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Abstract 

 

Studying interactions of multiple pesticides applied simultaneously in a mixture is a common 

task in phytopathology. Statistical methods are employed to test whether the treatment 

components influence each other’s efficacy in a promotive or inhibitory way (synergistic or 

antagonistic interaction) or rather act independent of one another (additivity). The trouble is 

that widely used procedures based on χ2 tests are often seriously flawed, either because people 

apply them in a preposterous way or because the method simply does not fit the problem at 

hand. Browsing recent volumes of entomological journals, we found that numerous 

researchers have (in all likelihood unwittingly) analyzed their data as if they had had a sample 

size of 100 or, equally bad, a sample size of one! We show how to avoid such poor practices 

and further argue that χ2 testing is, even if applied correctly (meaning that no technical errors 

are made), a limited-purpose tool for assessing treatment interactions. 
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Introduction 

 

Applying mixtures of several plant protection measures is a popular strategy for integrated 

pest management. A common research goal is to assess the interactions of treatment 

combinations, which are conventionally classified as additive, synergistic, or antagonistic. 

Treatments showing a synergistic interaction enhance each other’s effect when applied 

together, hence they are particularly interesting for pest control purposes. However, the 

opposite may occur as well i.e., treatments impeding each other so that the compound 

treatment performs worse than expected under additivity of effects. 

The whole idea of investigating (departures from) additivity first of all hinges on a reasonable 

definition of the term “additive”. Two prevalent reference models are: 

• Bliss independence (Bliss 1939): the components of the mixture have different modes 

of action and therefore do not interact.  

• Loewe additivity (Loewe 1953): the components of the mixture have a shared mode of 

action and differ only in their potency. 

Both models come with assumptions and implications that are often debatable and hard to 

verify in practice; see the review articles of Goldoni and Johansson (2007) and Cedergreen et 

al. (2008). The concept of Loewe additivity cannot be applied to single-dose experiments, 

which are common (though not necessarily recommendable) in phytopathology. 

Various approaches for analyzing treatment interactions have been circulating in the 

entomological literature for decades. They were often developed before the advent of modern 

computation, and from a statistical point of view, many of them are at best clumsy and at 

worst erroneous, as will be illustrated by several examples from entomological publications. 

We will have a focus on χ2 testing, which appears to be the standard procedure in 

phytopathology. The goal of this article is a) to point out and correct prevalent mistakes 
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occurring with χ2 analyses, b) to clarify the underlying notion of additivity, c) to raise 

awareness for the severe limitations of χ2 tests on additivity, and d) to suggest alternatives. 

 

The Method 

 

When investigating the interaction of compounds applied simultaneously in a pest 

management trial, the experimental setup typically comprises three treatments: a single 

substance A, a single substance B, and their 1:1 mixture, denoted by AB (1:1 means that both 

single doses are added together i.e., a 1+1 mixture to be precise). Each of them is applied to a 

number of individuals (usually insects, etc.), and these sample sizes are denoted by nA, nB, and 

nAB. After some exposure time each individual is classified into either of two mutually 

exclusive categories such as dead and alive. The observed numbers of dead individuals in 

each treatment group are denoted by xA, xB, and xAB i.e., xA is a whole number that can take 

values between 0 and nA. From these numbers we can compute estimates of the mortality in 

each treatment group (pA, pB, and pAB), expressed as the proportion of dead insects i.e., as a 

number between 0 and 1. Nonetheless, our responses are inherently counts, quite unlike 

outcomes that occur naturally as percentages (e.g., relative activity of an enzyme). 

Following the Bliss-type notion of additivity used by Finney (1952), one can find the 

expected mortality in the 1:1 mixture AB from the mortality proportions of the two single 

treatments as 

BAAAB pppp )1(
exp

−+= .  (1) 

In practice we plug in the estimators 
A

A
A n

xp =ˆ  and 
B

B
B n

xp =ˆ  for pA and pB as proposed by 

Finney (1952). 

Given that there were nAB individuals under observation in the AB treatment, we would expect 

expexp ABABAB pnx =  deaths if substances A and B were acting additively. Finney (1952) proposes 
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then to use the χ2 test (Pearson 1900) with one degree of freedom to assess whether the 

observed number xAB deviates from the expected 
expABx  by such an extent that the deviation 

can be deemed significant. The test statistic is computed as 

∑
=

−
=

2,1
exp

2exp
2 )(

i i

i
obs
i

x
xxχ  (2) 

where AB
obs xx =1  and ABAB

obs xnx −=2 denote the observed numbers of dead and surviving 

insects in the AB treatment, and 
exp

exp
1 ABxx =  and 

exp

exp
2 ABAB xnx −= the corresponding 

expected numbers under the null hypothesis of additivity. If the χ2 test statistic is larger than 

the critical value 8415.32
1,95.0 ==dfχ , we may conclude that the deviation from additivity is 

significant at the 5% level. 

It should be noted that the test statistic in Eqn. (2) follows a χ2 distribution if and only if it is 

computed with counted and expected numbers of insects (xAB and 
expABx ) under the null 

hypothesis of additivity, and if 
expABp  is based on theoretically expected proportions and not 

sample estimates. Its form is motivated by the assumption that for counts the variance is a 

function of the mean (see Appendix A). This relation between mean and variance will not be 

the same if we express mortalities as proportions or percentages. Thus, if one plugs 

proportions or percentages into Eqn. (2) instead of the counted and expected numbers of 

insects, the resulting statistic does not follow a χ2 distribution anymore. Comparing such a test 

statistic with a critical value from the χ2 distribution is likely to produce far too many or too 

few rejections of the null hypothesis of additivity, depending on the circumstances. 

One keystone with the analysis of treatment interactions is a justifiable notion of the term 

additive when dealing with mortalities. Finney’s formula for 
expABp  (Eqn. 1) rests upon one 

reasonable definition of additivity (but certainly not the only possible definition): the 

assumption that both agents, A and B, act independently in the sense of Bliss (1939). That is, 

for a single individual, the probability to die due to agent B does not depend on whether it 
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dies from or survives application of agent A, and vice versa. In other words, the proportion of 

insects killed by A is the same in the subgroup of insects that survive B as it would have been 

in the subgroup that have already been killed by B, and vice versa. Under this assumption of 

independence, the probability to survive both A and B is simply the product of the probability 

to survive A (which is Ap−1 ) and the probability to survive B (which is Bp−1 ). This 

becomes obvious when rewriting Eqn. (1) as 

)1)(1(1
exp BAAB ppp −−−= . 

Another intuitive explanation is that we expect the single mortalities to add up ( BA pp + ), but 

have to subtract that proportion of individuals that would die from both components A and B 

under the assumption of independent action, which is simply the product of the two single 

mortalities, BA pp : 

BABAAB ppppp −+=
exp

. 

Loosely speaking, if you die for two reasons you are dead only once. A vivid illustration of 

the idea behind independent action is given in Berenbaum (1981). 

This clarifies the following: Eqn. (1) makes sense only for mortalities expressed as 

probabilities of dying, or equivalently, as proportions of dead insects i.e., as values between 0 

and 1. It makes no sense to plug percentage mortalities or observed numbers of dead 

individuals into the formula. We cannot easily interchange the probability of surviving (1 – 

mortality) with the probability of dying (mortality) in order to compute the expected mortality 

under additivity. The definition ensures that 
expABp  cannot exceed one, as we would never 

expect more than 100% mortality without interference of supernatural events. 

Understanding the background of Finney’s definition of additivity is also useful when it 

comes to extending the approach to mixtures of more than two single treatments. Using the 

same notion of independent action in a mixture of three components A, B, and C, we would 

expect the mortality to be 
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)1)(1)(1(1
exp CBAABC pppp −−−−= . 

 

Flaws in Applications of Finney’s Test on Additivity 

 

Motivated by a statistical consultancy (Otieno et al. 2015), we discovered a number of 

entomological publications attempting to evaluate the independence of treatments applied as 

mixtures. We found dozens of papers where the description of methods and the presentation 

of results were at least highly ambiguous and at worst completely flawed. This aroused our 

curiosity as to where all these misconceptions had their origins. A closer look revealed that 

the authors of all these publications refer to Finney’s seminal classic Probit Analysis (1952) 

and state that they conducted χ2 tests “modified” by McVay et al. (1977). So what does their 

“modification” entail? 

First, they propose to calculate the expected percentage mortality (under additivity) of the 

mixture, 
expABP , from the observed mortality percentages of the single treatments, 

A

A
A n

xP ×=100  and 
B

B
B n

xP ×= 100 , as 

BABAAB PPPPP −+=
exp

. 

Applying this formula to the data examples in McVay et al. (1977) yields expected mortalities 

of –440 and –1063, which is obviously absurd. This indicates that one main problem in 

McVay et al. (1977) is obscure notation and ambiguous use of symbols; they do not clearly 

distinguish between numbers of dead insects, mortality proportions, and percentage 

mortalities. 

The second part of their “modification” is to calculate a χ2 statistic via 

exp

exp

2
2

)(

AB

ABAB

P
PP −

=χ  
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where PAB is the observed “mortality” with the mixture, and compare it to the 95% quantile of 

a χ2 distribution with one degree of freedom. Here McVay et al. withhold the information 

whether they use mortality proportions or percentages. Indeed, both is wrong: plugging 

proportions into the χ2 test implies a sample size of one, whereas percentages suggest there 

were 100 replications per treatment group! 

Another frequently cited reference for the “modified” χ2 tests is Salama et al. (1984); this 

paper basically reproduces the opaque descriptions or actual errors committed by McVay et 

al. and adds another misguided remark: the authors claim that a mixture of two treatments 

each of which leads to 25% mortality should be expected to result in 50% mortality. This 

notion of additivity is obviously inconsistent with Finney’s definition (and with common 

biological sense). It cannot even be applied to the plausible range of single treatment 

mortalities. What if each single treatment led to 60% mortality? We would by no means 

expect 120% mortality for the mixture, not even 100%, but rather something between 60 and 

100%. According to Finney’s formula, mixing two treatments with 25% mortality each should 

lead to 43.75% but certainly not 50% mortality in the combination. 

Even though the instructions of McVay et al. (1977) and Salama et al. (1984) are ambiguous 

and at the end of the day unfeasible, researchers have not been discouraged from following 

them down to the present day. A (non-systematic) review of recent papers in entomology 

brings some substantial errors to light: the most prevalent mistake (e.g., in Ansari et al. 2008; 

Koppenhöfer and Fuzy 2008; Gosselin et al. 2009; Baloyi et al. 2012; Ma et al. 2013; Zhou et 

al. 2013) is to compute the χ2 statistic from the mortality percentages, leading to 

overoptimistic results whenever the sample size is less than 100 and to unnecessary 

pessimistic conclusions otherwise. 

Jazzar and Hammad (2004), Hammad and McAuslane (2006), and Kullik et al. (2011) insert 

proportional mortalities to the formula of the χ2 test statistic as if their total sample size were 

one! They yield χ2 values so tiny that there is almost no way for them to exceed the 95% 
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reference quantile of 3.8415. Hammad and McAuslane and Kullik et al. settle for the 

conclusion of no interaction although their data clearly indicate synergism (they have 

mortality proportions of e.g., 26.0ˆ)ˆ1(ˆ =−+ BAA ppp  versus 62.0ˆ =ABp , and 

66.0ˆ)ˆ1(ˆ =−+ BAA ppp  versus 97.0ˆ =ABp ). Jazzar and Hammad (2004), probably intuiting 

their fallacy, try to smooth it out by using the 5% χ2 quantile (0.0039) as a reference value, 

which makes things all the worse. 

This little survey of recent publications is alarming but by far not exhaustive; not least 

because other authors (e.g., Kazemi-Dinan et al. 2014) entirely fail to present any numerical 

results so that reproducing their analysis is made impossible. 

 

Additional Problems with the χ2 Test on Additivity 

 

Even without the calamitous “modifications”, the χ2 procedure described up to here is far 

from being a silver bullet. In fact, it is a rather limited technique that comes with restrictions 

and downsides: 

• As already noted by Finney (1952, p. 145), the expected number of deaths under 

additivity is computed from the estimated mortalities of the single treatments. Hence 

this estimate is subject to uncertainty, and this is not accounted for in the above 

formulation of the χ2 test, so it is at best an approximate test. This is fundamentally 

different from the χ2 test as applied in genetics, where the expected values are given by 

theory e.g., by Mendel’s laws. Improved tests on additivity that account for the 

uncertainty of the estimated expectation under additivity, 
exp

ˆ ABp , may be formulated in 

generalized linear models (GLMs) for binomial data (McCullagh and Nelder 1989), as 

illustrated in Appendix B and the supplementary material. 
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• The above calculation rule for 
expABp  (Eqn. 1) is only justifiable if the doses of the 

single treatments are added for the mixture (i.e., the 1:1 is, properly speaking, a 1+1 

mixture). The method cannot (without further modifications) deal with experiments 

involving combinations that are composed of fractions or multiples of the single 

doses. In comparison, the solution in a GLM framework is straightforward (see 

Appendix B). 

• Many experimental setups are too complex to be reflected adequately by simple χ2 

tests e.g., when they involve blocks, subsampling, technical replications, additional 

covariates, etc. Some ad hoc strategies distort the problem so that it “fits” the χ2 

solution by ignoring randomization structures, leaving out covariates, and so on. 

Again, proper solutions for such problems may be found by formulating appropriate 

GLMs. 

• Ideally, experiments should involve replicated observations for the same treatments. In 

the case of entomological trials, the observed numbers of dead insects in replicated 

experimental units subjected to the same treatment may show more variation than 

expected under simplistic assumptions like the binomial or Poisson distribution for 

such count data. This phenomenon is known as overdispersion (McCullagh and Nelder 

1989) and can be accounted for in GLMs (see the supplementary material for an 

illustration). If an experiment exhibits overdispersion, it is inappropriate to sum up 

dead and surviving individuals over replications of the same treatment and then plug 

the “simplified” data into the χ2 formula. Such an analysis will underestimate the 

variance of the estimated mortalities and thus tend to overstate the importance of 

observed deviations from additivity. 

• Moreover, GLMs allow for assessing (lack of) additivity in treatment mixtures also for 

other types of count data, like the number of offspring or eggs, based on a quasi-
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Poisson assumption. An example of such an analysis where the theoretical upper limit 

of counts remains unknown is provided in Otieno et al. (2015). 

• When assessing dose-response relationships it is common (and advisable!) to consider 

multiple dose levels. For assessing additivity of several dosages for single treatments 

and several mixtures under the assumption of nonlinear dose-response relationships, 

Ritz and Streibig (2014) provide a comprehensible overview as well as free software. 

• χ2 tests produce p-values as a measure of significance, but confidence limits on a 

biologically interpretable scale would often be preferable (Gardner and Altman 1986). 

We show how to obtain and interpret them in the supplementary material. 

• The method is unsuitable for “verifying” additivity, as alluded by the phrase “absence 

of evidence is not evidence of absence” (Altman and Bland 1995). A large p-value 

simply means that the data do not contain enough evidence (or sample size) to reject 

the null hypothesis at significance level α, but this is not in the least a “proof” of 

additivity! If the aim is to demonstrate additivity, we refer to equivalence tests as 

suggested in Stork et al. (2006). 

 

Discussion 

 

When faced with the task of exploring interactions of pest control agents applied 

simultaneously as mixtures, many biologists consider the χ2 test as a panacea. We suspect its 

frequent use in similar publications has made the method appear trustworthy, or at least 

citable. Acting in opposition to this common belief, we have accumulated evidence that this 

practice is often inadequate, either because the test is carried out in a faulty manner or because 

it is outright unsuitable to solve the research question. 
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We discourage from referring to papers like McVay et al. (1977) and Salama et al. (1984) as 

(intermediate) references for Finney’s test on additivity as they are likely to lead astray, with 

three main consequences: 

1. Plugging mortality proportions into the χ2 formula for binomial counts creates a 

procedure that is extremely unlikely to show significance, even in the presence of 

crystal clear synergism or antagonism. 

2. Plugging in percentages will lead to the significance being overstated if the actual 

sample size is below 100, and understated if it is (much) larger than 100. 

3. Finney’s test is applied on the scale of observed and expected mortality counts and 

will therefore overrate significance because the variance due to the estimated mortality 

being plugged in is ignored (Finney 1952, p. 145), and also possibility of 

overdispersion that is typically observed in real-world experiments (McCullagh and 

Nelder 1989). 

However, the high number of citations of McVay et al. and Salama et al. (despite their 

incorrect or ambiguous descriptions of the method) suggests that there is a severe lack of 

accessible, comprehensible, and statistically sound texts on the topic. 

Most real-world experiments cannot be adequately analyzed using Finney’s χ2 test anyway. It 

is simple at first sight, but this alleged virtue can quickly turn into a weakness when the data 

do not „fit“.  In particular it cannot account for 1) the uncertainty of the estimated single 

treatment mortalities, 2) potential overdispersion, 3) additional experimental structures like 

blocked replications or covariates, and 4) several dosages of the single treatments of interest 

as well as several mixtures (involving different fractions of the individual treatments). GLMs 

with a (quasi-)binomial assumption can account for these four problems. It should be noted, 

however, that various definitions of additivity are possible in GLMs, depending on the link 

function chosen (log, logit, etc.). We outline a GLM-based analysis in Appendix B and 



 
 Penultimate version. If citing, please refer instead to the published version in Journal of Applied Entomology. 
 

 12 

provide R code as supplementary material. For a general introduction to binomial GLMs we 

recommend the textbooks of Faraway (2006, chapter 2) and Dobson and Barnett (2008).  
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Appendix A 

 

We can rearrange Eqn. (2) in a way that its motivation from the binomial distribution 

becomes explicit. Plugging AB
obs xx =1  and ABAB

obs xnx −=2  as well as 
exp

exp
1 ABxx =  and 

exp

exp
2 ABAB xnx −=  into the formula of the test statistic yields 

exp

exp

exp

exp

22
2

))()(()(

ABAB

ABABABAB

AB

ABAB

xn
xnxn

x
xx

−

−−−
+

−
=χ  

which can be simplified to 

exp

exp

exp

exp

22
2

)()(

ABAB

ABAB

AB

ABAB

xn
xx

x
xx

−

−
+

−
=χ . 

Reduction to a common denominator gives us 

)(
)())((

expexp

expexpexpexp

22
2

ABABAB

ABABABABABABAB

xnx
xxxxxxn

−

−+−−
=χ  

and with a simplified numerator we have 

)(
)(

expexp

exp

2
2

ABABAB

ABABAB

xnx
xxn
−

−
=χ . 

Rewriting 
expABx in the denominator as 

expABAB pn and subsequently placing ABn outside the 

brackets leaves us with 
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ABABABAB

ABABAB

nppn
xxn

)1(
)(

expexp

exp

2
2

−

−
=χ  

where ABn  cancels out so that we end up with 

)1(
)(

expexp

exp

2
2

ABABAB

ABAB

ppn
xx
−

−
=χ . 

Now it is obvious that the form of the denominator resembles the variance )1()( pnpxVar −=

of a counted number x that follows the binomial distribution ),(~ pnBinx . 

 

Appendix B 

 

Yet another reformulation of Eqn. (1) as 

( )( )BAAB ppp −−=− 111 exp  

enables us to carry out (large-sample) tests and construct related confidence intervals that 

• account for the uncertainty due to estimation of pA and pB, 

• allow for an interpretation of the biological relevance of the deviation from additivity 

in terms the ratios of the proportion of survivors, and 

• can be easily extended to the application in GLMs that account for overdispersion or 

additional effects in the model. 

Under the null hypothesis of Bliss additivity, the proportions of surviving insects would be 

related as 

( )( ),111 BAAB ppp −−=−  

which corresponds to 

( )
( )( ) ,1

11
1:0 =

−−
−

BA

AB

pp
pH

 

or, on the log-scale 
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( ) ( )( ) .01log)1log(1log:0 =−+−−− BAAB pppH  

That is, one can use a GLM with logarithmic link for the proportions of survivors and 

assumption of a binomial distribution to obtain estimates and standard errors for all treatments 

involved, and then asymptotically test the above hypothesis on the log scale using a linear 

combination of the parameters of this model. For the simple single-dose design that was 

described above, the model is 

)1,(~)( iiii pnBinxn −−  

where 𝑛𝑛𝑖𝑖 − 𝑥𝑥𝑖𝑖 is the observed number of surviving insects in the ith treatment group, and 1 – 

pi is the unknown proportion of surviving insects in treatment group i, with index 𝑖𝑖 =

𝐴𝐴,𝐵𝐵,𝐴𝐴𝐵𝐵. Fitting the model yields estimates for the log-proportion of the ith treatment, bi, and 

the corresponding estimated standard errors. The linear combination of interest is defined by 

the coefficients ci: 𝑐𝑐𝐴𝐴 = −1, 𝑐𝑐𝐵𝐵 = −1, and 𝑐𝑐𝐴𝐴𝐵𝐵 = 1 so that the hypothesis above can be 

written as 

0:0 =∑ i
i

ibcH  

where log(1 − 𝑝𝑝𝑖𝑖) = 𝑏𝑏𝑖𝑖. Even if the mixture AB is not a 1+1 combination of the single 

dosages, it is straightforward to adapt the coefficients ci. Suppose the mixture consists of 50% 

the single dose of A and 30% the single dose of B, then we use 𝑐𝑐𝐴𝐴 = −0.5 and 𝑐𝑐𝐵𝐵 = −0.3, 

and cAB remains unchanged. 

For the computational details of this hypothesis test and the compatible confidence intervals 

based on the estimates obtained from the GLM, we refer to Hothorn et al. (2008). R code that 

applies this method to a toy example (also in the presence of overdispersion) is provided as 

supplementary material. 


