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Abstract

A special case of a conjecture raised by Forrest and Runde (Math. Zeit., 2005) asserts
that the Fourier algebra of every non-abelian connected Lie group fails to be weakly
amenable; this was already known to hold in the non-abelian compact cases, by earlier
work of Johnson (JLMS, 1994) and Plymen (unpublished note). In recent work (JFA,
2014) the present authors verified this conjecture for the real ax+ b group and hence, by
structure theory, for any semisimple Lie group.

In this paper we verify the conjecture for all 1-connected, non-abelian nilpotent Lie
groups, by reducing the problem to the case of the Heisenberg group. As in our previous
paper, an explicit non-zero derivation is constructed on a dense subalgebra, and then
shown to be bounded using harmonic analysis. En route we use the known fusion rules
for Schrödinger representations to give a concrete realization of the “dual convolution” for
this group as a kind of twisted, operator-valued convolution. We also give some partial
results for solvable groups which give further evidence to support the general conjecture.

MSC 2010: Primary 43A30; Secondary 46J10, 47B47.

1 Introduction

Fourier algebras of locally compact groups comprise an interesting class of Banach function
algebras whose detailed structure remains somewhat mysterious, especially for groups which
are neither compact nor abelian. It was observed by B. E. Forrest [9] that these algebras
have no non-zero continuous point derivations. Nevertheless, as part of his seminal paper
[13], B. E. Johnson constructed a continuous non-zero derivation from the Fourier algebra of
SO(3) into a suitable Banach bimodule: in the language of [3], he proved that the Fourier
algebra of SO(3) is not weakly amenable. This can be interpreted as evidence for some kind
of weak form of differentiability or Hölder continuity for functions in the algebra.

Sufficient conditions for weak amenability were obtained in [10]: if G is locally compact
and the connected component of its identity element is abelian, then its Fourier algebra
A(G) is weakly amenable. Motivated by Johnson’s result, the authors of [10] conjectured
that this sufficient condition for weak amenability of A(G) is necessary. In particular, their
conjecture implies that the Fourier algebra of any non-abelian connected Lie group is not
weakly amenable; this was known at the time for compact Lie groups, but unknown for
several natural examples including SL(2,R) and all the nilpotent cases.
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This paper is a sequel to [4], which studied weak and cyclic amenability for Fourier algebras
of certain connected Lie groups, and whose introduction contains further information on the
history and context of the results mentioned above. In that paper we showed that the Fourier
algebra of any connected, semisimple Lie group fails to be weakly amenable. The key to this
result was to show that the Fourier algebra of the real ax+b group is not weakly amenable, and
this in turn was done by constructing an explicit non-zero derivation from the Fourier algebra
to its dual. The derivation constructed in [4] is easily defined on a dense subalgebra, but
showing that it extends continuously to the whole Fourier algebra required careful estimates
provided by explicit orthogonality relations for certain coefficient functions of the real ax+ b
group. We also proved, using similar techniques, that the Fourier algebra of the reduced
Heisenberg group Hr is not weakly amenable. However, our methods were not able to handle
the Fourier algebra of the “full” 3-dimensional Heisenberg group H, which is a key example
to consider when seeking to prove or refute the conjecture of Forrest and Runde.

In the present paper we develop techniques which allow us to fill this gap. The outcome
is the following new result.

Theorem 1.1. There exist a symmetric Banach bimodule W and a bounded, non-zero deriva-

tion D : A(H) → W. Consequently, A(H) is not weakly amenable.

This result then opens the way, via structure theory of Lie groups and Herz’s restriction
theorem for Fourier algebras, to the following more general statement.

Theorem 1.2. Let G be a 1-connected Lie group. If G is also nilpotent and non-abelian, then

A(G) is not weakly amenable.

(In the present context, 1-connected is a synonym for “connected and simply connected”;
we are following the terminology of [12].)

Outline of our approach

As in [4], we construct an explicit non-zero derivation on a dense subalgebra, and then use
harmonic analysis to show this derivation has a bounded extension to A(H). We follow the
same informal guiding principle as before: use the Fourier transform to convert a claim about
a differential operator to one about some kind of Fourier multiplier. However, since H is far
from being an AR group, we cannot use a decomposition of its Fourier algebra into coefficient
spaces of square-integrable representations. (Contrast this with the ideas sketched in [4,
Section 7] for the group Hr.) We are therefore forced to use a different perspective: instead
of orthogonality relations for coefficient functions, we use a version of the Plancherel formula
for H.

We then encounter another obstacle not present in our previous paper. In [4], the deriva-
tion constructed for the ax+ b group mapped the Fourier algebra to its dual. We are unable
to do the same for H, but instead construct a derivation taking values in a Banach space W
that is constructed artificially for our purposes. The way we define W makes it easy to show
our derivation extends to a continuous linear map A(H) → W, but the work lies in showing
that W is a genuine Banach A(H)-bimodule for the natural pointwise product.
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In fact, to prove that the norm ‖·‖W is an A(H)-module norm, we study the dual norm
‖·‖M and prove that this norm is an A(H)-module norm. This may seem unmotivated, but
looking at the arguments of [4] for the reduced Heisenberg group Hr, one sees that there the
problem is solved by establishing an estimate

∣∣∣∣
∫

Hr

(∂Zf)(x)g(x) dx

∣∣∣∣ ≤ ‖f‖A(Hr)‖g‖A(Hr)

where ∂Z is a certain normalized partial derivative. It is then not such a leap to look for an
estimate of the form ∣∣∣∣

∫

H

(∂Zf)(x)g(x) dx

∣∣∣∣ ≤ ‖f‖A(H)‖g‖M ,

provided we can show ‖·‖M is an A(H)-module norm.
How do we prove ‖·‖M is an A(H)-module norm? It turns out that this can be done

very easily if we use the Fourier transform to move everything over to the “Fourier side”,
identifying A(H) with a vector-valued L1-space. We then need to study the product on this
vector-valued L1-space corresponding to pointwise product on A(H); this can be expressed as
an explicit “twisted operator-valued convolution”, and then the required inequalities for ‖·‖M
follow from standard properties of the Bochner integral. The details of this operator-valued
convolution (which is a concrete version of a general construction studied in e.g. [15, §9]) are
given in Section 5.

The special feature of H which makes this work is that the fusion rules for the infinite-
dimensional irreducible representations of H behave very nicely, so that the “convolution”
has a very tractable form. We hope that these results may be of independent interest: a
theme throughout this paper, also implicit in [4], is that the group side is better for checking
algebraic properties, such as the derivation identity and associativity of module actions, while
the Fourier side is better for verifying norm estimates and approximating by well-behaved
elements.

Finally, in Section 6 we return to Fourier algebras of more general Lie groups, and show
how Theorem 1.2 follows from Theorem 1.1. We close with some further partial results and
questions for Fourier algebras of solvable Lie groups.

Note added in proof. After this paper was submitted for publication, we learned of the
interesting work of Lee–Ludwig–Samei–Spronk, arXiv 1502.05214, which proves the Lie
case of the Forrest–Runde conjecture using a different perspective. In particular, the case of
the motion group Euc(2), left open here, is resolved by these authors.
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2 Definitions and technical preliminaries

To make the paper more self-contained, and to fix notation and establish terminology, we use
this section to collect various definitions and statements from the literature. We thus hope to
make the present paper more accessible to workers in the general area of Banach algebras, who
may be less familiar with some of these technical preliminaries than specialists in harmonic
analysis on Lie groups. The experienced reader may wish to skip this long preliminary section
and go straight to Section 3; there, we specialize to the Heisenberg group, and present the
Plancherel transform and Fourier inversion formula for this group in the form that we will
need later.

2.1 Notation and key definitions

Notation (Banach spaces). Throughout ⊗̂ will denote the projective tensor product of Ba-
nach spaces. All Banach spaces are defined over complex scalars; if E is a Banach space then
E will denote the complex conjugate of E. It should be clear from context how to distinguish
this from the usual notation for the closure of a set.

Given p ∈ [1,∞) and a Hilbert space H, we let Sp(H) denote the space of p-Schatten class
operators on H, and denote the corresponding p-Schatten norm by ‖A‖p. The operator norm
on B(H) will be denoted by ‖A‖∞.

The following notation is standard and may be found in [7], for instance.

Definition 2.1 (The “check map”). Let G be a group and let f : G → C be an arbitrary
function. We denote by f̌ the function g 7→ f(g−1).

Given a Banach algebra A, a Banach A-bimodule M is symmetric if a ·m = m · a for all
a ∈ A and m ∈M . A bounded linear map D : A→M is said to be a (continuous) derivation
if it satisfies the Leibniz identity D(ab) = a ·D(b) +D(a) · b for all a, b ∈ A.
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The following definition is due to Bade, Curtis and Dales [3]. Let A be a commutative Ba-
nach algebra. We say that A is weakly amenable if there is no non-zero, continuous derivation
from A to any symmetric Banach A-bimodule.

Remark 2.2. As observed in [3]: if A,B are commutative Banach algebras and θ : A → B
is a continuous homomorphism with dense range, then continuous, non-zero derivations on B
can be pulled back along θ to give continuous, non-zero derivations on A. Consequently, if B
fails to be weakly amenable, A also fails to be weakly amenable.

There are several different ways to define the Fourier algebra of a locally compact group,
each with their own pros and cons. The following definition is not the original one, but is
equivalent to it by the results of [7, Chapitre 3]. Let λ denote the left regular representation of
G on L2(G). Given ξ, η ∈ L2(G) we form the corresponding coefficient function of λ, denoted
by ξ ∗λ η and defined by

(ξ ∗λ η)(g) := 〈λ(g)ξ, η〉 =

∫

G
ξ(g−1s)η(s) ds .

The map ξ ⊗ η → ξ ∗λ η defines a bounded linear map θλ : L2(G) ⊗̂ L2(G) → C0(G), and its
range, equipped with the quotient norm of L2(G) ⊗̂ L2(G)/ ker(θλ), is denoted by A(G). It
follows from Fell’s absorption theorem that A(G) is closed under pointwise product and the
norm on A(G) is submultiplicative. (See e.g. [17, §4.1] for a quick exposition of these results.)
Thus A(G) is a Banach algebra of functions on G, called the Fourier algebra of G. In fact,
every element of A(G) can be realized as a coefficient function of λ, and we have

‖u‖A(G) = inf{‖ξ‖2‖η‖2 : u = ξ ∗λ η}. (2.1)

If H is a closed subgroup of G let ı∗ : C0(G) → C0(H) be the restriction homomorphism.
One can show that ı∗ maps A(G) contractively onto A(H): this is originally due to C. Herz,
but an approach using spaces of coefficient functions was given by G. Arsac [2]. (A fairly
self-contained account of Arsac’s approach can be found in [17, §4].) Therefore, recalling
Remark 2.2, we obtain the following well-known result.

Proposition 2.3. Let G be a locally compact group and H a closed subgroup. If A(H) is not
weakly amenable, then A(G) is not weakly amenable.

2.2 The Plancherel and inverse Fourier transforms for Type I unimodular groups

The Plancherel and (inverse) Fourier transform for the Heisenberg group will be important
tools in our calculations. These mappings can be defined in much more general settings:
“global versions”, valid for any locally compact unimodular group, can be found in work of
Stinespring [15, §9]. However, for the key work in this paper (Section 5) it seems important to
use concrete knowledge of the unitary dual and Plancherel measure for the Heisenberg group.

Remark 2.4 (Minor caveat). In more modern language, [15, §9] works with noncommutative
Lp-spaces of the pair (VN(G), τ), where τ is the Plancherel weight for VN(G); these are,
strictly speaking, certain spaces of τ -measurable operators on L2(G). Later in this section,
when we use results from Stinespring’s paper to justify certain assertions, we are tacitly
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inserting an extra step: namely, one has to disintegrate VN(G) as a direct integral over
Ĝ, and then observe that one can identify Lp(VN(G), τ) with the corresponding space of
p-integrable, p-Schatten class-valued operator fields over Ĝ.

In future work, we intend to study similar problems concerning derivations for the Fourier
algebras of some other Type I groups, and it seems useful to collect some machinery here
that is applicable to these other cases and not just to the Heisenberg group. Thus, for this
subsection G will be a second countable unimodular Type I group. We follow the terminology
and definitions used in [11].

For such G, the canonical “Mackey Borel structure” on Ĝmakes it into a standard measure
space. Moreover, from each equivalence class of irreducible unitary representations, one can
select a representative, in a way that gives a measurable field (Hπ)π∈Ĝ and a corresponding
measurable field of representations. (See [8, §7.4] for the basic definitions and properties of
direct integrals and measurable fields, in particular Lemma 7.39 and Theorem 7.40 for the
relevance of the Type I condition.)

Using the notation of [11], Chapters 3 and 4: given a measure ν on Ĝ and 1 ≤ p < ∞,
we write B⊕

p (Ĝ, ν) for the space of all measurable fields (Tω) which satisfy Tω ∈ Sp(Hω) for
ν-a.e. ω and ∫

Ĝ
‖Tω‖

p
p dν(ω) <∞ .

Once we make the usual identifications modulo ν-a.e. equivalence, B⊕
p (Ĝ, ν) is a Banach space

when equipped with the obvious norm ‖·‖p.

Fact. (See [8, Theorem 7.44] or [11, Theorem 3.31].) There exists a measure ν on Ĝ, called
the Plancherel measure of G, such that the linear map

P : f 7→ (π(f))π∈Ĝ (f ∈ (L1 ∩ L2)(G))

takes values in B⊕
2 (Ĝ, ν) and satisfies ‖P(f)‖2 = ‖f‖L2(G). Moreover, if f ∈ L1(G) and

π(f) = 0 for ν-a.e. π ∈ Ĝ, then f = 0 a.e. on G.

Definition 2.5 (Plancherel transform). The map P extends uniquely to a unitary isomor-
phism from L2(G) onto B⊕

2 (Ĝ, ν). This unitary isomorphism, which we also denote by P, is
called the Plancherel transform of G.

Definition 2.6 (Inverse Fourier transform). With G and ν as above, we define a bounded
linear map Ψ : B⊕

1 (Ĝ, ν) → Cb(G) by

Ψ(F )(x) :=

∫

Ĝ
Tr(F (π)π(x)∗) dν(π). (2.2)

The following result is crucial to our calculations, since (for the particular case of the
Heisenberg group) it allows us to work with a vector-valued L1-norm rather than the norm
of the Fourier algebra.

Theorem 2.7 (Arsac). The map Ψ takes values in A(G), and is an isometric isomorphism

of Banach spaces from B⊕
1 (Ĝ, ν) onto A(G).
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A proof is given in [11, Theorem 4.12(a)]; see also Propositions 3.53 and 3.55 of [2],
with the warning that our map Ψ differs from Arsac’s by an application of the “check map”
u 7→ ǔ. In both proofs one uses the fact that P gives a unitary equivalence of representations
λG ≃

∫ ⊕

π∈Ĝ
π ⊗ Iπ dν(π) (see [11, Theorem 3.31].)

Informally, we wish to say that Ψ and P are mutually inverse maps. However, to make this
claim meaningful one must be more precise about what domain and codomain are being used
for each map. The following theorem is enough to ensure that we do not run into difficulties.

Theorem 2.8 (Fourier inversion). Let F ∈ B⊕
1 (Ĝ, ν). Suppose Ψ(F ) ∈ L1(G). Then Ψ(F ) ∈

(L1 ∩ L2)(G) and

PΨ(F ) = F ∈ B⊕
1 (Ĝ, ν) ∩ B⊕

2 (Ĝ, ν).

Proof. With appropriate changes of notation, and with Remark 2.4 kept in mind, this is a
special case of [15, Theorem 9.17]. A much lengthier justification, which uses less theory of
von Neumann algebras and measurable operators than [15] but is more opaque, is given in
the proof of [11, Theorem 4.15].

Corollary 2.9. Let f ∈ (A∩L1)(G). Then f ∈ (L1 ∩ L2)(G), P(f) ∈ B⊕
1 (Ĝ, ν) and

‖P(f)‖1 = ‖f‖A(G).

Proof. Let f ∈ (A∩L1)(G). By Theorem 2.7 there exists F ∈ B⊕
1 (Ĝ) such that Ψ(F ) = f

and ‖F‖1 = ‖f‖A(G). By Theorem 2.8, P(f)(ω) = F (ω) for ν-a.e. ω ∈ Ĝ, and the result
follows.

For certain G — in particular, for the Heisenberg group H — one can find a ν-conull
subset O ⊆ Ĝ and choose a single Hilbert space H on which to represent all π ∈ O. This
leads to a great simplification in the “dual” descriptions of A(G) and L2(G), since the spaces
B⊕
p (Ĝ, ν) now take the form of operator-valued Lp-spaces. Since the “dual” picture of A(H)

is key to everything we do in this paper, we use the next subsection to collate some basic
facts on vector-valued Lp-spaces and issues of measurability, which will be needed in the later
sections.

2.3 Vector-valued Lp-spaces, and the Bochner integral

The basics of measurability and the Bochner integral can be found in [5, Chapter 2]. Strictly
speaking, [5] works exclusively with finite measure spaces, but everything we need can be
extended from the finite to the σ-finite setting in a straightforward way. In any case, the only
places where we make serious use of precise properties of the Bochner integral is in Section 5,
and there our measure spaces will be either R or R2 with usual Lebesgue measure; for an
alternative reference, which only discusses those two measure spaces, see [1, Chapter 1].

Let X be a Banach space, let (Ω, µ) be a σ-finite measure-space. A simple function
Ω → X is one of the form

∑m
i=1 1Ei

xi where E1, . . . , Em are measurable subsets of Ω and
x1, . . . , xm ∈ X. A function F : Ω → X is (strongly) measurable if it is the pointwise limit of
a sequence of simple functions; it is called weakly measurable if for each ψ ∈ X∗, the function
ψ ◦ F : Ω → C is measurable. If X is a dual Banach space with predual X∗, a function
F : Ω → X is called weak-star measurable if φ ◦ F : Ω → R is measurable for each φ ∈ X∗.

7



Remark 2.10. Let K be a separable Hilbert space and recall that B(K)∗ = S1(K). Hence,
weak-star measurability of F : Ω → B(K) is equivalent to measurability of each “coefficient
function” ω 7→ 〈F (ω)ξ, η〉 for every ξ, η ∈ K (one direction is trivial and the other follows
by taking limits of linear combinations of rank-one operators). In particular, every WOT-
continuous function Ω → B(K) is weak-star measurable.

In Section 5 we will need to use some standard properties of the Bochner integral. The
definition of Bochner integrability can be found in [1, Chapter 1]. We will use the following
characterization (see [1, Theorem 1.1.4]): a function F : Ω → X is Bochner integrable if
and only if it satisfies the following two conditions: (1) F is measurable (2) the function
ω → ‖F (ω)‖ is integrable.

Definition 2.11 (Vector-valued Lp-spaces). Let (Ω, µ) be a σ-finite measure space and let
X be a Banach space. For 1 ≤ p < ∞, we define Lp(Ω,X) to be the space of all measurable
functions F : Ω → X which satisfy

∫
Ω ‖F (ω)‖p dµ < ∞, modulo identification of functions

that only differ on µ-null sets. This is a Banach space for the norm

‖F‖Lp(Ω,X) :=

(∫

Ω
‖F (ω)‖p dµ(ω)

)1/p

L∞(Ω,X) denotes the space of essentially bounded, measurable functions Ω → X, modulo
identification of functions that only differ on µ-null sets. This is a Banach space for the norm

‖F‖L∞(Ω,X) := ess. supω∈Ω ‖F (ω)‖.

3 Representations and Plancherel measure for the Heisenberg group

We now specialize to the case of the Heisenberg group, where the general results of Subsec-
tion 2.2 can be made much more concrete. None of the results in this section are new, but
they are stated here for sake of consistency of terminology and notation.

Definition 3.1 (Heisenberg group). We define the (real, 3-dimensional) Heisenberg group H

to be the set R3, equipped with its usual smooth manifold structure and equipped with the
multiplication rule

(a1, b1, c1)(a2, b2, c2) := (a1 + a2, b1 + b2,
1

2
(a1b2 − a2b1) + c1 + c2). (3.1)

This makes H into a connected, simply-connected, nilpotent Lie group; the centre of H is the
subgroup {(0, 0, c) : c ∈ R}.

Note that this is sometimes called the symmetrized or unpolarized form of the Heisenberg
group. The polarized form of the Heisenberg group may be described as:

Hpol :=







1 a c
0 1 b
0 0 1


 : a, b, c ∈ R



 ⊂ GL(3,R).
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H and Hpol are isomorphic as Lie groups, so one can easily convert results and definitions for
one into results and definitions for the other. Our choice to work with H rather than Hpol, as
well as the form of the next definition, follows [8, §7.6].

Definition 3.2 (Schrödinger representations). Let t ∈ R∗. There is a continuous unitary
representation πt : H → U(L2(R)) given by

πt(x, y, z)f(w) = e2πitz+πityxe−2πitywf(w − x). (3.2)

It can be shown that πt is irreducible. We call it the Schrödinger representation indexed by t.

Remark 3.3 (πt as an induced representation). H is isomorphic as a Lie group to a certain
semidirect product R2 ⋊α R (this is slightly easier to see if one works with the polarized form
Hpol, see e.g. Example 4.10 in [14]). When we induce 1-dimensional representations of R2 up to
R2 ⋊ R, Mackey theory shows us that some of these induced representations are irreducible,
and in fact they are unitarily equivalent to the Schrödinger representations. See Example
4.38 in [14] for further details. Although we will not explicitly use this perspective during
the present paper, it serves to explain the “fusion rules” for the Schrödinger representations,
which we do need. We will return to this in Remark 5.2.

Although Ĥ is not Hausdorff, it can be shown that the subset O := {πt : t ∈ R∗} is dense
in Ĥ and is homeomorphic in the subspace topology to R∗: moreover, O is conull for the
Plancherel measure ν, and one can identify the measure space (O, ν) with the measure space
(R∗, |t|dt). (For a fairly self-contained proof, see [8, §7.6].)

Notation. For p ∈ [1,∞) we abbreviate Sp(L
2(R)) to Sp; we write K for K(L2(R)) and B

for B(L2(R)).

The spaces B⊕
p (Ĥ, ν) admit a much simpler description: we can identify B⊕

p (Ĥ, ν) with
the vector-valued Lp-space Lp(O,Sp), in the sense of Subsection 2.3. In particular, the space

B⊕
1 (Ĥ, ν), which by Theorem 2.7 is isometrically isomorphic to the Fourier algebra A(H),

is nothing but the space of Bochner integrable S1-valued functions on the measure space
(R∗, |t|dt).

A change of measure. To simplify some formulas in Sections 4 and 5, it is convenient not
to work on (O, ν), nor on (R∗, |t|dt), but on R equipped with usual Lebesgue measure. So
we introduce T : L1(R,S1) → L1(O,S1) given by T (F )(t) = |t|−1F (t): this is an isometric
isomorphism of Banach spaces. Note that ΨT is given explicitly by

ΨT (F )(x) =

∫

R

Tr[F (t)πt(x)
∗] dt (F ∈ L1(R,S1)). (3.3)

Next, for sake of clarity, we state some results mentioned in Subsection 2.2 in the particular
form that we need for later sections.
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Theorem 3.4 (Fourier inversion for H).

(i) ΨT , as defined in (3.3), maps L1(R,S1) isometrically onto A(H).

(ii) Let f ∈ (A∩L1)(H). Then the function t 7→ |t|πt(f) belongs to L
1(R,S1), and coincides

with (ΨT )−1(f). In particular

∫

R

|t|‖πt(f)‖1 dt = ‖f‖A(H) .

The following identity, which will be useful at one point in proving Theorem 4.3, is a
special case of [15, Theorem 9.6].

Lemma 3.5 (Adjoint relation). Let g ∈ L1(H) and let F ∈ L1(R,S1). Then

∫

H

g(x)ΨT (F )(x) dx =

∫

R∗

Tr(πt(ǧ)F (t)) dt . (3.4)

Remark 3.6. We used [15] as a convenient reference here. It may be worth noting that
Lemma 3.5 does not really rely on any form of the Plancherel formula or Fourier inversion:
indeed, it can be proved directly from the definition of ΨT , by using the Fubini–Tonelli
theorem to evaluate ∫

H×R

g(x)Tr(F (t)πt(x)
∗) d(x, t)

as an iterated integral in two different ways.

4 Defining our derivation

Let C = (A∩C1
c )(H): clearly this is an algebra with respect to pointwise product. Moreover,

since f ∗λ g ∈ C whenever f, g ∈ C1
c (H), C is a dense subalgebra of A(H). Let ∂Z : C → Cc(H)

be defined by

∂Zf(x, y, z) = −
1

2πi

∂f

∂z
(x, y, z). (4.1)

Key to our approach is the fact that the “Fourier multiplier” corresponding to ∂Z is very
simple.

Lemma 4.1. Let f ∈ C. Then πt(∂Zf) = tπt(f) for all t ∈ R∗.

Proof. Observe that

2πiπt(∂Zf) = −

∫

H

∂f

∂z
(x)πt(x) dx =

∫

H

f(x)
∂

∂z
πt(x) dx .

(There are no issues with differentiating under the integral sign or integrating by parts, since
f and ∂f

∂z are continuous with compact support.) A straightforward calculation (see (3.2))

shows that ∂
∂zπt(x) = 2πitπt(x), and the rest is clear.
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We now specify the target space for our supposed derivation. Given f ∈ L1(H), define

‖f‖W :=

∫

R

‖πt(f)‖∞ dt ∈ [0,∞] ,

and then let W0 := {f ∈ L1(H) : ‖f‖W <∞}. Note that on W0, ‖·‖W is not just a seminorm,
but a genuine norm (see the comments in Section 2.2). Finally, let W be the completion of
W0 with respect to the norm ‖·‖W. (Morally speaking, we think of W as consisting of certain
distributions on H whose Fourier transforms belong to L1(R,B).)

Lemma 4.2. If f ∈ C then ∂Zf ∈ W0, and ‖∂Zf‖W ≤ ‖f‖A(H).

Proof. First note that ∂Zf ∈ Cc(H) ⊂ L1(H). By Lemma 4.1,

‖∂Zf‖W =

∫

R

‖tπt(f)‖∞ dt ≤

∫

R

|t|‖πt(f)‖1 dt ;

and since f ∈ (A∩L1)(H), applying Theorem 3.4 completes the proof.

Theorem 4.3 (Creating a target module). We have

‖fh‖W ≤ ‖f‖A(H)‖h‖W for all f ∈ A(H) and all h ∈ W0. (4.2)

Consequently:

(i) W0 is a sub-A(H)-module of L1(H), for pointwise product;

(ii) W becomes a Banach A(H)-module in a way that continuously extends the A(H)-action
on W0.

Let us assume for now that the theorem holds, and show how it implies A(H) is not weakly
amenable (as claimed in Theorem 1.1).

Proof that A(H) is not weakly amenable. Since W0 is an A(H)-module for pointwise product
it is certainly a C-module. It is immediate from the product rule that D0 : C → W0, f 7→
∂Z(f), is a derivation from C to a C-module. Moreover, by Lemma 4.2, D0 is continuous if we
equip C with the A(H)-norm and W0 with the norm ‖·‖W.

By routine continuity arguments, since C is dense in A(H), there is a unique continuous
linear map D : A(H) → W that extends D0, and moreover D is a derivation. It is not
identically zero: for if f ∈ C is a non-zero function, then ∂Zf is a non-zero element of W0.
Thus Theorem 1.1 is proved.

Our proof of Theorem 4.3 is indirect. We shall study a norm which is dual to ‖·‖W, and
show that this dual norm has the appropriate module property. Then by a duality argument
we will deduce the inequality (4.2), after which the rest of the theorem follows easily. Since
the technical details of this part may obscure what is actually a natural and routine strategy,
let us explain the underlying heuristics.

11



Heuristics for our duality argument. Given f ∈ A(H) and h ∈ L1(H) and g a well-behaved
test function, consider

∫
H
hfg dx. The Plancherel theorem/Parseval formula tells us this is

equal to ∫

R

Tr(πt(hf)πt(g)
∗) |t|dt , (4.3a)

and also equal to ∫

R

Tr(πt(h)πt(fg)
∗) |t|dt . (4.3b)

For u well-behaved, define ‖u‖M := ess. supt∈R |t|‖πt(u)‖1. Assume for the moment that fg
is also well-behaved; then (4.3a) is bounded above by ‖hf‖W‖g‖M while (4.3b) is bounded
above by ‖h‖W‖fg‖M. Now suppose we can prove the following two claims:

(i) if we take the supremum in (4.3a) over all well-behaved test functions g with ‖g‖M ≤ 1,
we obtain the upper bound ‖hf‖W;

(ii) the new norm ‖·‖M is a contractive A(H)-module norm, that is, ‖fg‖M ≤ ‖f‖A(H)‖g‖M
for all well-behaved test functions g.

Then combining these two claims with the preceding remarks, we would obtain ‖hf‖W ≤
‖h‖W‖f‖A(H) as required.

Remark 4.4. In the actual proof of Theorem 4.3, we do not define “well-behaved” test
functions as elements of L1(H) for which ‖·‖M is finite, because of certain technical irritations
that arise in verifying (i). It is more convenient, although perhaps less transparent, to take
our test functions to be those of the form ΨT (G) where G ∈ L∞(R,S1) has compact support,
and to do norm calculations and dual pairings over on the Fourier side.

The proof that ‖·‖M is an A(H)-module norm turns out to be a very easy consequence of
more general results, which describe explicitly the so-called “dual convolution” on L1(R,S1)
that corresponds to pointwise product in A(H). This will be the main topic of the next
section, where we will also finish the proof of Theorem 4.3.

5 An explicit operator-valued convolution on L1(R, S1)

Since ΨT : L1(R,S1) → A(H) is an isometric isomorphism, we may transport pointwise prod-
uct on A(H) over to define a commutative and associative multiplication map on L1(R,S1),
which we denote by ♯. More precisely, given F,G ∈ L1(R,S1) define

F ♯ G = (ΨT )−1 [ΨT (F )ΨT (G)] .

In this abstract form, ♯ is not new: it coincides – modulo Remark 2.4 – with what is
sometimes called “dual convolution” on the noncommutative L1-space associated to the von
Neumann algebra of a unimodular group, cf. the definition on p. 48 of [15, §9]. However, this
abstract perspective does not seem helpful for proving that ‖·‖M is an A(H)-module norm.
Instead, most of this section will be spent carefully deriving an explicit description of ♯ as
a kind of twisted convolution of operator-valued fields: see Equation (5.5) and Theorem 5.8
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below. Once we have proved Theorem 5.8, the desired inequalities will follow immediately
from standard properties of the Bochner integral; and then the corresponding result for the
dual norm ‖·‖W will follow by a duality argument as sketched at the end of Section 4.

Since we hope that this “concrete” description of ♯ may have independent interest, we
treat the construction in some detail. The starting point is the following loose idea: given
F,G ∈ L1(R,S1) we have

∫

R

Tr((F ♯ G)(t)πt(x)
∗) dt =

∫

R

∫

R

Tr(F (s)πr(x)
∗)Tr(G(t)πs(x)

∗) d(r, s)

=

∫

R

∫

R

Tr [(F (r)⊗G(s))(πr ⊗ πs)(x)
∗] d(r, s) .

We then argue as follows: decompose or rewrite x 7→ πr(x) ⊗ πs(x) in terms of irreducible
representations; rewrite the expression on the right-hand side of the formula above as a
“Fourier expansion”, and then appeal to uniqueness of Fourier coefficients in this expansion
to get a reasonably explicit formula for F ♯ G.

Now let us make this procedure precise. Since the eventual estimates we need for ♯ depend
on properties of the Bochner integral, we spend some time in this section on several small and
routine results, to ensure we stay within the world of Bochner integrable functions during our
construction. To reduce repetition we introduce the notation

D := {(r, s) : r, s, r + s ∈ R
∗}. (5.1)

It is well known that when (r, s) ∈ D, πr ⊗ πs is unitarily equivalent to a representation
consisting of πr+s with infinite multiplicity. The unitaries which implement this equivalence
occur in our explicit formula for ♯, so we shall now state a more precise version of this
intertwining result. It seems to be implicitly known, but we did not find part (ii) explicitly
stated in the sources we consulted.

Proposition 5.1 (Fusion rules for H, with continuity of intertwiners). There exists a family

of unitaries (Wr,s)(r,s)∈D ⊂ U(L2(R× R)) with the following properties:

(i) πr(x)⊗ πs(x) =W ∗
r,s(πr+s(x)⊗ I)Wr,s for all x ∈ H;

(ii) the functions (r, s) 7→ Wr,s and (r, s) 7→ W ∗
r,s are both SOT-continuous functions D →

U(L2(R× R)).

Proof. For (r, s) ∈ D, define Wr,s : L
2(R × R) → L2(R× R) by

Wr,sF (h, k) = F

(
h−

ks

r + s
, h+ k −

ks

r + s

)
(F ∈ L2(R× R), h, k ∈ R). (5.2)

A little thought shows Wr,s is unitary. Using (3.2), one may verify by direct calculation that

Wr,s(πr(x)⊗ πs(x))(f ⊗ g) = (πr+s(x)⊗ I)Wr,s(f ⊗ g)

for all f, g ∈ L2(R) and all x ∈ H. So by density, Wr,s intertwines πr ⊗ πs with πr+s ⊗ I.
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It remains to prove WOT-continuity, and hence, SOT-continuity, of the function D →
U(L2(R× R)), (r, s) 7→Wr,s. This can be verified with a direct calculation and basic estimates.
Alternatively, as pointed out by the referee of this article, there is a slicker approach. Let
γ : D → SL(2,R) be the continuous function

γ(r, s) =

(
r
r+s

s
r+s

−1 1

)
.

With an obvious and harmless abuse of notation, we have

Wr,sF

(
h
k

)
= F

(
γ(r, s)−1

(
h
k

))
.

Let σ : SL(2,R) → U(L2(R× R)) be defined by [σ(A)f ](v) = f(A−1
v). This is a WOT-

continuous unitary representation of SL(2,R) (to be precise, it is the quasi-regular representa-
tion arising from the subgroup SO(2,R)). Then σ◦γ : D → U(L2(R ×R)) is WOT-continuous
and Wr,s = σ(γ(r, s)) for all (r, s) ∈ D.

Remark 5.2. For sake of brevity we omitted any explanation of how one arrives at the
formula (5.2). In fact it can be derived as a special case of general results on tensoring
induced representations, cf. Remark 3.3. See Section 2.8 of [14] for an accessible exposition
of these techniques.

Lemma 5.3. Let K be a separable Hilbert space, and let S1(K) be the space of trace-class

operators on K. Let (Ω, µ) be a σ-finite measure space. Suppose F : Ω → S1(K) is measurable

and V : Ω → B(K) is weak-star measurable. Then the function F · V : Ω → S1(K), ω 7→
F (ω)V (ω), is measurable.

Proof. Since the pointwise limit of a sequence of measurable functions is measurable, and
since finite sums of measurable functions are measurable, it suffices to prove this result in the
special case where F = χE ⊗A for some measurable E ⊆ Ω and A ∈ S1(K). Then, since the
function FV takes values in a separable Banach space, it suffices by the Pettis measurability
theorem (see Theorem 2 in [5, §II.1] or Theorem 1.1.1 in [1]) to show that for each B ∈ B(K)
the function ω 7→ χE(ω)Tr(BAV (ω)) is measurable. But this is now obvious since we assumed
ω 7→ V (ω) is weak-star measurable.

Lemma 5.4 (Slicing with a trace in the second variable). Let H and K be Hilbert spaces. There

is a well-defined, contractive linear map I ⊗Tr : S1(H⊗2 K) → S1(H) which sends A⊗B to

Tr(B)A whenever A ∈ S1(H), B ∈ S1(K). Moreover, if R ∈ S1(H⊗2K), let R1 = (I⊗Tr)(R).
Then for any C ∈ B(H) we have Tr[CR1] = Tr[(C ⊗ I)R].

Proof. It suffices to prove that I⊗Tr : S1(H)⊗̂S1(K) → S1(H) extends boundedly to the larger
domain S1(H ⊗2 K). Once this is done, the rest follows by checking the putative identities
on suitable dense subspaces and extending by continuity. But the boundedness result is
an easy consequence of the known identification S1(H ⊗2 K) with S1(H) ⊗̂op S1(K), where
⊗̂op denotes the projective tensor product in the category of operator spaces and completely
bounded maps. (For an explanation and proof of this identification, see e.g. [6, Proposition
7.2.1].)
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Remark 5.5. One can replace the appeal to operator-space techniques with a direct argument
as follows. Given index sets I and J and vectors u, v ∈ ℓ2(I× J), form the rank-one operator
u ⊗ v ∈ S1(ℓ

2(I × J)). Then (I ⊗ Tr)(u ⊗ v) can be identified with
∑

j∈J u•,j ⊗ v•,j , and for

each j ∈ J the trace-class norm of u•,j ⊗ v•,j in S1(ℓ
2(I)) is bounded above by ‖u•,j‖2‖v•,j‖2.

By Cauchy–Schwarz,
∑

j ‖u•,j‖2‖v•,j‖2 ≤ ‖u‖2‖v‖2, and so (I ⊗Tr)(u⊗ v) is trace class with
control of the trace-class norm.

We are now ready to give our description of ♯. We proceed using two more lemmas.

Lemma 5.6. Let F and G be Bochner integrable functions R → S1. Then the function

θ1(F ⊗G)(r, s) =

{
(I ⊗ Tr)[Wr,s(F (r)⊗G(s))W ∗

r,s] for all (r, s) ∈ D,

0 otherwise,
(5.3)

is Bochner integrable. The map θ1 : L
1(R,S1) ⊗̂L

1(R,S1) → L1(R× R,S1) is contractive and

linear.

Proof. Let F and G be Bochner integrable functions R → S1 (so, in particular, measur-
able functions). Then F ⊗ G is measurable when viewed as a map R× R → S1 ⊗̂ S1 ⊂
S1(L

2(R× R)). Recall (see Remark 2.10) that SOT-continuous functions D → B(L2(R ×R))
are weak-star measurable. So combining Proposition 5.1 with two applications of Lemma 5.3
shows that

(r, s) 7→Wr,s(F (r)⊗G(s))W ∗
r,s

is measurable as a function D → S1(L
2(R ×R)). Slicing with I ⊗ Tr we conclude that the

right-hand side of (5.3) is measurable. Moreover,

∫

R×R

‖(I ⊗Tr)[Wr,s(F (r)⊗G(s))W ∗
r,s]‖1 d(r, s)

≤

∫

R×R

‖F (r)‖1‖G(s)‖1 d(r, s) = ‖F‖L1(R,S1)‖G‖L1(R,S1) <∞ ,

and thus the right-hand side of (5.3) is Bochner integrable. The final claim about linearity
and contractivity of θ1 is then routine book-keeping.

The next lemma is a special case of a standard construction for vector-valued L1, but we
include the statement explicitly for sake of clarity.

Lemma 5.7 (Vector-valued convolution). Let K : R× R → S1, be Bochner integrable. Then

θ2(K)(t) :=

∫

R

K(p, t− p) dp

exists for a.e. t ∈ R, and is Bochner integrable as a function R → S1. Moreover,

‖θ2(K)(t)‖1 ≤

∫

R

‖K(p, t− p)‖1 dp for a.e. t ∈ R, (5.4)
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and

‖θ2(K)‖L1(R,S1) =

∫

R

‖θ2(K)(t)‖1 dt

≤

∫

R2

‖K(p, t− p)‖1 d(p, t) = ‖K‖L1(R×R,S1) ,

so that θ2 is a well-defined linear contraction L1(R× R,S1) → L1(R,S1).

Proof. This follows by a standard application of the vector-valued Fubini theorem. (For
instance, apply [1, Theorem 1.1.9].)

The explicit formula for ♯. Consider θ2θ1 : L
1(R,S1) ⊗̂L

1(R,S1) → L1(R,S1). Now that we
have taken care of all measurability issues, we can describe this as follows:

θ2θ1(F ⊗G)(t) =

∫

R

(I ⊗ Tr)[Wr,t−r(F (r)⊗G(t− r))W ∗
r,t−r] dr (a.e. t ∈ R), (5.5)

where the integral on the right hand side of (5.5) is a Bochner integral.

Theorem 5.8. F ♯ G = θ2θ1(F ⊗G) for all F,G ∈ L1(R,S1).

Proof. Let F,G ∈ L1(R,S1) and put K = θ1(F ⊗ G) ∈ L1(R× R,S1). Since θ2(K)(t) =∫
R
K(p, t− p) dp, we have

Tr [θ2(K)(t)πt(x)
∗] =

∫

R

Tr [K(p, t− p)πt(x)
∗] dp

and so, using Fubini’s theorem (scalar-valued case),

ΨT θ2(K)(x) =

∫

R

(∫

R

Tr [K(p, t− p)πt(x)
∗] dp

)
dt

=

∫

R×R

Tr [K(r, s)πr+s(x)
∗] d(r, s) .

For a.e. (r, s) ∈ D, we have

Tr [K(r, s)πr+s(x)
∗]

= Tr
[
(πr+s(x)

∗ ⊗ I)Wr,s(F (r)⊗G(s))W ∗
r,s

]
(by Eq. (5.3) and Lem. 5.4)

= Tr
[
W ∗
r,s(πr+s(x)

∗ ⊗ I)Wr,s(F (r)⊗G(s))
]

= Tr [(πr(x)
∗ ⊗ πs(x)

∗)(F (r)⊗G(s))] (by Prop. 5.1)

= Tr[F (r)πr(x)
∗] Tr[G(s)πs(x)

∗] .

Therefore,

ΨT θ2(K)(x) =

∫

R×R

Tr[F (r)πr(x)
∗] Tr[G(s)πs(x)

∗] d(r, s)

= ΨT (F )(x)ΨT (G)(x)

= ΨT (F ♯ G)(x) for all x ∈ H,

so that F ♯ G = θ2(K) = θ2θ1(F ⊗G), as required.
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Corollary 5.9. ‖F ♯ G‖L∞(R,S1) ≤ ‖F‖L1(R,S1)‖G‖L∞(R,S1) for all F,G ∈ L1(R,S1).

Proof. Let K = θ1(F ⊗ G) ∈ L1(R× R,S1). Then ‖K(r, s)‖1 ≤ ‖F (r)‖1‖G(s)‖1 for a.e.
(r, s) ∈ R2. So, using the norm bound (5.4), we have

‖θ2(K)(t)‖1 ≤

∫

R

‖F (p)‖1‖G(t− p)‖1 dp ≤ ‖F‖L1(R,S1)‖G‖L∞(R,S1) for a.e. t ∈ R.

Hence ‖F ♯ G‖L∞(R,S1) = ‖θ2(K)‖L∞(R,S1) ≤ ‖F‖L1(R,S1)‖G‖L∞(R,S1) as required.

It would be interesting to study similar concrete realizations of “dual convolution” for other
Type I groups where we know the fusion rules explicitly, in particular for the Euclidean motion
group Euc(2). Similar arguments to those used for A(H) yield A(Euc(2)) ∼= L1(R+,S1(L

2(T)))
(see [16, Chapter 4]), but the “dual convolution” is then governed by a certain hypergroup
structure on R+, rather than the group structure on R which governs dual convolution
for A(H). We leave a more detailed look at this case for future work.

Let us finish this section by completing the proof of Theorem 4.3.

Proof of Theorem 4.3. It suffices to prove the inequality (4.2) – the other statements in the
theorem follow easily. Thus, fix f ∈ A(H) and h ∈ W0 (so h and fh are integrable). To
prove that ‖hf‖W ≤ ‖h‖W‖f‖A(H), we follow the idea outlined at the end of Section 4, but
for technical convenience we work on the Fourier side rather than the group side.

Let G : R → S1 be a measurable function with compact support, taking values a.e. in
the unit ball of S1. In particular, ‖G‖L∞(R,S1) ≤ 1 and ΨT (G) ∈ A(H). Using the “adjoint
relation” (3.4), ∫

H

ȟ(x)f̌(x)ΨT (G)(x) dx =

∫

R∗

Tr(πt(hf)G(t)) dt . (5.6)

On the other hand, since f̌ΨT (G) ∈ A(H) it equals ΨT (F ) for some unique F ∈ L1(R,S1),
and applying (3.4) again gives

∫

H

ȟ(x)ΨT (F )(x) dx =

∫

R∗

Tr(πt(h)F (t)) dt . (5.7)

As F = (ΨT )−1(f̌) ♯ G, using Corollary 5.9 and the fact ΨT is an isometry gives

‖F‖L∞(R,S1) ≤ ‖f̌‖A(H) = ‖f‖A(H) .

Combining this with (5.6) and (5.7) yields
∣∣∣∣
∫

R∗

Tr(πt(hf)G(t)) dt

∣∣∣∣ =
∣∣∣∣
∫

R∗

Tr(πt(h)F (t)) dt

∣∣∣∣
≤ ‖π•(h)‖L1(R,B)‖F‖L∞(R,S1)

≤ ‖π•(h)‖L1(R,B)‖f‖A(H) .

(5.8)

Let S denote the supremum on the left hand side of (5.8) over all such G. Since (S1)
∗ = B

isometrically, and since t 7→ πt(fh) is Bochner integrable (see Section 2.3), a straightforward
approximation argument with simple functions yields S = ‖π•(hf)‖L1(R,B). We conclude that
‖hf‖W ≤ ‖h‖W‖f‖A(H) as required.
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Remark 5.10 (Remarks on the proof).

(i) The idea guiding our duality argument is, of course, that L∞(R,S1) is isometric to
a subspace of L1(R,B)∗, and that the intersection of the unit ball of L∞(R,S1) with
L1(R,S1) is a norming subset for this pairing. However, we wished to avoid technical
discussions about the Radon–Nikodym property and duality for vector-valued Lp-spaces;
cf. Theorem 1 in [5, Chapter 4].

(ii) One might wish to bypass the use of the “adjoint relation” and have a direct proof that
‖F ♯ G‖L1(R,B) ≤ ‖F‖L1(R,S1)‖G‖L1(R,B). The natural attempt is to consider∫
R
Tr((F ♯ G)(t)At) dt where A• ∈ L∞(R,S1). Now we have

Tr((F ♯ G)(t)At) =

∫

R

Tr
(
(At ⊗ I)Wr,t−r(F (r)⊗G(t− r))W ∗

r,t−r

)
dr (a.e. t ∈ R);

but trying to get upper bounds on the right-hand side with crude tools is problematic,
since At⊗I is not trace class and since conjugation withWr,t−r will not preserve S1 ⊗̂B.

Remark 5.11 (Fourier coefficients of pointwise products). Following a suggestion of the ref-
eree, we note that Theorem 5.8 may be viewed as an expression for the Fourier coefficients of
the product of two functions in (A∩L1)(H), in terms of a twisted convolution of their Fourier
series. This works as follows: let f1, f2 ∈ A(H) ∩ L1(H); then by Theorem 3.4, |t|πt(fi) ∈ S1
for a.e. t ∈ R and the functions Fi(t) = |t|πt(fi) belong to L1(R,S1), for i = 1, 2. Since
ΨT (F1 ♯ F2) = ΨT (F1)ΨT (F2) = f1f2, another application of Theorem 3.4 gives

|t|πt(f1f2) = (F1 ♯ F2)(t) =

∫

R

(I ⊗ Tr)[Wr,t−r(|r|πr(f1)⊗ |t− r|πt−r(f2))W
∗
r,t−r] dr . (5.9)

Using suitable regularization arguments, one can show that Equation (5.9) remains valid for
more general f1 and f2, but we shall not pursue this topic here.

6 Extending our result to other Lie groups

We recall some definitions. Our indexing conventions are those of [12].

Definition 6.1. Let g be a non-zero Lie algebra. The lower central series of g is the decreasing
sequence of ideals

g = C1 ⊇ C2 ⊇ . . .

where Cj+1 := [g, Cj ] for each j ≥ 1. We say g is nilpotent if Cn+1 = {0} for some n (note
that this forces Cj+1 to be a proper subset of Cj for each 0 ≤ j ≤ n). The least such n is
called the nilpotency degree of g; if g has nilpotency degree d, we say that g is d-step nilpotent.

Our first task in this section is to prove Theorem 1.2, so let us remind ourselves what it
says.
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Theorem 1.2 (reprise). Let G be a 1-connected, nilpotent, non-abelian Lie group. Then
A(G) is not weakly amenable.

Define h3 to be the real Lie algebra spanned as a real vector space by elements x, y and
[x, y] satisfying the relations [x, [x, y]] = [y, [x, y]] = 0. It is the Lie algebra of the group H.

Lemma 6.2. If g is non-abelian and nilpotent, it contains a copy of h3.

Proof. Let Cn−1 ⊃ Cn ⊃ Cn+1 = {0} be the last terms in the lower central series of g, so that
Cn = Z(g). Pick x ∈ Cn−1\Cn, and pick y ∈ g such that [x, y] 6= 0. Then, since [x, y] ∈ Z(g),
we see that Rx+ Ry + R[x, y] is a Lie subalgebra of g which is isomorphic to h3.

Proof of Theorem 1.2. By Proposition 2.3, it suffices to prove that G contains a closed sub-
group isomorphic to H. This may well be folklore for Lie theorists, but we give the details for
the reader’s convenience.

Let g be the Lie algebra of G; by Lemma 6.2 there is a subalgebra h ⊆ g which is isomorphic
as a Lie algebra to h3. Now since G is a 1-connected nilpotent Lie group, the exponential
map expg of the Lie algebra g maps g diffeomorphically onto G (see, e.g. Theorem 11.2.10 in
[12]), and therefore the image of h under expg is a closed, 1-connected subgroup H ⊆ G. It
remains to note that since H and H are both 1-connected, and their respective Lie algebras
h and h3 are isomorphic, the two groups are isomorphic as Lie groups.

It would be highly desirable to remove the condition of simple-connectedness, but we have
been unable to do this.

Finally, we make some brief comments on the solvable cases. (Recall from [4, Theorem 5.5]
that if G is a 1-connected, simply connected Lie group which is not solvable, then A(G) is
not weakly amenable.) We start by quoting without proof a result from the theory of Lie
algebras.

Lemma 6.3 ([12, Corollary 5.4.12]). Let g be a finite-dimensional, solvable Lie algebra. Then

the commutator ideal [g, g] is nilpotent.

If G is a 1-connected Lie group with Lie algebra g, and k is an ideal in g, then the subgroup
of G corresponding to k is closed and has k as its Lie algebra. Moreover, in this setting [g, g]
is the Lie algebra of the derived subgroup [G,G]. Combined with Lemma 6.2, this leads to
the following result, no doubt well-known to specialists.

Proposition 6.4. Let G be a 1-connected solvable Lie group, of solvable length ≥ 3. Then G
contains a closed subgroup isomorphic to H.

Therefore, for such G, A(G) is not weakly amenable. Summing up, and appealing again
to [4, Theorem 5.5], we can state the following result:

Theorem 6.5. Let G be a 1-connected Lie group whose Fourier algebra is weakly amenable.

Then either G is abelian, or it is 2-step solvable; and it contains no closed copy of H or the

real ax+ b group.

These observations suggest the following question, which is left for future work.
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Question 1. Let Euc(2) = R2⋊ SO(2) be the Euclidean motion group, and let Ẽuc(2) be its

universal cover. Are either A(Euc(2)) or A(Ẽuc(2)) weakly amenable?

We close with a question motivated by general concepts in the study of derivations on
Banach algebras. By standard arguments, once we have shown D : A(H) → W is a non-zero
continuous derivation, we can now obtain non-zero continuous derivations from A(H) to its
dual. To be specific: pick any ψ ∈ W∗, and define Dψ : A(H) → A(H)∗ by Dψ(f)(g) :=
ψ(D(f) · g) for each f, g ∈ A(H). It is easily checked that Dψ is a continuous derivation;
and since D is not identically zero, it is clear that we can find ψ ∈ W such that Dψ is not
identically zero.

However, unlike the derivations that have been constructed on all previous examples —
that is, on Fourier algebras A(G) where G is either compact or one of the groups from [4] —
our derivations Dψ are in general not cyclic derivations. (See the early sections of [4] for a
discussion of cyclic derivations and cyclic amenability for commutative Banach algebras.)

Question 2. Is A(H) cyclically amenable? Equivalently: does there exist a non-zero contin-
uous derivation T : A(H) → A(H)∗ which satisfies T (a)(b) + T (b)(a) = 0 for all a, b ∈ A(H)?
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