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Abstract  

Individual exposure to air pollution depends not only upon pollution concentrations in the surrounding environment, but 
also on the volume of air inhaled, which is determined by an individual’s physiology and activity level. This study 
focuses on journey-time exposure, using network analysis in a GIS environment to identify pedestrian routes between 
multiple origins and destinations throughout the city of Lancaster, North West England.  For each segment of a detailed 
footpath network, exposure was calculated accounting for PM2.5 concentrations (estimated using an atmospheric 
dispersion model) and respiratory minute volume (varying between individuals and with slope).  For each of the routes 
generated the cumulative exposure to PM2.5 was estimated, allowing for easy comparison between multiple routes. 

Significant variations in exposure were found between routes depending on their geography, as well as in response to 
variations in background concentrations and meteorology between days.  Differences in physiological characteristics 
such as age or weight were also seen to impact journey-time exposure considerably.  In addition to assessing exposure for 
a given route, the approach was used to identify alternative routes that minimised journey-time exposure. Exposure 
reduction potential varied considerably between days, with even subtle shifts in route location, such as to the opposite 
side of the road, showing significant benefits.    

The method presented is both flexible and scalable, allowing for the interactions between physiology, activity level, 
pollution concentration and journey duration to be explored.  In enabling physiology and activity level to be integrated 
into exposure calculations a more comprehensive estimate of journey-time exposure can be made, which has potential to 
provide more realistic inputs for epidemiological studies.   

Key words: PM2.5; journey-time exposure; air pollution modelling; GIS network analysis; physiology. 

1. Introduction 

Evidence indicates that transport-related air pollution has a number of health implications including mortality 
(Heinrich et al, 2005).  These include short-term effects such as irritation to eyes, nose and throat, upper 
respiratory infections, headaches, nausea and allergic illness such as asthma. Long term effects include 
chronic respiratory disease, cancer, heart disease and even brain damage. Ambient air pollution has also been 
linked with low birth weight (Xia and Tong, 2006; Heinrich et al, 2005; Krzyzanowski, 2005; RCEP, 2007; 
Pedersen et al, 2013).  Health impacts from transport-related air pollution may occur in response to a single 
journey (McCreanor et al, 2007; Peters et al 2004)  Reducing exposure to transport-related air pollution is 
therefore a key target for public health (RCEP, 2007; Künzli et al, 2000).    

An individual’s exposure to air pollution depends on the duration of exposure and volume of pollutants 
inhaled (Xia and Tong, 2006). Inhalation rates depend on both an individual’s physiology and activity level.  
The main atmospheric pollutants affecting public health include nitrogen dioxide (NO2), particulates, sulphur 
dioxide (SO2) and ozone (O3) (Xia and Tong, 2006).  Of these, particulates have the longest cumulative effect 
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on health as they contain materials not easily digested and resolved by the body, and can be deposited in the 
nose, throat and lungs (Xia and Tong, 2006).  This study will therefore concentrate on particulate matter less 
than 2.5 µm in diameter (PM2.5) as other researchers have shown that these are of greatest concern for human 
health (Pope and Dockery, 2006; Schwartz and Neas, 2000). PM2.5 a is non-threshold pollutant, with health 
impacts potentially occurring even with low concentrations (RCEP, 2007; Pope and Dockery, 2006). 

While the proportion of an individual’s time spent in transit is relatively small it can account for a 
disproportionately high amount of their exposure to air pollution.  The impact of journey-time exposure on 
health is therefore potentially significant (Gulliver and Briggs, 2005).  For example, when evaluating personal 
exposure to Black Carbon, Dons et al (2012) found that while only 6.3% of participants time was spent in 
transport, this corresponded to 21% of their personal exposure. Some studies have sought to calculate journey-
time exposure using monitoring (Yu et al 2012, Gómez-Perales et al 2004; Chan et al 2002); however this 
approach is necessarily limited in the number of potential routes for which exposure estimates can be 
determined.  Attempts have been sought to address this challenge modelling both pollutant concentrations and 
potential route choices (Gulliver and Briggs, 2005; Hertel et al, 2008). However, very little research into 
journey-time exposure accounts for physiology and activity level despite their significance in influencing 
individual exposure (inhaled dose).  One exception to this is the work by Int Panis et al (2010) who recognise 
the importance of considering inhaled dose when comparing exposure between cyclists and car passengers, 
using monitoring techniques to record particulate concentrations and respiratory measurements.  However, 
consideration of respiratory rates remains conspicuously absent from most other studies.   

The aim of this paper is to present a method for calculating journey-time exposure between any combination 
of origins and destinations, incorporating not only duration of journey and pollution concentrations as 
considered by Gulliver and Briggs (2005), but accounting also for physiology and activity level, thus enabling 
exposure to be calculated as inhaled dose (µg) rather than ambient exposure (µg.m-3).  This study will focus 
entirely on pedestrians and hence consider only outdoor exposure, however, the same approach could be 
applied to other transport modes, or multimodal networks.  In considering pedestrians only, the range of 
activity levels to be considered is reduced and the need to scale pollutant concentrations for different transport 
modes is avoided.  Typically ‘in vehicle’ modes of transport are associated with lower activity levels than 
walking or cycling and therefore lower respiratory rates and potentially lower inhaled exposure.  This, 
however, needs to be balanced against the potential health benefits of increased activity levels (de Hartog et 
al, 2010).  As exposure generally peaks during peak commuting hours (Briggs, 2005; Dons et al, 2013) the 
case study presented focuses on 08:00 to 09:00 in the morning, with traffic flow data representing typical rush 
hour conditions.  The method will also be applied to explore the potential to reduce journey-time exposure by 
determining routes of least exposure in addition to fastest routes.  The network developed for the purpose of 
this analysis includes footpaths on either side of main roads, thus enabling the contrast in exposure between 
different sides of the road to be considered (Greaves et al, 2008). 
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Figure 1: Modelled factors affecting journey-time exposure to air pollution 

This paper demonstrates the application of network analysis within a Geographic Information System (GIS) to 
calculate walking routes through a path network.  The analysis incorporates journey duration (minutes); 
modelled PM2.5 concentrations (µg.m-3); and Respiratory Minute Volume (VE) as a measure of physiology and 
activity level.  Combined, these three elements enable the estimation of journey-time exposures under varying 
meteorological and background conditions.  Figure 1 summarises the wide range of factors which influence 
journey-time exposure and which are accounted for within the method presented.     
      

2. Methods 

This case study focuses on the city of Lancaster, North West England, which has a population of 
approximately 55,000.  While there are no major air pollution problems in Lancaster, an air quality 
management area has been declared around the main gyratory system where traffic congestion frequently 
occurs during peak hours – this is illustrated in Figure 2. 
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Figure 2:  Study area, Lancaster 

2.1 The Network Dataset 

The network dataset was created using a selection of Ordnance Survey (OS) digital map data (MasterMap 
product).  Local streets, pedestrianized streets, alleys and private roads (with public access) were taken 
directly from the Integrated Transport Network (ITN) layer, with the routes represented as a single centre line.  
For busier roads the pavements on either side of the road were captured using the MasterMap Topography 
layer to determine the distance between the pavement and road centreline.  This enabled exposure 
comparisons for opposite sides of a road to be incorporated into the analysis.  Additional known footpaths 
including the canal tow path were also added to the network, resulting in a comprehensive footpath network 
accurate to +/- 1m. 
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Where both sides of the road were captured separately, road crossing locations needed to be incorporated into 
the network.  Google Street View was used to identify the location and type of pedestrian crossings on main 
roads within the study area.  Additional crossing points were added at further locations where the provision of 
specified pedestrian crossing points was limited (as quiet local streets are represented by a single road 
centreline this assumes no time for crossing roads).  For busier roads time impedances for crossing were 
assumed as listed in Table 1.  The crossing impendences where estimated from field observation and 
information from the local authority regarding the phasing of traffic lights. 

Table 1. Time impedance for crossing roads. 

Crossing type Time impedance 
(seconds) 

Traffic island    
Traffic island on busy road sections  
Zebra crossing  
Pedestrian lights  
Pedestrian lights as part of traffic control  
Additional crossing points  
Additional crossing points on busy road sections  
 

For the purpose of this analysis a typical walking speed of 5kph was assumed (Colclough and Owens, 2010).  
The impact of gradient on walking speeds was also calculated.  Directional-dependant slope was calculated 
for each segment of the network, first ensuring that no network segment was greater than 50m in length to 
reduce the likelihood of multiple changes in slope direction. Walking speeds were assigned to network 
segments as shown in Table 2 (Finnis and Walton, 2007 and Colclough and Owens, 2010) 

Table 2. Variation in walking speed with slope 

Gradient (◦) Uphill speed (km/h) Downhill speed (km/h) 
0 - 4.5 5.0 5.0 
4.5 - 6.5 5.5 5.7 
6.5 - 7.5 5.0 5.2 

>    7.5 4.6 4.7 
 

2.2 Respiratory Minute Volume 

Physiology and activity level are represented in the analysis through the calculation of Respiratory Minute 
Volume (VE).  When combined with PM2.5 concentrations and duration of exposure, VE can be used to 
calculate exposure in terms of inhaled dose.  VE is calculated for metabolic equivalents (MET) representing 
varying activity levels with slope, at the assumed walking speeds already defined.  The METs  were taken 
from the Ainsworth et al, 2011 and are summarised in Table 3. 
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Table 3. MET and VEs 

Activity Level MET VE 
Walking 4.5 – 5.1 km/h 3.5 0.022 
Walking 4.7 – 5.6 km/h, 3.6 -20⁰ slope 5.3 0.033 
Walking 4.7 – 5.6 km/h, greater than 20⁰ slope 8.0 0.050 
 

To calculate VE from METs, ‘corrected’ METs were calculated for males and females aged 25, of average 
weight and height (Halls and Hanson, 2008).  The average of the corrected METs for 25 year old males and 
females were used in the analysis.  These were then multiplied by a typical resting ventilation rate of 6 litres 
per minute (Berne et al, 2004) to calculate a baseline VE for use in the analysis.  The calculations for VE are 
shown in Box 1.   

 

Box 1: Calculations for respiratory minute volume 

2.3 Modelling PM2.5 concentrations  

PM2.5 concentrations were modelled using the dispersion model ADMS Urban v.3 (CERC, 2010).  ADMS 
Urban is a comprehensive atmospheric dispersion modelling system, which is used across the work for studies 
of air quality within urban areas and suitable for use from street level to city-wide scales, accounting for a 
range of pollution sources (CERC, 2013). For this study an emissions inventory was derived from point 
sources listed in the NAEI emissions inventory for 2011 (DEFRA, 2011) and road traffic emission estimates, 
calculated from road traffic counts, speeds and vehicle composition, with traffic data obtained from the local 
authority (Lancashire County Council, 2012).  The available traffic count data comprised a mix of continuous 
traffic counters (used for long term traffic monitoring), and automatic traffic count data (typically covering the 
period of a week and collected for specific purposes such as planning applications).  These counts were 
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supplemented where available with Annual Average Daily Flow (AADF) traffic counts (DFT, 2011).  The 
dates for available data varied, with records chosen from the available data which most closely represented 
typical morning rush hour (08:00-09:00) for the year 2011.  Traffic flow and composition data were assigned 
to road centrelines from the OS MasterMap ITN layer, which were then imported to ADMS-Urban to 
represent road sources.  The latest road source emission factor dataset UK EFT v4.2 was utilized within the 
model (CERC, 2010).  Canyons were modelled for sections of the main gyratory around the city centre, where 
the road is surrounded by tall buildings on either side.  The canyon widths were measured from the 
MasterMap Topography layer, and heights for surrounding buildings calculated from LiDAR data.     

Meteorological data were taken from Manchester Ringway meteorological station (BADC, 2012) (45 miles 
south east of Lancaster).  Background PM2.5 data were obtained from DEFRA’s air quality data archive 
(http://uk-air.defra.gov.uk/data/) for the urban background monitoring site for Preston (20 miles south of 
Lancaster).  Due to missing records, the months of March and September were taken as being broadly 
representative of the range of meteorological conditions experienced throughout 2011. 

The model was run to a set of 234,563 receptors spaced at 2m intervals along each line segment in the 
network.  The average PM2.5 concentration per line segment was subsequently calculated for the period 08:00 
to 09:00 hours and assigned to each line segment in the path network.   

2.4   Exposure Calculation 

Slope for each line segment was calculated from the length of the line segment and the difference in elevation 
between its start and end points.  For both uphill and downhill directions the duration in minutes was 
calculated from the length and the appropriate speed as defined earlier in Table 2.  Appropriate VE rates were 
also assigned to uphill and downhill directions for each line segment relative to the slope.  From these 
attributes exposure to PM2.5 in both uphill and downhill directions was calculated for every line segment in the 
path network based on the equation: 

Exposure (µg) = Mean PM2.5 (µg.m-3) × Duration (minutes) × VE (m3.min-1) 

2.5 Network Analysis 

Network analysis was carried out using the network analyst extension within ArcGIS 10 (ESRI, 2010) 
Network attributes were created both for the duration in minutes and the exposure to PM2.5 for each of the 60 
sample days in the study.  This enables either fastest, or least polluted routes to be computed from any origin 
to any destination within the study area on any given day. For each route the accumulated time and PM2.5 
exposure is calculated. 

In addition to calculating individual routes, Origin Destination (OD) cost matrixes were used to compute 
journey time exposure for numerous routes throughout the city, from each postcode centroid (which typically 
represents around 15 addresses (ONS, 2012)), to a set of 12 destinations shown in Figure 2, which represent 
the main secondary and tertiary education providers, key employers such as the city council and hospital, and 
the major public transport hubs within the city.  OD cost matrixes are used to compute and store the fastest or 
least polluted path between multiple combinations of potential route Origins (start points) and Destinations 
(end points). While OD cost matrices do not display the routes chosen they are able to generate accumulated 
PM2.5 exposure for hundreds of potential routes, limited only by the number of Origins and Destinations 
required and the size and quality of the network dataset.  They therefore enable a broader analysis of the 
variation in potential journey-time exposure across the city.   

http://uk-air.defra.gov.uk/data/
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The analysis was run first to demonstrate its application in assessing journey time exposure, assuming fastest 
routes between origin and destination were chosen.  Routes designed to minimise exposure to PM2.5 were also 
generated. 

3 Case Study Results 

Journey-time exposures were calculated for 60 days, from 1,370 origins (unit postcodes) to 12 destinations, 
giving a total of 986,400 route calculations.  From this, journeys with durations of less than 2 minutes or 
greater than 25 minutes were excluded from further analysis. Short journeys were excluded because total 
exposure and potential for exposure reduction was likely to be very small. Longer journeys were excluded 
because it was felt that people would adopt alternative forms of transport in preference to walking.  This left 
530,100 route combinations for further analysis; the distribution of these relative to journey-time exposure can 
be seen in Figure 3.  The mean journey-time exposure to PM2.5 when walking along routes designed to 
minimise duration of journey was calculated as 6.59 µg, with an understandably strong relationship between 
the average journey-time exposure for a given route and the duration of the journey along that route (r2 = 
0.976).  This strong relationship, however, masks considerable variation between days as well as between 
routes.  On average the range between minimum and maximum exposure for a single route over the 60 days 
modelled was 24µg, with exposure varying by up to 44µg for longer routes (c.25 minutes).  Variation between 
days is strongly governed by variation in background PM2.5 concentrations, and associated meteorological 
conditions.  The journey-time exposure data presented in Figure 3 is positively skewed towards journeys with 
relatively low exposure to PM2.5; however, many routes with higher exposure can also be identified from the 
OD Cost Matrix.  These may warrant further investigation with regards to health impacts or potential for 
exposure reduction. 

 

Figure 3: Journey-time exposure distribution for all route combinations and days modelled within the study, assuming 
minimising journey duration. 

3.1 Physiology 

In addition to daily variation in pollution concentrations, journey time exposure is affected by physiology.  
The physiological composition of individuals can vary in an almost limitless number of permutations; 
therefore in order to demonstrate the influence of physiology on an individual’s exposure, a selection of 
characteristics were changed relative to the ‘baseline’ 25 year old individual applied elsewhere in the analysis.  
The ‘baseline’ VE used for the analysis was taken as the average of rates for males and females.  When treated 
separately we see that exposure for 25 year old women of average weight and height is typically 5.7% higher 
than the equivalent for men. 



9 
 

The impact of changes in weight and height were explored relative to a 25 year old male, 178cm tall and 
weighing 70kg and are shown in Table 4.  As age increases it can be seen that exposure increases by 
approximately 4% per decade.  Furthermore, the results show that being overweight can significantly increase 
journey-time exposure to air pollution.  

Table 4: Percentage difference in exposure with changes in age and height.  Difference measured from a base case of a 
25 year old male, 178cm tall and 70kg. 

Male 
178cm tall  

Weight (kg) 

60 70 80 90 100 

Ag
e 

 

15 -10.7 -3.7 2.3 7.5 12.1 

25 -7.0 0.0 6.0 11.1 15.6 

35 -2.9 4.0 9.9 14.9 19.3 

45 1.5 8.4 14.1 19.1 23.3 

55 6.4 13.1 18.7 23.5 27.6 

65 11.7 18.2 23.7 28.2 32.1 
 

3.2 Speed 

The speed at which an individual walks (or runs) during their journey affects their journey-time exposure by 
influencing both the duration of the journey and their respiratory minute volume.  Calculating VE from METs 
associated with a range of walking and running speeds (Ainsworth et al, 2011) enables us to assess the impact 
on journey-time exposure.  As speed increases so does physical activity and therefore VE, whilst journey 
duration decreases.  Figure 4 compares the baseline, moderate walking speed (5kph), with a range of other 
speeds.  From this we can conclude that a moderate walking speed is the optimum for minimising journey-
time exposure.  At slower speeds the balance between reduced ventilation rate and increased duration leads to 
slightly increased exposure.  At faster speeds the increased VE associated with walking briskly or running fails 
to be sufficiently offset by reductions in journey duration and therefore leads to significant increases in 
exposure.  Similar patterns with optimum speeds for exposure reduction have been observed by Int Panis et al 
(2011) when monitoring exposure of cyclists in Belgium.    

 

 

Figure 4.  Differences in exposure with changes in speed. 
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Figure 5 demonstrates this principle through the example of a mother and daughter during a journey to school.  
In this scenario we have differences in physiology, primarily due to difference in age with a girl age 4 and a 
women age 35, both assumed to be average height and weight for a female of their age.  Furthermore when 
walking to school together a lower walking speed is assumed in line with that which reflects the walking 
speed of a young child.  The reduction in speed relates to a lower VE and longer journey duration as already 
explored.  For the mother we can also assume that the return journey will be made alone, and that this will be 
achieved at a typical adult walking pace.  This example demonstrates clearly that exposure for any given 
journey differs both between individuals and in response to the speed at which the journey is undertaken.    

 

Figure 5 a) Example route from a home to primary school b) Differences in average exposure to PM2.5 due to changes in 
walking speed and physiology 

4 Least-polluted routes 

Given the target to reduce journey-time exposure, the obvious further application of this method is to calculate 
day-specific least-polluted routes, designed to help minimise journey-time exposure. A limited number of 
studies have sought to generate routes designed to minimise exposure to air pollution (Davies and Whyatt, 
2009; Hertel 2008).  The urban route planner walkit.com also uses a method to identify ‘low pollution’ routes 
for walkers (walkit.com), based on average NO2 concentrations for each section of route, accounting for 
background pollution levels and also applying a slight time penalty when walking uphill.  In each of these 
studies routes were generated for a ‘typical’ day, thus failing to consider the potential variation caused by 
varying background and meteorological conditions.  None consider inhaled dose. 
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For 51% of the 531,100 route combinations studied there was no difference between the fastest and least 
polluted route and therefore no potential to reduce journey time exposure.  For the remaining 49% of routes 
the mean reduction in journey-time exposure was 1.8µg per journey.  Relatively small variations in local 
geography can influence the potential for exposure reduction.  Figure 6 demonstrates this for two postcode 
centroids located on the same residential street.  In Figure 6a, the fastest route is already through a relatively 
low trafficked environment, and the average potential for exposure reduction is 0.6%.  Meanwhile in Figure 
6b the fastest route is along a busy main road, and the average potential exposure reductions much higher at 
7.1%, due to increased potential to reduce exposure via using alternative routes.  

A range of factors influence the path of least-polluted routes, with alternative routes sensitive to wind 
direction. Subtle route changes can lead to considerable reductions in journey-time exposure. In Figure 6b and 
Table 5, it can be seen for example that on day 73 the least polluted route simply switches to the opposite 
pavement on the same road, yet in doing so the potential exposure to PM2.5 falls by 0.93µg (18.2%).  The 
effectiveness of least polluted routes is also affected by background pollution concentrations.  When 
background concentrations are high the relative gradient between concentrations near heavily trafficked roads 
and quieter surrounding streets falls and so too does the potential to find less exposed alternative routes.  This 
is illustrated on day 89, when background concentrations are high and the least exposed route mirrors the 
fastest route. 

 

Figure 6.  Variations in the potential of least-exposed routes to reduce journey-time exposure, demonstrated for routes between Bridge 
Road and the Town Hall 
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Table 5. Examples of journey-time exposure reductions for routes in Figure 6b with corresponding background and wind conditions.  

Route Time* 
(min) 
 

Fastest 
route 
(µg) 

Least 
exposed 
route 
(µg) 

Reduction 
(µg) 

Reduction 
(%) 

Back-
ground 
PM2.5  

(µg.m-3) 

Wind 
direction 
(o) 

Wind 
speed 
ms-1 

Day 72 18.9 2.55 2.17 0.38 14.9 4 270 2.1 
Day 73 17.5 5.12 4.19 0.93 18.2 9 60 1.5 
Day 89 17.0 21.18 21.18 0.00 0.0 53 180 4.1 
Day 266 18.1 6.20 5.94 0.26 4.2 14 180 4.1 
* Time for least exposed route.  The time for the fastest route in Figure 6b is 17.0 minutes. 

While the results demonstrate only small average reductions in exposure, the benefits of any reduction to 
PM2.5 will be cumulative over many months and years.  The analysis presented here specifically looks to 
address ways in which to reduce journey-time exposure when commuting, for which an individual may be 
assumed to make in the region of 225 return trips per year. For example between the example at the top of 
Bridge Road and the Town Hall shown in Figure 6b, the average potential reduction in exposure resulting 
from walking a least exposed route is 0.36µg would result in a reduction in inhaled PM2.5 of 162µg per year.  
As PM2.5 is a non-threshold pollutant, even small reductions in pollution may have potential health benefits 
(RCEP, 2007; Pope and Dockery, 2006).   

 

5 Discussion and Conclusion 

The method presented facilitates analysis of a wide range of factors influencing journey-time exposure, as 
outlined in Figure 1, providing the potential for more accurate journey-time exposure assessments for 
epidemiological studies. In considering ways to reduce exposure to PM2.5 it also provides a means with which 
to assess the trade-off between activity level and duration; the potential benefits of choosing alternative routes; 
and the influence of other factors such as weight on journey-time exposure.  The spatial resolution of the 
method enables variations in the exposure of individuals to be assessed in more detail than using pollution 
concentrations from a central monitoring site.  The method has the potential to be expanded to link together 
multiple journey-time exposure estimates with pollution estimates for fixed locations (e.g. home or work) 
where people spend time between periods of transit, thus providing a modelled alternative to the time-activity 
patters and exposure calculations carried out through monitoring in studies such as Dons et al (2012). 

While recognising that all models are necessarily limited in the extent to which they are able to represent the 
real world, or a given individual, this method adds to current approaches by incorporating activity level and 
physiology into the modelling of journey-time exposure.  There remain, however, specific factors that this 
approach is unable to address, for example variations in the health and fitness of an individual.  The model 
presented here links VE to path segments based upon their slope, but fails to account for the influence the 
slope of previous segments may have on VE  as there each segment may potentially be reached from a number 
of different directions. 

The method is scalable and can potentially be applied wherever path information exists and traffic flow can be 
estimated.  Within the case study presented traffic flow information was the least adaptable element of the 
analysis, with considerable time required to derive information from a variety of traffic count data.  For study 
areas with established traffic flow models this information should be easier to process and may enable greater 
flexibility to model different times of day, or year.  While the case study presented successfully demonstrates 
the method for pedestrians only, the same principles could easily be applied to any mode of transport and to 
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multimodal networks.  Exploring differences between transport mode will require consideration of a greater 
variety of activity levels and associated metabolic equivalents.  Relationships between indoor and outdoor 
pollutant concentrations also need to be considered for some transport modes, although there is currently 
limited consensus regarding the scaling of pollutant concentrations (Boogard et al, 2009; Briggs et al, 2008; 
Esber et al, 2007; Int Panis 2010; Kaur et al, 2007; Yu et al, 2012; Zuurbier et al, 2010).  Running the model 
for a specific day requires the availability of both meteorological data and background concentrations, for 
which missing records often exist.  Of all steps in the method, assigning average pollution concentrations to 
network segments was the most processing intensive, due to the fine scale (2m spaced receptors) at which the 
model was run.  This fine scale, however, is important if subtle differences, such as the difference between 
sides of the road (typically 8-10m wide) are to be explored. 

It is acknowledged that there is limited available data against which to validate the current model.  Neither of 
the local air quality monitoring sites within Lancaster monitor PM2.5 and both are situated in unrepresentative 
areas (next to the bus station and next to a feeder lane at a busy junction); hence these are not suitable for 
validation purposes.  VE calculations were compared against inhalation rates reported by the USEPA (2011) 
and found to be in line with these calculations.    

Using the method to identified routes of least exposure through the network, it is clear that the potential for 
reducing exposure varies greatly between days, depending on background concentrations and meteorology, 
especially wind direction and wind speed.  The effective design of least polluted routes, therefore, needs to 
reflect daily variations rather than ‘average’ conditions.  In exploring least polluted routes the sensitivities of 
pavement choice identified by Kaur et al (2005) and Greaves (2008) were also confirmed, with significant 
reductions in exposure being seen in some cases by simply crossing the road.    

In conclusion, the methodology presented builds on existing published work, by enabling physiology and 
activity level to be incorporated into a modelling approach.  The flexibility and scalability of the approach 
offer potential to explore fully the interactions between physiology, activity level, journey duration and 
pollution concentrations.  With the ability to compute calculations for multiple sets of background and 
meteorological conditions, to tailor to an individual’s physiology and to expand the approach to consider 
multiple transport modes the method provides a means for calculating more accurate exposure estimates for 
individuals or cohorts which has potential benefits for future epidemiological studies exploring the impact of 
air pollution on human health. 
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