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Abstract

In this paper we consider an environmental production process in which firms intend to produce outputs

(which we label as desired/good outputs) but the production process is such that it automatically produces

some other unintentional but inevitable undesirable (bad) outputs as by-products (emission of pollutants). Like

stochastic frontier, by-production technology specifies that there is a certain minimal amount of the by-product

that is produced, given the quantities of certain inputs and desired outputs. The presence of (environmental)

inefficiency in by-production could generate more than this minimal amount of the undesired output. Similarly,

the presence of technical inefficiency may imply that, given inputs, less than the maximal possible amount of

desired output is produced. Alternatively it may imply that more than the minimal amount of inputs are used to

produce a given level of desired output. We use the “by-production technology” approach which is a composition

of production technology of desired outputs and the technology, and estimate both technical and environmental

efficiencies. Given that electricity, the good output in our application, is demand determined, we treat it as

exogenous and address the endogeneity of inputs by using the first-order conditions of cost minimization. Since

we specify a separate technology for each bad output, their endogeneity is automatically taken into account. We

use an efficient Bayesian MCMC technique to estimate the technologies and both types of inefficiencies. We also

compare results with some alternative models with and without endogeneity corrections.
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1 Introduction

In this paper we consider an environmental production process in which firms intend to produce outputs (which

we label as desired/good outputs) but the production process is such that it automatically produces some other

undesirable (bad) outputs as by-products (emission of pollutant gases). Electric power generation is an example

of a production process in which the production of electricity (desirable output) is accompanied by the emission

of pollutants (undesirable outputs). This unintentional but inevitable outcome is labeled as “by-production”

(BP). Like stochastic frontier models, BP technologies specify that there is a certain minimal amount of the

undesired output that is produced, given the quantities of certain inputs and desired outputs. The presence

of inefficiency in BP could generate more than this minimal amount of the undesired output. We call this

environmental inefficiency. Similarly, the presence of technical inefficiency in the production of good output may

imply that, given inputs, less than the maximal possible amount of desired output is produced. Alternatively it

may imply that more than the minimal amount of inputs are used to produce a given level of desired output.

We call this technical inefficiency.

The modeling of environmental production technology follows two distinct routes. In the directional dis-

tance function and transformation function approaches (see Färe et al. (2005), Atkinson and Dorfman (2005),

Fernández, Koop and Steel (2005), Agee et al. (2014), among others), the technology is specified by a single

equation in which good and bad outputs as well as good and bad (pollution generating) inputs enter as argu-

ments. Inefficiency in the directional distance function approach is defined over the entire vector of outputs,

both desirable and undesirable, using an a priori specified directional vector. Thus it confounds the technical

inefficiency oriented along desirable outputs from the environmental inefficiency oriented along undesirable out-

puts. Similarly, inefficiency in the transformation function approach is either output or input oriented and it

cannot be separated from environmental inefficiency. On the contrary, the BP approach is a composition of a

production technology for good outputs and a residual-generation technology (production of bad outputs). Since

the BP approach separates technology of production of good outputs from those of bad outputs, it can identify

and estimate both technical and environmental inefficiency.

In this paper we use a series of models from both approaches and examine their suitability in capturing the

features of environmental production technology. First, we consider a modeling approach that relies on the BP

concept introduced in Murty, Russell and Levkoff (2012, MRL), Førsund (2009) and Fernández, Koop and Steel

(2002, FKS). The technology for the production of good outputs is specified in terms of a standard translog

transformation function (TF) with input-oriented technical inefficiency. In electricity generation, the arguments

of the TF are good inputs (labor and capital), bad inputs (high sulfur coal) and good output (electricity). The

technologies for the production of bad outputs (SO2 and NOx) are also specified as translog functions in which

the arguments are good output and bad inputs. We consider two specifications. In (i) we use two separate

technologies for two bad outputs, while in (ii) a single technology is assumed to produce both bad outputs.

We estimate environmental efficiency for each bad output in (i) whereas in (ii) we estimate a single (radial)

environmental efficiency for all bad outputs. In both specifications we correct for the endogeneity of inputs by

explicitly using the first-order conditions of cost minimization (which is standard in the electricity generation

literature going back to Nerlove (1965) in estimating the single as well as the multiple equation representation

of the technology.

Second, since the BP approach is new and has not yet been econometrically estimated using a flexible

functional form with monotonicity constraints, for comparison purpose we also consider standard single equation

technology models similar to FKS (2005), Hailu and Veeman (2001), Agree (2014), among others. A translog

TF, in which the arguments are both bad and good inputs as well as bad and good outputs, is used to represent

it. Since the technology is specified by a single equation, only one type of inefficiency (which is a mixture of

technical and environmental inefficiency) can be estimated. Further, there is no consensus on which variables
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(good outputs, bad outputs, good inputs, bad inputs) are endogenous in this framework.

Third, we discuss pros and cons of each model and consider alternative versions of the single and system

approaches. Finally, we compare results across different models, some of which correct for endogeneity while

others do not.

The rest of the paper is organized as follows. Section 2 discusses various modeling approaches. Models with

endogenous input in a cost minimizing framework is introduced in Section 3. Section 4 presents the data and

Section 5 presents the empirical results. Section 6 concludes the paper. Details on the implementation of the

MCMC technique can be found in the online appendix.

2 Modeling Technology without Endogeneity

In this section we consider models which do not address endoeneity issueat all. First, we consider the models in

which the technology is specified by a single equation followed by the by-production approach.

2.1 Single Equation Production Technology: A Critique

In the single equation strand of the literature either a directional distance function (DDF) or a transformation

function (TF) is used to represent the technology producing both good and bad outputs using both good and

bad inputs. Here we consider the TF approach only and examine its merit from both theoretical and empirical

points of view.1

2.1.1 The Single Equation TF Formulation

The single equation model we consider here uses the TF (FKS, 2005; Atkinson and Dorfman, 2005) which can

be represented by F (Y,Xg, Xb, Z) = 1, where Y, Z,Xg, Xb are vectors of M good outputs, Q bad outputs, J

good inputs and K pollution generating (bad) inputs. The monotonicity assumptions on these variables are:2

FY ≥ 0, FXg ≤ 0, F b
X ≤ 0 and FZ ≤ 0, where FY , FXg , F b

X and FZ are partial derivatives of F (.). Since

FXg ≤ 0, F b
X ≤ 0 and FZ ≤ 0, from a pure mathematical point of view, there is no difference between Z,Xg

and Xb in F (Y,Xg, Xb, Z) = 1. That is, bad outputs can be treated as inputs3 (both Xg and Xb), and since

inputs are assumed to be freely disposable so are bad outputs. This violates axioms of production theory and

is criticized in the environmental production literature (for example, see Färe and Grosskopf (2003) and Färe et

al. (2005)). Further, if in estimating the input distance function all bad outputs are treated as inputs, both bad

outputs and inputs will be scaled back by the same proportion, holding good outputs constant. However, this

approach violates a basic engineering requirement that a reduction in bad outputs requires the usage of more

good inputs, holding good outputs and inefficiency constant.

There are some other problems associated with this model. For example, with 2 good outputs ∂ lnY1/∂ lnY2 ≤
0, ceteris paribus, since FY1 ≥ 0 and FY2 ≥ 0. This might be intuitive because when less of Y1 is produced some

resources will be released which can be used to increase the production of Y2. Similarly, for two bad outputs

∂ lnZ1/∂ lnZ2 ≤ 0 if the monotonicity restrictions are imposed. However, from an engineering production point

of view Z1 and Z2 might not be complementary. That is, more SO2 emissions do not necessarily mean less of

NOx. The concave relationship between good and bad outputs means that when less of Z1 is produced, less

of Y is also produced which in turn means less of Z2, given the inputs and inefficiency. Thus ∂ lnZ1/∂ lnZ2 is

expected to be positive (for an efficient unit at least), whereas it will be negative if the monotonicity restrictions

are imposed.

1For the DDF formulation the readers are advised to see Tsionas et al. (2014).
2For simplicity in exposition we treat Y,Xg, Xb, Z as scalars here and in the next three paragraphs.
3See Reinhard et al. (1999), Reinhard and Thijssen (2000), Lee et al. (2002), Hailu and Veeman (2001), among others.
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Second, the concave relationship between Y and Z (Färe, 2005) is defined holding inputs constant. One

might allow inputs to change and argue that a firm can reduce, say, Z (SO2) by reducing Xb (for example,

using high heat-content (or low-sulfur) coal in place of low heat-content (or high-sulfur) coal), holding Y and

Xg unchanged.4 Taking the derivative of F (Y,Xg, Xb, Z) holding Y and Xg constant gives F b
XdX

b + FZdZ =

0 ⇒ dZ/dXb = −F b
X/FZ ≤ 0. This should be positive, i.e., SO2 should be lower if less high-sulfur coal (Xb)

is used. Thus we have a counter-intuitive result. This is also noted in MRL (2012, page 120, see their equation

(2.8) and comment in item (b)).

Third, quite often we are interested in calculating the responsiveness in Z due to changes in Xb, Xg and Y

(for example, Agee et al. (2014)). Note that unless there is inefficiency, BP implies that Z changes when Xb, Xg

and Y change either individually or jointly. Thus, in calculating the responsiveness in Z due to changes in Xb,

Xg or Y , the Z variable has to be related to either Xb, Xg, Y or all of them, and this relationship has to be used

somehow in the model. For example, if F (Y,Xg, Xb, Z) = 1 is estimated in the form Xg = f(Z, Y,Xb) which

assumes Xg to be enodogenous (and others predetermined/exogenous), one cannot compute ∂Z/∂Xb, ∂Z/∂Y

or even ∂Z/∂X from the estimated model.5 To compute ∂Z/∂Xb, ∂Z/∂Y , etc., one has to explicitly consider

Z = Z(Xb), Z = Z(Xb, Xg) or Z = Z(Xb, Xg, Y ) and use them either as separate equations or embed them in

F (Y,Xg, Xb, Z) in some form. None of these are done in the single equation TF representation.

Since we use the single equation TF representation of the technology as one of our competing empirical models,

we continue our discussion of the single equation TF model where Y,Xg, Xb and Z are vectors. We follow the

TF formulation used in Caves et al. (1981) but extend it to accommodate input-oriented (IO) inefficiency (in

good inputs) together with bad inputs and bad outputs. Thus our TF is

F (Y, θXg, Xb, Z, t) = 1 (1)

where as before Xg ∈ ℜJ and Xb ∈ ℜK are the vectors of good and bad inputs, Y ∈ ℜM and Z ∈ ℜQ are vectors

of good and bad outputs, t is a time trend (to capture technical change in a panel data setting) and θ ≤ 1 is

input-oriented technical inefficiency. The TF F (·) is assumed to satisfy all the standard monotonicity properties

(discussed later). We assume that good outputs Y are exogenously given (in our application the good output

is electricity which is demand determined and therefore exogenous to the firm). This justifies an input distance

function (IDF) representation of (1), which after imposing the linear homogeneity restrictions (in θXg) can be

written as (θXg
1 )

−1
= ψ(Y, X̃g, Xb, Z, t) when X̃g = (Xg

2/X
g
1 , . . . , X

g
J/X

g
1 ).

6

Using i = 1, · · · , n and t = 1, · · · , T subscripts for firm and time in panel data setting, we write X̂g
jit =

θXg
jit ⇒ x̂gjit = xgjit + ln θit where the lowercase variables are in logarithmic form and assume a translog form of

the transformation function, i.e.,

4For that to happen in the model F (Y,Xg, Xb, Z) = 1, one has to explicitly consider Z = Z(Xb) either as a separate equation or
embed it in F (Y,Xg, Xb, Z) in some form.

5For example, if the model Y = α0+α1X1+α2X2+u is estimated in a way that takes endogeneity of, for example, X1 into account,
can one interpret ∂X1/∂X2 in a meaningful way?

6Note that although linear homogeneity helps one to write the TF function in the form of an IDF (θXg
1 )

−1 = ψ(Y, X̃g, Xb, Z, t), it
does not imply that the covariates (Y, X̃g, Xb, Z) are exogenous/predetermined. However, this is routinely assumed in estimating the
IDF.
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lnF
(
Yit, θitX

g
it, X

b
it, Zit, t

)
= αo +

J∑
j=2

αj x̂
g
j,it +

M∑
m=1

βm ym,it +
1
2

J∑
j=1

J∑
j′=1

αjj′ x̂
g
j,itx̂

g
j′,it + αt t+

1
2αtt t

2 +
∑
m

βmt ym,it t

+ 1
2

M∑
m=1

M∑
m′=1

βmm′ ym,it ym′,it +

J∑
j=1

M∑
m=1

δjm x̂gj,it ym,it +
∑
j

αjt x̂
g
j,it t+

K∑
k=1

α̃kx
b
k,it

+ 1
2

Q∑
q=1

Q∑
q′=1

γqq′ zq,it zq′,it +

Q∑
q=1

M∑
m=1

η̄jm x̂gj,it zq,it +

Q∑
q=1

M∑
m=1

χjm zqj,it ym,it +

Q∑
q=1

χ̄qt zq,it t

+ 1
2

K∑
k=1

K∑
k′=1

ζkk′ xbk,it x
b
k′,it +

J∑
j=1

K∑
k=1

φjm x̂gj,it x
b
k,it +

K∑
k=1

M∑
m=1

ψjm xbk,it ym,it

+
K∑

k=1

ψ̄jt x
b
k,it t. (2)

Upon imposing linear homogeneity restrictions, the above translog function can be written as7

xg1,it = αo +
J∑

j=2

αj x̃
g
j,it +

M∑
m=1

βm ym,it +
1
2

J∑
j=2

J∑
j′=2

αjj′ x̃
g
j,itx̃

g
j′,it + αt t+

1
2αtt t

2 +
∑
m

βmt ym,it t

+ 1
2

M∑
m=1

M∑
m′=1

βmm′ ym,it ym′,it +
J∑

j=2

M∑
m=1

δjm x̃gj,it ym,it +
∑
j

αjt x̃
g
j,it t

+ 1
2

Q∑
q=1

Q∑
q′=1

γqq′ zq,it zq′,it +

Q∑
q=1

M∑
m=1

η̄jm x̃gj,it zq,it +

Q∑
q=1

M∑
m=1

χjm zqj,it ym,it +

Q∑
q=1

χ̄qt zq,it t

+ 1
2

K∑
k=1

K∑
k′=1

ζkk′ xbk,it x
b
k′,it +

J∑
j=2

K∑
k=1

φjm x̃gj,it x
b
k,it +

K∑
k=1

M∑
m=1

ψjm xbk,it ym,it +
∑
j

αjt x̂
g
j,it t+

K∑
k=1

α̃kx
b
k,it

+
K∑

k=1

ψ̄jt x
b
k,it t+ v1,it + u1,it ≡ TL(x̃git, x

b
it, yit, zq,it, t) + v1,it + u1,it, (3)

where, TL(.) represents a translog function with arguments inside the parentheses. As before, x̃gj,it = xgj,it −
xg1,it, j = 2, . . . , J and u1,it = − ln θit ≥ 0. We also add a stochastic noise term v1,it R 0 in (3). One can

estimate (3) using a standard stochastic cost frontier approach, assuming that x̃gj,it, ym,it, zq,it and xbk,it are

exogenous/predetermined and uncorrelated with v1,it and u1,it. This is a bold assumption and it is unlikely to

be true. However, assuming that this assumption holds, one can estimate technical inefficiency by estimating

(3).Note that there is no environmental inefficiency in this model.

2.2 A By-production Technology when Bad Outputs are Separately Produced

Given the problems in modeling bad outputs in terms of a singe equation distance/TF, it is clear that we

need separate tools to model production processes involving bad outputs. The salient feature of modeling

environmental (pollution-generating) production technology is to incorporate the positive correlation between

bad and good outputs. In a standard single equation representation of the technology (in terms of a distance

7Strictly speaking, there should be a minus sign in front of xg1,it. To remove the negative sign we multiply both sides of (7) by −1
which changes the sign of all the coefficients and the inefficiency term u1,it in (7). Note that we have not changed the signs on the
parameters, these changes will be automatically absorbed by the estimated parameters.
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or transformation function) this positive correlation is expected to be satisfied via the monotonicity restrictions.

However, as noted above, imposition of the monotonicity conditions do not automatically satisfy all the standard

axioms of production theory. Next we examine whether the BP approach can solve the problems discussed above.

Following FKS (2002), Førsund (2009), and MRL (2012), we consider the BP approach which uses two

separate technologies to model good and bad outputs. The former describes the textbook type production

process, i.e., inputs (good and bad) are transformed into desired outputs, and it does not depend on bad outputs.

Further, it satisfies all the standard properties, most importantly the free-disposability property. The latter can

be viewed as a residual generation technology which models the production of bad outputs as a function of either

good outputs (FKS, 2002), bad inputs (MRL, 2012) or both bad and good inputs (Førsund, 2009). The positive

relationship between bad and good outputs in FKS (2002) follow from this residual technology which embeds

the relationship explicitly. Further, inefficiency is allowed in each technology, thereby distinguishing technical

inefficiency from environmental inefficiency.

As mentioned in the introduction, we consider two separate BP technology models. First, we assume that

the technology for production of each bad output is different. This approach can be justified provided that,

on engineering grounds, there is no substitutability/complementarity between bad outputs although the same

polluting input (high sulfur, low heat-content coal) can produce more of the bad outputs (SO2 and NOx). We

also consider a model in which a single technology produces all bad outputs as in FKS (2002). This model will

allow substitutability/complementarity between bad outputs. In both cases the technology of good outputs is

the same. We use Bayes factor to test which model performs best in predictive terms.

As before, we start with the TF representation of the underlying technology with IO inefficiency for the

production of good outputs, viz.,

F (Y, θXg, Xb, t) = 1, (4)

Note that bad output vector Z does not appear in (4). The transformation function F (·) is assumed to satisfy

all the standard monotonicity properties (discussed later). Using the linear homogeneity restrictions (in θXg)

the transformation function in (4) can be expressed as (θXg
1 )

−1
= ψg(Y, X̃g, Xb, t).

In specifying the technology for the production of bad outputs, we consider two models. In Model 1 we

allow separate technology for the production of each bad output, i.e., Hq(Y, λqZq, X
b, t) = 1 where λq ≤ 1 is

environmental inefficiency in the production of Zq. More specifically, (1 − λq) 100% is the rate at which the

production of bad output Zq can be reduced without reducing good outputs, and bad inputs. Thus in Model 1

we do not allow substitutability among bad outputs.

The technologies for the production of bad outputs Hq(Y, λqZq, X
b, t) = 1 are rewritten as:

zq,it = gq
(
yit, x

b
it, t
)
+ ξq,it + ηq,it, q = 1, ..., Q (5)

where zq,it represents the (log of) bad output Zq (q = 1, ..., Q). Furthermore, ηq,it = − lnλq ≥ 0 represents

environmental inefficiency in the sense that it gives the percentage over production of Zq, ceteris paribus. Finally,

we added a stochastic error, ξq,it Q 0 (similar to vj,it), for each q.

As before we write X̂g
jit = θitXjit ⇒ x̂gjit = xgjit + ln θit and assume a translog form of the TF in (4), i.e.,
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lnF
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Yit, θitX
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+ 1
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2 +
∑
m
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1
2

M∑
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∑
j

αjt x̂
g
j,it t+

K∑
k=1

α̃kx
b
k,it

+
J∑

j=1
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m=1

δjm x̂j,it ym,it +
∑
j

αjt x̂j,it t+
1
2

K∑
k=1
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ζkk′ xbk,it x
b
k′,it
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k=1
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b
k,it +

K∑
k=1

M∑
m=1

ψjm xbk,it ym,it +
K∑

k=1

ψ̄jt x
b
k,it t. (6)

We impose linear homogeneity with respect to θXg to the above transformation function, and rewrite it as

xg1,it =αo +
J∑

j=2

αj x̃
g
j,it +

M∑
m=1

βm ym,it +
1
2

J∑
j=2

J∑
j′=2

αjj′ x̃
g
j,itx̃

g
j′,it + αt t+

1
2αtt t

2 +
∑
m

βmt ym,it t

+ 1
2

M∑
m=1

M∑
m′=1

βmm′ ym,it ym′,it +

J∑
j=2

M∑
m=1

δjm x̃gj,it ym,it +
∑
j

αjt x̃
g
j,it t+

1
2

K∑
k=1

K∑
k′=1

ζkk′ xbk,it x
b
k′,it

+
K∑

k=1

α̃kx
b
k,it +

J∑
j=1

K∑
k=1

φjm x̃gj,it x
b
k,it +

K∑
k=1

M∑
m=1

ψjm xbk,it ym,it +
K∑

k=1

ψ̄jt x
b
k,it t+ v1,it + u1,it

≡ TL(x̃j,it, ym,it, t) + v1,it + u1,it = αo + S
′
ita+ 1

2S
′
itASit + v1,it + u1,it, (7)

where x̃gj,it = xgj,it − xg1,it, j = 2, . . . , J , S′
it =

(
y′it, x

b′

it , x̃
g′

it , t
)
, u1,it = − ln θit ≥ 0, and a, A are vector and

matrix of relevant parameters. We also add a stochastic noise term v1,it R 0 in (7).

We assume translog functional forms on gq(.) in (5), and write it more compactly as,

zq,it = aq,0 +R
′
itβq +

1
2R

′
itΓqRit + ξq,it + ηq,it, q = 1, ..., Q, (8)

where R′
it =

(
y′it, x

b′

it , t
)
, and βq, Γq are vectors and matrices of relevant parameters in each of the translog

function representing production of bad output. Thus Model 1 consists of the technologies for the production of

good and bad outputs in (7) and (8).

2.3 A By-production Model when Bad Outputs are Jointly Produced

Now we consider an alternative model (Model 2) in the spirit of FKS (2002), Førsund (2009), and MRL (2012).

The technology for good output is specified in terms of the TF in (7) is exactly the same that is used in Model

1. However, in Model 2, there is only one technology for the production of bad outputs, i.e., H(Y, λZ,Xb, t) = 1

where λ ≤ 1 is environmental inefficiency in the production of all bad outputs. This radial measure shows that

production of all bad outputs Z can be reduced by (1−λ) 100% without reducing good outputs and bad inputs.

Note that in Model 2 we use radial measures for both technical and environmental inefficiency. In contrast,

Model 1 uses radial measure of technical inefficiency but non-radial measure of environmental inefficiency.

We assume that H(Y, λZ,Xb, t) = 1 is homogeneous of degree 1 in Z.8 Using the homogeneity assumption,

8FKS (2002) did not distinguish between good and bad inputs and did not use them in the BP function H(.). Furthermore, they
used a more restrictive form of H(·), viz., H(Y, λZ) = h(Y ) · g(λZ).
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we can rewrite H(Y, λZ,Xb, t) = 1 as (λZ1)
−1 = h(Y, Z̃,Xb, t) where Z̃ = (Z2/Z1, ..., Zq/Z1)

Thus, in Model 2 the technology is represented by the following two equations, i.e., (θXg
1 )

−1
= ψg(Y, X̃g, Xb, t)

and (λZ1)
−1 = h(Y, Z̃,Xb, t). Assuming translog functional form on both, Model 2 is specified as

xg1,it = α0 + S
′
ita+ 1

2S
′
itASit + v1,it + u1,it, (9)

z1,it = a0 + P
′
itδ +

1
2P

′
it∆P it + ζit + τit, (10)

where P ′
it =

(
y′it, z̃

′
it, x

b′

it , t
)
, z̃qit = zqit − z1it, τit = lnλit ≥ 0 and ζit is an error term. Further, δ and ∆ are

vector and matrix of relevant parameters in the translog function representing production of bad output. The

other parameter vector and matrices a and A are already defined. Note that (9) is the same as (7), written in

a compact form.

Both the models should satisfy the monotonicity conditions9 (standard properties of an IDF). These are:

∂xg1,it
∂x̃gj,it

≤ 0, j = 2, ..., J (11)

∂xg1,it
∂ym,it

≥ 0,m = 1, ...,M (12)

∂xg1,it
∂xbk,it

≤ 0, k = 1, ...,K (13)

The exact form of the above derivatives can be obtained by differentiating the TF in (7) with respect to x̃gj,it,

ym,it and x
b
k,it.

Similarly to guarantee a positive relationship between each pair of good and bad outputs, as well as each

pair of bad output and bad inputs, we need to impose the following restrictions in Model 1:

∂zq,it
∂ym,it

≥ 0,m = 1, ...,M (14)

∂zq,it
∂x̃bk,it

≥ 0, k = 1, ...,K (15)

for each q = 1, · · · , Q. The exact form of the above derivatives can be obtained by differentiating (8) with respect

to ym,it and x
b
k,it.

For Model 2, these restrictions are

∂z1,it
∂ym,it

≥ 0,m = 1, ...,M (16)

∂z1,it
∂x̃bk,it

≥ 0, k = 1, ...,K (17)

the exact expression of which can be obtained by differentiating the equation in (10).

The models we have considered so far are summarized in Table 1. Model 0 uses a single TL IDF to represent

the technology for the production of good and bad outputs in which xg1 is endogenous.10 Model 1 has one TL IDF

that describes the production of good outputs, and one TL function for each zq to represent the technology for

the production of each bad output. Thus, the endogenous variables in Model 1 are xg1 and z = {zq, q = 1, . . . , Q}.
9The signs are reversed because we have x1 instead of −x1 on the left-hand-side of the IDF

10Note that the lowercase variables are in logs.
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Model 2 has one TL IDF that describes the production of good outputs and one TL function that represents the

technology for the production of all bad outputs. The endogenous variables in this model are xg1 and z1.

Table 1: Description of Models

Model Description Endogenous
Predetermined/

Exogenous

Model 0 xg1 = TL(x̃g,xb,y, z, t) xg1 y, x̃g,xb, z, t

Model 1
xg1 = TL(x̃g,xb,y, t),

z = g(y,xb, t) (one TL function for each z)
xg1, z y, x̃g,xb, t

Model 2
xg1 = TL(x̃g,xb,y, t),

z1 = TL(y,xb, z̃) (one TL function for z1)
xg1, z1 y, x̃g,xb, z̃, t

3 Modeling Technology when Good Inputs are Endogenous

We now consider the same models (Models 0-2) but use explicit cost minimization behavior to address the

enodogeneity of good inputs. That is, the first-order conditions of cost minimization are now used along with

the technologies of producing good and bad outputs.

3.1 A Single Production Technology

We assume that producers choose Xg to minimize cost subject to the TF to produce a given level of Y , viz.,

min
Xg∈ℜJ

: W ′Xg subject to F
(
Y, θXg, Xb, Z, t

)
= 1. (18)

where W is the exogenously given vector of good input prices.

The first-order conditions (FOCs) of the above problem can be written as:

Wj

W1
=
∂F
(
Y, θXg, Xb, Z, t

)
/∂Xg

j

∂F (Y, θXg, Xb, Z, t) /∂Xg
1

⇒
WjX

g
j

W1X
g
1

=
∂ lnF

(
Y, θXg, Xb, Z, t

)
/∂ lnXg

j

∂ lnF (Y, θXg, Xb, Z, t) /∂ lnXg
1

, j = 2, ..., J. (19)

Define Sj,it =
∂ lnF(Y,θXg,Xb,Z,t)

∂xg
j,it

=
∂xg

1,it

∂x̃g
j,it

and use (3) to get

Sj,it = αj +

J∑
j′=2

αjj′ x̃
g
j′,it +

M∑
m=1

δjm ym,it + αjt t+

Q∑
q=1

η̄jm zq,it +

K∑
k=1

φjm xbk,it, j = 2, ..., J (20)

and rewrite the FOCs in (19) as

w̃j,it ≡ wj,it − w1,it = ln
[
Sj,it/S1,it

]
− xgj,it + xg1,it + vj,it, j = 2, ..., J. (21)

Since
∑J

j=1 Sj,it = 1, S1,it = 1−
∑J

j=2 Sj,it where Sj,it, j = 2, · · · , J comes from (20). The system consisting of

(3) and (21) can be estimated assuming (v1,it, . . . , vJ,it)
′ is distributed as multivariate normal and u1,it is half

normal. Note that Ym and Zq are assumed to be exogenous.
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3.2 A By-production Technology

The cost minimization problem for the BP technology model is:

min
Xg∈ℜJ

: W ′Xg subject to F
(
Y, θXg, Xb, t

)
= 1. (22)

The FOCs of the above problem are:

Wj

W1
=
∂F
(
Y, θXg, Xb, t

)
/∂Xg

j

∂F (Y, θXg, Xb, t) /∂Xg
1

⇒
WjX

g
j

W1X
g
1

=
∂ lnF

(
Y, θXg, Xb, t

)
/∂ lnXg

j

∂ lnF (Y, θXg, Xb, t) /∂ lnXg
1

, j = 2, ..., J. (23)

The above FOCs in (23), after taking logarithms, can be rewritten as

w̃j,it ≡ wj,it − w1,it = ln
[
S∗
j,it/S

∗
1,it

]
− xgj,it + xg1,it + vj,it, j = 2, ..., J, (24)

where S∗
j,it =

∂ lnF(Y,θXg,Xb,t)
∂xg

j,it
=

∂ lnxg
1,it

∂xg
j,it

which can be obtained from (7), viz.,

S∗
j,it = αj +

J∑
j′=2

αjj′ x̃
g
j′,it +

M∑
m=1

δjm ym,it +
K∑

k=1

φjm xbk,it + αjt t, j = 2, ..., J. (25)

Note that the difference between Sj,it and S
∗
j,it in (20) and (25) comes from the fact the single equation technology

has Z as arguments while the BP technology has no Z in the production of good outputs. If the technology for

each bad output is different (Model 1), then the system of equations to be estimated jointly is given by (7), (24),

and (8). Note that the endogenous variables in the system are xgj and zq.

On the other hand, if a single technology produces all bad outputs (Model 2), then the system of equations to

be estimated jointly is given by (7), (24), and (10). Note that the technology for the production of bad outputs

is assumed to be homogeneous of degree 1 in Z. The endogenous variables in the system are Xg
j , j = 2, ..., J

and Z1. Similar to the standard IDF (in which input ratios are argued to be predetermined), it is also assumed

the ratios of bad outputs are predetermined/exogenous and are uncorrelated with the error components. This

assumption is not required if the technology for each bad output is different (as in (8)).

The models discussed in the preceding section are summarized in Table 2. Model 0a uses a system consisting

of the TL IDF that represent the technology for the production of good and bad outputs, and the FOCs with

respect to Xg. Thus, the endogenous variables in Model 0a are Xj , j = 1, . . . , J . Similarly, the system in Model

1a consists of the IDF, the FOCs with respect to Xg
j and one TL function for each Zq. Thus the endogenous

variables are Xg
j and Zq, q = 1, . . . , Q. Finally, the system in Model 2a consists of the IDF, the FOCs with

respect to Xg
j and one TL function for Z1. Thus the endogenous variables are Xg

j , j = 1, . . . , J and Z1.
11

4 Data

The data we use come from Pasurka (2006) and Murty et al. (2012). A balanced panel consisting of 92 coal-

fired electric power generating plants operating in the U.S. over the period from 1985 to 1995 is used in this

study. This gave us a total of 1,012 observations. We focus on coal-fired plants (with at least 95% of total fuel

consumption (measured in Btu) from coal). The specification of outputs and inputs is as follows. The good

output is the net electric power generation Y , measured in kWh. The two bad outputs are (i) the SO2 (sulfur

dioxide) gas emissions (Z1) and (ii) the NOx (nitrogen oxides) gas emissions (Z2), both measured in short-tons.

11Table 2 lists the variables in lowercase because all the variables in Models 0a, 1a, and 2a appear in log.
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Table 2: Description of Models when Inputs are Endogenous

Model Description Endogenous
Predetermined/

Exogenous

Model 0a
xg1 = TL(x̃g,xb,y, z, t),

FOCs in Xg
j

xg y, x̃g,xb, z, w̃, t

Model 1a

xg1 = TL(x̃g,xb,y, t),
FOCs in Xg

j ,

zq = gq(y,x
b, t) (one TL function for each zq)

xg, z y,xb, w̃, t

Model 2a

xg1 = TL(x̃g,xb,y, t),
FOCs in Xg

j ,

z1 = TL(y,xb, z̃, t) (only one TL function for z1)

xg, z1 y,xb, z̃, w̃, t

The good inputs to the production are: the real stock of physical capital (Xg
1 ), constructed from historical cost

of plant data and deflated to constant dollars using the Handy-Whitman Index; and labor (Xg
2 ), measured in the

number of employees. The bad input is the heat content of coal (Xb), measured in Btu per ton of coal. This is

proxy for quality of coal. If the quality of coal is low, the heat content will be low. The data on the cost of plants

and equipment (used in the construction of the capital stock) and the number of employees come from the U.S.

Federal Energy Regulatory Commission Form 1 survey. The data on fuel consumption, net power generation and

pollutant gas emissions come from the U.S. Department of Energy Form EIA-767 survey. The price of labor is

the wage rate, defined as the sum of salaries and wages charged to electric operation and maintenance, divided by

the number of full-time plus one half the number of part-time employees, obtained from FERC Form 1. The price

of capital is the product of the yield of the firm’s latest issue of long-term debt, adjusted for appreciation and

depreciation of capital using the Christensen-Jorgenson (1970) cost of capital formula, and the Handy-Whitman

index for electric utility construction costs.

5 Estimation

The models we discussed so far are broadly classified into two groups, a single technology and a BP technology.

Models in each group are estimated with and without addressing endogeneity. Although Xg is viewed as

endogenous in both Models 0 and 0a, there is a difference. In Model 0 inputs Xg
j are endogenous but X̃g

j =

Xg
j /X

g
1 , j = 2, . . . J are treated as exogenous. Thus in fact, only Xg

1 is treated as endogenous in Model 0

in which only the IDF is estimated. On the other hand, in Model 0a all the good inputs Xg
j are treated as

endogenous because in addition to the IDF we also add (J − 1) FOCs so that we have a system of J equations

for J endogenous variables (Xg
j ). In both Models 0 and 0a bad outputs are treated as exogenous. Similar

differences are also in Models 1 and 1a and Models 2 and 2a. In Models 2 and 2a are only Z1 is endogneous and

Z̃q = Zq/Z1, q = 2, · · · , Q are treated as exogenous. This is, however, not the case in Models 1 and 1a in which

Xg
j , j = 1, · · · , J and Zq, q = 1, · · · , Q are endogenous.

In estimation, Model 0 uses only the IDF in (3). Assuming that none of the covariates (good and bad outputs,

bad inputs and the ratios of good inputs) are correlated with either the inefficiency or the noise term, estimation

can be done using the standard stochastic cost frontier approach. If some of the covariates are endogenous, the

estimates are likely to be inconsistent. Model 0a consists of the IDF in (3) and FOCs in (21). By taking the

FOCs into account Model 0 allows Xg
j to be endogenous, not just Xg

1 .

Models 1 and 2 use the BP approach. The only difference between these two models is that in Model 2

we assume a single production process for bad outputs, whereas in Model 1 we allow the technologies for the

production of bad outputs to be different. If the monotonicity constraints are ignored then these models can be
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estimated equation by equation using the ML method, routinely used in stochastic frontier cost models.

To summarize: Model 1 consists of (7) and (8), whereas Model 2 consists of (7) and (10). Models 1a

consists of (7), (24) and (8). Model 2a consists of (7), (24) and (10). All these models are estimated with the

appropriate monotonicity constraints imposed. Distributional assumptions are made on the noise and inefficiency

components.

Consider the BP approach in Model 1a. We write the error terms of this system in vector form as vit =

[v1,it, . . . , vJ,it, ξ1,it, . . . , ξQ,it]
′
and assume

vit ∼ NJ+Q (O,Σ) . (26)

For the one-sided inefficiency terms we assume:

u1,it ∼ N +
(
0, σ2

u

)
, ηq,it ∼ N +

(
0, ω2

q

)
, q = 1, ..., Q, (27)

distributed independently of each other, each truncated at 0 from below. We assume them to be independent

of all other random variables and the regressors. Since there are cross-equational restrictions in terms of the

parameters in the IDF and the FOCs in (7) and (24), one cannot estimate these equations separately using

standard stochastic cost frontier models (because the one-sided inefficiency terms in these models are non-

negative) although the error components (both inefficiency and noises) are assumed to be independent of each

other. There are (J +Q) endogenous variables (Xg and Z) with (J +Q) equations consisting of (7), (24), and

(8). This system of equations differs from the one in Model 1 which does not include the (J − 1) FOCs, and

assumes input ratios X̃g to be exogenous. If this assumption does not hold, estimates from Model 1 will be

inconsistent.

Similar distributional assumptions are made to estimate the system in Models 2a and 2 as well as Models 0a

and 0.

5.1 Implementation of MCMC

In this subsection we provide a brief discussion about the implementation of the MCMC technique for the

Bayesian analysis of our models. Instead of tailoring our discussion for each model, we focus on the BP approach,

viz., Model 1a. Since the model in (7) is linear in parameters, to simplify our discussion, we denote all the

parameters by β and the corresponding regressors by X which includes the linear, squares and cross-products

of good outputs (Y), ratios of good inputs (X̃g), bad inputs (Xb) and time. The same parameters appear in

the FOCs in (24). We use the same procedure and denote all the parameters in (8) by δ and the corresponding

regressors by Z which includes the linear, squares and cross-products of good outputs, bad inputs and time.

Using the above simplification, we write the IDF and FOCs associated with Model 1a in (7), (24) and (8) as:

x1,it =X
′
itβ + v1,it + u1,it

w̃it = h (Xit,β) + ṽit

zit = Z ′
itδ + ξit + ηit

(28)

where ṽit = (v2,it, · · · , vJ,it)′, Xit denotes all regressors of the IDF, w̃ denotes the ratio of input prices (in log),

Zit denotes the regressors and the column of ones in (8) and β, δ are parameter vectors. We denote the data by

D and Ω = diag[ω2
q , q = 1, ..., Q], ω2

q = pre-truncated var of ηq,it, q = 1, ..., Q. Implementation of MCMC relies

on drawing from the following posterior conditional distributions:

(i) β|δ, w̃, u1,η, σu,Σ,Ω,D,

(ii) δ|β, w̃, u1,η, σu,Σ,Ω,D,

(iii) Σ|β, δ, w̃, u1,η, σu,Ω,D,
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(iv) Ω|β, δ, w̃, u1,η, σu,Σ,D,

(v) σu|β, δ, w̃, u1,η, σu,Σ,Ω,D,

(vi) u1|β, δ, w̃,η, σu,Σ,Ω,D,

(vii) η|β, δ, w̃, u1, σu,Σ,Ω,D.

(viii) w̃|β, δ, w̃, u1,η, σu,Σ,Ω,D.

Models that do not include the FOCs do not rely on w̃ and, therefore, we can omit step (viii). Details are

provided in the Appendix.

Imposition of the monotonicity constraints

Monotonicity constraints in (11) - (15) can be written compactly as

cit (Dit,β, δ) ≤ 0, (29)

where cit is a vector function in RJ−1+Q(M+K) and Dit =
[
x̃′
it,y

′
it,x

b′

it , z
′
it

]
denotes a particular observation.

The total number of restrictions is N(J − 1+Q(M +K)) where N = nT , n neing the number of cross-sectional

units and T is the number of times each cross-sectional unit is observed.

Suppose the mean of the data is D̄ = 0 for simplicity. First the restrictions in (29) are imposed at the mean,

viz., cit (0,β, δ) ≤ 0 and then at points ±r, where r is a vector which is conformable with Dit whose typical

element, say rp, extends from the minimum to the maximum of the pth element ofDit (p = 1, ..., J−1+Q+M+K).

There is a number of N such points and N is selected so that a simple acceptance algorithm to enforce (29)

does not take more than 10,000 rejections per observation. We have found that N = 50 such points are enough

and the average rejection rate (per observation and MCMC iteration) is about 1,500 when the Girolami and

Calderhead (2012, GC) update is used.12

Priors

Our prior of β is specified as:

β ∼ NK

(
β̄,V β

)
(30)

subject to the restriction that it is defined over the region defined by the monotonicity constraints in (11) -(15).

We choose β̄ = O and V β = 103I so that these priors are minimally informative. Similarly, the prior for δ is

assumed to be flat.

For Σ we assume that Σ =

[
σ2
v1 0′

0 Σ̃

]
. For all variance parameters we assume a prior in the inverted

gamma family:
Q

d

σ2
d

∼ χ2 (Nd) (31)

for d ∈ {v, u, λ, λ, εj , w̃}. For Σ̃ we assume a prior in the invertedWishart family: p
(
Σ̃
)
∝ |Σ̃|(N+J)/2 exp

{
−1

2 trAΣ̃
−1
}
.

As a baseline prior we choose Nd = N = 1 and Q
d
= 0.001. Moreover A = 0.001I, which is compatible with

the existence of the posterior and is minimally informative. Mike, Are these .001 or 103?

12Without the GC update we need N = 250 points and the average rejection rate (per observation and MCMC iteration) is about
8,500. Details on the numerical performance of the algorithm, relative numerical efficiency and convergence diagnosis are available
upon request.
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5.2 Estimation of Efficiency

To estimate inefficiency we examine the conditional distribution of u1 which is truncated normal:

u1,it|data,parameters ∼ N+

(
x1,it −X ′

itβ

σu
σ2
v ,

σ2
vσ

2
u

σ2
v + σ2

u

)
. (32)

This conditional distribution is used explicitly in MCMC to generate draws for u1,it. Given MCMC draws{
u
(s)
1,it, s = 1, ..., S

}
, efficiency draws are generated as r

(s)
it = exp

(
−u(s)1,it

)
, s = 1, ..., S. The posterior mean of

technical efficiency across all draws will be:

rηit = S−1
S∑

s=1

exp
(
−u(s)1,it

)
. (33)

To estimate environmental efficiency for each bad output Zq, we consider the conditional distribution of

ηq,it, q = 1, ..., Q which is truncated normal:

ηq,it|data,parameters ∼ N+

(
zq,it −Z ′

itδq
σξ,q

σ2
η,q,

σ2
ξ,qσ

2
η,q

σ2
ξ,q + σ2

η,q

)
. (34)

This conditional distribution is used explicitly in MCMC when we draw from it to generate draws for ηq,it. Sup-

pose the MCMC draws are
{
η
(s)
q,it, s = 1, ..., S

}
. Then the posterior mean of environmental efficiency associated

with zq, s = 1, ..., S across all draws will be:

Eq,it = S−1
S∑

s=1

exp
(
−η(s)q,it

)
(35)

which can be taken as a predictor of environmental efficiency for bad output q and observation corresponding to

(i, t). A kernel density of Eq,it across observations for all q = 1, ..., Q then provides the sample distribution of

the predictor for environmental efficiency.

6 Empirical results

Our primary focus in this paper is to estimate technical and environmental efficiency. Note that Models 0 and 0a

cannot capture environmental inefficiency. Since environmental efficiency is an important issue in models with

bad outputs, the use of a single equation representation of the technology in Models 0 and 0a might not be very

appealing. In contrast Models 1 and 1a not only distinguish between technical and environmental efficiency, we

can also estimate environmental efficiency for each bad output. On the other hand, Models 2 and 2a separate

technical and environmental efficiency but both of them are radial (i.e., technical inefficiency overuses all good

inputs by the same proportion and environmental inefficiency leads to overproduction of all bad outputs by the

same proportion).

In addition to estimating technical and environmental efficiency we also estimate and report estimates of

returns to scale (RTS) and technical change (TC). These are important features of any production technology

and are of general interest to all production economists. We compare these measures as well as technical and

environmental efficiency across the models. Finally, we do a Bayesian model selection test to check which model

better fits the data.

RTS in an IDF is computed from
[∑

m ∂xg1/∂ym
]−1

in all the models. Estimates of observation-specific RTS

tell us whether the scale size of a plant is optimal (RTS=1) or not. If RTS exceeds unity the plant can benefit

from expansion. The opposite is true when RTS is less than unity. Similarly, TC defined as TC = ∂x1/∂t which
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(similar to a cost function model) is a measure of cost diminution over time, holding everything else unchanged.

A negative (positive) value of TC would thus mean technical progress (regress).

Summary statistics of these results are presented in Table 3. Finally, kernel densities of RTS, TC and TE

are reported for all the models in Figures 1-4.

First, we examine RTS estimates from each model. Judging by the mean values of RTS (reported in Table 3),

it is clear that RTS from Models 0 and 0a are too small (the mean being close to 0.3). Correcting for endogeneity

of inputs did not change the RTS results much. These can be clearly seen from the kernel density plots of RTS in

panels a and b of Figure 1. The maximum value of RTS is less than 0.5 which is clearly unrealistic. A dramatic

change in the estimated values of RTS is observed when endogeneity is corrected and a BP approach is used

(Model 1a). The RTS values are more realistic in the sense that some are close to unity (which gives the optimal

scale size). Estimates of RTS from Models 2 and 2a are much lower than unity. The spread of RTS after the

endogeneity correction (Model 2a) is quite large (the range is from almost 0 to 1.2).

Next we examine TC. The mean value of TC is quite small in every model (less than 1% per annum). However,

a close look at the density plots show large variations in the estimates of TC within each model. Unlike RTS,

variations in TC across models are quite small. A substantial reduction in the variability of TC is observed after

endogeneity correction in Models 0 and 1 (0a and 1a) but not in Model 2a. Technical progress is observed for

more than 50% of the observations in all three models after the endogeneity correction.

Table 3: Results for various models

Model RTS TC TE EE (SO2) EE (NOx)

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

0 0.323 0.076 -0.0005 0.0232 0.871 0.0157 — — — —

1 0.642 0.061 0.0037 0.0222 0.955 0.0068 0.910a 0.023 0.891b 0.0300

2 0.512 0.132 0.0037 0.0224 0.913 0.0135 0.922c 0.022 — —

0a 0.303 0.079 -0.0091 0.0151 0.822 0.0144 — — — —

1a 0.957 0.052 -0.0080 0.0087 0.915 0.0230 0.968a 0.0068 0.973b 0.0108

2a 0.539 0.221 -0.0140 0.0232 0.891 0.0128 0.905c 0.0157 — —

1. The table reports sample means and sample standard deviations. RTS is returns to scale, TC is technical
change, TE is technical efficiency and EE is environmental efficiency.

2. (a) corresponds to SO2, (b) corresponds to NOx and (c) corresponds to overall environmental efficiency.

Estimates of summary statistics of TE are reported in Table 3. In general the mean values of TE are quite

high (80% or higher) across models. Predicted TE values are the highest in Models 1 and 1a. A close look

at Figure 3 shows that the distributions of TE are quite tight although they differ substantially across models.

Note that the TE is input-oriented which means that input-usage, on average, is 91.5% efficient in Model 1a.

Alternatively, Model 1a predicts that cost is increased, on average, by 8.5% due to input over-use.

Finally, we report environmental efficiency (EE) for both SO2 and NOx in Figure 4. Note that Model 0

cannot separate TE from EE which might be the reason why TE in Model 0 is the lowest among the three

models. EE in Models 2 and 2a is radial thereby meaning that EE in the production of SO2 and NOx are

identical by construction. In both models estimated values of EE are quite high (above 90% on average). There

is some scope for improvement (reduction in SO2 and NOx), especially for some plants at the lower tails of the

distributions. Models 1 and 1a give separate estimates of EE for SO2 and NOx. Again these estimates are quite

high (90% or more, on average). Based on these findings, we conclude that the plants are quite efficient from

both technical and environmental points of view.
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Figure 1: Returns to Scale

6.1 Model Comparison

Since we used three different models it is natural to ask how these models perform in cross-validating predictive

exercises. The comparison can be made in terms of fit using Bayes factors which is compatible with forecasting or

predictive type exercises. Suppose Y = (y1, ...,yn) denotes a data set for firms 1, ..., n. The marginal likelihood

for a given model m ∈ {0, 1, 2, ....M} is

Mm (Y) =

∫
Lm (θm;Y) pm (θm) dθ, (36)

where Lm(.) is the likelihood function for model m and pm(.) is the prior probability of the parameters in model

m. The Bayes factor in favor of model m ∈ {1, ..,M} against model 0 is given by:

BFm:0 =
Mm (Y)
M0 (Y)

, m = 1, ...,M.

The posterior probability in favor of any given model is given by:

Pm (Y) =
Mm (Y)∑M

m′=0 Mm′ (Y)
, m = 0, 1, 2, ...,M (37)

which summarizes the evidence in the data in favor of a specific model m. To use this we need to compute

the marginal likelihoods in (36). If the posterior distribution is denoted by p (θ|Y) then we have the so-called
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Figure 2: Technical Change

candidate’s formula:

Mm(Y) =
Lm (θm;Y) p (θm)

pm (θ|Y)
(38)

which holds identically for all θm. Therefore, we can fix θm = θ̄m where θ̄m is any point of high posterior mass,

for example the posterior mean. Then computation of (38) is, in principle, straightforward except for the fact

that the denominator is unknown. Since all posterior conditional distributions are in closed form, as we show in

the Technical Appendix, Chib’s (1994) approach can be used by running some additional MCMC chains. The

results of model comparison are shown in Table 4. Since the probability in favor of Model 1a is 0.985, it is safe

to say that it fits the data best, followed by model 2a (whose posterior probability is 1.4%).

Table 4: Posterior model probabilities

Model Pm(Y)

0 0.000

1 0.000

2 0.000

0a 0.010

1a 0.985

2a 0.014

There are two technical questions about these posterior model probabilities. First, how sensitive are they
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Figure 3: Technical Efficiency

with respect to the prior? Second, how can the models be compared since they, for example, Models 0 and 1 or

Models 0a and 1a, have different endogenous variables? The first question is resolved by varying the parameters

of the prior 10,000 times thus generating 10,000 different priors.13 Approximate posteriors corresponding to these

alternative priors are computed using the Sampling-Importance-Resampling (SIR) algorithm of Rubin (1988).

Bayes factors and posterior model probabilities can then be computed using (38). Our results indicate that the

99% confidence interval for the posterior model probability for Model 1a is 92% to 100%. From that point of

view the results reported here are impressively robust.

As for the second point, let the probability distribution of the data for Model 0 is p0

(
X|Y , X̃,Z,Xb

)
and

for Model 1 it is p1

(
X,Z|Y , X̃,Xb

)
. Since the distributions are different we cannot compare the models in this

form. Instead we have to compute p̃1

(
X|Y ,Z, X̃,Xb

)
from Model 1 and compare it to p0

(
X|Y , X̃,Z,Xb

)
where p̃1

(
X|Y ,Z, X̃,Xb

)
=

p1(X,Z|Y ,X̃,Xb)
pz(Z|Y ,X̃,Xb)

. The computation of p̃1(.) relies on, (i) the numerator, which

is easy to evaluate from the joint distribution of the data in Model 1, and (ii) the denominator which can be

computed by integrating the joint distribution with respect to X. Due to independence, this integration reduces

to computing a (J − 1)-dimensional integral for each observation. In our case this is a univariate integral which

can be evaluated using the standard quadrature procedure.14

13We vary the parameters Q,N uniformly in the interval 10−5 to 100 and 0.01 to 100 respectively.
14We used a 40-point Gauss-Kronrod rule as implemented in IMSL.
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Figure 4: Environmental Efficiency

7 Conclusion

In this paper we consider an environmental production process (electricity generation) in which firms intend to

produce electricity (desired/good outputs) but the production process is such that it automatically produces

undesirable/unintended outputs such as emission pollutants (SO2 and NOx). We separate the technology for

the production of the good output from the production of undesirable outputs. The former describes how good

inputs are transformed into desirable outputs. The latter can be viewed as a by-production (BP) technology.

Like stochastic frontier functions, the BP technology specifies that there is a certain minimal amount of the

undesirable by-product that is produced, given the quantities of certain good outputs and inputs. The presence

of (environmental) inefficiency in the BP technology would thus generate more than this minimal amount of the

undesirable output. Similarly, the presence of technical inefficiency may imply that, given inputs, less than the

maximal possible amount of good output is produced. Alternatively it may imply that more than the minimal

amount of inputs are used to produce a given level of desired output. We used the BP approach, which is a

composition of desired and undesired production technologies, and estimate both technical and environmental

efficiencies. Given that electricity, the good output in our application, is demand determined, we treat it as

exogenous and use an input distance function to represent the electricity generation technology. We use a series

of models and examine their appropriateness in capturing the features of environmental production technology.

First, we consider the modeling approach in which production of both good and bad outputs comes from the

same technology. This is followed by a model which separates the production of good outputs from the bad

outputs by specifying two separate technologies (the BP approach). Finally, we extend the BP approach further
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in which the production of each bad output is allowed to have its own production process. The last model allows

us to estimate technical efficiency and environmental efficiency (for each bad output). On the other hand, the

first model could not separate technical efficiency from environmental efficiency.

We also address the endogeneity of inputs by adding the first-order conditions of cost minimization (which

is standard in the electricity generation literature going back to Nerlove (1965)). We did this in each of the

above-mentioned models and estimate each of them using a system approach. More specifically, we use efficient

Bayesian MCMC technique to estimate the technologies and both types of inefficiencies using a system approach

that takes endogeneity into account. Finally, we did a model comparison exercise and found that the BP approach

with separate technology for each bad output fits the data best.

Average technical efficiency (TE) is found to range from 82.2% to 95.5%. Barring a few outliers, distributions

of TE are found to be quite concentrated, with noticeable differences across different models with and without the

endogeneity correction. Environmental efficiency estimates based on the BP approach (without the endogeneity

correction) tend to vary within models but across model variations are found to be quite small. We found the

distribution of SO2 centered around 96.8%, while the distribution of NOx centered around 97.3% in the model

that allowed two separate technologies for SO2 and NOx and corrected for endogneity of inputs. Based on these

findings, we conclude that the electricity generating plants operated quite efficiently during the period of our

study. That is, the scope for reducing SO2 and NOx, holding everything else unchanged, was limited.

In addition to TE and EE, we also compute returns to scale (RTS) and technical change (TC). RTS estimates

differ widely and some models produce estimates that are quite low. The mean value of RTS in our preferred

model is found to be 0.957 with a standard deviation of 0.052. Estimates of TC are found to center around

zero with noticeable variations within each model. About 50% of the plants are found to have technical progress

(the 2 standard deviation range in the preferred model gives a range of 2.5% to -0.9%). Variations of TC across

models are found to be quite small and are reduced after the endogeneity correction.
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Supplementary Materials for Online Publication

Technical Appendix

In this Appendix we provide details on how to draw from the conditional posterior distributions in (i) through

(viii). Drawing from the conditional posterior distributions results in a Gibbs sampling scheme which, under

very general conditions, provides samples that converge in distribution to the joint posterior distribution of all

structural parameters and latent variables.

(i) Drawing from the posterior conditional of β

To construct a proposal for β the first equation is estimated by GMM using as instruments all exogenous

variables, their squares and cross-products. Denote the GMM estimator by β̂GMM . Generally this is a poor

approximation to the posterior due to the lack of ignoring the second set of equations. After linearizing the

second set of equations in (28) with respect to β we end up with a system of the form:

x1,it =X
′
itβ + v1,it + u1,it

ait = F
′
itβ + ṽit

, (39)

where X ′
it =

[
x̃′

it, z̄
′
it

]
so that the first elements are logs of deviations of good inputs from the first good

input. Here, ait and F it correspond to terms related to a Taylor series expansion of the second equation in

(23), that is ait = w̃it − h
(
X̄it, β̂GMM

)
and F it = ∇h

(
X̄it, β̂GMM

)
, where X̄ is the point of reference for

the linearization. The formulation in the second set of equations of (39) allows for the presence of equations for

bad outputs provided it is augmented to include one-sided error terms ηq,it. In this section we are interested in

crafting a good proposal density for β so the inclusion of equations for bad outputs is subsumed in the second

equation of (39).

We write the system above in the following form15:
x1

a1

...

aQ−1

 =


X

F 1

...

FQ−1

β +


v1

ṽ1
...

ṽQ−1

+


u1

O
...

O

 (40)

or in compact form as:16

Y = Xβ + V (41)

with E (VV′) = Σ ⊗ InT . From standard results about the multivariate regression model (Zellner, 1971, pp.

241-243) we have:

β|Σ,Y ∼ NK

([
X′ (Σ−1 ⊗ InT

)−1 X+ V −1
β

]−1 [
X′ (Σ−1 ⊗ InT

)−1 Y+ V −1
β β̄

]
,X′ (Σ−1 ⊗ InT

)−1 X
)
, (42)

15Columns of F 1, ...,FQ−1 are padded with zeros in the appropriate places so that these matrices have the same dimensionality with
X and are conformable with β.

16Note that we consider x1 − u1 together in defining Y.
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where the prior of β is specified as:

β ∼ NK

(
β̄,V β

)
. (43)

We choose β̄ = OK and V β = 0.001I so that these priors are minimally informative. The posterior

conditional distribution of the covariance matrix is in the inverted Wishart family:

p
(
Σ−1|β,Y

)
∝ |Σ−1|nT−K+1

2 +N exp
{
−1

2 (A+A)Σ−1
}
, (44)

whereA = V (β)V (β)
′
, V (β) = Y−Xβ. Using the conditional posterior distributions for β andΣ we implement

Gibbs sampling which, however, is only an approximate in this case due to the linearization of the FOCs.

We introduce the following modification of this basic algorithm. Instead of centering the proposal around

GMM and then using posterior moments to configure a proposal we use a Girolami and Calderhead (2012, GC)

algorithm. The GC algorithm starts at the GMM estimator and the MCMC runs until convergence. Depending

on the model and the subsample this takes 20,000 to 100,000 iterations. Then we run one million MCMC

iterations to obtain final results for posterior moments and densities of parameters and functions of interest. We

find that the GC algorithm performs vastly superior relative to the standard Metropolis-Hastings algorithm and

autocorrelations are much smaller.

(ii) Drawing from the conditional posterior of δ

Drawing from this posterior conditional relies on the system of equations: zit = Z ′
itδ + ξit + ηit. Conditional

on the data and η we have:

δ|η,Ω,D ∼ N
(
δ̂,V δ

)
, (45)

where δ̂ =
(
Z ′Ω−1Z

)−1 Z ′Ω−1 (z − η), V δ =
(
Z ′Ω−1Z

)−1
and Ω = diag

[
ω2
q , q = 1, ..., Q

]
.

(iii) Drawing from the conditional posterior of Σ

Using standard results for the Wishart distribution (Zellner, 1971, p. 227) the posterior conditional can be

written as

p (Σ|β, u1, w̃,D) ∝ |Σ|{N−(J+1)+N}/2 exp
{
− 1

2 trΣ
−1(S + S)

}
, (46)

where N is the total number of observations, S =
∑

i,t v̂it (β) v̂it (β)
′
, and

v̂it (β) ≡

[
x1,it −X ′

itβ − u1,it

w̃it − h (Xit,β)

]
. (47)

(iv) Drawing from the conditional posterior of Ω

The elements of the diagonal matrix Ω can be drawn easily as:

Q
q
+
(
zq −Zδq − ηq

)′ (
zq −Zδq − ηq

)
ω2
q

|δ,η,D ∼ χ2
(
N +Nq

)
. (48)

(v) Drawing from the conditional posterior of σu

This parameter can be drawn easily using the following:

Q
u
+ u′

1u1

σ2
u

|u,D ∼ χ2(N +Nu). (49)
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(vi) Drawing from the conditional posterior of u1

We use the assumption that v1 and ṽ are independent. To estimate inefficiency we examine the conditional

distribution of u1 which is a truncated normal:

u1,it|β, σv, σu,D ∼ N+

(
x1,it −X ′

itβ

σu
σ2
v ,

σ2
vσ

2
u

σ2
v + σ2

u

)
, (50)

where σ2
v is the (1,1) element ofΣ. This conditional distribution is used explicitly in MCMC to generate draws for

u1,it. Given MCMC draws
{
u
(s)
1,it, s = 1, ..., S

}
, efficiency draws are generated as r

(s)
1,it = exp

(
−u(s)1,it

)
, s = 1, ..., S.

The posterior mean of technical efficiency across all draws will be:

rη1,it = S−1
S∑

s=1

exp
(
−u(s)1,it

)
. (51)

(vii) Drawing from the conditional posterior of η

To estimate environmental efficiency for each bad output Zq, we consider the conditional distribution of ηq,it, q =

1, ..., Q which is a truncated normal:

ηq,it|δ,σξ,ση,D ∼ N+

(
zq,it −Z ′

itδq
σξ,q

σ2
η,q,

σ2
ξ,qσ

2
η,q

σ2
ξ,q + σ2

η,q

)
. (52)

This conditional distribution is used explicitly in MCMC when we draw from it to generate draws for ηq,it. Sup-

pose the MCMC draws are
{
η
(s)
q,it, s = 1, ..., S

}
. Then the posterior mean of environmental efficiency associated

with zq, s = 1, ..., S across all draws will be:

rηq,it = S−1
S∑

s=1

exp
(
−η(s)q,it

)
, (53)

which can be taken as a predictor of environmental efficiency for bad output q and observation corresponding

to (i, t). A kernel density of rηq,it across observations for all q = 1, ..., Q then provides the sample distribution of

our best predictor for environmental efficiency.

(viii) Drawing from the conditional posterior of w̃

This step involves drawing from the following conditional posterior distributions:

(viii.1) Draw σλ, σµ,σε conditional on all other parameters below. Notice that σε =
[
σ2
εj , j = 2, ..., J

]
.

(viii.2) Draw from λ = [λi, i = 1, ..., n] |ϑ, σλ, σµ, σω,µ,a,D , where a = [aj , j = 2, ..., J ] and ϑ denotes all

parameters in steps (i) through (vii).

(viii.3) Draw from µ = [µt, t = 1, ..., T ] |ϑ, σλ, σµ, σω,λ,a,D.

(viii.4) Draw w̃|ϑ, σλ, σµ,σε,λ,µ,a,D.

The parameters in step (viii.1) can be drawn easily. Specifically, we have:

Qλ + λ′λ

σ2
λ

|λ,D ∼ χ2(n+Nλ), (54)

Q
µ
+ µ′µ

σ2
µ

|µ,D ∼ χ2(T +Nµ), (55)
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Qw̃ +
∑

j,i,t (w̃j,it − aj − λi − µt)
2

σ2
λ

|λ,µ, w̃,a,D ∼ χ2(N +N w̃). (56)

The specification in (33) can be written as:

w̃it = a+ (λi + µt)1J−1 + εit, (57)

where a = [aj , j = 2, ..., J ], 1J−1 is the unit vector in RJ−1 and εit = [εjit, j = 2, ..., J ]. In this form, parameters

a, λ and µ can be drawn jointly using standard results from linear models with random effects. Equation (57)

can be written as:

w̃j = aj1N +

[
DF

...DT

] [
λ

µ

]
+ εj , j = 1, ..., J, (58)

where DF ,DT denote respectively firm and time dummy variables. Equivalently we can omit one firm-specific

and one time-specific dummy (say the last) to obtain:

w̃j = aj1N +

[
D∗

F

...D∗
T

] [
λ∗

µ∗

]
+ εj , j = 1, ..., J, (59)

where λ∗ and µ∗ denote deviations of λ and µ from λn and µT respectively. Writing the equation above as:

w̃j = aj1N +D∗
oψ + εj , j = 1, ..., J (60)

and letting

[
1N

...D∗
0

]
=D∗ we have

W̃ =

[
IJ−1 ⊗ 1N

...1J−1 ⊗D∗
o

] [
a

ψ

]
+ ε ≡ ∆φ+ ε, (61)

where W̃ =

[
w̃2

... · · ·
...w̃J

]
. In this formulation the random effects can be drawn jointly from a normal distribution

whose mean is φ̂ =
(
∆′V −1∆

)−1
∆′V −1W̃ and the covariance is

(
∆′V −1∆

)−1
, where V = cov (ε) = Σε ⊗

(IJ−1 ⊗ IN ) and Σε = diag[σ2
εj , j = 2, ..., J ]

In step (viii.4) we combine (57) with (28) and we write the result compactly as follows:

w̃it = Rit + εit

w̃it = h (Xit,β) + ṽit

where Rit = a+(λi + µt)1J−1 from (57). Denote Σ̃ = cov (ṽit), the lower (J−1)×(J−1) submatrix of Σ . It is

easy to show that the conditional posterior distribution of w̃it is normal with meanmit =
1′
J−1Σ

−1
ε Rit+1′

J−1Σ̃
−1

hit

1′
J−1

(
Σ−1

ε +Σ̃
−1

)
1J−1

and variance s2it = 1

1′
J−1

(
Σ−1

ε +Σ̃
−1

)
1J−1

, where hit ≡ h (Xit,β). Of course, drawing from this conditional

posterior distribution is particularly easy. Finally, drawing from the conditional posterior distribution of σε

relies on the following:
Q

εj
+
∑

i,t (w̃j,it −Rj,it)
2

σ2
εj

∼ χ2
(
N +Nεj

)
, j = 2, ..., J. (62)
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