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Abstract 
 
This papers considers an alternative estimation procedures for estimating stochastic frontier models with endogenous 
regressors when no external instruments are available. The approach we propose is based on copula function to directly 
model the correlation between the endogenous regressors and the composed errors. Estimation of model parameters is 
done using maximum likelihood. Monte Carlo simulations are used to assess and compare the finite sample performances 
of the proposed estimation procedures.  
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1. Introduction 

 
A standard approach to handle endogeneity problem in the stochastic frontier models is to use likelihood based 

instrumental variable estimation methods, see for example, Kutlu (2010), Tran and Tsionas (2013) and Amsler, Prokhorov 

and Schmidt (2014). This type of approach relies upon the availability of a set of outside information that may be used to 

construct instruments either in the reduced form equations or the instruments themselves. Unlike the standard linear 

models, the main disadvantage in the stochastic frontier setting is that a substantive assumption needs to be made 

regarding the correct specification of the reduced form in order to correctly predict the technical inefficiency component. 

In addition, the instruments, if they are available, often subject to potential pitfalls because they fail to meet the two 

required conditions adequately that the instruments are sufficiently correlated with the endogenous regressors, and they 
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are uncorrelated with the composed errors term. Thus, the potential difficulty of implementing these approaches is when 

there is no outside information available to construct the appropriate instruments.  

To alleviate these problems, this paper considers an alternative approach to handle endogeneity in stochastic frontier 

models, which does not require the availability of outside information to construct the instruments. Consequently, we can 

construct a flexible joint distribution of the endogenous regressor and the composed error that can accommodate any 

degree of dependency between them. We then use this joint distribution to derive the likelihood function and maximize it 

to obtain the consistent estimates of the model parameters.  

 

2. The Model and Methodology 
 

Consider the following stochastic frontier model: 
 
 ' ' , 1, ,i i i i iy z x v u i na b= + + - = K ,  (1) 

 
where iy  is the output of  firm i , iz  is a 1d ´  vector of exogenous input, ix  is a 1p ´  vector endogenous input, a  and 

b  are 1d ´  and 1p ´  vectors of unknown parameters, iv  is a symmetric random error, iu  is the one-sided random 

disturbance representing technical inefficiency. We assume that iz  is uncorrelated with iv  and iu  but ix  are allowed to 

be correlated with iv  and possibly with iu , and this generates the endogeneity problem. We also assume that iu  and iv  

are independent and leave the form of iu  unrestricted. The discussion that follows can be easily extended for the case 

where (exogenous) environmental variables are included in the distribution of iu  (e.g., Battese and Coelli (1995)). 

Following standard practice, assume that 2. . . (0, )i vv i i d N s:  and 2. . . (0, )i uu i i d N s: . Then the density of 

' '
i i i i i iv u y z xe a b= - = - -  is given by 

0

2( ) ( ) ( ) i i
i v i i u i ig f u f u du

e l e
e e f

s s s
¥ æ ö æ ö÷ ÷ç ç÷ ÷ç ç= + = F -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è øò ,    (2) 

where 2 2 2
v us s s= + , /u vl s s= , (.)f  and (.)F  are the probability density function and cumulative distribution 

function of a standard normal random variable, respectively.  

Let 1( , , , )pF x x eK  and 1( , , , )pf x x eK  be the joint distribution and the joint density of 1( , , )px xK  and ie , respectively. 

In practice, 1( , , , )pF x x eK  and 1( , , , )pf x x eK  are typically unknown and hence need to be estimated. Following Park 

and Gupta (2012), we suggest a copula approach to construct and estimate this joint density. The copula essentially 

captures the dependence in the joint distribution of the endogenous regressors and the composed errors. For exposition 

purpose, suppose we have a joint distribution of 1( , , , )px x eK  with joint density 1( , , , )pf x x eK , and let ( )j jf x , ( )j jF x , 
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for 1, ,j p= K , ( )g e  and ( )G e  denote the marginal density and CDF of jx  and e, respectively. Also let C  denotes the 

“copula function” defined for 1
1 1( , , ) [0,1]ppx x +

+ ÎK  by 

1 1 1 1 1 1( , , ) ( ( ) , , ( ) , ( ) )p p p p pC P F x F x Gx x x x e x+ += £ £ £K K , 

so that the copula function is itself a CDF. Moreover, since ( )j jF x  and (.)G  are marginal distribution function, each 

component ( )j j jU F x=  and ( )U Ge e=  has a uniform marginal distribution (see for example Li and Racine (2007, 

Theorem A.2)). Let 1( , , )pc x xK  denotes the pdf associated with 1( , , )pC x xK , then by Sklar’s theorem (Sklar (1959)), 

we have 

1 1 1
1

( , , , ) ( ( ), , ( ), ( )) ( ) ( )
p

p p p j j
j

f x x c F x F x G g f xe e e
=

= ÕK K .    (3) 

Thus, equation (3) shows that the copula function completely characterizes the dependence structure of 1( , , , )px x eK , 

and  1( , , ) 1pc x x =K  if and only if 1( , , , )px x eK  are independent of each other. For more rigorous treatment on Copula, 

see Nelsen (2006).  To obtain the joint density in (3), we need to specify the copula function. One commonly used copula 

function is the Gaussian copula. Other copula functions such as Frank, Placket, Clayton, and Farlie-Gumbel-Morgenstern 

can also be used. The Gaussian copula is generally robust for most application and has many desirable properties 

(Danaher and Smith (2011)). Let , 1pS +F  denote a ( 1)p + -dimensional CDF with zero mean and correlation matrix S . 

Then the ( 1)p + -dimensional CDF with correlation matrix S  is given by 

1 1 1
, 1 1( ; ) ( ( ), , ( ), ( ))p pC w U U U e

- - -
S +S = F F F FK , where 1 1 1( , , , ) ( ( ), , ( ), ( ))p p pw U U U F x F x Ge e= =K K . The 

copula density is 
1/ 2

1 1 1 ' 1 1 1 1
1 1 1

( ; ) (det ( ))
1exp ( ( ), , ( ), ( )) ( )( ( ), , ( ), ( )) .
2 p p p

c w

U U U I U U Ue e

-

- - - - - - -
+

S = S ´
ì üï ïï ï- F F F S - F F Fí ýï ïï ïî þ

K K
    (4) 

The log-likelihood function corresponding to (5) is then 

1 1
1 1

ln ( , ) ln ( ( ), , ( ), ( ; ); ) ln ( ) ln ( ; )
pn

i p pi i j j i i
i j

L c F x F x G f x gq e q e q
= =

ì üï ïï ïS = S + +í ýï ïï ïî þ
å åK ,   (5) 

where ' ' 2 '( , , , )q a b l s=  and the form of (.)c  is given in (4). Notice that the first term in the summation in (5) is derived 

from the copula density and this term reflects the dependence between the endogenous variables and the composed errors. 

In addition, since the marginal density ( )j jf x  does not contain any parameters of interest, the second term in the 

summation in (5) can be dropped from the log-likelihood function. Finally, it is clear from (5) that if there are no 

endogeneity problem, (5) collapses to the log-likelihood function of the standard stochastic frontier models. By 
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maximizing the log-likelihood function in (5), consistent estimates of ( , )q S  can be obtained, and this can be done in a 

two-step estimation procedure describe below. 

Step 1: Estimation of ( ), 1, ,j jF x j p= K ; and ( ; )G e q   

Since we have observed sample of , 1, , ; 1, ,j ix j p i n= =K K ; in the first step, we can estimate ( )j j iF x by  

0
1

1 1( ), 1, ,
1

n

nj j i j
i

F x x j p
n =

= £ =
+ å% K ,      (6) 

where 1(.)  is an indicator function. Note that in (6), we have used the rescaling factor 1/ ( 1)n +  rather than 1/ n  to 

avoid difficulties arising from the potential unboundedness of the 1 1ln ( ( ), , ( ), ( ; ); )i p pi ic F x F x G e q SK  as some of the 

( )j jF x  tend to one. To estimate ( ; )iG e q , note that its density ( ; )ig e q  is given in (2) and by definition, 

( ; ) ( ; )i

iG g s ds
e

e q q
- ¥

= ò , thus ( ; )iG e q can be estimated using numerical integration, and let ( ; )iG e q%  denotes the 

estimator of ( ; )iG e q .  

Step 2: Maximize the log-likelihood function 

Maximize the log-likelihood function in (5) with ( )j jF x  and ( ; )iG e q  are replaced by their estimates ( )j jF x%  and 

( ; )iG e q% , respectively, i.e., 

{ }1 1
, 1

ˆ ˆ( , ) argmax ln ( ( ), , ( ), ( ; ); ) ln ( ; )
n

i p pi i i
i

c F x F x G g
q

q e q e q
Î Q S =

S = S +å % % %K .  (7) 

Predicting Technical Inefficiency: 

Once the parameters have been estimated, technical inefficiency iu , can be predicted based on Jondrow et al. (1982): 

2

ˆ ˆˆ ˆ ˆˆ( / )ˆˆˆ ( | ) ˆˆ ˆˆ ˆ1 ( / )1
i i

i i i
i

u E u
f l e s l esle

sl e sl

é ù
ê ú= = -ê ú- F+ ê úë û

, 

where ' ' ˆˆ ˆi i i iy z xe a b= - -  and ˆ ˆˆ , ,a b l  and 2ŝ  are the parameter estimates obtained from the Copula approach 

discussed above. 

3. Monte Carlo Simulations 
 

To examine the finite sample performance of the proposed Copula estimator we conduct some Monte Carlo experiments. 

We consider the following data generating process: 

1,

2,

,
,

i i i i i

i i i

y z x v u
x z

a b
g e

= + + -
= +
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where 2. . . (0, )i uu i i d N s:  and the random variables 1,iz  and ,2iz  are each generated  independently as 2
(2)c .  The 

vector of random errors '( , )i iv e  is generated by   

2

220 ,i v v

i v

v
N e

e e

s r s s
e r s s s

æ öæ öæ ö ÷ç ÷÷ çç ÷÷ç÷ çç ÷÷÷ ç çç ÷÷÷ ç çç ÷÷ ÷ç ç ÷çè ø è øè ø
: .  

In our experiment, we fix 0.5a b= = , 2 1es = , 2 2 1v us s= =  and 1g = . We set the values of  { 0.0,0.4,0.8}r =  

and consider two sample sizes: (750,1500)n = . The simulations are replicated 1,000 times.1 Note that since our DGP 

contains only one endogenous regressor, the Gaussian copula function has a simple form: 

1 1

1 1
2,

2 2( ) ( )

2 1/ 2 2

( , ) ( ( ), ( ))

1 ( 2 )exp ,
2 (1 ) 2(1 )

x

x x

U U

C U U N U U

s t st dsdte

e r e

r
p r r

- -

- -

F F

- ¥ - ¥

= F F

ì üï ï- + -ï ï= í ýï ï- -ï ïî þ
ò ò

    

where 2, (.,.)N r  denotes the standard bivariate normal distribution function with correlation r . The corresponding copula 

density is: 

2 *2 *2 * *

2 1/ 2 2

1 ( ) 2( , ) exp
(1 ) 2(1 )x

x xc U U e

r e r e
r r

ì üï ï- + +ï ï= í ýï ï- -ï ïî þ
, 

and the log-likelihood function associated with (5) can be expressed as: 

2 *2 *2 * *
2

2
1 1

( ) 2
ln ( ) ln(1 ) ln ( )

2 2(1 )

n n
i i i i

i i i
i i

x xnL g y z x
r e r e

q r a b
r= =

ì üï ï+ -ï ï= - - - + - -í ýï ï-ï ïî þ
å å ,   

where 2 '( , , , , )q a b r l s= , * 1( ( ))i ix F x-= F , * 1( ( ))i i i iG y z xe a b-= F - -  and the form of (.)g  is given in (2). In 

our simulation, the numerical integration to obtain (.)G  is performed using Gaussi-Kronrod quadrature with 50 points.  

For comparison purpose, we also compute the standard MLE and GMM estimators of Tran and Tsionas (2013). 

Simulation results of the parameter estimates’ MSE are displayed in Tables 1-3. Our simulations show that when there is 

no correlation (i.e., no endogeneity in the regressor), as expected, all estimators performed as well as the standard MLE 

for all ranges of the parameters considered. However, as expected, when there is correlation and as the correlation 

increases, the MLE deteriorates quickly and becomes severely biased, regardless of the sample sizes. Comparing the 

performance of the proposed Copula estimator to the GMM estimator of Tran and Tsionas (2013) shows that the proposed 

estimator perform quite well in term of MSE.  Finally, as the sample size n  doubles, the estimated MSEs of the proposed 

Copula estimator reduces to about half of the original values regardless whether there is correlation or not; this is 

consistent with the fact that the Copula estimator is n - consistent estimator.  

4. Conclusion 

                                                           
1 All computations are performed in Fortran 77 using extensively IMSL routines. 
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In this paper, we offer an alternative approach for estimating stochastic frontier models with endogenous regressors when 

there is no additional data available that is based on copula method to directly construct the joint density of the 

endogenous regressors and the composed errors to capture their dependency. We examine the finite sample behavior of 

the proposed approach via Monte Carlo simulations. The results from the simulations showed that the estimators are 

performed very well in finite samples in term of bias and MSE. 
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Table 1: Estimated MSE: 0.0, 1, 1u vr s s= = =   

 750n =   1500n =  
 MLE GMM Copula MLE GMM Copula 

a   .001577 .001580 .001585 .000727 .000729 .000731 
b   .000797 .000797 .000812 .000404 .000407 .000409 
g   - .001099 - - .000578 - 

vs   .001463 .001458 .001533 .000735 .000737 .000736 

us   .003002 .003015 .003241 .001336 .001339 .001341 

r   - .003366 .003561 - .001714 .001717 
Total MSE* .006839 .006850 .00717 .003202 .003212 .003217 

    * Indicates the total MSE of the four parameters (as in the MLE case). 

 

Table 2: Estimated MSE: 0.4, 1, 1u vr s s= = =  

 750n =   1500n =   
 MLE GMM Copula MLE GMM Copula 

a   .013767 .001416 .001543 .007546 .000728 .000721 
b   .033650 .001579 .001583 .032991 .000757 .000763 
g   - .001149 - - .000578 - 

vs   .003230 .001638 .001644 .002206 .000820 .000815 

us   .002927 .002517 .002510 .001320 .001193 .001199 

r   - .002608 .002600 - .001265 .001273 
Total MSE* .053574 .007150 .007155 .044063 .003497 .003498 

    * See Table 1. 

 

Table 3: Estimated MSE: 0.8, 1, 1u vr s s= = =  

 750n =   1500n =   
 MLE GMM Copula MLE GMM Copula 

a   .016041 .001532 .001542 .008756 .000708 .000716 
b   .133403 .001296 .001299 .132104 .000742 .000747 
g   - .001037 - - .000569 - 

vs   .026804 .006471 .006472 .025901 .001041 .001044 

us   .008483 .001099 .001095 .001230 .000692 .000689 

r   - .000546 .000543 - .000288 .000286 
Total MSE* 0.184731 .010398 .010408 .167991 .003183 .003196 

    * See Table 1.  

 


