.3) γ(f)γ(c) = γ(f̄)γ(i)γ(r)γ(q).

Since i and r are weak equivalences and ri = 11, γ(i) and γ(r) are mutually inverse isomor-

phisms in hoA . As c is our chosen cofibrant replacement of A[u−1], γ(c) is the identity,

thus (2.3) reduces to

γ(f) = γ(f̄)γ(q) = γ(f̄ q).

The proof is finished by recalling that f̄ q = ϕ̃, hence ϕ = γ(ϕ̃) = γ(f). �

2.5. Lemma. For each cdga X ∈ A there exists X̂ ∈ A and a weak equivalence q : X → X̂

such that

(i) each cohomologically invertible cocycle u ∈ X̂ is invertible, and

(ii) each morphism f : X → Z whose target is an cdga Z ∈ A in which all cohomologi-

cally invertible cocycles are invertible, uniquely factorizes via q : X → X̂.

Proof. We start by observing that if, in an cdga D = (D, d), all cocycles cohomologous to 1

are invertible, then all cohomologically invertible cocycles are invertible. Indeed, let x ∈ D

be cohomologically invertible, i.e. xy = 1 + db for some y, b ∈ D. By assumption, 1 + db is

invertible, so x−1 := y(1 + db)−1 exists.

Denote by S the multiplicative set of all cohomologically invertible cocycles u ∈ X and

by X̂ := S−1X the localization of X = (X, d) at S with the induced differential d̄. Let

q : X → X̂ be the localization map. To prove (i) it is, by the above observation, enough

to show that each cocycle x ∈ X̂ cohomologous to 1 is invertible. Let x = 1 + d̄b, b ∈ X̂.

Clearly, b = q(s)−1q(a) for some a ∈ X and s ∈ S, so q(s)x = q(s) + q(da) = q(s + da).

Since [s+ da] = [s], q(s+ da) is invertible in X̂ by the definition of S. We can therefore take

x−1 := q(s)q(s+ da)−1.

Part (ii) follows from the standard universal property of the localization. �

2.6. Lemma. Assume that all cohomologically invertible cocycles of D ∈ A are invertible.

Then there exists a good path object in the sense of [9, §4.12]

(2.4) D
i→ DI

(p1,p2)

−−−→ D×D

such that each cohomologically invertible cocycle of DI is invertible.

Proof. Take any good path object D
ī→ P

(p̄1,p̄2)

−−−→ D×D. Lemma 2.5 applied to P produces

a cdga DI such that all its cohomologically invertible cocycles are invertible, together with

a weak equivalence q : P → DI . It is clear that, if all cohomologically invertible cocycles
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of D are invertible, D × D has the same property therefore, by (ii) of Lemma 2.5, (p̄1, p̄2)
factorizes as

(p̄1, p̄2) : P
q→ DI

(p1,p2)

−−−→ D ×D.

We claim that (2.4) with i := qī is a good path object for D.

Firstly, i, being the composition of two weak equivalences, is a weak equivalence. Secondly,
since P is a good path object, (p̄1, p̄2) is a fibration in A i.e. an epimorphism, hence (p1, p2)
must be an epimorphism, i.e. a fibration, as well. �
2.7. Proposition. Let A,D ∈ A and assume that A is cofibrant and each cohomologically
invertible cocycle in D is invertible. Let u ∈ A be a cocycle and p : A → A[u−1] be the
localization map. Assume that fi : A[u

−1] → D, i = 1, 2, are such that the compositions
f1p, f2p : A → D are homotopic. Then f1 and f2 are right homotopic.

Proof. Since A is cofibrant, by [9, Remark 4.23], we may assume that f1p and f2p are
right homotopic via a good path object of Lemma 2.6. Let h : A → DI be such a right
homotopy, i.e.

(2.5) f1p = p1h and f2p = p2h.

It is clear that, for instance, f1p(u) is an invertible element in D, with f1(u
−1) as its inverse.

By definition of a path object, p1 : DI → D is a weak equivalence, so the invertibility of
f1p(u) = p1h(u) implies the cohomological invertibility of h(u) ∈ D. By our choice of the
cylinder DI , h(u) ∈ D is (strictly) invertible, thus the homotopy h factorizes as h = h̄p with
some h̄ : A[u−1] → DI .

It remains to prove that h̄ is a right homotopy between f1 and f2, that is

(2.6) (f1, f2) = (p1, p2)h̄.

To this end, we invoke the obvious fact that two morphisms, say u1, u2 : A[u
−1] → B, agree

if and only if their compositions u1p, u2p : A → B with the localization map p : A → A[u−1]
agree. To prove (2.6), it therefore suffices to show that (f1p, f2p) = (p1, p2)h̄p, which follows
from h = h̄p and (2.5). �

Proof of Theorem 2.2. Let c : Ã � A be a cofibrant replacement of A and ũ ∈ Ã a cocycle
such that c(ũ) = u. Let p : A → A[u−1] be, as in the theorem, the localization map for A

at u and p̃ : Ã → Ã[ũ−1] the localization map for Ã at ũ. One has the induced morphism

c̄ : Ã[ũ−1] → A[u−1] that makes the diagram

p

p̃

c̄c

A A[u−1]

Ã[ũ−1]Ã -

?
-

?

commutative. Being a cofibrant replacement, the map c is as weak equivalence. By the
exactness of the localization, c̄ is a weak equivalence as well. Consider the induced diagram

(2.7)

p♯

p̃♯

c̄♯c♯

[A,D]A
[
A[u−1], D

]
A

[
Ã[ũ−1], D

]
A[Ã,D]A

�

6

�

6

[June 7, 2014]



14 ANDREY LAZAREV AND MARTIN MARKL

in which p♯ (resp. p̃♯, resp. c♯, resp. c̄♯) are the pre-compositions with γ(p) (resp. γ(p̃),
resp. γ(c), resp. γ(c̄)).

Since c and c̄ are weak equivalences, the induced maps c♯ and c̄♯ are isomorphisms in hoA
(c♯ is in fact the identity). Clearly, c♯ restricts to an isomorphism [A,D]uA

∼= [Ã,D]ũA and also

the inclusions Im(p♯) ⊂ [A,D]uA and Im(p̃♯) ⊂ [Ã,D]uA are obvious. Diagram (2.7) therefore
restricts to

p♯

p̃♯

c̄♯∼=c♯ ∼=

[A,D]uA
[
A[u−1], D

]
A

[
Ã[ũ−1], D

]
A[Ã,D]ũA

�

6

�

6

in which both vertical arrows are isomorphisms.

We conclude that the theorem will be proved for the localization p : A → A[u−1] if we

prove it for p̃ : Ã → Ã[ũ−1]. We may thus assume from the beginning that A is cofibrant .
An even simpler argument based on Lemma 2.5 shows that we may also assume, without
loss of generality, that each cohomologically invertible cocycle in D is invertible.

To show that the image of p♯ is [A,D]uA is now easy. Since A is cofibrant, each χ ∈ [A,D]uA
is represented by a map w : A → D. As χ∗([u]) ∈ H(D) is, by assumption, invertible, w(u)
is invertible in D. Thus w factorizes via the localization map p : A → A[u−1] as w = fp for
some f : A[u−1] → D. We then have χ = γ(w) = γ(fp) = p♯(γ(f)), so χ ∈ Im(p♯).

Let us prove that p♯ is injective. Assume that ϕi ∈
[
A[ũ−1], D

]
A
, i = 1, 2, are such that

(2.8) p♯ϕ1 = p♯ϕ2.

By Proposition 2.4, there exist fi : A[ũ−1] → D such that ϕi = γ(fi). Equality (2.8) is
then equivalent to γ(f1p) = γ(f2p). Since A is cofibrant this, by (2.1), means that f1p and
f2p are homotopic. By Proposition 2.7, f1 and f2 are right homotopic, which implies that
γ(f1) = γ(f2), i.e. ϕ1 = ϕ2. �

3. Maps of direct products of dg commutative associative algebras

In this section we study maps, up to homotopy, whose source is a finite direct product of
cdgas. Somewhat unexpectedly, it turns out that these maps can be completely understood
in terms of (homotopy classes of) maps out of individual components of these direct products.
Here is the first surprise.

3.1. Proposition. Let Ai, i ∈ J , be cofibrant algebras in A≥0 indexed by a finite set J . Then
the direct product

∏
i∈J Ai is also cofibrant in A≥0.

Proof. We prove the proposition for J = {1, 2}, the proof for an arbitrary finite indexing
set will be similar. Let thus A = A1×A2. We need to prove that, for any epimorphism
p : E � B in A≥0 which is also a weak equivalence, and for each f : A → B, there exists a

lift f̃ : A → E making the diagram

(3.1) f̃ p

f

E

BA
?�

�
��>

-
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commutative.

Let e1 := (1, 0) ∈ A0 = A0
1×A0

2 and e2 := (0, 1) ∈ A0 = A0
1×A0

2. Clearly

(3.2) e1 + e2 = 1 (the unit of A), e21 = e1, e22 = e2 and e1e2 = 0.

Let ui := f(ei), i = 1, 2. These elements satisfy an obvious analogue of (3.2), moreover
de1 = de2 = 0. There are three possibilities:

Case 1.: u1 = 1, u2 = 0. Then f restricted to 0×A2 ⊂ A is trivial. Indeed, for (0, x2) ∈ 0×A2

one has (0, x2) = (0, 1)(0, x2), therefore

f(0, x2) = f(0, 1)f(0, x2) = u2f(0, x2) = 0.

In other words, f factorizes via the projection π1 : A1×A2 → A1 as

f : A1×A2
π1−→ A1

f1−→ B,

where f1(x1) := f(x1, 0) for x1 ∈ A1. Since A1 is cofibrant by assumption, one has a lift

f̃1 : A1 → E in the diagram

f̃1 p

f1

E

BA1

?�
�
��>

-

,

f̃ := f̃1π then clearly solves the lifting problem (3.1).

Case 2.: u1 = 0, u2 = 1. This ‘mirror image’ of Case 1 can be treated analogously.

Case 3.: u1, u2 ̸= 0. Since p is a weak equivalence and since there are no 0-dimensional
boundaries, p induces an isomorphism of 0-cocycles Z0(E) ∼= Z0(B).8 In particular, one
has cocycles ũ1, ũ2 ∈ E0 such that p(ũi) = ui, i = 1, 2, satisfying conditions analogous
to (3.2). Put

Bi := uiB and Ei := ũiE, i = 1, 2.

It is clear that then
B ∼= B1×B2, E ∼= E1×E2

and that, under the above isomorphisms, also the maps f and p split,

f = (f1, f2) : A1×A2 → B1×B2, p = (p1, p2) : E1×E2 → B1×B2,

with fi := uifιi, where ιi : Ai ↪→ A1×A2 are inclusions given by9

ι1(x1) := (x1, 0), ι2(x2) := (0, x2), xi ∈ Ai, i = 1, 2.

The maps p1 and p2 are defined in the obvious similar way. Since both p1 and p2 must clearly

be weak equivalences and epimorphisms, one has, for i = 1, 2, the lifts f̃i in the diagrams

f̃i pi

fi

Ei

BiAi

?�
�

��>

-

.

The map f̃ := (f̃1, f̃2) : A1×A2 → E1×E2 solves the lifting problem (3.1). �
8At this place we need B and E to be non-negatively graded.
9These inclusions are homomorphisms of non-unital cdgas, but the composition fi preserves units.
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Let us formulate the following simple principle whose proof is straightforward.

3.2. Principle. Assume Ai, i ∈ J , are arbitrary (unital) cdgas indexed by a finite set J and

D a cdga such that 1 is the only nontrivial idempotent in Z0(D). Then the projections

(3.3) πi :
∏
s∈J

As → Ai, i ∈ J,

from the cartesian product induce monomorphisms of the homomorphisms sets

π∗
i : A (Ai, D) ↪→ A

(∏
s∈J

As, D
)
, i ∈ J,

which in turn induce a decomposition

(3.4) A
(∏
s∈J

As, D
) ∼= ∪

s∈J

A (As, D) (the disjoint union).

Together with Proposition 3.1, Principle 3.2 gives:

3.3. Theorem. Let Ai ∈ A≥0 be cdgas indexed by a finite set J and D ∈ A≥0 be such

that 1 ∈ H0(D) is the only nontrivial idempotent. Then the projections (3.3) induce a

decomposition of the set of homotopy classes

(3.5)
[∏
s∈J

As, D
]
A≥0

∼=
∪
s∈J

[As, D]A≥0
(the disjoint union).

The same statement holds also with A in place of A≥0.

Proof. Let us prove the first part. Since D is non-negatively graded, H0(D) = Z0(D), so

D fulfills the assumptions of Principle 3.2. Moreover, any homotopy h :
∏

s∈J As → D[t, dt]

factors through a unique homotopy hi : Ai → D[t, dt] since the cdga D[t, dt] also satisfies

the assumptions of Principle 3.2. Consider the diagram∪
s∈J A≥0(As, D)

∼= //

��

A≥0

(∏
s∈J As, D

)
��∪

s∈J
[
As, D

]
A≥0

//
[∏

s∈J As, D
]
A≥0

where the vertical arrows are natural quotient maps, associating to a morphism its homotopy

class. It follows that the lower horizontal arrow, making the diagram commutative, exists,

is unique and and bijective; this finishes the proof for the category A≥0.

The second part with A in place of A≥0 must be proved differently. The reason is that,

firstly, no statement analogous to Proposition 3.1 holds in A and, secondly, even if 1 ∈ H0(D)

is the only nontrivial idempotent, there may be many nontrivial idempotents in Z0(D), so

Principle 3.2 does not apply.

To simplify the exposition, we assume again that J = {1, 2}, the proof for a general finite

J is similar. Put

u1 := 1×0 ∈ A1×A2 and u1 := 0×1 ∈ A1×A2,

and define

[A1×A2, D]iA ⊂ [A1×A2, D]A , i = 1, 2,
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DISCONNECTED RATIONAL HOMOTOPY THEORY 17

as the subset of χ ∈ [A1×A2, D] such that χ∗([ui]) = 1. It is clear that

[A1×A2, D]A = [A1×A2, D]1A ∪ [A1×A2, D]2A (the disjoint union).

So all we need to prove is that the projections induce an isomorphism

(3.6) [Ai, D]A ∼= [A1×A2, D]iA , i = 1, 2.

Notice that

(A1×A2)[u
−1
i ] ∼= Ai, i = 1, 2.

The isomorphism (3.6) is thus a consequence of Theorem 1.4 taken with A = A1×A2 and

u = ui. �

For A ∈ A≥0 consider its cofibrant replacement c′ : Q′A � A in A≥0 and take a cofibrant

replacement c : QA � Q′A of Q′A in A . The composition c′c : QA � A is clearly a cofibrant

replacement of A in A . Notice also that, for D ∈ A≥0, the ‘standard’ path object

(3.7) D[t, dt] := D ⊗ k[t, dt], |t| := 0, d(t) := dt,

with the projections p1, p2 : D[t, dt] → D given by the evaluation at 0 resp 1, is a good

path object in the sense of [9, §4.12] for D in both categories A≥0 and A . Therefore, if

f1, f2 : Q′A → D are right homotopic in A≥0, then f1c, f2c are right homotopic in A .

By (2.1),

[A,D]A≥0
∼= π(Q′A,D)A≥0

and [A,D]A ∼= π(QA,D)A ,

so the pre-composition with c defines a natural map

(3.8) KA,D : [A,D]A≥0
→ [A,D]A .

3.4. Lemma. Let A ∈ A c
≥0 and D ∈ A≥0. Then KA,D is an isomorphism. In particular,

hoA c
≥0 is a full subcategory of hoA .

Proof. The cdga A admits a minimal modelM by [5, Proposition 7.7]. AsM is, by definition,

weakly equivalent to A,

(3.9) [A,D]A≥0
∼= [M,D]A≥0

and [A,D]A ∼= [M,D]A .

The cdga M is clearly cofibrant in both categories A≥0 and A , therefore

[M,D]A = π(M,D)A≥0
and [M,D]A≥0

= π(M,D)A

by (2.1). Since (3.7) is a good path object for D in both categories A≥0 and A ,

π(M,D)A≥0
∼= π(M,D)A .

The lemma is an obvious combination of the above isomorphisms. �

3.5. Proposition. The categories hoA c
≥0 and hoA c are equivalent.
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Proof. If C′ is a full subcategory of C with the property that each object of C′ is isomorphic
to some object of C, then both categories are equivalent. In light of Lemma 3.4, it is enough
to prove that each A ∈ A c is weakly equivalent to an cdga in A≥0.

Proposition 7.7 of [5] states the existence of a minimal model generated by elements of
degrees ≥ 1 of each cdga A ∈ A c

≥0. One can easily verify that the proof of this proposition
leads to a minimal model of an arbitrary homologically connected cdga A, i.e. of an arbitrary
A ∈ A c. The minimal model M of A ∈ A c is then a connected cdga belonging to A≥0,
weakly equivalent to A. This finishes the proof. �

Theorem 3.3 has the following important consequence.

3.6. Theorem. Let Ai, i ∈ J , be cdgas in A c
≥0 indexed by a finite set and D ∈ A≥0 be such

that 1 ∈ H0(D) is the only nontrivial idempotent in H0(D). Then the map in (3.8) with
A =

∏
s∈J As is an isomorphism[∏

s∈J

As, D
]
A≥0

∼=
[∏
s∈J

As, D
]
A
.

Proof. By Lemma 3.4, [Ai, D]A≥0
∼= [Ai, D]A , i ∈ J . The rest follows from Theorem 3.3. �

4. DG commutative associative algebras of finite type

In this section we investigate properties of cdgas having finite type in the sense of Defini-
tion 1.5. The main results are Propositions 4.2 and 4.4. For a cdga B and a map f : A → B
we will denote by Derf (A,B) the dg space of derivations of A with values in B, where B is
viewed as a dg A-module via f ; if the map f is clear from the context we will write simply
Der(A,B) for Derf (A,B).

Note that having an augmentation ideal I in A is equivalent to specifying a map ϵ : A → k

(an augmentation). Furthermore, the dual dg space (I/I2)∗ is naturally identified with the
dg space Derϵ(A, k). Thus, A is of finite type if and only if for any augmentation ϵ : A → k

the dg space Derϵ(A, k) has finite-dimensional cohomology in each positive degree.

We now discuss the homotopy invariance of the notion of finite type. To this end, note that
for a cofibrant cdga A and a dg A-module M the dg space Der(A,M) is quasi-isomorphic
to CAQ(A,M), the Andrè-Quillen cohomology complex of A with coefficients in M , cf. [3,
Theorem 2.4].

4.1. Lemma. Let A be a cofibrant cdga, B is a cdga and f, g : A → B are two Sullivan ho-
motopic maps. Then the dg vector spaces Derf (A,B) and Derg(A,B) are quasi-isomorphic.

Proof. Let h : A → B[t, dt] be a Sullivan homotopy from f to g. The two evaluation maps
|0,1 : B[t, dt] → B determine maps of dg vector spaces Derh

(
A,B[t, dt]

)
→ Derf (A,B)

and Derh
(
A,B[t, dt]

)
→ Derg(A,B). Comparing the corresponding spectral sequences ([3,

Corollary 2.5]) we conclude that both maps are quasi-isomorphisms, giving the desired con-
clusion. �

4.2. Proposition. Let A and A′ be two quasi-isomorphic cofibrant cdgas. Then A is of finite
type if and only if A′ is of finite type.
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Proof. Let A be of finite type and I ′ be an augmentation ideal of A′. The given quasi-
isomorphism A → A′ determines a dg map A → A′ → A′/I ′ ∼= k. Comparing the corre-
sponding spectral sequences in [3, Corollary 2.5] we obtain that Der(A′, k) is quasi-isomorphic
to Der(A, k) and thus, Der(A′, k) has finite-dimensional cohomology, as desired. Since each
quasi-isomorphism of cofibrant algebras is homotopy invertible, the rôles of A and A′ can be
exchanged. This finishes the proof. �

In the following statement L̂A is the completed Harrison complex of an augmented cdga
A recalled in Definition 7.3.

4.3. Lemma. Suppose that A is a cofibrant cdga and I is an augmentation ideal in A. Then
(I/I2)∗ is quasi-isomorphic to ΣL̂A.

Proof. Without loss of generality one can assume that the cdga A is free as a graded associa-
tive commutative algebra. It is easy to show that it is then isomorphic, as a non-differential
algebra, to the graded polynomial ring generated by I. Lemma 4.3 therefore appears as a
version of [24, Proposition 4.2(a)], so we omit its proof. �

Observe that a non-negatively graded homologically connected cdga A is of finite type if
and only if it is of finite type in the sense of [5, §9.2]. We can now formulate a criterion for
a homologically disconnected cdga to be of finite type.

4.4. Proposition. Let A be a homologically disconnected cdga, i.e. A is quasi-isomorphic,
by Theorem B, to A1 × · · · ×An where Ai are connected cdgas, i = 1, 2, . . . , n. Then A is of
finite type if and only if each Ai is of finite type.

Proof. We assume, without loss of generality, that A is cofibrant and each Ai is also cofi-
brant. Suppose that every Ai is of finite type and let I be an augmentation ideal in A. By
Theorem B, the map A → A/I ∼= k must factor in the homotopy category through a map
Ai → k for some i = 1, . . . , n. Since by Lemma 4.1 the homology of the space Der(A, k)
does not depend on the homotopy class of the map A → k we might as well assume that the
map A → k factors through Ai on the nose. Denote by Ii the kernel of the corresponding
map Ai → k.

Consider the dga B := T̂ΣI∗, the reduced cobar-construction of A with the augmentation
given by A → A/I ∼= k. Note that B computes ExtA(k, k), the differential Ext of the cdga A.

Similarly, the reduced cobar-construction Bi := T̂ΣI∗i calculates ExtAi
(k, k).

One clearly has ExtA(k, k) ∼= ExtA⊗AAi
(k⊗AAi, k) while, by standard homological algebra,

ExtA⊗AAi
(k ⊗A Ai, k) is isomorphic to ExtAi

(k, k). Looking at the primitive elements in
the spaces ExtA(k, k) resp. ExtAi

(k, k) that are described as the homology of B resp. Bi

we conclude that the complete dglas L̂(A) and L̂(Ai) are quasi-isomorphic. Therefore, by
Lemma 4.3, I/I2 is quasi-isomorphic to Ii/I

2
i . This proves that if each Ai is of finite type,

then so is A.

Conversely, suppose that A is of finite type and let Ii be an augmentation ideal in Ai;
then k becomes an Ai-module via the augmentation Ai → Ai/Ii ∼= k. Moreover, k is also

an A module via the composition A
πi→ Ai → Ai/Ii ∼= k in which πi realizes the projection

pi : A1×· · ·×An → Ai in the homotopy category hoA . The same argument as above shows
that the dg spaces Ii/I

2
i and I/I2 are quasi-isomorphic and thus Ai is of finite type. �
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4.5. Remark. The quasi-isomorphism L̂(A) ∼ L̂(Ai) was crucial for the proof of Proposi-

tion 4.4. It can be established differently. Assume, for simplicity, that n = i = 2. Since, by

a standard spectral sequence argument, L̂(−) preserves quasi-isomorphisms, we only need

to prove that L̂(A1×A2) is quasi-isomorphic to L̂(A2), where A1×A2 is augmented via the

composition A1×A2 → A2 → A2/I2 ∼= k. By Proposition 9.19 proved in the second part,

L̂(A1×A2) ∼= L̂(A1)⊔ L̂(A2). Moreover, by Remark 7.15, L̂(A1)⊔ L̂(A2) is quasi-isomorphic

to L̂(A2). This gives the requisite statement.

4.6. Remark. It is not true that for a cofibrant cdga A of finite type and any maximal ideal

I of A the quotient I/I2 has finite dimensional cohomology. This is not even true for a

homologically connected A. Indeed, let A be cofibrant cdga supplied with an augmentation

A → k. Let K ⊃ k be an infinite dimensional field extension of k. The factorization axiom

in the closed model category A expresses the composite map A → K as

A // //� o

∼
��>

>>
>>

>>
> k

� � // K

Ã
f

@@ @@��������

with a surjective map f : Ã → K, where Ã is quasi-isomorphic to A and still cofibrant. The

kernel of f is a maximal ideal Ĩ in Ã and Ã/Ĩ ∼= K. Clearly

Der(A,K) ∼= Der(A, k)⊗kK.

On the other hand, Der(A,K) is quasi-isomorphic to Der(Ã,K) ∼= (Ĩ/Ĩ2)∗. We see that

H(Ĩ/Ĩ2) may be infinite-dimensional even when Ã is of finite type.

5. Proofs of Theorems A, B and C

Proof of Theorem A. It is an obvious combination of Proposition 3.5 and Theorem B which

we prove below. �

Proof of Theorem B. We start by proving the more difficult second part of the theorem.

Assume that A ∈ A dc and let ιi : k →
∏

i∈J k
∼= H0(A) be the canonical inclusion into

the ith factor. Denote by ei ∈ H0(A), i ∈ J , the idempotent ιi(1) and by H(A)[e−1
i ] the

localization of H(A) at the multiplicative subset generated by ei. By elementary algebra,

(5.1) H(A) ∼=
∏
i∈J

H(A)[e−1
i ].

Choose a cochain ui ∈ A0 representing ei. The localization is exact, therefore H
(
A[u−1

i ]
) ∼=

H(A)[e−1
i ] and the natural cdga map

(5.2) A →
∏
i∈J

A[u−1
i ]

induces the isomorphism (5.1) of cohomology.

As H0(A[u−1
i ]) ∼= H0(A)[e−1

i ] ∼= k, each A[u−1
i ] is homologically connected; its cohomology

in negative degrees clearly vanishes. Therefore (5.2) shows that each A ∈ A dc is weakly

equivalent to a finite product of cdgas from A c. Denote, for the purposes of this proof,
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the full subcategory of A dc whose objects are these products by Ā dc. It follows from
the above that the corresponding homotopy categories hoA dc and hoĀ dc are equivalent.
Theorem 3.3 then implies that hoĀ dc is equivalent to Prod(hoA c). This finishes the proof
of the second part.

The first part can be proved in exactly the same way, but the situation admits a simpli-
fication. Assume the same notation as above. The cdga A is now non-negatively graded,
so there are no 0-boundaries in A0, thus ui is unique and it is an idempotent. The multi-
plication with ui defines the projection πi : A � uiA which represents the localization map
A → A[u−1

i ]. Since {ui}i∈J are orthogonal idempotents whose sum is 1, the system {πi}i∈J
defines, instead of just a weak equivalence (5.2), a strict isomorphism

A ∼=
∏
i∈J

uiA,

in which uiA ∈ A c
≥0. So A dc

≥0 is equivalent to its full subcategory Ā dc
≥0 whose objects are

finite products of cdgas from A c
≥0, and the same is true also for the corresponding homotopy

categories, that is, hoA dc
≥0 ∼ hoĀ dc

≥0 . The proof is finished with the aid of Theorem 3.3. �

Proof of Theorem C. The equivalence of Example 1.3 clearly restrict to the equivalence

fNQ-hoS dc ∼ coProd(fNQ-hoS c).

By Proposition 4.4, the equivalences of Theorem B restrict to the equivalences

(5.3) fQ-hoA dc ∼ Prod(fQ-hoA c) and fQ-hoA dc
≥0 ∼ Prod(fQ-hoA c

≥0).

The equivalence fNQ-hoS dc ∼ fQ-hoA dc
≥0 then follows from the classical equivalence between

fQ-hoA c
≥0 and fNQ-hoS c, cf. [5, Theorem 9.4]. It is easy to show that it is in fact induced

by adjunction (0.1). The equivalence fQ-hoA dc
≥0 ∼ fQ-hoA dc is a combination of (5.3) with

Proposition 3.5. �

6. Augmented dg commutative associative algebras and pointed spaces.

In this section we briefly outline the relationship between the homotopy theory of aug-
mented cdgas and pointed spaces. The results formulated here will be used in Section 10.
They are more or less obvious analogues of the non-augmented theory developed in the
previous sections.

Recall (e.g. [16, Proposition 1.1.8]) that for a given closed model category C and an object
O ∈ C, the overcategory of O and the undercategory of O are themselves closed model
categories with fibrations, cofibrations and weak equivalences created in the category C.
Now consider the overcategory A+ of the initial object k in A ; its objects are augmented
unital cdgas; i.e. cdgas A supplied with an augmentation A → k. The morphisms in A+

are cdga maps respecting the augmentation. The category A+ has a closed model structure
inherited from A .

Inside the category A+ is the category A c
+ consisting of homologically connected cdgas

and the category A dc
+ consisting of augmented homologically disconnected cdgas. We also

have the corresponding subcategories of non-negatively graded augmented cdgas, indicated
by ≥ 0 in the subscript. Similarly we have the category S+ of pointed simplicial sets, the
undercategory of the terminal simplicial set; it has a closed model structure inherited from
S . Let us formulate an augmented version of Theorem A:
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Theorem A+. The inclusion A≥0+ ⊂ A+ induces an equivalence of the homotopy categories

hoA dc
≥0+

and hoA dc
+ .

For a category C with the terminal object ∗ denote by coProd(C)+ the category whose

objects are the formal finite coproducts A1 ⊔ · · · ⊔ As, s ≥ 1, such that A1, . . . , As−1 are

objects of C, As is an object of the undercategory ∗/C of C, and the Hom-sets are

coProd(C)+
(
A1 ⊔ · · · ⊔ As, B1 ⊔ · · · ⊔Bt

)
:= coProd(C)(A1 ⊔ · · · ⊔ As−1, B1 ⊔ · · · ⊔Bt)× ∗/C(As, Bt),

with the obvious composition law.

Assume that C is a closed model category and consider ∗/C with the induced closed model

category structure. Since the categories ho(∗/C) and ∗/hoC are not equivalent in general,

unlike the un-pointed case, we cannot apply the above construction to the homotopy category

ho(∗/C) directly. We need to modify the above definition by taking coProd
(
ho(∗/C)

)
+
the

category with the same objects as coProd(∗/C), but with the morphism sets

coProd
(
ho(∗/C)

)
+

(
A1 ⊔ · · · ⊔ As, B1 ⊔ · · · ⊔Bt

)
:= coProd(hoC)(A1 ⊔ · · · ⊔ As−1, B1 ⊔ · · · ⊔Bt)× ho(∗/C)(As, Bt),

where Bt denotes the object Bt ∈ ∗/C considered as an object of C by forgetting the coaug-

mentation ∗ → Bt. The above definitions are designed to model the category of disconnected

pointed simplicial sets:

6.1. Example. Denote by S c
+ the category of pointed connected simplicial sets and by S dc

+

the category of pointed simplicial sets with finitely many components. One then has S dc
+

∼=
coProd+(S c) and the same is obviously true for the homotopy categories, i.e. hoS dc

+
∼=

coProd+(hoS c
+).

Note that the weak equivalences in S dc
+ are pointed maps inducing bijections on the sets

of connected components as well as a weak equivalence on each connected component.

Dually, let C be a category with an initial object ∗. Denote by Prod(C)+ the category

whose object are formal finite products A1×· · ·×As, s ≥ 1, where A1, . . . , As−1 are objects

of C and As is an object of the overcategory C/∗ of C. The morphism sets are

Prod(C)+
(
A1 × · · · × As, B1 × · · · ×Bt

)
:= Prod(C)(A1 × . . .× As, B1 × . . . Bt−1)× C/∗(As, Bt).

The category Prod
(
ho(C/∗)

)
+

is defined by an obvious dualization of the definition of

coProd
(
ho(∗/C)

)
+
given above. The following theorems are proved analogously to the non-

augmented case.

Theorem B+. Each homologically disconnected non-negatively graded augmented cdga A ∈
A dc

≥0+
is isomorphic to a finite product A1 × · · · × As of homologically connected cdgas

A1, . . . , As−1 ∈ A c
≥0 and a homologically connected augmented cdga As ∈ A c

≥0+
. This iso-

morphism extends to a natural equivalence of categories

hoA dc
≥0+

∼ Prod(hoA c
≥0)+.
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Each homologically disconnected augmented cdga A ∈ A dc
+ is weakly equivalent to a finite

product A1×· · ·×As of homologically connected cdgas A1, . . . , As−1 ∈ A c and a homologically
connected augmented cdga As ∈ A c

+. As above, one has an equivalence

hoA dc
+ ∼ Prod(hoA c

+)+.

Theorem C+. The following three categories are equivalent.

– The homotopy category fNQ-hoS dc
+ of pointed simplicial sets with finitely many com-

ponents that are rational and of finite Q-type,
– the homotopy category fQ-hoA dc

≥0+
of homologically disconnected non-negatively gra-

ded augmented cdgas of finite type over Q, and
– the homotopy category fQ-hoA dc

+ of homologically disconnected Z-graded augmented
cdgas of finite type over Q.

Part 2. The Lie-Quillen approach

In this part we give an application of the developed theory to the structure of MC spaces
and describe the second version of disconnected rational homotopy theory based on dglas.

7. The simplicial Maurer-Cartan space

We write A+ for the category of augmented cdgas; it is, thus, an overcategory of k ∈ A .
As such, it inherits from A the structure of a closed model category. The weak equivalences
and fibrations are still quasi-isomorphisms and surjective maps respectively. Note that the
product of two augmented cdgas A and B is their fiber product A ×k B. We denote the
augmentation ideal of A ∈ A+ by A+; it is a possibly non-unital cdga. Conversely, given
a non-unital cdga B one can form a unital algebra Be obtained by adjoining the unit;
Be

∼= k⊕B. Thus, the category A+ is equivalent to the category of non-unital cdgas.

7.1. Definition. A complete dgla is an inverse limit of finite-dimensional nilpotent dglas.
The category of complete dglas and their continuous homomorphisms will be denoted by L̂ .

7.2. Remark. The functor of linear duality establishes an anti-equivalence between the
category L̂ and that of conilpotent Lie coalgebras, cf. [3] where complete Lie algebras
were called pronilpotent Lie algebras; we feel that this terminology might not be ideal since,
e.g. an abelian Lie algebra on a countably dimensional vector space is not pronilpotent under
this convention.

Let us show, however, that complete dglas g ∈ L̂ are pronilpotent in the classical sense,

(7.1) g = lim
k

g/gk,

where g = g1 ⊃ g2 ⊃ · · · is the lower central series. Assume g = limn g
n where gn, n ≥ 0,

are finite-dimensional nilpotent. Since the filtered limit of finite-dimensional vector spaces is
exact, we easily verify that (gn)k ∼= limn(g

n)k and that g/gk ∼= limn g
n/(gn)k for each k ≥ 1.

The nilpotence of gn implies limk g
n/(gn)k ∼= gn, therefore

lim
k

g/gk ∼= lim
k

lim
n

gn/(gn)k ∼= lim
n

lim
k

gn/(gn)k ∼= lim
n

gn = g

as desired.
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7.3. Definition. Let L̂ : A+ 7→ L̂ be the functor associating to an augmented cdga A the

complete dgla L̂ (A) whose underlying graded Lie algebra is L̂Σ−1A∗
+, the completed free Lie

algebra on Σ−1A∗
+. The differential d in L̂ (A) is defined as d = dI + dII where dI is induced

by the internal differential in A+ and dII is determined by its restriction onto Σ−1A∗, which

is, in turn, induced by the product map A⊗ A → A.

Dually, let C : L̂ 7→ A+ be the functor associating to a complete dgla g the (discrete)

augmented cdga C(A) whose underlying graded Lie algebra is SΣg∗, the symmetric algebra

on Σg∗. The differential d in C(g) is defined as d = dI + dII where dI is induced by the

internal differential in g and dII is determined by its restriction onto Σg∗, which is, in turn,

induced by the bracket map g⊗ g → g.

7.4. Remark. The dgla L̂(A) is also known as the Harrison complex of an augmented cdga

A whereas C(g) is an analogue of the Chevalley-Eilenberg complex of g, except that usually

g is not assumed to be complete (and in that case C(g) has to be completed).

The following result follows directly from the definition.

7.5. Proposition. The functors C and L̂ are adjoint, so there is a natural isomorphism for

A ∈ A+ and g ∈ L̂ :

L̂
(
L̂(A), g

) ∼= A+

(
C(g), A

)
.

7.6. Remark. In Section 9 we endow L̂ with the structure of a closed model category, in

such a way that the functors L̂ and C will become inverse equivalences of the corresponding

homotopy categories. We will also see that each cdga of the form C(g) is cofibrant.

7.1. Simplicial mapping space for cdgas and dglas. To construct a simplicial Hom in

the category of complete dglas we are forced, as an intermediate step, to deal with dglas

endowed with a linear topology, but which are not complete. An example of such a dgla is

a tensor product A ⊗ g where g is a complete dgla and A a discrete cdga that is infinite

dimensional. Our convention is that the tensor product of a discrete vector space W and

a complete vector space V = limα Vα is the topological vector space W ⊗V := limα(W ⊗Vα).

Whenever two dglas g and h are endowed with a linear topology we will write Homdgla(g, h)

for the set of continuous Lie homomorphisms from g into h.

Let g and h be two complete dglas. We are going to construct a simplicial set of maps

L̂ (g, h)•. As expected, the simplicial enrichment will be obtained by tensoring the dgla h

with the Sullivan-de Rham algebra Ω(∆•) of polynomial forms on the standard topological

cosimplicial simplex, cf. [5, §2]. According to our conventions, Ω(∆•) will be considered as a

homologically graded cdga, so Ω(∆•)⊗ h will be a homologically graded dgla. In particular,

Ωp(∆•)⊗ hq will be placed in homological degree q − p.

7.7. Definition. Let L̂ (g, h)• := Homdgla

(
g,Ω(∆•)⊗h

)
with the faces and degeneracy maps

coming from the corresponding geometric maps on the cosimplicial simplex ∆∗.

7.8. Remark. Note that Ω(∆n), n ≥ 0, is a discrete infinite-dimensional cdga whereas h is

a complete dgla; thus Ω(∆n)⊗ h is a topological, but not a complete dgla.
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Recall that the category A+ also has a simplicial Hom: for two augmented cdgas A and
B let A+(A,B)• be the simplicial set for which

A+(A,B)n = A+

(
A, (Ω(∆n)⊗B+)e

)
.

The following result is an enriched version of Proposition 7.5; its proof is a straightforward
inspection.

7.9. Proposition. For any augmented cdga A and a complete dgla g there is a natural
isomorphism of simplicial sets:

(7.2) L̂ (L̂(A), g)• ∼= A+(C(g), A)• .

7.10. Remark. We defined the simplicial mapping space between two augmented cdgas in
this way in order for the adjunction (7.2) to hold. The simplicial mapping space in the
category of (unital) cdgas is different; for two (unital) cdgas A and B we have

(7.3) A (A,B)• := A
(
A,B ⊗ Ω(∆•)

)
.

It is easy to see that if A is an augmented cdga and B is a (unital) cdga then there is an
isomorphism between simplicial sets

A+(A,Be)• ∼= A (A,B)• .

Denote by s the dgla spanned by two vectors x and [x, x] with |x| = −1 and the dif-
ferential d(x) = −1

2
[x, x]. The dgla s is designed to model the topological space S0, the

zero-dimensional sphere (which is a disjoint union of two points). Note that s is isomorphic

to L̂(k× k), where k× k is the augmented cdga (with vanishing differential) obtained from
the ground field k by adjoining a unit.

7.11. Definition. Let g be a complete cdga. Its MC simplicial set MC•(g) is the simplicial
mapping space:

MC•(g) := L̂ (s, g)• .

In other words, MC•(g) is the simplicial space of MC elements in g ⊗ Ω(∆•). The set
π0 MC•(g) is called the MC moduli set of g and will be denoted by MC (g).

7.12. Example. Fix a finite set S and assign, to each s ∈ S, a degree −1 generator xs.
Consider the complete dgla gS := L̂(xs; s ∈ S) freely generated by the set {xs}s∈S, with the
differential given by dxs := −1

2
[xs, xs]. Let us describe the MC elements in gS⊗Ω(∆n).

The vector space
(
gS⊗Ω(∆n)

)
−1

consists of expressions

x =
∑

s∈S xs⊗αs, αs ∈ Ω0(∆n).

The MC condition for x reads∑
s

(
−1

2
[xs, xs]⊗αs − xs⊗dαs +

1

2
[xs, xs]⊗α2

s

)
+

∑
s′ ̸=s′′

[xs′ , xs′′ ]⊗αs′αs′′ = 0.

By the freeness of gS, the above equation is satisfied if and only if

dαs = 0 for each s ∈ S,(7.4a)

αs(1− αs) = 0 for each s ∈ S and(7.4b)

αs′αs′′ = 0 for each s′, s′′ ∈ S, s′ ̸= s′′.(7.4c)
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Equation (7.4a) implies that αs is a constant, by (7.4b) the only possible values of this

constant are 0 or 1. Equation (7.4c) then implies that αs = 1 for at most one s.

We conclude that MC•(gS) is the constant simplicial set representing the discrete space

S ∪ {∗}. If S is arbitrary, we define gS := limF gF , the obvious limit over finite subsets

F ⊂ S. It is easy to check that the above calculation remains valid, so we see that each

non-empty discrete space can be realized as the MC space of some complete dg-Lie algebra.

An interpretation of this example is given in Remark 7.19 below.

7.13. Remark. In light of Proposition 7.9 we see that the MC simplicial set of a complete

dgla g is isomorphic to

A+

(
C(g), k× k

)
•
∼= A

(
C(g), k)•.

It is easy to see that if two complete g and h are related by a filtered quasi-isomorphism,

then MC•(g) and MC•(h) are weakly equivalent simplicial sets. We will not need this result.

7.2. Disjoint products of dglas and their MC spaces. Recall that an MC element

ξ ∈ h−1 in a dgla h allows one to twist the differential d in h according to the formula

dξ(?) = d(?) + [?, ξ]. The graded Lie algebra h supplied with the twisted differential dξ will

be denoted by hξ. The same construction applies when h is a complete dgla, in that case hξ

will likewise be complete.

Given an arbitrary complete dgla g consider the complete dgla g ∗ s where ∗ stands for the

coproduct in the category L̂ . Abusing the notation, we will write x for the image of x ∈ s

inside g ∗ s under the inclusion of dglas s ↪→ g ∗ s. It is clear that x is an MC element in

g ∗ s. The twisted dgla (g ∗ s)x is analogous to adjoining a base point to a topological space.

Generalizing this construction, we define a disjoint product of two complete dglas; note that

it also makes sense for ordinary (non-complete) dglas.

7.14. Definition. Let g and h be two complete dglas. Their disjoint product is the complete

dgla (g ∗ s)x ∗ h; it will be denoted by g ⊔ h.

In particular, for a dgla g the twisted free product (g ∗ s)x is now denoted as g⊔ 0. Even if

g is non-negatively graded, g ⊔ 0 is not; this obviously applies also to more general disjoint

products of dglas.

7.15. Remark. The operation of a disjoint product of two dglas was considered (without

this name) in [6] and, in a more general, operadic context in [7]. It is not hard to prove that

for any dgla g (complete or not) the dgla g ⊔ 0 is acyclic, cf. [7, Theorem 5.7] or [6, Lemma

6.1]. It follows that for any two dglas g and h the dgla g ⊔ h is quasi-isomorphic to h.

In particular, the operation of a disjoint product of two (complete) dglas is very far from

being commutative. This phenomenon has the following topological explanation, or ana-

logue. Given two pointed topological spaces X and Y define their ‘disjoint product’ as the

disjoint union X ⊔ Y having its base point in Y . Clearly, the operation of disjoint product

of two topological spaces is likewise noncommutative, owing to the asymmetric placement of

the base point.

The following statement ‘measures’ the non-commutativity of the disjoint product.
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7.16. Proposition. The disjoint products g ⊔ h and h ⊔ g are related by a twist; namely the

element −x is an MC element in g ⊔ h ∼= (g ∗ s)x ∗ h and there is an isomorphism of dglas

(g ⊔ h)−x ∼= h ⊔ g.

Proof. The isomorphism in the proposition is the identity map on g and h and takes x ∈ g⊔h

to −x ∈ h ⊔ g. It is straightforward to check that it has the desired property. �

However, the following result shows that the operation of the disjoint product of dglas is

associative, just as its topological counterpart.

7.17. Proposition. For any three dglas g, h, a there is a natural isomorphism of dglas:

(g ⊔ h) ⊔ a ∼= g ⊔ (h ⊔ a).

Proof. We have an isomorphism of graded Lie algebras, disregarding the differential:

(7.5) g ⊔ (h ⊔ a) ∼= (g ∗ s) ∗ ((h ∗ s) ∗ a).
Denote the generator of the first copy of s by x and the generator of the second copy of s

by y in (7.5). Then we have by definition an isomorphism of dglas:

g ⊔ (h ⊔ a) ∼= (g ∗ s)x ∗ ((h ∗ s)y ∗ a).
Similarly there is an isomorphism of dglas

(g ⊔ h) ⊔ a ∼= (((g ∗ s)x′ ∗ h) ∗ s)y′ ∗ a,
where x′ and y′ have an obvious meaning.

Now consider the map f : g ⊔ (h ⊔ a) ∼= (g ⊔ h) ⊔ a which is the identity on g, h and a,

f(x) := x′ + y′ and f(y) := y′. A straightforward calculation shows that f is compatible

with the differentials and is, therefore, an isomorphism as claimed. �

7.18. Remark. The operation of disjoint product does not make the category of dglas into a

monoidal category, since there is no unit object. However, one can check that the pentagon

condition for the operation ⊔ is satisfied and thus, in any expression involving multiple

disjoint products the arrangement of brackets does not matter, up to a natural isomorphism.

7.19. Remark. As an exercise we recommend to verify that for finite S the algebra gS from

Example 7.19 is isomorphic to the disjoint product of 0 with itself, iterated card(S)-times,

that is

g∅ ∼= 0, g{∗} ∼= 0 ⊔ 0, g{∗,∗} ∼= (0 ⊔ 0) ⊔ 0 ∼= 0 ⊔ (0 ⊔ 0), . . .

The fact that gS represents the disjoint union S ∪ {∗} established in Example 7.19 is thus

corroborated by Theorem 1.7.

Define a connected cover h of a dgla h = (h, [−,−], ∂) as the sub-dgla of h given by

(7.6) hn :=

 hn for n > 0,
Ker(∂ : h0 → h−1) for n = 0, and
0 for n < 0.

If h is complete then h is clearly complete as well. The map Hn(h) → Hn(h) induced by the

inclusion ι : h ↪→ h is an isomorphism for n ≥ 0.
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For an MC element ξ ∈ h−1 denote by ϕξ : MC(hξ) → MC(h) the isomorphism η 7→ η + ξ,

η ∈ MC(hξ), and by ϕξ
• : MC•(h

ξ) → MC•(h) the obvious induced map of simplicial sets.

Our proof of Theorem 1.9 will be based on

7.20. Proposition. Let g be a complete dgla and ξ ∈ g−1 an MC element. Then the compo-

sition

MC•(gξ)
MC•(ι)

−−−→ MC•(g
ξ)

ϕξ
•−→ MC•(g)

induces a weak equivalence between MC•(gξ) and the connected component of MC•(g) con-

taining ξ ∈ MC(g).

Proof. Let h be a complete dgla. By Remark 7.13 we have an isomorphism of simplicial

spaces MC•(h) ∼= A
(
C(h), k

)
•, so

πn

(
MC•(h)

) ∼= πn

(
A (C(h), k)•

)
, n ≥ 1.

As shown in Section 9, the cdga C(h) is cofibrant, so the homotopy groups of the simplicial

space A
(
C(h), k

)
• can be, for n ≥ 1, calculated using [5, Proposition 8.12] with X := C(h).

One gets

πn

(
A (C(h), k)•

) ∼= Hom
(
Hn(Σh∗), k)

) ∼= Hn−1(h).

Since all isomorphisms above are functorial, they combine into a functorial isomorphism

(7.7) πn

(
MC•(h)

) ∼= Hn−1(h), n ≥ 1,

valid for an arbitrary complete dgla. This isomorphism is for n ≥ 2 an isomorphism of

abelian groups, but we will not need this result.

Let us return to the proof of our theorem. It is clear that the the simplicial isomorphism ϕξ
• :

MC•(g
ξ) ∼= MC•(g) induces an isomorphism between the connected component containing

the trivial MC element 0 ∈ MC(gξ) and the connected component containing ξ ∈ g−1.

Furthermore, it is clear that the simplicial set MC•(gξ) is connected, with the trivial MC

element 0 ∈ gξ−1 its only 0-simplex. It is therefore enough to show that the inclusion

ι : gξ ↪→ gξ induces and isomorphism

πn

(
MC•(gξ)

) ∼= πn

(
MC•(g

ξ)
)
,

for arbitrary n ≥ 1. By (7.7), this is the same as showing that ι induces an isomorphism

Hn−1(gξ) ∼= Hn−1(g
ξ),

for each n ≥ 1. The last isomorphism easily follows from the definition (7.6) of the connected

cover gξ of gξ. �

Proof of Theorem 1.9. The isomorphism (1.1) follows from Proposition 7.20, the weak equiv-

alence from (1.1) and Theorem 1.7. �
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8. Proof of Theorem 1.7

We start this section by the following auxiliary statement.

8.1. Lemma. Let A, B and C be unital cdgas with A and B cofibrant and such that H0(C)

has no idempotents different from 1. Denote by A×B a cofibrant approximation of A×B.

Then there is a weak equivalence of simplicial sets

A (A×B,C)• ≃ A (A,C)• ∪ A (B,C)• .

Proof. Let S be a finite, connected simplicial set and let Ω(S) be the cdga of Sullivan-

de Rham forms on S (denoted by A(S) in [5]). Then we have the following standard adjunc-

tion isomorphism, cf. [5, Lemma 5.2]:

(8.1) S
(
S,A (A×B,C)•

) ∼= A
(
A×B,Ω(S)⊗ C

)
.

Observe that this adjunction automatically extends to simplicially enriched Homs, that is

(8.2) S
(
S,A (A×B,C)•

)
•
∼= A

(
A×B,Ω(S)⊗ C

)
•.

Indeed, by (8.1) one has for each n ≥ 0,

S
(
S×∆n,A (A×B,C)•

) ∼= A
(
A×B,Ω(S×∆n)⊗ C

) ∼= A
(
A×B,Ω(S)⊗C⊗Ω(∆n)

)
,

consequently

S
(
S,A (A×B,C)•

)
n
∼= A

(
A×B,Ω(S)⊗C

)
n

for each n ≥ 0. By naturality, the above individual isomorphisms assemble into an isomor-

phism (8.2) of simplicial sets. Since A×B is cofibrant, the simplicial set A (A×B,C)• is

Kan. Adjunction (8.2) induces an isomorphism between the sets of connected components

of the corresponding simplicial sets, therefore[
S,A (A×B,C)•

] ∼= [
A×B,Ω(S)⊗ C

] ∼= [
A×B,Ω(S)⊗ C

]
.

The cdga Ω(S) ⊗ C is bigraded and the first grading is non-negative. It is easy to show

that in this situation any idempotent in its cohomology must be contained in the (0, 0)-

graded part which is isomorphic to H0(S)⊗H0(C) ∼= H0(C). But H0(C) has no non-trivial

idempotents other than 1 by our assumption. According to Theorem 2.3[
A×B,Ω(S)⊗ C

] ∼= [
A,Ω(S)⊗ C

]
∪

[
B,Ω(S)⊗ C

] ∼= [
S,A (A,C)•

]
∪

[
S,A (A,C)•

]
.

Note that, because S is connected, we have a natural bijection

S
(
S,A (A,C)• ∪ A (B,C)•

) ∼= S
(
S,A (A,C)•

)
∪ S

(
S,A (A,C)•

)
and, therefore, [

S,A (A×B,C)•
] ∼= [

A×B,Ω(S)
]
.

Thus, we have a natural bijection in the homotopy category of simplicial sets, for any con-

nected finite simplicial set S:[
S,A (A,C)• ∪ A (B,C)•

] ∼= [
S,A (A×B,C)•

]
.

The desired conclusion follows. �
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8.2. Remark. Note that the above lemma is an enriched analogue of Theorem 3.3. Since
A×B is not cofibrant in general, the result will not be true without taking a cofibrant
replacement. Also note that the lemma can be easily generalized to a finite direct product
of cofibrant cdgas.

We need one preliminary result on the MC twisting of dglas. Let g be a complete dgla
and consider the cdga C(g). It is clear that the set of MC elements in g is in 1-1 correspon-
dence with cdga maps (augmentations) C(g) → k, in particular the canonical augmentation
corresponds to the zero MC element.

Let us explain this correspondence explicitly. The evaluation at ξ ∈ g−1 determines a de-
gree +1 linear map αξ : g

∗ → k which in turn defines a degree 0 linear map (denoted by the
same symbol) αξ : Σg

∗ → k from the space of generators of C(g) to the ground field. The
latter map extends to a unique morphisms of graded algebras ϵξ : C(g) → k which commutes
with the differentials, i.e. makes C(g) an augmented cdga, if and only if ξ is Maurer-Cartan.

Likewise, define a degree 0 linear map βξ : Σg∗ → k ⊕ Σg∗ ⊂ C(gξ) as βξ := αξ + 11Σg∗ .
One can easily verify that βξ extends to a cdga’s isomorphism ϕξ : C(g) → C(gξ) such that
the diagram

(8.3)
ϵ0ϵξ

ϕξ

k

C(gξ)C(g) -

�
�

�	

@
@
@R

commutes.

The maps ϵξ and ϕξ above have a nice geometric meaning if we interpret elements f ∈ C(g)
or f ∈ C(gξ) as polynomial functions on Σg. Then ϵξ is the evaluation at ϑ := Σξ while ϕξ

is given by the shift by ϑ, that is

ϵξ(f) = f(ϑ) and ϕξ(f)(u) = f(u+ ϑ), u ∈ Σg.

Checking the commutativity of (8.3) in this language boils down to

ϵ0
(
ϕξ(f)

)
= ϕξ(f)(0) = f(ϑ) = ϵξ(f).

Given ξ ∈ MC(g) there is a bijective correspondence MC(g) → MC(gξ) defined by η 7→
η − ξ. In particular, the element ξ ∈ MC(g) corresponds to the zero element in MC(gξ).

8.3. Lemma. Let g be a complete dgla. Then the augmented cdga C(g ⊔ 0) is quasi-isomorphic
to C(g)× k, with the augmentation given by the projection to the second factor.

Proof. Consider the cdga C(g ∗ s). According to Corollary A.7 the augmented cdga C(g ∗ s)
is quasi-isomorphic to C(g) ×k (k × k) ∼= C(g) × k; moreover, the augmentation of C(g) × k

factors through the projection onto the first factor. On the other hand, there is, as in (8.3),
an isomorphism of cdgas (not respecting the augmentation) ϕx : C(g ∗ s) → C(g ∗ s)x such
that the induced augmentation C(g ∗ s) → C(g ∗ s)x → k corresponds to the MC element
x ∈ MC(g ∗ s).
Note that the augmentation of C(g ∗ s) corresponding to the MC element x ∈ MC(g ∗ s)

translates via the above quasi-isomorphism into the augmentation of C(g)× k given by the
projection onto the second factor. This proves the desired statement. �
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We now return to the proof of Theorem 1.7. It suffices to consider the case when J consists

of two elements. Let g and h be two complete dglas. Then by Theorem A.7 and Lemma 8.3

the augmented cdga C(g ⊔ h) = C
(
(g ⊔ 0) ∗ h

)
is quasi-isomorphic to

C(g ⊔ 0)×k C(h) ≃ (C(g)× k)×k C(h) ∼= C(g)× C(h).

We conclude that the simplicial set MC•(g⊔h) = A+(C(g⊔h), k×k)• is weakly equivalent

to A+(C(g)× C(h), k×k)•. The latter simplicial Hom is taken in the category of augmented

cdgas; it is isomorphic to the simplicial mapping space A (C(g)× C(h), k)• taken in the

category of (unital) non-augmented cdgas. Now we have the following weak equivalence of

simplicial sets, which follows from Lemma 8.1:

A
(
C(g)×C(h), k

)
• ≃ A (C(g), k)• ∪ A (C(h), k)• .

This finishes the proof of Theorem 1.7.

We close this section by two versions of an example which is a dgla analogue of a disjoint

union of a circle S1 and an isolated point. This example is simple enough to be worked out

by hand, although the calculations are still nontrivial. We will see that, in this particular

case, an analogue of Theorem 1.7 actually holds without a completion. The general claim,

in the non-completed context, was made in [6, Theorem 6.4], but we have not been able to

parse the proof in op. cit.

8.4. Example. Let x (resp. a) be a generator of degree −1 (resp. 0). Denote by f the

free non-complete Lie algebra L(x, a) generated by x and a, with the differential given by

dx := −1
2
[x, x], da := 0. In this example we describe MC elements t in f ⊗ Ω(∆n), for an

arbitrary n ≥ 0.

Let us start by observing that f−1 has a basis {ei}i≥0, with

e0 := x, e1 := [a, x], e2 := [a, [a, x]], e3 := [a, [a, [a, x]]], . . .

From degree reasons, each element of
(
f⊗ Ω(∆n)

)
−1

has the form

(8.4) t =
∑

i≥0 ei⊗αi + a⊗ω,

for some αi ∈ Ω0(∆n), i ≥ 0, and ω ∈ Ω1(∆n), with the assumption that only finitely many

αi’s are ̸= 0. The MC equation for t reads∑
i≥0(dei⊗αi − ei⊗dαi) + a⊗dω + 1

2

∑
i,j≥0[ei, ej]⊗αiαj −

∑
i≥0[a, ei]⊗ωαi = 0

(the term 1
2
[a, a]⊗ω2 clearly vanishes). Singling out the parts in f0⊗Ω2(∆n), f−1⊗Ω1(∆n)

and f−2⊗Ω0(∆n), respectively, one gets the equations

a⊗dω = 0,(8.5a) ∑
i≥0(ei⊗dαi + [a, ei]⊗ωαi) = 0,(8.5b) ∑

i≥0 dei⊗αi +
1
2

∑
i,j≥0[ei, ej]⊗αiαj = 0.(8.5c)

Since, by definition, ei+1 = [a, ei], (8.5b) implies that dα0 = 0, i.e. α0 ∈ k is a constant ,

while

(8.6) dαi+1 = −ωαi, for i ≥ 0.

[June 7, 2014]



32 ANDREY LAZAREV AND MARTIN MARKL

Equation (8.5c) means that
∑

i≥0 ei⊗αi is an MC element in f⊗Ω0(∆n), with Ω0(∆n) taken
with the trivial differential. It expands to the system

de0⊗α0 = −1
2
[e0, e0]⊗α2

0,(8.7a)

de1⊗α1 = −[e0, e1]⊗α0α1,(8.7b)

de2⊗α2 = −[e0, e2]⊗α0α2 − 1
2
[e1, e1]⊗α2

1,(8.7c)

de2⊗α3 = −[e0, e3]⊗α0α3 − [e1, e2]⊗α1α2,(8.7d)
...

Since e0 = x and dx = −1
2
[x, x], (8.7a) is equivalent to α0 = α2

0, therefore α0 ∈ Ω0(∆n) is a
constant that equals either 0 or 1.

Case α0 = 0. In this case (8.7b) reduces to de1⊗α1 = 0. Since de1 ̸= 0, it implies
α1 = 0. Then (8.7c) reduces to de2⊗α2 = 0 so, by the same argument, α2 = 0 and (8.7d)
reduces to de3⊗α3 = 0. We prove inductively that αn = 0 for each n ≥ 0. While (8.5b)
is automatically satisfied, (8.5a) requires dω = 0. We conclude that the MC elements t in
f⊗Ω(∆n) with α0 = 0 are precisely closed forms in Ω1(∆n).

Case α0 = 1. Observe first that ξ := e0⊗1 = x⊗1 is an MC element of this form. We are
going to prove that it is the only MC-element of f⊗Ω(∆n) with α0 = 1.

The Lie algebra f0 is one-dimensional, spanned by a. Consider, only for the purposes of
this example, the completion f̂ of f with respect to the grading by the number of a’s. Then
exp(f0) acts on the set of MC elements in f̂, in particular,

exp(a)e0 = e0 + e1 +
1

2!
e2 +

1

3!
e3 +

1

4!
e4 + · · ·

is an MC element in f̂. This means that

de0 = −1
2
[e0, e0],

de1 = −[e0, e1]

de2 = −[e0, e2]− [e1, e1],

de3 = −[e0, e3]− 3[e1, e2],
...

Substituting this to (8.7a)–(8.7d), we get

[e0, e0]⊗α0 = [e0, e0]⊗α2
0,(8.8a)

[e0, e1]⊗α1 = [e0, e1]⊗α0α1,(8.8b)

([e0, e2] + [e1, e1])⊗α2 = [e0, e2]⊗α0α2 +
1
2
[e1, e1]⊗α2

1,(8.8c)

([e0, e3] + 3[e1, e2])⊗α3 = [e0, e3]⊗α0α3 + [e1, e2]⊗α1α2,(8.8d)
...

If α1 = 0, (8.8c) reduces to [e1, e1]⊗α2 = 0, which implies that α2 = 0. Then (8.8d) implies
that [e1, e2]⊗α3 = 0, so α3 = 0. Continuing this process we prove that actually αn = 0 for

all n ≥ 1. Equation (8.6) with i = 0 gives ω = 0. So the only MC element in f̂⊗Ω(∆n) with
α0 = 1 and α1 = 0 is ξ := x⊗1.

[June 7, 2014]



DISCONNECTED RATIONAL HOMOTOPY THEORY 33

Let now t be an MC element in f⊗Ω(∆n) with α0 = 1 and α1 ̸= 0. Then exp(−a⊗α1)t is

clearly an MC element in f̂⊗ Ω(∆n) with α1 = 0, so exp(−a⊗α1)t = x⊗1 or, equivalently,

(8.9) t = exp(a⊗α1)x = a⊗dα1 + e0⊗1 + e1⊗α1 +
1

2!
e2⊗α2

1 +
1

3!
e3⊗α3

1 + · · ·

In particular, t has infinitely many non-trivial elements, so it is not an MC element in the

uncompleted dgla f⊗Ω(∆n). So α1 must be 0 therefore the only MC element of f⊗Ω(∆n)

with α0 = 1 is x⊗1. We arrive at the following conclusion.

Claim. The only MC elements of f⊗Ω(∆n) are either x or closed 1-forms in Ω1(∆n). In

other words, one has an isomorphism of simplicial sets

MC•(f) ∼= MC•(a) ∪MC•(0),

where 0 is the trivial Lie algebra and a the one-dimensional abelian Lie algebra generated by

a. So f serves as an algebraic model for the disjoint union S1 ∪ {∗}.

8.5. Example. Let us analyze the completed version of the previous example, i.e. the MC

elements in f̂ ⊗̂Ω(∆n), where f̂ is the completion of the Lie algebra f = L(x, a). Of course, we

know the answer from Theorem 1.7 but the explicit calculation that could be performed in

this simple case is still instructive. Most of the work done in the previous example applies in

the complete situation with only small modifications. For instance, elements of (̂f ⊗̂Ω(∆n))−1

are of the form (8.4), but the sum may now have infinitely many nontrivial terms.

Equations (8.5a)–(8.7d) still take place, as does the separation into Case α0 = 0 and Case

α0 = 1. Precisely as in Example 8.4 we show that the only MC element with α0 = 0 is the

trivial one. In contrast with the uncomplete case we, however, do not require the sum (8.9)

to be finite, so α1 there may be an arbitrary function from Ω0(∆•).

We conclude that an MC element t in f̂⊗Ω(∆n) is either 1⊗ω for a closed form ω ∈ Ω1(∆•)

if α0 = 0, or

t = exp(a⊗ α)x, for some α ∈ Ω0(∆n),

if α0 = 1. Since the isotropy subgroup of x under the action of exp
(
a⊗ Ω0(∆n)

)
is trivial,

we conclude

Claim. One has an isomorphism of simplicial sets

MC•(̂f) ∼= MC•(a) ∪ Ω0(∆•).

By [5, Proposition 1.1.], Ω0(∆•) is contractible, therefore MC•(̂f) has the simplicial homo-

topy type of MC•(a) ∪ MC•(0). Thus f̂ also serves as an algebraic model for the disjoint

union S1 ∪{∗}. Note that the simplicial sets MC•(̂f) and MC•(f) are weakly equivalent, but

not isomorphic.
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9. Dual Hinich correspondence

The purpose of this section is to establish an analogue to the main result of Hinich’s
paper [15], giving a closed model category structure on cocomplete cocommutative dg coal-
gebras. A formal dualization of Hinich’s result states that the category of complete cdgas
has a closed model structure, cf. [18] where this formulation was explicitly spelled out. The
result proved in this section should be viewed as the Koszul dual to Hinich’s. We prove
this Koszul dual version by suitably adapting Hinich’s methods. The use of the associative
version of this result contained in [19, 25] allows us to shorten the proof in several places.

Recall that in Definition 7.3 we introduced an adjoint pair of functors C and L̂ between the
categories A+ of augmented cdgas and L̂ of complete dglas. We will write ig : L̂C(g) → g

and iA : CL̂(A) → A for the counits of this adjunction. Our goal is to establish a closed

model category structure on L̂ in such a way that the functors C and L̂ would induce an
equivalence on the level of homotopy categories.

The adjoint functors L̂ and C can be ‘embedded’ into an adjunction between bigger cat-
egories of associative algebras. We will denote the category of augmented dg associative
(discrete) algebras (dgas) by Ass+; algebras in Ass+ will be cohomologically graded . The
augmentation ideal in an augmented dga A will be denoted by A+, as in the commutative
case. Let us remind the details of the corresponding adjunction following [19]. First, we
need a relevant definition.

9.1. Definition. A complete augmented dga is, by definition, an inverse limit of finite-
dimensional nilpotent augmented dgas.10 The category of complete dgas and their con-

tinuous homomorphisms will be denoted by Âss+. Algebras in Âss+ are assumed to be
homologically graded.

Algebras of Definition 9.1 are complete in the sense of [26, Appendix A.1]. For instance,
repeating the arguments used in Remark 7.1 to prove that complete dglas are pronilpotent,
one may easily show that limk A/A

k
+
∼= A, which is Condition (c) on page 265 of that paper.

9.2. Remark. The functor of linear duality establishes an anti-equivalence between the

category Âss+ and that of conilpotent dg coalgebras, cf. [13] where complete dgas were
called formal dgas; again, we opted to change this terminology since formality often has
a different meaning in homological algebra.

9.3. Definition. Let B̂ : Ass+ 7→ Âss+ be the functor associating to a dga A the complete
dga B̂(A) whose underlying graded algebra is T̂Σ−1A∗

+, the completed tensor algebra on

Σ−1A∗
+. The differential d in T̂Σ−1A∗

+ is defined as d = dI + dII where dI is induced by the
internal differential in A and dII is determined by its restriction onto Σ−1A∗

+, which is, in
turn, induced by the product map A+ ⊗ A+ → A+.

Likewise, let B : Âss+ 7→ Ass+ be the functor associating to a complete dga C the
(discrete) dga B(C) whose underlying graded algebra is TΣC∗

+, the tensor algebra on ΣC∗
+.

The differential d in B(C) is defined as d = dI + dII where dI is induced by the internal
differential in C and dII is determined by its restriction onto ΣC∗

+, which is, in turn, induced
by the product C+ ⊗ C+ → C+.

10We call an augmented algebra nilpotent if its augmentation ideal is nilpotent in the usual sense.
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9.4. Remark. We will refer to either functor B or B̂ as the cobar-construction. Note that

for a dga A its cobar-construction B̂(A) is a complete Hopf algebra, whose space Σ−1A∗
+ of

algebra generators consists of primitive elements. If A is commutative, then the differential

of B̂(A) takes Σ−1A∗
+ to primitives and thus makes B̂(A) a dg Hopf algebra.

9.5. Proposition.

(1) Let A be a cdga. Then there is a natural isomorphism of complete dglas:

PB̂(A) ∼= L̂(A).

(2) Let g be a complete dgla and Ûg be its completed universal enveloping algebra. Then

there is a quasi-isomorphism of dgas

B(Ûg) ≃ C(g).

Proof. The first statement is a consequence of the completed version of the well-known fact

that the primitive elements in the tensor algebra on a graded vector space form the free Lie

algebra on the same vector space which easily follows from the Appendix to [26].

To prove the second statement, note that the inclusion of g into Ûg as the space of primitive

elements induces a map of dgas B(Ûg) → C(g). To see that the latter map is a quasi-

isomorphism it suffices to assume that g is finite-dimensional nilpotent; the general result

will be obtained by passing to the limit. Denote by g̃ the graded Lie algebra with the same

underlying space as g and the vanishing differential. Then we have spectral sequences with

E1 terms H
(
B(Û g̃)

)
and H

(
C(g̃)

)
, which converge to B(Ûg) and C(g) respectively. The map

B(Ûg) → C(g) gives a map between these spectral sequences. It is therefore enough to prove

that the map B(Û g̃) → C(g̃) is a quasi-isomorphism.

As in the proof of Lemma A.5 we use the filtration of g̃∗ induced by the shifted lower

central series of g̃. This filtration induces, in the usual way, increasing exhaustive and

complete filtrations of B(Û g̃) and C(g̃) compatible with the map B(Û g̃) → C(g̃). This brings
us to the case when g̃ is abelian, the desired result then follows from the calculation of

TorC(g̃)(k, k) via the Koszul complex. �

The category Ass+ has a closed model category structure, by a general result of Hinich,

cf. [14]. Namely, weak equivalences in Ass+ are quasi-isomorphisms of augmented dgas and

fibrations are surjective homomorphisms. The category Âss+ of complete dgas also admits

the structure of a closed model category, as follows.

9.6. Definition. A morphism f : A → B in Âss+ is called

(1) a weak equivalence if B(f) : B(B) → B(A) is a quasi-isomorphism in Ass+;

(2) a fibration if f is surjective; if, in addition, f is a weak equivalence then f is called

an acyclic fibration;
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(3) a cofibration if f has the left lifting property with respect to all acyclic fibrations.
That means that in any commutative square

A

f
��

// C

g
��

B

>>~
~

~
~

// D

where g is an acyclic fibration there exists a dotted arrow making the whole diagram
commutative.

9.7. Theorem. The category Âss+ is a closed model category with fibrations, cofibrations
and weak equivalences defined as above. Moreover, it is Quillen equivalent to the closed model
category Ass+ via the adjunctions B and B̂.

Proof. This is just a reformulation of Théorème 1.3.1.2 of [19], taking into account the anti-
equivalence between complete dgas and conilpotent dg coalgebras. �
9.8. Remark. The above result is an associative analogue of Hinich’s theorem [15] on the
existence of a closed model category on dg conilpotent coalgebras or, equivalently, on com-

plete cdgas. All objects in Âss+ are fibrant and cofibrant objects correspond precisely to
A∞ algebras, cf., for example, [13] for a treatment of A∞ algebras relevant to the present
context.

We will now construct a closed model category structure on L̂ using Theorem 9.7 as a
shortcut; a more direct approach, essentially repeating the original Hinich’s argument in the
dual context is also possible.

9.9. Definition. A morphism f : g → h in L̂ is called

(1) a weak equivalence if C(f) : C(h) → C(g) is a quasi-isomorphism in A+;
(2) a fibration if f is surjective; if, in addition, f is a weak equivalence then f is called

an acyclic fibration;
(3) a cofibration if f has the left lifting property with respect to all acyclic fibrations.

We will prove that the above structures make L̂ a closed model category. Our proof will
be based on the following results.

9.10. Proposition.

(1) Let A be an augmented cdga; then iA : CL̂(A) → A is a quasi-isomorphism.

(2) Let g be a complete dgla; then ig : L̂C(g) → g is a weak equivalence, i.e. C(ig) :

C(g) → C
(
L̂C(g)

)
is a quasi-isomorphism.

Proof. There is a quasi-isomorphism CL̂(A) ≃ B
(
Û L̂(A)

)
in Ass+ by Proposition 9.5(2).

Furthermore, the dga B
(
Û L̂(A)

)
= BB̂(A) is quasi-isomorphic to A by Theorem 9.7. This

proves (1).

Let us prove that the induced map C(ig) : C
(
L̂C(g)

)
→ C(g) is a quasi-isomorphism of

augmented cdgas. By Proposition 9.5(2) we have a quasi-isomorphism of dgas

C
(
L̂C(g)

)
≃ BÛ

(
L̂C(g)

)
= BB̂C(g)

and, by Theorem 9.7, BB̂C(g) is quasi-isomorphic to C(g) as required. �
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The following statement is an analogue of the ‘Key Lemma’ of [15, p. 223].

9.11. Lemma. Let A be a cdga, g be a complete dgla and f : A → C(g) be a surjective map.

Consider the pushout diagram

L̂C(g)
ig

��

L̂(f)
// L̂(A)

j

��
g // a .

Then C(j) : C(a) → CL̂(A) is a quasi-isomorphism of cdgas.

In the proof of Lemma 9.11 we will use the following technical statement.

9.12. Lemma. Let ϕ : (A′, d′) → (A′′, d′′) be a chain map. Assume that A′ =
∪

p,q Fp,qA
′ is

a finite double filtration which is descending in the sense that

Fp+1,qA
′ ∪ Fp,q+1A

′ ⊂ Fp,qA
′ for each p, q.

Assume also that d′ is the sum d′1 + d′2 of two differentials such that

d′1(Fp,qA
′) ⊂ Fp,qA

′ and d′2(Fp,qA
′) ⊂ Fp−1,q+1A

′ for each p, q.

Suppose that A′′ has a double filtration with the similar properties and that ϕ is compatible

with these filtrations. If the induced map

ϕp,q :
Fp,qA

′

Fp+1,qA′ ∪ Fp,q+1A′ −→
Fp,qA

′′

Fp+1,qA′′ ∪ Fp,q+1A′′

of the quotients, with the differentials induced by the ‘untwisted’ parts d′1 resp. d
′′
1, is a quasi-

isomorphism for each p and q, then ϕ is a quasi-isomorphism, too.

Proof. Consider the spectral sequences in the q-direction. The E1-sheets of these spectral

sequences are clearly the same as if the twisted parts d′2 resp. d′′2 of the full differentials

vanish. We may therefore assume d′2 = d′′2 = 0 from the beginning, in which case is the claim

obvious. �

We will also need to know that the functor C(−) preserves filtered quasi-isomorphisms.

The proof of the following statement is a harmless modification of [15, Proposition 4.4.4].

9.13. Lemma. Assume that u and v are filtered complete dglas, with complete filtrations

(9.1) u = F1u ⊃ F2u ⊃ F3u ⊃ · · · resp. v = F1v ⊃ F2v ⊃ F3v ⊃ · · · .
Let ϕ : u → v be a morphism, compatible with the filtrations, such that the induced map

ϕn : u/Fnu → v/Fnv is a quasi-isomorphism for each n ≥ 1. Then C(ϕ) : C(v) → C(u) is

a quasi-isomorphism, too.

9.14. Remark. The map ϕn : u/Fnu → v/Fnv is a chain map in the category of linearly

compact spaces. By saying it is a quasi-isomorphism we mean that it is a quasi-isomorphism

in the underlying category of dg vector spaces. It is easy to show that ϕn is a quasi-

isomorphism if and only if its dual ϕ∗
n is a quasi-isomorphism in the usual sense, compare

Remark 10.3.
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Proof of Lemma 9.11. Our proof will be similar to that of [15, pp. 224-225] or [19, pp. 42-

43]. The kernel B of the map f : A → C(g) is a non-unital cdga. Since C(g) is free as

a non-differential algebra, choosing an algebra splitting of f , we obtain an isomorphism

A ∼= B ⊕ C(g)

of graded algebras, in which B is closed under the differential. Therefore L̂(A) is isomorphic,

as a complete graded Lie algebra, to L̂(Be) ∗ L̂C(g), the (completed) free product of L̂(Be)

and L̂C(g). The differential in L̂(A) consists of three parts: the differential in L̂(Be), the

differential in L̂C(g) and the ‘twisted’ part mapping the generators of L̂(Be) into L̂C(g).
We clearly have the following isomorphisms of complete graded Lie algebras (again, disre-

garding the differentials):

a ∼= L̂(A) ∗L̂C(g) g ∼=
(
L̂(Be) ∗ L̂C(g)

)
∗L̂C(g) g ∼= L̂(Be) ∗ g.

The differential in L̂(Be) ∗ g is, under this isomorphism, also the sum of three parts: the

differential in L̂(Be), the differential in g and the twisted part, which maps the generators of

L̂(Be) into g. It is clear that the map j : L̂(A) → a, under the above identifications, equals

(9.2) 11 ∗ ig : L̂(Be) ∗ L̂C(g) → L̂(Be) ∗ g,
but the differentials differ by the twistings from those of the free products.

Before we proceed, we need some notation. If u and v are filtered complete dglas as in (9.1),

then their completed free product u∗v possesses an induced double filtration with Fp,q(u∗v)
the closure of the subspace generated by all iterated brackets of ui ∈ Fpiu and vj ∈ Fqjv,

1 ≤ i ≤ a, 1 ≤ j ≤ b, such that

p1 + · · ·+ pa = p and q1 + · · ·+ pb = q.

One also has the associated total filtration with Fn(u ∗ v) :=
∪

p+q=n Fp,q(u ∗ v).
For graded dglas one defines the bigrading on their completed free product in the obvious

analogous manner. We then have the following formula for the associated bigraded dgla:

(9.3) Grp,q(u ∗ v) :=
Fp,q(u ∗ v)

Fp+1,q(u ∗ v) ∪ Fp,q+1(u ∗ v)
∼=

(
Gr(u) ∗Gr(v)

)
p,q
.

Let us return to our proof. The lower central series g1 ⊃ g2 ⊃ g3 ⊃ · · · of g induces, in the

standard manner, a filtration of L̂C(g) while the complete free Lie algebra L̂(Be) is filtered

by its lower central series. As explained above, one has the induced double filtrations of the

completed free products L̂(Be) ∗ L̂C(g) and L̂(Be) ∗ g. The associated total filtrations are

stable under the differentials and the map (9.2) factorizes, for each n, into a map

(9.4) ϕ = ϕn :
L̂(Be) ∗ L̂C(g)

Fn(L̂(Be) ∗ L̂C(g))
−→ L̂(Be) ∗ g

Fn(L̂(Be) ∗ g)
of dglas. By Lemma 9.13, it suffices to prove that ϕ is a quasi-isomorphism for each n.

Fix n and consider the double filtrations of the quotients in (9.4) induced by the double

filtrations Fp,q

(
L̂(Be)∗ L̂C(g)

)
resp. Fp,q

(
L̂(Be)∗g

)
. It is straightforward though technically

involved to prove that these filtrations and the map ϕ satisfy the assumptions of Lemma 9.12.

Taking the quotients was needed to make these double filtrations finite.
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By Lemma 9.12, it is enough to prove that the bigraded components ϕpq of the map ϕ are

quasi-isomorphisms. Using (9.3), one easily identifies ϕpq with the map

(9.5) (11 ∗ iGr(g))p,q :
(
Gr(L̂(Be)) ∗ L̂C(Gr(g))

)
p,q

−→
(
Gr(L̂(Be)) ∗Gr(g)

)
p,q

if p+ q < n while ϕpq = 0 otherwise.

Since the gradings of both Gr(L̂(Be)), L̂C(Gr(g)) and Gr(g) are positive, the (p, q)-

components of the free products in (9.5) are spanned by iterated brackets of length ≤ p+ q.

We may thus in (9.5) disregard the topologies and consider uncompleted free products.

In the proof of Theorem A.4 we established that the uncompleted free product is an

exact functor. To finish the proof, it is therefore enough to establish that the canonical

map L̂C
(
Gr(g))p → Gr(g)p is a quasi-isomorphism for each p. It is immediate to see that

L̂C(Gr(g))p coincides with the degree p-part L C (Gr(g))p of the composition of the adjoint

functors C and L (see [15, 2.2] for their definitions) applied to Gr(g) considered as a

discrete dgla. The proof is finished by of [15, Proposition 3.3.2] by which the canonical map

L C (Gr(g)) → Gr(g) is a quasi-isomorphism. �

Let us prove another auxiliary statement.

9.15. Lemma. The functor L̂ : A+ → L̂ preserves weak equivalences. Moreover, it maps

fibrations to cofibrations and cofibrations to fibrations.

Proof. Let f : A → B be a weak equivalence, i.e. a quasi-isomorphism, in A+. By definition,

L̂(f) : L̂(B) → L̂(A) is a weak equivalence if the induced map CL̂(f) : CL̂(A) → CL̂(B) is

a quasi-isomorphism. This follows from the diagram

CL̂(A)
iA

��

CL̂(f)
// CL̂(B)

iB
��

A
f // B

in which the vertical maps are quasi-isomorphisms by Proposition 9.10(1).

Assume that f is a fibration in A+, i.e. an epimorphism. To prove that L̂(f) is a cofibration,
we must find a dotted arrow in each diagram

L̂(B)

L̂(f)
��

// g

u

��
L̂(A)

>>~
~

~
~

// h

in which u : g → h is an acyclic fibration in L̂ . Using the adjunction between L̂ and C, we
see that we may equivalently seek for a dotted arrow in the diagram

C(h)

C(u)
��

// A

f

��
C(g)

>>|
|

|
|

// B
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in which f is a fibration in A+ by assumption. Since C(u) is a quasi-isomorphism by the

definition of weak equivalences in L̂ , all we need to show is that C(u) is a cofibration in A+.

Denote by g = g1 ⊂ g2 ⊂ g2 ⊂ · · · the lower central series of g. In Remark 7.2 we verified
that g = lim g/gn. Since K := Ker(f) ⊂ g is a closed subspace, by standard properties of
filtered limits we verify that the limit of the tower

(9.6) h ∼= g/(g1 ∩K)
π1� g/(g2 ∩K)

π2� g/(g3 ∩K)
π3� · · ·

equals g, therefore the colimit of the diagram

C(h) ↪→ C(g/g2 ∩K) ↪→ C(g/g3 ∩K) ↪→ C(g/g4 ∩K) ↪→ · · ·
equals C(g). It would therefore suffice to prove that the maps C(πn), where πn are as in (9.6),
are cofibrations in A+ for each n ≥ 1.

To this end, observe that the kernel of πn is an abelian dgla (gn ∩K)/(gn+1 ∩K). With
this knowledge, it is easy to see as in the proof of the lemma in [15, §5.2.2] that C(πn) is
a standard cofibration obtained by adding free generators to C(g/gn ∩K).

To prove the last part of the lemma, note the standard fact that cofibrations in A+ are
monomorphisms, while L̂(−) clearly converts monomorphisms to epimorphisms, i.e. fibra-

tions in L̂ . �

In the proof of Lemma 9.15 we established that the functor C(−) converts fibrations to

cofibrations. As each g ∈ L̂ is fibrant, this in particular implies that the dglas C(g) are
cofibrant in A+.

9.16. Theorem. The category L̂ is a closed model category with fibrations, cofibrations and
weak equivalences as in Definition 9.9. Moreover, it is Quillen equivalent to the closed model
category A+ via the adjunctions L̂ and C.

Proof. The arguments are precisely dual to those of Hinich [15, pp. 223–224]. The category

L̂ admits arbitrary limits and colimits. Indeed, the limits are created in the category of
linearly compact dg vector spaces. The coequalizer of two maps f, g : g → h is the quotient
of h by the closed ideal in h generated by the elements f(a) − g(a) where a ∈ g. Finally,
the coproduct of a family of complete dglas is constructed by taking their free product, and
then completing. This proves axiom CM1; the axioms CM2 and CM3 are obvious, and one
half of CM4 holds by definition.

Let us prove the factorization axiom CM5. Given a map f : g → h in L̂ , consider the
corresponding map of cdgas C(f) : C(h) → C(g). Suppose we factorize C(f) as

(9.7) C(h) i→ A
p→ C(g)

where p is a surjective map, i.e. a fibration, and i a cofibration in A+. Then one has an
induced factorization of f :

(9.8) g
ĩ−→ L̂(A) ∗L̂C(g) g

p̃−→ h

where p̃ is easily seen to be an epimorphism, i.e. a fibration in L̂ . By construction, ĩ is
obtained by a cobase-change from L̂(p) which is a cofibration by Lemma 9.15. Thus ĩ is
a cofibration as well.
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Since A+ is a closed model category, factorization (9.7) exists and can be chosen such that
p is a quasi-isomorphism. Then the corresponding ĩ in (9.8) is acyclic; this follows (just
as in [15]) from Lemma 9.11 and Proposition 9.10(1). This proves the first factorization
of CM5.

The proof of the second factorization property of CM5 is similar, we only choose this time
i in (9.7) to be a quasi-isomorphism. The map p̃ is then acyclic by Lemma 9.11.

It remains to prove the second half of CM4, i.e. that any acyclic cofibration in L̂ has the
LLP (left lifting property) with respect to all fibrations. Let f : g → h be such a cofibration.
Factorize it as in (9.8): f = p̃◦ ĩ where p̃ is an acyclic fibration and ĩ is an acyclic cofibration

obtained by a cobase-change from a map L̂(p), where p is an acyclic fibration in A+.

By Lemma 9.15, L̂(p) is an acyclic cofibration in L̂ , so it has the LLP with respect to

all fibrations in L̂ , thus ĩ has the same property. Since p̃ has the LLP with respect to f it
follows that f is a retract of ĩ and so, it has the LLP with respect to all fibrations in L̂ as
required. This finishes our proof that L̂ is a closed model category.

The statement that the adjoint functors L̂ and C form a Quillen pair, i.e. satisfy assump-
tions of [9, Theorem 9.7], follows at once from Proposition 9.10 and Lemma 9.15. �

An interesting feature of the closed model structure of Definition 9.9 is the existence and
uniqueness of minimal models.

9.17. Definition. A dgla M ∈ L̂ of the form M =
(
L̂(M), ∂

)
is minimal if ∂ induces the

trivial differential on M . A minimal model of a dgla g ∈ L̂ is a minimal dgla M together
with a weak equivalence M → g.

9.18. Theorem. Each g ∈ L̂ has a minimal model unique up to an isomorphism.

Proof. For g ∈ L̂ denote by H the cohomology of C(g) and choose a homotopy equivalence
f : C(g) → H in the category of dg vector spaces; here H is considered with the trivial
differential. By [22, Move M1, p. 133], there exists a C∞-algebra C with the underlying dg-

vector space H, and a C∞-morphism F : C(g) → C extending f . Let M =
(
L̂(Σ−1H∗), ∂

)
be

the complete dgla corresponding to the C∞-algebra C. It is minimal and the C∞-morphism
F translates into a weak equivalence φ : M → L̂C(g). The canonical map ig : L̂C(g) → g is,
by Proposition 9.10(2), a weak equivalence, too. The composition

ρ : M
φ−→ L̂C(g) ig−→ g

is then the desired minimal model of g.

Let us prove uniqueness. Suppose that ρ′ : M ′ → g is another minimal model. Since C(g)
is fibrant as every object of A+, L̂C(g) is cofibrant by Proposition 9.15. Although ρ′ need
not be a fibration, it is still a map between cofibrant objects. By e.g. [28, Lemma 3.5], there
exists the dotted arrow α in the diagram

M
φ // L̂C(g) α //___

ig
##G

GG
GG

GG
GG

G
M ′

ρ′

��
g
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making the right triangle homotopy commutative. The composition αφ is a weak equivalence
of minimal dglas, so it induces an isomorphism of the generators; it is therefore itself an
isomorphism. �

9.1. Non-unital monoidal structures on L̂ and A+. In Subsection 7.2 we constructed

a non-unital monoidal structure on the category L̂ of complete dglas. An analogous, but
simpler, structure on the category A+ is given by the product A × B of augmented cdgas
A,B ∈ A+ equipped with the augmentation through the projection onto the second factor.
The operation A,B 7→ A×B is coherently associative, but not commutative and not unital.
The two structures correspond to each other under the adjoint functors L̂ and C:

9.19. Proposition.

(1) For two augmented cdgas A and B there is a natural isomorphism in L̂ :

L̂(A×B) ∼= L̂(A) ⊔ L̂(B).

(2) For two complete dglas g and h there is a natural quasi-isomorphism in A+:

C(g ⊔ h) ≃ C(g)× C(h).

Proof. Starting from part (1), take B to be the trivial augmented cdga: B = k. Disregarding
the differentials, we have the following isomorphisms of complete graded algebras:

L̂(A× k) ∼= L̂(Σ−1A∗) ∼= L̂(Σ−1A∗
+) ∗ L̂(Σ−1k) ∼= L̂(A) ∗ L̂(k) ∼= L̂(A) ∗ s.

Direct inspection shows that, under the above isomorphism, the differential in L̂(A × k)

corresponds to the twisted differential dx in L̂(A) ∗ s ∼= L̂(A)⊔ 0, so the dglas L̂(A× k) and

L̂(A) ⊔ 0 are isomorphic. For a general cdga B we have:

L̂(A×B) ∼= L̂
(
(A× k)×k B

) ∼= L̂(A× k) ∗ L̂(B) ∼=
(
L̂(A) ⊔ 0

)
∗ L̂(B) ∼= L̂(A) ⊔ L̂(B).

Here we used the fact that L̂ transforms categorical products in A+ into categorical coprod-

ucts in L̂ , which follows formally from its adjointness property.

Part (2) was established in the proof of Theorem 1.7 on page 31. �

10. Disconnected spaces and dg Lie algebras

In this section we prove Theorem D. The ground field will always be the field Q of rational
numbers.

Let us define a functor Q : S+ 7→ L̂ as the composition Q(S) := L̂Ω(S), where Ω(S) is
the polynomial Sullivan-de Rham algebra of a pointed simplicial set S ∈ S+ [5, §2], with
the augmentation A(S) → Q induced by the inclusion of the base point of S. The simplicial

MC space functor MC• : L̂ 7→ S+ was recalled in Definition 7.11, the base point of MC•(g)
is the 0-simplex corresponding to the trivial MC-element 0 ∈ g. We then have the following
result.

10.1. Proposition. The functors MC• : L̂ 7→ S+ and Q : S+ 7→ L̂ form an adjoint pair,
i.e. there is a natural isomorphism

S+

(
S,MC•(g)

) ∼= L̂
(
Q(S), g

)
,

for each pointed simplicial set S and a complete dgla g.
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Proof. Note that, by definition, there is an isomorphism of simplicial sets MC(g) ∼= F
(
C(g)

)
,

where F is the Bousfield-Kan functor associating to a cdga B the simplicial set A (B,Q)•
recalled in (7.3).

Note also that if B is an augmented cdga then F (B) is naturally a pointed simplicial set.

The proposition now follows from the fact that the functors MC and Q are the compositions

of the upper resp. lower functors in the diagram

(10.1) L̂ i

C

L̂

q
A+ i

F

Ω

q
S+

in which the functors L̂ and C are adjoint by Proposition 7.5, while the functors F and Ω

form an adjoint pair by [5, §8.9] (the functor Ω of Sullivan-De Rham forms was denoted by

A in [5]). �

10.2. Definition. The subcategory in the homotopy category of L̂ formed by the disjoint

products of finitely many non-negatively graded complete dglas whose homology are finite-

dimensional in each degree will be denoted by fQ-hoL̂ dc.

10.3. Remark. Note that g = (g, ∂) ∈ L̂ is a chain complex in the category of linearly

compact spaces. Since ∂ is continuous, Ker(∂), and also Im(∂) as a continuous image of

a linearly compact space, are closed subspaces of g. So H(g) = Ker(∂)/ Im(∂) is a linearly

compact graded space. Clearly H(g)∗ ∼= H(g∗), where H(g∗) is the ordinary cohomology of

the discrete dual (g∗, ∂∗).

10.4. Remark. The functor g, h 7→ g⊔h lifts to the homotopy category of L̂ . Indeed, there

is a quasi-isomorphism C(g)×C(h) ≃ C(g⊔h), by Proposition 9.19(2). If g and g′ are weakly

equivalent complete dglas then, by definition, the cdgas C(g) and C(g′) are quasi-isomorphic,

thus the cdgas C(g) × C(h) and C(g′) × C(h) are likewise quasi-isomorphic. Therefore the

complete dglas g ⊔ h and g′ ⊔ h are weakly equivalent.

It follows from Theorem 9.16 resp. [5, Lemma 8.5] that the composite functors MC• and

Q induce an adjoint pair of functors between the homotopy categories of L̂ and S+. The

following result implies Theorem D.

10.5. Theorem. The functors MC• and Q determine mutually inverse equivalences between

the categories fQ-hoL̂ dc and fNQ-hoS dc
+ .

Proof. We use the pointed (resp. augmented) versions of the results of Part 1 formulated

in Section 6. As the first step, observe that the category fQ-hoL̂ dc is equivalent to the

auxiliary ‘extended’ category extfQ-hoL̂ dc whose objects are dglas weakly equivalent to

objects of fQ-hoL̂ dc. We claim that the left adjunction of (10.1) restricts to the adjunction

(10.2) extfQ-hoL̂ dc
i

C

L̂

q
fQ-hoA dc

+ ,

where fQ-hoA dc
+ is the full subcategory of hoA+ consisting of augmented homologically

disconnected algebras of finite type. To this end, we must check that

(10.3) C(g) ∈ fQ-hoA dc
+ and L̂(A) ∈ extfQ-hoL̂ dc
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whenever g ∈ fQ-hoL̂ dc and A ∈ fQ-hoA dc
+ .

Let us look at the first condition. Assume that g = g1 ⊔ · · · ⊔ gk, where gi ∈ fQ-hoL̂ dc are

non-negatively graded. Since, by Proposition 9.19(2), C(g1 ⊔ · · · ⊔ gk) is quasi-isomorphic to

C(g1)×· · ·×C(gk), it is enough to show that C(g) ∈ fQ-hoA dc
+ whenever g ∈ fQ-hoL̂ dc is non-

negatively graded. By Remark 7.6, C(g) is cofibrant non-negatively graded connected cdga

whose only augmentation ideal I is the ideal generated by Σg∗, so I/I2 ∼= Σg∗. Therefore

C(g) is connected of finite type since H(g∗) is such by assumption. This proves the first

condition of (10.3).

To prove the second condition, observe that, by definition, the algebra A is weakly equiv-

alent (i.e. related by a ziz-zag of quasi-isomorphisms) to a finite product of non-negatively

graded connected algebras of finite type, A ≃ A1 × · · · × Ak, with the augmentation given

by the projection to the last factor. Since, by Proposition 9.19(1),

L̂(A1 × · · · × Ak) ∼= L̂(A1) ⊔ · · · ⊔ L̂(Ak),

it is enough to verify that L̂(A) ∈ extfQ-hoL̂ dc whenever A is connected, cofibrant non-

negatively graded cdga of finite type. Since in this case L̂(A) is non-negatively graded,

it suffices to prove that the homology of L̂(A) is finite-dimensional in each degree. This,

however, immediately follows from Lemma 4.3.

As the functors L̂ and C form a Quillen pair by Theorem 9.16, their restrictions in (10.2)

are mutually inverse equivalences of categories. The rest of the proof immediately follows

from Theorem C+ of Section 6 by which the category fQ-hoA dc
+ is equivalent to the category

fNQ-hoS dc
+ . �

10.6. Remark. The reader may wonder why Theorem 10.5 relates augmented algebras to

dg-Lie algebras with no additional structure. The answer is that the dg Lie-analogue of an

augmentation is a choice of an MC-element. From this perspective, each dgla is canonically

augmented by the trivial MC-element 0. Our definition of the disjoint product g ⊔ h is such

that its augmentation is induced by the augmentation of the last factor.

10.7. Remark. Note that Theorem 10.5 allows one to say something new even for connected

spaces (or simplicial sets). Indeed, the category of unpointed connected spaces is a subcate-

gory of disconnected pointed spaces. Namely, this subcategory consists of spaces, consisting

of two connected components, one of which is the basepoint. We see, therefore, that the

homotopy category of rational connected unpointed spaces is equivalent to a certain subcat-

egory of fQ-hoL̂ dc, whose objects are of the form g⊔0 for a non-negatively graded complete

dgla g. This subcategory is not full; in fact it is easy to see that there is a natural bijection[
g ⊔ 0, h ⊔ 0

] ∼= [
MC•(g),MC•(h)

]
∪ {∗}

where ∗ denotes an isolated basepoint corresponding to the zero map g ⊔ 0 → h ⊔ 0.
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Appendix A. Cohomology of free products of dg Lie algebras

The purpose of this appendix is to express the Chevalley-Eilenberg cohomology of free
products of dglas in terms of the Chevalley-Eilenberg cohomology of the factors. The main
results are Theorem A.4 for the non-complete case and Theorem A.7 for the compete one.
These results seem completely standard but we have not found them in the literature. There
is an analogous result for group cohomology, but it relies on the construction of the classifying
space of a group; such a construction has no analogue for an arbitrary (i.e. not necessar-
ily nilpotent) dgla, so we needed to develop a certain algebraic machinery instead. First,
introduce some notation.

Recall that L is the category of (discrete) dglas. We denote by Â the category of complete
cdgas; its objects are inverse limits of finite dimensional nilpotent non-unital cdgas.

A.1. Definition. Let Ĉ : L 7→ Â be the functor associating to a discrete dgla g ∈ L the
complete cdga Ĉ(g) whose underlying non-unital cdga is Ŝ+Σg

∗, the completed non-unital

symmetric algebra on Σg∗. The differential d in Ĉ(g) is defined as d = dI + dII , where dI
is induced by the internal differential in g and dII is determined by its restriction onto Σg∗,
which is, in turn, induced by the bracket map g⊗ g → g.

A.2. Remark. The construction Ĉ(g) is a double complex with the horizontal differential
dII and the vertical differential dI . As such, it has two spectral sequences associated with it;
one converging to the direct product totalization, the other to the direct sum totalization.
Since Ĉ(g) is constructed using direct products, only the first spectral sequence is relevant.

We denote this spectral sequence by E ′(g); we have E ′
2(g) = H

(
Ĉ(H(g)

)
. Using this spectral

sequence, we easily prove that the functor Ĉ : L 7→ Â preserves quasi-isomorphisms.

The proof of Theorem A.4 below will use the following lemma.

A.3. Lemma. Let f : u → v be a morphism of dglas such that the induced morphism
U(f) : U(u) → U(v) of their universal enveloping algebras is a quasi-isomorphism. Then f
is a quasi-isomorphism too.

Proof. By [26, Theorem 4.5], the functor U from dglas to cocommutative connected dg Hopf-
algebras admits a quasi-inverse, denoted by P, which associates to a dg Hopf algebra its dgla
of primitive elements. Consider the following commutative diagram of canonical maps:

(A.1)

PHU(f)

HPU(f)

PHU(v).PHU(u)

HPU(v)HPU(u)

-
??

-

Since PU(u) ∼= u one has HPU(u) ∼= H(u) and, since UH ∼= HU by [26, Theorem 2.1], one
has PHU(u) ∼= PUH(u) ∼= H(u); similarly for v in place of u. We conclude that both the
vertical arrows in (A.1) are isomorphisms, while the bottom map PHU(f) is an isomorphism
by assumption. Thus H(f) = HPU(f) must be an isomorphism too. �

A.4. Theorem. Let g and h be two discrete dglas. Then there is a quasi-isomorphism
Ĉ(g ∗ h) ∼= Ĉ(g)× Ĉ(h) where g ∗ h is the free (non-completed) product of g and h.
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Proof. As the first step we prove that the functor g 7→ g ∗ h preserves quasi-isomorphisms.

Our proof of this fact will use the isomorphism U(g ∗ h) ∼= U(g)∗U(h) for universal enveloping
algebras, where the symbol ∗ in the right hand side stands for the free product of dgas.

Let g′ be a dgla quasi-isomorphic to g. Since U preserves quasi-isomorphisms by [26,

Theorem 2.1], it suffices to prove that the functor of taking the free product on the category

of dgas preserves quasi-isomorphisms. Indeed, if it is so, then we have a chain of isomorphisms

and quasi-isomorphisms:

U(g ∗ h) ∼= U(g) ∗ U(h) ≃ U(g′) ∗ U(h) ∼= U(g′ ∗ h).

Lemma A.3 then implies that g ∗ h is quasi-isomorphic to g′ ∗ h.
To show the exactness of the free product functor for associative algebras, observe that the

product A ∗B of dgas A and B decomposes as a direct sum of tensor products of A and B:

A ∗B ∼= A⊕B ⊕ (A⊗B)⊕ (B ⊗ A)⊕ (B ⊗ A⊗B)⊕ (A⊗B ⊗ A)⊕ · · ·

so the statement follows from the exactness of the tensor product of dgas over a field of

characteristic zero.

Recall that the functor g 7→ Ĉ(g) preserves quasi-isomorphisms by Remark A.2. Since L
is a closed model category, we conclude that it suffices to prove the statement of our theorem

in the case when both g and h are standard cofibrant dglas, i.e. when they are obtained from

the trivial dgla by a sequence of cell attachments. In that case g ∗ h is likewise a standard

cofibrant dgla.

Further, we claim that if a is a cofibrant dgla then Ĉ(a) is quasi-isomorphic to the space

Der(a, k) of derivations of a with coefficients in the trivial one-dimensional a-module k –

note that Der(a, k) is isomorphic to (a/[a, a])∗, the dual space of indecomposables of a. This

is a standard fact which can be proved e.g. by k-linear dualization of [15, Proposition 9.1.1].

Finally, it is clear that Der(g∗h, k) ∼= Der(g, k)×Der(h, k). The desired result is proved. �

Recall that we are really interested in complete dglas whereas the last result concerns non-

complete ones. Somewhat surprisingly, it also holds for complete dglas, as a consequence of

Theorem A.4. In the formulation of the complete case we have to take the fiber product of

the corresponding CE complexes C(g) and C(h) since the latter are augmented cdgas. Let us

prove some preliminary statements. From now on we will write C+(g) for the augmentation

ideal of the cdga C(g).

A.5. Lemma. Let g and h be finite dimensional nilpotent graded Lie algebras, viewed as

complete dglas. Then there is a quasi-isomorphism C+(g ∗ h) ≃ C+(g)× C+(h).

Proof. The statement of the lemma is similar to the quasi-isomorphism of Theorem A.4,

however the essential difference is that g and h are regarded as complete dglas (with vanishing

differentials) and so, their free product g∗h is likewise completed. However, it turns out not

to influence the result. The natural maps g → g ∗ h and h → g ∗ h induce a map

(A.2) C+(g ∗ h) → C+(g)× C+(h);

we want to show that this map is a quasi-isomorphism.
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We start the proof by reducing the statement to the case when g and h are abelian. First
observe that g, being finite dimensional nilpotent, has finite filtration, whose associated
graded is abelian (graded) Lie algebra which will be denoted by g♮.

Indeed, consider the lower central series g = g1 ⊃ g2 ⊃ · · · ⊃ gs+1 = 0 of g. Although the
associated graded of this descending filtration need not be abelian, the shifted filtration

(A.3) g = F0g ⊃ F1g ⊃ · · · ⊃ Fsg = 0

with Fng := gn+1, 0 ≤ n ≤ s, does have this property. Let Gng∗ := (Fn+1g)
⊥ = g⊥n+2 be the

annihilator of Fn+1g in g∗. Then

(A.4) 0 ⊂ G0g∗ ⊂ G1g∗ ⊂ · · · ⊂ Gsg∗ = g∗

is a finite ascending filtration of g∗. The subspaces

GnC+(g) :=
⊕
k≥1

⊕
n=n1+···+nk

ΣGn1g∗ · · ·ΣGnkg∗ ⊂ C+(g)

form an ascending filtration

0 ⊂ G0C+(g) ⊂ G1C+(g) ⊂ G2C+(g) ⊂ · · · ⊂ C+(g)
which is exhaustive, Hausdorff and complete. The E1-term of the induced spectral sequence
clearly equals C+(g♮) and this spectral sequence strongly converges to C+(g).
Let us turn our attention to the completed free product g ∗ h. One has a natural epimor-

phism π : L(g, h) � g ∗̃ h, where L(g, h) is the free graded Lie algebra generated by g ⊕ h,
and g ∗̃ h denotes, only in this proof, the uncompleted free product. Let L≥m(g, h) be the
ideal spanned by products of at least m elements, and (g ∗̃ h)≥m := π

(
L≥m(g, h)

)
. Since π is

an epimorphism, (g ∗̃ h)≥m is an ideal, and

g ∗ h = lim
m

(g ∗̃ h)/(g ∗̃ h)≥m.

Filtration (A.3) induces, in the standard manner, a filtration FnL(g, h), n ≥ 0, of L(g, h).
Denote finally by Fn(g ∗̃ h) := π

(
FnL(g, h)

)
the induced filtration of the uncompleted free

product and by Fn(g ∗ h) its closure in g ∗ h. It follows from the continuity of the bracket in
g ∗ h that

g ∗ h = F0(g ∗ h) ⊃ F1(g ∗ h) ⊃ F2(g ∗ h) ⊃ · · ·
is a descending filtration by ideals. The formula Gn(g ∗ h)∗ :=

(
Fn+1(g ∗ h)

)⊥
defines an

ascending filtration

(A.5) 0 ⊂ G0(g ∗ h)∗ ⊂ G1(g ∗ h)∗ ⊂ G2(g ∗ h)∗ ⊂ · · · (g ∗ h)∗.

Recall that (g ∗ h)∗, by definition, consists of continuous linear functionals. By continuity,
every such functional α factors through the canonical epimorphism

(g ∗ h) � (g ∗̃ h)/(g ∗̃ h)≥m

for m >> 0. By the finiteness of (A.3), the induced filtration of (g ∗̃ h)/(g ∗̃ h)≥m is finite, so
α annihilates Fn(g ∗ h) for n >> 0. This implies that the filtration (A.5) is exhaustive.

Now we proceed as in the case of C+(g). The filtration (A.5) induces an exhaustive,
Hausdorff and complete filtration of C+(g ∗ h). The induced spectral sequence strongly
converges to C+(g ∗ h) and its E1-term is C+(g♮ ∗ h).
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Since the canonical map (A.2) is compatible with the filtrations, by the comparison the-

orem for spectral sequences, it is enough to prove that (A.2) is a quasi-isomorphism with g

replaced by g♮. Repeating the same steps with h in place of g, we prove that the desired

statement would follow if we can prove that the map C+(g♮ ∗ h♮) → C+(g♮) × C+(h♮) is a

quasi-isomorphism. In other words, we reduced the statement of the lemma to the case

when both g and h are abelian.

The dg space C(g ∗ h) = SΣ(g ∗ h)∗ consists of symmetric tensors in Σ(g ∗ h)∗; we can

introduce a grading on C(g ∗ h) as follows. Let x ∈ g ∗ h. Then x has weight n + 1 if x is a

sum of Lie monomials of bracket length n; this grading lifts to C(g ∗ h).
It is clear that the differential in C(g ∗ h) preserves the weight grading and so the dg

space C(g ∗ h) decomposes as an infinite direct sum of subcomplexes consisting of elements

of fixed weight. It follows that the map (A.2) is a quasi-isomorphism if and only if it is

a quasi-isomorphism for each weight component. This, in turn, holds if and only if and

only if a similar statement holds when the infinite direct sum over all positive weights is

replaced by the corresponding infinite direct product. Observe that the obtained completed

dg space has the form Ĉ(g ∗ h)∗ = ŜΣ(g ∗ h)∗ where in the last formula g ∗ h stands for the

uncompleted free product. It is, therefore, nothing but the standard complex computing the

Chevalley-Eilenberg cohomology of the uncompleted Lie algebra g ∗ h. Thus, the statement

is reduced to computing the usual Chevalley-Eilenberg cohomology of g ∗ h and, therefore,

follows from Theorem A.4. �

A.6. Lemma. Let a be a complete dgla and let ã be the complete dgla with vanishing dif-

ferential and the same graded Lie bracket as a. Then there exists a spectral sequence E ′′(a)

converging strongly to C+(a) such that E ′′
1 (a) = H

(
C+(ã)

)
.

Proof. As graded vector spaces, C+(a) =
⊕

p≥1 S
p(Σ−1a∗), where Sp(−) denotes the subspace

of the symmetric algebra consisting of elements of homogeneity p. It is obvious that

(A.6) FnC+(a) :=
⊕

q≥n, p≥1

[
Sp(Σ−1a∗)

]p+q

forms a decreasing exhaustive filtration of the cochain complex C+(a). Its degree m compo-

nent equals

FnC+(a)m :=
⊕

q≥n, m>q

[
Sm−q(Σ−1a∗)

]m
.

Clearly FnC+(a)m = 0 if n > m, the filtration (A.6) is thus Hausdorff and complete. The

induced spectral sequence therefore converges strongly and obviously has the properties

stated in the lemma. �

A.7. Theorem. Let g and h be two complete dglas. Then there is a quasi-isomorphism

C+(g ∗ h) ≃ C+(g)× C+(h).
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Proof. Assume first that g and h are finite-dimensional nilpotent. Arguing as in the proof
of Lemma A.5 we construct a map C+(g ∗ h) −→ C+(g) × C+(h); the desired statement is

equivalent to proving that this is a quasi-isomorphism. Consider a map of spectral sequences

E ′′
1 (g ∗ h) = H(C+(g̃ ∗ h)) → E ′′

1 (g̃)× E ′′
1 (h̃) = H

(
C+(g̃)

)
×H

(
C+(h̃)

)
of Lemma A.6. The map in the middle is an isomorphism by Lemma A.5, so the desired

result for finite dimensional nilpotent g and h follows.

Assume now that g = limα gα and h = limβ hβ are limits of finite-dimensional nilpotent

algebras. Then the continuous duals equal g∗ = colimα g
∗
α, h

∗ = colimβ h
∗
β which readily

implies that

C+(g) = colim
α

C+(gα) and C+(h) = colim
β

C+(hβ).

By the standard properties of the filtered limits, one has

(A.7) g ∗ h ∼= lim
α,β,m

(gα ∗̃ hβ)/(gα ∗̃ hβ)≥m,

where ∗̃ denotes, as in the proof of Lemma A.5, the uncompleted free product. The isomor-
phism (A.7) represents g ∗ h as a limit of finite dimensional spaces, so

(g ∗ h)∗ ∼= colim
α,β,m

[
(gα ∗̃ hβ)/(gα ∗̃ hβ)≥m

]∗ ∼= colim
α,β

colim
m

[
(gα ∗̃ hβ)/(gα ∗̃ hβ)≥m

]∗
∼= colim

α,β
(gα ∗ hβ)∗

which easily implies that

C+(g ∗ h) = colim
α,β

C+(gα ∗ hβ).

Since the canonical map (A.2) is compatible with these colimits and the colimits are exact

functors, the general case follows from the finite-dimensional nilpotent one. �

A.8. Remark. Note that the quasi-isomorphism of Theorem A.7 can also be formulated as

C(g ∗ h) ≃ C(g)×k C(h).
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MFF UK, 186 75 Sokolovská 83, Prague 8, The Czech Republic

E-mail address: markl@math.cas.cz

Department of Mathematics and Statistics University of Lancaster Lancaster LA1 4YF

E-mail address: a.lazarev@lancaster.ac.uk

[June 7, 2014]


