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Abstract

For more than two decades, remarkable progress has been made in the construc-

tion of supersymmetric Standard Model-like theories from the heterotic string the-

ory. In particular, considerable effort has been invested in studying the abun-

dant phenomenological features of heterotic strings exhibiting N = 1 spacetime

supersymmetry. At the same time, their non-supersymmetric counterparts have re-

ceived little attention on the grounds that strings which do not exhibit spacetime

supersymmetry admit large one-loop dilaton tadpoles, and are therefore unsta-

ble. Nonetheless, in this epoch of data acquisition from high-luminosity exper-

iments, the observational absence of supersymmetry is striking. Consequently,

non-supersymmetric theories receive a profound interest in the particle physics

community.

In this thesis, a class of non-supersymmetric, tachyon-free, four-dimensional string

models is constructed via a string generalisation of Scherk-Schwarz compactifica-

tion. Such models demonstrate greatly enhanced finiteness and stability proper-

ties, and exhibit some general features on their mass spectra, the behaviour of

the one-loop cosmological constant and their interpolation properties. Special at-

tention is paid to how from an exponentially suppressed one-loop cosmological

constant, and therefore from an almost vanishing dilaton tadpole, finiteness and

stability ensue. The existence of such models is characterised by prominent phe-

nomenological features which involve their natural energy scales, particle-charge

assignments, and the magnitudes of the associated Yukawa couplings and scalar

masses. A radical result is the existence of Standard Model-like theories emerging

as the low energy limit of non-supersymmetric strings; there are no light superpart-

ners and supersymmetry is absent at all energy scales.



Declaration

I hereby declare that the work in this thesis is based on research carried out at the

Institute for Particle Physics Phenomenology, the Department of Physics, Durham

University, United Kingdom. No material presented in this thesis has previously

been submitted by myself in whole or in part for consideration for any other de-

gree or qualification at this or any other University. The research described in

this thesis, unless referenced to the contrary in the text, has been carried out in

collaboration with my supervisor, Professor Steven A. Abel and Professor Keith R.

Dienes. Parts of this thesis therefore have been or will be published as follows:

1. S. Abel, K. R. Dienes and E. Mavroudi

Towards a Non-Supersymmetric String Phenomenology

Phys. Rev. D 91 (2015) 12, 126014 [arXiv:1502.03087 [hep-th]].

2. S. Abel, K. R. Dienes and E. Mavroudi

Setting the Stage for a Non-Supersymmetric UV-Complete String Phe-

nomenology

[arXiv:1603.05195 [hep-th]].

3. S. Abel, K. R. Dienes and E. Mavroudi

GUT precursors and Entwined SUSY: The phenomenology of Stable Non-

Supersymmetric Strings

To be submitted (arXiv 2017).

4. S. Abel, B. Aaronson and E. Mavroudi

On the interpolation from Non-Supersymmetric to Supersymmetric String

Theories

To be submitted (arXiv 2016).

iv



v

Copyright © 2016 by Eirini Mavroudi.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and any information derived

from it should be acknowledged”.

September 20, 2016



Acknowledgements

Throughout the course of my PhD studies there have been a number of people

who have encouraged me to exceed my expectations, assisted with my financial

and academic needs, reinforced my academic knowledge and helped to sustain

my normality and to balance my soundness of mind. All these people deserve my

heartfelt thanks and sincere gratitude.

To the greatest extent, I would like to express my immense gratitude to my

supervisor, Professor Steven A. Abel. In the past four years, working with him

has been a highly rewarding experience on both academic and personal levels

for which I will always be beholden. I thank him for his tremendously helpful

advice, the valuable guidance and the constant support. I specifically appreciate

his encouragement and inspiration during the ‘dark’ stages of research when the

derivation of results seemed to be unfeasible. He always took his time discussing

problems, ideas and speculations, providing me with all the indispensable means

which form the driving force behind the deep comprehensive level that I estab-

lished on this research. His quick-witted nature, along with his humorous and

outgoing personality led to countless vivacious and uninhibited conversations that

never failed to prompt my motivation, sustain my interest in the project and fuel

my zeal to substantially contribute to the fruition of this work. This thesis would

not have been possible without his patience, astuteness, excellent understanding

of physics, strong insight into research and expertise. You have been an inspiring

role model to me and I genuinely believe that you will succeed into bringing a

revolution to the field of non-supersymmetric strings with the continuation of this

work. I cordially wish you all the best for the future.

It is my pleasure to thank our collaborator, Professor Keith R. Dienes for the

vi



vii

enlightening discussions through our email exchange that has led to the com-

pletion of my first published article and to the formation of current and future

research ideas. His dynamic research attitude in addition to his outstanding and

diverse knowledge on physics are qualities that I have hugely admired and conse-

quentially appreciated. Along with my supervisor, Keith has showed me how fun,

illuminating and undoubtedly beneficial it is to be part of an excellent collabora-

tion with mutual respect and great enthusiasm. I look forward to the results of

your future collaboration.

I am heartily grateful to my colleagues at the IPPP for making my time here

such a delightful experience. Their friendliness, liveliness and support have been

the necessary ingredients for providing such a helpful and entertaining environ-

ment that I enormously enjoyed. My special thanks go to my fellow office mates

in OC216 - Simon Armstrong, Helen Brooks, Dr Danielle Galloni, Petar Petrov, Dr

Gunnar Ro and Duncan Walker for the amazingly good company, the stimulating

(but not necessarily meaningful and productive) discussions and the shared spirit

on both work and non-work related subjects. They never stopped imparting me

with healthy doses of laughter, valuable help, patience, and sanity; especially dur-

ing the times when I complained “I can’t get it right again”! Working in the same

office as them has most certainly been a fascinating experience characterised by

some oh - so - unforgettable moments, such as the birth of the “Triangle Rule”! I

have lost count of the number of times that the “Triangle Rule” came to the res-

cue at the end of the day but I hope this tradition carries on! All my friends in

the IPPP, especially Mark Ross-Lonergan, Gilberto Tetlalmatzi-Xolocotzi and Ryan

Wilkinson, are amazing people. They are all exceptionally bright and gifted, and I

sincerely wish them every luck with their future career pursuits.

A special thank you to Professor Silvia Pascoli and Dr Michael Spannowsky

for listening to and understanding my worries, for arranging my funding for my

postgraduate studies and for giving me the opportunity to prove my worth. Of

course the IPPP wouldn’t have been such an efficient place without the support

and the services of Mrs. Linda Wilkinson, Mrs. Trudy Forster and the system

administrators, therefore thanks are due to these people as well.

September 20, 2016



viii

I am especially indebted to Ben Aaronson, Helen Brooks, Tom Jubb and Duncan

Walker for their meticulous care in reading this thesis, their patience and attentive

ability not to miss the details. Furthermore, their useful suggestions and remarks

improved dramatically the final presentation of this work. All grammatical cor-

rections (commas, exclamation marks, colons, semi-colons, etc) should be sent to

Ben Aaronson for spending far too long anglicising that which should have been

already obvious !!!

I owe my indispensable thanks to Mrs Izabella Eliades for her financial support

as a sponsor of both my undergraduate and postgraduate studies. She believed in

me as if she was my family and she trusted me to go as far as I could reach. She

granted me not only with financial flexibility when I most needed it, but also she

inspired me to set high goals and strive to reach them. I will always be greatly

beholden to you for making my dreams come true.

Finally, I owe my most heartfelt gratitude to my family for their inestimable

love, encouragement and support all these years. They have, without doubt,

taught me one too many priceless lessons about life and ultimately it is through

these lessons that I acquire the strength to reach my goals. Their constant belief

that I am able to do more than I can ever imagine never cease to amaze me. That

belief was the catalyst for making this thesis a reality.

For the duration of my doctorate, October 2012- March 2016, the research was

funded by a studentship of the Science and Technology Fascilities Council - STFC.

September 20, 2016



Contents

Abstract iii

Declaration iv

Acknowledgements vi

1 Introduction 1

2 Theoretical Foundations 20

2.1 The Standard Model of particle physics . . . . . . . . . . . . . . . . 20

2.1.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Phenomenological Overview . . . . . . . . . . . . . . . . . . 27

2.2 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 The Minimal Supersymmetric Standard Model . . . . . . . . 42

2.2.2 Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . 47

3 A glimpse into the world of string theory 53

3.1 A quantum theory of gravity? . . . . . . . . . . . . . . . . . . . . . 53

3.2 Strings in D-dimensional spacetime . . . . . . . . . . . . . . . . . . 57

3.2.1 The bosonic string . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 The superstring . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Quantising the RNS superstring theory . . . . . . . . . . . . . . . . 65

3.4 The vacuum landscape of the RNS superstring theory . . . . . . . . 75

4 Non-supersymmetric heterotic strings 77

4.1 The general framework . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



Contents x

4.1.1 Weakly Coupled Free Fermionic Heterotic Strings . . . . . . 78

4.2 Theoretical groundwork . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 The partition function . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 The one-loop cosmological constant . . . . . . . . . . . . . 88

4.3 Exploring the finiteness and stability . . . . . . . . . . . . . . . . . 91

4.3.1 Misaligned Supersymmetry . . . . . . . . . . . . . . . . . . 91

4.3.2 Dilaton tadpoles and higher-loop tachyons . . . . . . . . . . 96

5 Exploring the class of interpolating heterotic string models 99

5.1 Motivation for interpolation . . . . . . . . . . . . . . . . . . . . . . 99

5.2 The general structure of interpolation . . . . . . . . . . . . . . . . 102

5.3 Mass spectra in (D-1)-dimensional theories . . . . . . . . . . . . . 105

5.4 Suppression of the cosmological constant at one-loop . . . . . . . . 109

5.4.1 Contribution of physical states . . . . . . . . . . . . . . . . 109

5.4.2 Contribution of unphysical states . . . . . . . . . . . . . . . 113

6 General outline for constructing stable, semi-realistic interpolating string

models 120

6.1 Recipe for the construction technique . . . . . . . . . . . . . . . . . 120

6.2 A supersymmetric theory in six dimensions . . . . . . . . . . . . . . 124

6.3 Orbifold compactification . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.1 A chiral supersymmetric theory in four dimensions . . . . . 126

6.3.2 Mass spectrum of the supersymmetric four-dimensional theory129

6.3.3 Partition function of the MSSM-like theory . . . . . . . . . . 134

7 Coordinate Dependent Compactification 136

7.1 A summary of the general properties of CDC’d models . . . . . . . 136

7.2 A concise description of the method . . . . . . . . . . . . . . . . . . 137

7.2.1 Non-chiral non-supersymmetric four-dimensional theory . . 140

7.2.2 Chiral non-supersymmetric four-dimensional theory . . . . 143

7.3 Partition function of the SM-like theory . . . . . . . . . . . . . . . . 148

7.4 Cosmological constant of the SM-like theory . . . . . . . . . . . . . 154

September 20, 2016



Contents xi

8 Semi-realistic string models with exponentially suppressed cosmolog-

ical constants 158

8.1 Additional requirements imposed on the construction . . . . . . . . 158

8.2 “Unified” SO(10) and flipped SU(5) theories . . . . . . . . . . . . . 161

8.3 SM-like theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.4 A Pati-Salam-like theory . . . . . . . . . . . . . . . . . . . . . . . . 164

9 Properties of string models with exponentially suppressed cosmologi-

cal constants 171

9.1 Interpolation Properties . . . . . . . . . . . . . . . . . . . . . . . . 171

9.1.1 Behaviour of mass spectrum . . . . . . . . . . . . . . . . . . 172

9.1.2 Behaviour of one-loop cosmological constant . . . . . . . . 180

9.2 Phenomenological Properties . . . . . . . . . . . . . . . . . . . . . 181

9.2.1 Natural particle assignments . . . . . . . . . . . . . . . . . . 182

9.2.2 Yukawa couplings . . . . . . . . . . . . . . . . . . . . . . . 183

9.2.3 Scalar masses . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10 Consistency of stable non-supersymmetric models with naturalness 189

10.1 The “decompactification” problem . . . . . . . . . . . . . . . . . . 189

10.2 “GUT precursors” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.3 A SM-like theory from a GUT precursor model . . . . . . . . . . . . 193

10.4 Effective Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . 203

11 Conclusions 207

Appendix 215

A Basic theoretical tools for the Standard Model 215

A.1 The full form of the Standard Model Lagrangian . . . . . . . . . . . 215

A.2 Masses of particles in the Standard Model . . . . . . . . . . . . . . 217

A.3 One-loop corrections to the Higgs mass . . . . . . . . . . . . . . . . 217

Appendix 219

September 20, 2016



Contents xii

B The MSSM Higgs sector 220

Appendix 224

C Quantising the bosonic string 225

C.1 Covariant Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.2 Lightcone quantisation . . . . . . . . . . . . . . . . . . . . . . . . . 229

C.3 BRST quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Appendix 238

D Theta-function notation and partition function conventions 238

Appendix 241

E Breaking of supersymmetry by discrete torsion 242

September 20, 2016



List of Figures

1 A Calabi-Yau manifold in String Theory . . . . . . . . . . . . . . . . 0

1.1 The one-loop one-point dilaton “tadpole” diagram. . . . . . . . . . 12

2.1 Particle content of the Standard Model. . . . . . . . . . . . . . . . . 22

2.2 The two-loop RG evolution of the three gauge coupling constants gi

with energy scale Q = µ̃ (GeV) in the SM and MSSM. . . . . . . . . 30

2.3 Higgs mass renormalisation from a fermion loop. . . . . . . . . . . 34

2.4 The Feynman diagrams for the one-loop quantum divergences to

the Higgs boson mass in the SM. . . . . . . . . . . . . . . . . . . . 35

2.5 The Feynman diagrams for the one-loop quantum divergences to

the Higgs boson mass due to the supersymmetric partner particles. 41

3.1 Graviton self-interactions lead to UV divergences at energies in the

regime of Planck scale. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 An interaction vertex in field theory is replaced by a strip or tube of

three-point interactions. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 The topology of the string worldsheet is a two-dimensional torus

with non-contractible loops in two directions. . . . . . . . . . . . . 81

4.2 A plot of the boson/fermion oscillations which are the hallmark of

a hidden “misaligned supersymmetry” existing in the spectrum of

all tachyon-free non-supersymmetric closed strings. . . . . . . . . . 94

5.1 Degeneracies of physical states for a particular nine-dimensional

interpolating model. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiii



List of Figures xiv

5.2 Vacuum-energy contributions from massless states (solid line) ver-

sus proto-gravitons (dashed line) for a particular nine-dimensional

interpolating model. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 A plot of the one-loop cosmological constant for a particular nine-

dimensional interpolating model. . . . . . . . . . . . . . . . . . . . 118

6.1 A schematic illustration of the procedure for constructing semi-

realistic non-supersymmetric string models with N(0)
b = N(0)

f , as dis-

cussed in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.1 A schematic illustration of the mass spectrum structure for a generic

interpolating model with suppressed cosmological constant in the

limit of large interpolating radius. . . . . . . . . . . . . . . . . . . . 173

9.2 Degeneracies of physical states for the Pati-Salam-like theory de-

fined in Table 8.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.3 The rescaled cosmological constant Λa−2 for the Pati-Salam-like the-

ory defined in Table 8.4. . . . . . . . . . . . . . . . . . . . . . . . . 181

A.1 Higgs mass renormalisation from a fermion loop. . . . . . . . . . . 218

A.2 Higgs mass renormalisation from a scalar loop. . . . . . . . . . . . 219

A.3 Higgs mass renormalisation from a scalar loop of cubic interaction. 219

September 20, 2016



List of Tables

2.1 Chiral superfields of the MSSM with their particle content and rep-

resentations under the SM gauge group. . . . . . . . . . . . . . . . 43

2.2 Vector superfields of the MSSM with their particle content and rep-

resentations under the SM gauge group. . . . . . . . . . . . . . . . 44

3.1 The massless spectrum of the closed ten-dimensional RNS superstring. 74

4.1 The contribution of the lightest states to the one-loop cosmological

constant of a heterotic string theory constructed in ten and four

dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 The contributions to the cosmological constant in the a → 0 limit

from a given state with worldsheet energies (m, n) in the different

E/O sectors. In this table, D represents the dimensionality of the

theory prior to the compactification on the ZZ2 orbifold. . . . . . . . 117

6.1 Spin structure of the N = 1, 6D model, where all entries are under-

stood to be multiplied by a factor of − 1
2 . . . . . . . . . . . . . . . . 125

6.2 Spin structure of the worldsheet fermions of the N = 1, 4D model

before applying the CDC. . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 The ZZ2-untwisted visible-sector states of the N = 1, 4D model. . . . 131

6.4 Additional ZZ2-untwisted visible-sector states of the N = 1, 4D model.131

6.5 The ZZ2-untwisted chiral multiplets of the N = 1, 4D model, where

i, j ∈ S U(3) and a ∈ S U(2). . . . . . . . . . . . . . . . . . . . . . . . 133

6.6 The ZZ2-untwisted superpartners of the chiral multiplets in the N =

1, 4D model where i, j ∈ S U(3) and a ∈ S U(2). . . . . . . . . . . . . 133

xv



List of Tables xvi

7.1 Spin structure of the worldsheet fermions of the N = 0, 4D model

after applying the CDC. . . . . . . . . . . . . . . . . . . . . . . . . 145

8.1 Spin structure of the worldsheet fermions of the N = 0, 4D S O(10)

theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2 Spin structure of the worldsheet fermions of the N = 0, 4D S U(5)

theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3 Spin structure of the worldsheet fermions of the N = 0, 4D SM-like

theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.4 Spin structure of the worldsheet fermions of the N = 0, 4D S O(6)⊗

S0(4) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.5 The ZZ2-untwisted visible-sector states of the N = 1, 4D Pati-Salam

theory which remain massless after the CDC. . . . . . . . . . . . . 167

8.6 The ZZ2-untwisted visible-sector states of the N = 1, 4D Pati-Salam

theory that will accrue a mass of 1
2

√
R−21 + R−22 by the CDC. . . . . . 168

8.7 Chiral ZZ2-untwisted multiplets of the N = 1, 4D Pati-Salam theory

that remain massless after the CDC. . . . . . . . . . . . . . . . . . . 169

8.8 Chiral ZZ2-untwisted multiplets of the N = 1, 4D Pati-Salam theory

which will accrue a mass of 1
2

√
R−21 + R−22 by the CDC. . . . . . . . . 170

10.1 Spin structure of the worldsheet fermions of the N = 1, 4D S U(5)

GUT model before applying the CDC. . . . . . . . . . . . . . . . . . 194

10.2 The ZZ2 massless GUT states of the N = 1, 4D model derived from

the twisted and untwisted sectors. . . . . . . . . . . . . . . . . . . 195

10.3 A general spin structure for a chiral SM-like theory obtained from a

GUT precursor model in 4D. . . . . . . . . . . . . . . . . . . . . . . 198

10.4 Spin structure of theN = 0, 4D chiral SM-like theory obtained from

a GUT precursor model after applying the CDC. . . . . . . . . . . . 199

10.5 The scalar Higgs states of the SM-like theory obtained from a GUT

precursor model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

10.6 The chiral matter fields of the SM-like theory obtained from a GUT

precursor model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

September 20, 2016



List of Tables xvii

10.7 The chiral partner matter fields in the untwisted sectors of the SM-

like theory obtained from a GUT precursor model. . . . . . . . . . . 202

10.8 The chiral Smatter fields produced in the untwisted sectors of the

theory that remain massless after the CDC. . . . . . . . . . . . . . . 202

September 20, 2016



Acronyms

BRST Becchi-Rouet-Stora-Tyutin. 138, 225, 233–237

BSM Beyond Standard Model. 28, 36, 37

CDC Coordinate Dependent Compactification. 18, 121–123, 127, 128, 131, 133,

136–157, 159–161, 165, 167–170, 172, 175–177, 179, 180, 185–187, 189–

191, 193, 194, 196–203, 205, 208–212

CKM Cabbibo-Kobayashi-Maskawa. 27

CP Charge-Parity. 27, 28, 37

d.o.f Degrees of Freedom. 25–27, 39, 51, 59, 63, 72–74, 78–80, 119, 120, 122–

124, 126–128, 131, 134, 139, 142, 145, 152, 160–162, 164, 167, 168, 173–

175, 187, 194, 203, 205, 209, 210, 212, 213, 222, 231

EFT Effective Field Theory. 7, 8, 28, 47, 51, 137, 170, 174, 187, 191, 192, 203,

205, 212, 213

FP Fadeev-Popov. 215

GS Green-Schwarz. 8, 62

GSO Gliozzi, Scherk and Olive. 73, 82, 84, 85, 87, 88, 121, 122, 124, 128–132,

135, 140–142, 146, 147, 153, 155, 165, 166, 177–179, 194, 196, 198, 199,

244

GUT Grand Unified Theory. 2–10, 18–20, 31, 40, 47, 50, 51, 78, 159, 162, 192–

202, 211

xviii



Acronyms xix

IR Infrared. 81, 191, 192

KK Kaluza Klein. 100, 104, 106–108, 130, 134, 136, 140, 142, 143, 149, 151,

154, 172–179, 190–193, 205, 210, 211

LHC Large Hadron Collider. 10, 11, 27, 28, 36, 207

LIGO Laser Interferometer Gravitational-Wave Observatory. 10, 53

LSP Lightest Supersymmetric Particle. 47, 52

MSSM Minimal Supersymmetric Standard Model. 7–9, 17, 30, 40, 42–50, 52,

121, 124, 129, 148, 220, 221, 223

QCD Quantum Chromodynamics. 27, 55

QFT Quantum Field Theory. 14, 20, 35, 38, 88, 89, 92, 182, 214

QM Quantum Mechanics. 20

RG Renormalisation Group. 30, 40, 169, 182, 210

RGE Renormalisation Group Equation. 5, 29, 31

RNS Ramond-Neveu-Schwarz. 62, 64, 65, 67–70, 74

SB Symmetry Breaking. 24

SM Standard Model. 1–4, 6–8, 10–14, 16–31, 33, 35–37, 39–44, 46–50, 120–

122, 128, 129, 132, 133, 148, 154, 158, 159, 164, 166, 167, 169, 172, 182,

183, 185, 192, 193, 196–203, 209, 212, 213, 215–219, 221, 223

SR Special Relativity. 20

SSB Spontaneous Symmetry Breaking. 25, 217, 219, 222

SSSB Spontaneous Supersymmetry Breaking. 16, 47, 48, 51, 52, 101, 128, 182,

183, 185, 203, 211

September 20, 2016



Acronyms xx

SUGRA Supergravity. 51, 203–206, 211

SUSY Supersymmetry. 7–19, 38–41, 44–47, 49–52, 62, 64, 73–75, 79, 80, 82, 85,

86, 89, 91–96, 99, 101, 103, 105, 106, 108–111, 119–126, 128, 129, 136,

137, 142, 143, 149, 153, 157–160, 172–176, 180–182, 191, 193, 197, 199,

201, 203, 205–213, 221, 242, 243

UV Ultraviolet. 7, 14, 15, 33, 54, 55, 81, 92–94, 101, 106, 107, 137, 156, 157,

173, 174, 191, 192, 203

VEV Vacuum Expectation Value. 9, 15, 26, 43, 46–49, 51, 76, 97, 137, 138, 148,

186, 217, 221

w.r.t with respect to. 32, 60, 177, 190

WCFFHS Weakly Coupled Free Fermionic Heterotic String. 78

September 20, 2016



Nomenclature

A The index of the gluons. 215

Λ The cosmological constant. 88–92, 96, 98–101, 108, 109, 112, 116, 117, 149,

154, 171, 180, 181
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A Calabi-Yau manifold in String Theory

“According to String Theory, what appears to be empty space is actually a tumultuous

ocean of strings vibrating at the precise frequencies that create the four dimensions

you and I call height, width, depth and time.”

Roy H. Williams

0



Chapter 1

Introduction

Knowledge must come through

action; you can have no test which is

not fanciful, save by trial.

Sophocles

Over the course of time, the irresistible challenge to understand and be able to

describe all natural phenomena has inevitably led to a significant evolution in

physics. As a result, the history of physics is marked by events when different

and seemingly unrelated phenomena were found to be related through theories

which had undergone considerable reformulation. A renowned example of such

an event is the unification of electricity and magnetism. The theoretical devel-

opments, followed by their experimental verification, established the success of

connecting various natural phenomena, with the most notable efforts starting in

the nineteenth century. That was the critical point, defining the genesis of unifi-

cation, the area in physics which aspires to provide an accurate description of all

the fundamental physical forces in terms of a unified set of mathematical relations

and theoretical laws, able to agree with experimental results and predict further

experimental observations.

The ultimate intellectual achievement of mankind will be the invention of a

theory that unifies all known fundamental forces - electromagnetic, gravitational,

strong and weak - and which will provide physicists with the ability to understand

what rules govern the various complex operations of nature. The Standard Model

1



Chapter 1. Introduction 2

(SM) is only the first step in the ambitious scheme of constructing this long sought

after theory. Originally, the construction of the SM was attempted in 1973 by

Georgi and Glashow in an effort to shed some light on the principles underlying the

electroweak and strong interactions. By that time, the idea of obtaining a Grand

Unified Theory (GUT) had begun to take root and was inevitably influencing the

course of theoretical research. The mathematical model proposed in Ref. [1], was

the first instance of a GUT which postulates that all the SM gauge interactions are

embedded in a single, simple gauge group: the S U(5) GUT group. The embedding

relies on the relation 3 ⊕ 2 = 5, which is better realised in the form of a block

diagonal matrix: [S U(3)]3×3 ∗

∗ [S U(2)]2×2


5×5

. (1.0.1)

This model bears the brunt of a couple of successes at a qualitative level and as

many failures at a quantitative level. Focusing first on its phenomenal successes, a

brief account is provided as follows:

• Unification in the aforementioned framework calls for the spontaneous break-

ing of S U(5) into S U(3) ⊗ S U(2) ⊗ U(1), which is successfully implemented

via the celebrated Brout-Englert-Higgs mechanism. The weak hypercharge is

generated by a traceless, diagonal matrix which commutes with the S U(3) ⊗

S U(2), i.e.

Y ≡ diag
(
−

2
3
,−

2
3
,−

2
3
, 1, 1

)
, (1.0.2)

so as to be consistent with the weak hypercharge values demanded in the

SM. A distinct feature of the emerging theory is the prediction for the ex-

istence of additional gauge bosons, identified as X and Y, as well as ad-

ditional fermions. These particles correspond to the off-diagonal blocks in

Eq. (1.0.1). There is plenty of information provided with regards to the

number of the existing particles. Conversely, there is limited to no informa-

tion regarding to the properties of the known particles, and most specifically

about the gauge bosons that had been discovered. The enlarged particle

content is a question unto itself concerning the assignment of the additional
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gauge bosons, and most importantly of the SM particle spectrum into S U(5)

representations. Here is the point at which the first advantage of having

an S U(5) GUT comes into play; in this framework all particles of a single

SM generation fall nicely into two irreducible representations of S U(5) and

the particles within either of the two irreducible representations are related

to one another through gauge transformations. For a mathematical clar-

ification, the left-handed particles fit into the five-dimensional vector rep-

resentation in conjunction with the ten-dimensional antisymmetric tensor

representation of S U(5), while the right-handed particles (antiparticles) suit

themselves into the conjugate representations. The representations for the

left-handed particles are defined as

5i ≡



dc
1

dc
2

dc
3

e−

−νe


L

; 10[i j] ≡



0 uc
3 −uc

2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0


L

, (1.0.3)

which are expressed in terms of the S U(3) and S U(2) representations as well

as the U(1)Y values as:

5 =

(
3,1,+

1
3

)
⊕

(
1,2,−

1
2

)
; 10 =

(
3,1,−

2
3

)
⊕

(
3,2,+

1
6

)
⊕(1,1, 1) . (1.0.4)

A remarkable outcome of this decomposition is that the anomaly from the 5

representation is equal and opposite to the anomaly from the 10 representa-

tion, thus anomalies are cancelled and the S U(5) GUT is anomaly free [1].

• A noteworthy characteristic of the model is that there is an identification of

five distinct colour charges; three of these (blue, green, red) are the estab-

lished colour charges involved in the strong interactions and the other two

are novel colour charges involved in the weak interactions. It is notable that

there is no need for a sixth colour to be involved in the electromagnetic in-

teractions. Instead, the five colour charges are sufficient for the consistency
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of this proposed GUT. The colour charge assignment is immensely useful

in determining the only coupling constant of the unified theory, the electric

charge [2]. To assign the charge it is essential to utilise the weak hyper-

charge distribution on particles, as defined in Eq. (1.0.2). The charge is then

determined by

Q = I3 + 1
2Y = diag

(
−

1
3
,−

1
3
,−

1
3
, 1, 0

)
, (1.0.5)

where I3 is a traceless generator of the S U(5) group. Subsequently, the

charge of quarks and leptons is inferred from the 5 multiplet in conjunction

with the fact that the overall electric charge Q is traceless. This yields

3Q(d) + Q(e) + Q(ν) = 0
Q(ν)=0
−−−−−→ Q(d) = −

1
3

Q(e) , (1.0.6)

which construes charge quantisation; a phenomenon which cannot be ex-

plained within the SM context.

The spotlights are now turned on the failures of the proposed model. In the fol-

lowing, a brief account of those failures will be provided.

• All gauge interactions exhibit different coupling strengths. The strong force,

as befits its name, has the greatest coupling strength of interactions followed

by the weak force which has a slightly greater coupling strength than the

electromagnetic force. At the level of unified theories this observation is in

direct contrast with the concept of unification, which predicts that all unified

gauge interactions have a unique gauge coupling, and thus the strength of

their interactions is exactly equal. So, what kind of conspiracy could be

lurking amidst the gauge interactions that would allow true unification?

• The X and Y gauge bosons permit the occurrence of proton decay, i.e. they

mediate process such as p → e+π0 that destabilise the proton. However, so

far there are no reported findings of a decaying proton. Indeed the proton

lifetime is experimentally found to be 1031 years; a direct contradiction to the

lifetime predicted by this theory. It is only natural to assume that this theory

is at fault due to the extra gauge bosons that seem to have vastly different
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properties compared to the known ones.

Building on this prior work, Georgi, Quinn, and Weinberg addressed these failures

by demonstrating that unification is feasible provided that the S U(5) GUT group is

spontaneously broken to the S U(3)C⊗S U(2)L⊗U(1)Y at an energy scale of the order

of 1016 GeV [3]. A good scientific strategy for checking the consistency of GUTs

with the experimental outcomes is to measure the coupling of each theory when

unification occurs. The unified coupling is related to the electromagnetic, strong

and weak couplings through a relation that is expressed in terms of the weak

mixing angle θW . The crucial measurement needed is that of sin2θW , which in the

case of this S U(5) GUT model is evaluated to be sin2θW ≈ 0.20 - about the same

value as that determined by experimental tests. Note that the unified coupling

runs according to the Renormalisation Group Equations (RGEs) and hence for its

computation one needs to consider a logarithmic scale. Indeed, what is taken

into account is the logarithm of the GUT scale. Therefore, a GUT scale of 1016

GeV is considered to be in fact close enough to the Planck scale of 1019 GeV - the

maximum energy scale that nature handles. Furthermore, a GUT with this order

of magnitude accords the appropriate framework for the incorporation of gravity,

and predicts a proton lifetime of 1030 years; a big enough value that it could be

considered compatible with the experimental data.

Even though these outcomes contribute to a vast amelioration in the S U(5)

GUT, they are still far from what one could define as ‘ideal’. The realisation

that there is still room for improvement is what prompted the theoretical physi-

cists to attempt the construction of other four-dimensional GUTs. In hot pursuit

of a desirable theory, an avalanche of ideas emerged in an effort to investigate

whether all fermions (and antifermions) could possibly be accommodated into

one irreducible representation. A prominent idea is that which promotes the lep-

ton number of fermions to a colour charge and in consequence claims the exis-

tence of a left-handed antineutrino. As it is argued in Refs. [4, 5], for the ful-

filment of this scenario the simplest course of action is to extend the S U(5) to

the S O(10) gauge group. There are thirty fermion fields of the S U(5) model plus

two heavy lepton fields which are neutral in charge. The thirty-two fermion fields
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(and antifermions) are accommodated into the reducible representation of S O(10):

16 ⊕ 16. The Pati-Salam ( S U(4) ⊗ S U(2) ⊗ S U(2) ) representations can be unified

into S O(10) as 16 = (4,2,1)⊕(4,1,2) and the S U(5) representations can be unified

into S O(10) as 10⊕5⊕1. A generation of fermions is then identified as follows [5]:

16 ≡

uc
1 uc

2 uc
3 νc

e | u
1 u2 u3 νe

dc
1 dc

2 dc
3 e+ | d1 d2 d3 e−


L

, (1.0.7)

where the numbers 1, 2, 3 represent the colour charge of fermions. This is the

simplest unique extension of S U(5) and the allocation of the fermion fields to

two 16-dimensional irreducible complex spinor representations leaves the theory

anomaly free. It should be noted that the left-handed antineutrino is a SM singlet

and therefore in this framework is expected to get a GUT scale mass. This is what

inspired the idea of the see-saw mechanism, a subject which would be a diversion

from the purposes of this thesis.

Another interesting model that reproduces somehow the S O(10) results is the

E6 model proposed by Ref. [6]. The E6 group is the only exceptional group that

admits chiral representations and is big enough to allow the embedding of the

S O(10) group. In this case, six quarks and nine leptons of both left- and right-

chirality fit into two 27-dimensional complex representations of the E6, as follows

[6]:

27 ≡ (3,3,1) ⊕ (3,1,3) ⊕ (1,3,3) , (1.0.8)

where the representation is decomposed into representations of the S U(3)L ⊗

S U(3)R ⊗ S U(3)c
1. A noteworthy characteristic of this model is that even if an-

other representation is chosen for the fermions, the resulting theory will always

be anomaly-free. Furthermore, the E6 group could be embedded in the E7 group;

specifically the 56-dimensional of E7 accommodates the two 27 representations

of E6 along with two singlets. This is what enables the unification of all fermions

into one irreducible representation, as it happens in the case of the S O(10) GUT.

Despite the promising findings there is still a flood of theoretical questions that

1This is the maximal compact subgroup of the E6.
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cannot be addressed in the context of four-dimensional theories [7]. Among these

issues are the gauge hierarchy problem - the immense ambiguity in stabilising the

quantum effects of the GUT scale at the level of the electroweak scale, which

take the form of Ultraviolet (UV) divergences - and the fact that the unification

of Higgs or gauge bosons with leptons and quarks seems to be an insurmountable

hurdle. Throughout the years, the various developments in the field altered the

face of GUTs. The most outstanding development is the discovery of Supersym-

metry (SUSY). This is the only existing symmetry which allows the grouping of

particles with different spins. The fundamental operation of SUSY is to transform

fields of integer spins to fields with half-integer spins, i.e. to transform bosons

to fermions and vice versa. Originally, the idea of SUSY surfaced in the early

construction of string theories; a point that is extensively discussed in Chapter 3.

As proposed in a celebrated model by Ramond and Neveu-Schwarz [8], SUSY is

a substantial symmetry of the two-dimensional worldsheet for the theory to be

successful. In 1974, this model gave a big impetus to the expansion of SUSY to

a spacetime symmetry which was formulated by Wess and Zumino [9] and led

auspiciously to the supersymmetrisation of the SM.

No signs of spacetime SUSY in nature have so far been observed, and nor there

have been any hints. It is an undeniable fact of nature that the four-dimensional

world is non-supersymmetric. This leads to the conclusion that SUSY must be

a symmetry which is broken during the evolution of the universe. Nevertheless,

many theoretical physicists still support the idea that SUSY is a necessary ingredi-

ent in the description of nature. The primary goal of spacetime SUSY is to amend

one of the greatest flaws in the SM, which is none other than the aforementioned

gauge hierarchy problem. What makes SUSY a strong contender for this achieve-

ment is the fact that shields an Effective Field Theory (EFT), such as the SM,

against unwanted UV completions of any kind. As a result, there have been pio-

neering attempts to construct a supersymmetric theory which would be consistent

with current realistic particle physics models. A widely known example of such

a theory is the simplest extension of the SM, the Minimal Supersymmetric Stan-

dard Model (MSSM). This model demands that for every SM particle there exists
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a supersymmetric counterpart, differing by a half-integer spin. For the MSSM to

serve its theoretical purposes, the masses of the superpartners need to be at the

TeV scale.

Besides complementing the SM symmetries, the inclusion of supersymmetric

particles has many implications in the structure of GUTs. First, SUSY raises the

GUT scale, and thus brings it even closer to the Planck scale, without causing

any drastic changes in the relation among the couplings. As a consequence, the

predicted value of sin2 θW is altered such that it is more compatible with the ex-

perimental results. This value is a splendid indication that the electromagnetic,

strong and weak coupling strengths converge to a single point at the GUT scale,

and greatly reinforces the necessity for a unified theory of the fundamental forces.

Second, the raised GUT scale lifts the predicted value of proton lifetime into a

value that could be consistent with experimental measurements. These appealing

outcomes opened the path for the exploration of the SUSY-GUTs.

As a matter of fact, the four-dimensional GUTs fail spectacularly to incorpo-

rate gravity - the least comprehensible fundamental force in nature, and thus are

rendered as unsuitable frameworks for the unification of all fundamental forces.

This shortcoming could in a sense be rectified through the SUSY-GUTs; it is es-

tablished that when spacetime SUSY is promoted to a local gauge theory, gravity

appears to venture into the realm of unification and the emerging EFT is termed

supergravity [10]. The four-dimensional GUTs also fail on another level: Any at-

tempt to unify all three chiral generations into a single irreducible representation

of a gauge group has turned out to be futile. From this observation stems another

interesting development which is the suggestion of the possible existence of extra

spacetime dimensions. All these developments merge exceptionally well in the

content of a single framework; string theory.

The earlier model of Ramond and Neveu-Schwarz has only worldsheet SUSY.

This was succeeded by the breakthrough discovery of spacetime SUSY on strings,

formulated by Gliozzi, Olive and Scherk [11]. The subsequent construction of

the heterotic string theory formulated by [12] as well as the Green-Schwarz (GS)

anomaly cancellation theorem [13] imparted a great boost to the accession of
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SUSY-GUTs into string theory and thus to the unification of all fundamental in-

teractions. In this framework, gravity manifests itself through the existence of a

massless spin-2 field, the graviton, whose interactions are in agreement with gen-

eral relativity. Henceforth, quantum mechanics and general relativity are brought

together forming a consistent quantum theory of gravity. This means that all gauge

bosons plus the graviton, the three generations of chiral matter fields and the

Higgs boson could be unified into a single irreducible representation of a simple

compact gauge group.

There are in total five superstring theories, the Type IA, IB, Type IIA, IIB and

the Heterotic. Each one of this is related to another via symmetries that hold at a

quantum mechanical level and are called dualities. In the modern history of string

theory all theories are realised as different limiting cases of a single, grander the-

ory known as the M-theory. Among these, the Type I and Type II theories could

not be considered as realistic models of particle physics – where “realistic” is usu-

ally taken to mean that the string spectrum bears a resemblance to the MSSM.

However, in the heterotic formulation it was demonstrated by Ref. [14] that there

exist only two models that could accomplish the purpose of unification, could be

considered as realistic and at the same time allow the cancellation of anomalies:

the ten-dimensional heterotic E8⊗E8 and S O(32). Of these two options, the former

works remarkably well. The starting point of the E8 ⊗ E8 theory is a geometrical

space of R4 ⊗K6, where R4 is the four-dimensional Minkowski space which is nec-

essary to preserve spacetime SUSY in four dimensions and K6 is a six-dimensional

compact manifold [14]. The E8 group breaks down to a subgroup which is usu-

ally one of the GUT groups discussed above. The breaking occurs when the gauge

fields on K6 that lie in other E8 subgroups are assigned a Vacuum Expectation

Value (VEV) so that there remains an unbroken gauge group. The upshot of this

is the fact that all the chiral fields fit into the correct representations [14]. Note

that due to an abundance of choices for assigning VEVs to the K6 fields there is in

general an ambiguity concerning the total number of chiral generations one could

get in the model.

Even though the E8⊗E8 is a ten-dimensional GUT, it yields quite similar results
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to those of four-dimensional GUTs with regards to the value of sin2 θW , the proton

lifetime and the quantum numbers of fermions. A considerable point is that the

scale of grand unification in string theories is raised so that the difference to the

Plank scale is reduced even more. However, the E8 ⊗ E8 bears many differences to

four-dimensional GUTs and a cursory explanation about these differences is given

by Ref. [7]. It is therefore inferred that the enrichment of GUTs with SUSY, in

addition to the inclusion of string theory, makes the quest for a unified theory of

all fundamental interactions appear even more promising.

Over the last three decades, the idea that unification is such an appealing world

that it would be a shame to give it up without a fight has been dramatically re-

inforced. This is due to many interesting developments both on the theoretical

and the experimental side of particle physics. First, the proton decay suggested

by the models of grand unification is being probed by experiments, such as Super-

Kamiokande, with great sensitivity and the experimental value is currently in the

range of the theoretical prediction. Second, the precision measurements of sin2 θW

are consistent with the GUTs results. Third is the discovery of neutrino oscillations

which imply that neutrinos have masses albeit very small ones. The GUT models

predict that neutrinos have masses which are in the range of the experimental

results, a prediction expected to be confirmed by the next generation of neutrino-

less double beta decay experiments. The most recent splendid finding in particle

physics that greatly encourages the case for unification was the discovery of Higgs

boson at the Large Hadron Collider (LHC) on July 2012. The Higgs boson is the

manifestation of the Higgs field and had been a missing piece in the completion of

the SM puzzle. With this discovery, it is confirmed that theory is on the right track

and new paths beyond the SM physics are now available for exploration.

Ultimately, the biggest dream of theoretical particle physicists is the formula-

tion of a correct consistent quantum theory of gravity. This dream is now one step

closer to reality by virtue of the detection of gravitational waves for the first time,

by the Laser Interferometer Gravitational-Wave Observatory (LIGO) collaboration

earlier this year. The existence of gravitational waves is postulated in the theory

of general relativity and their direct observation took place a century after the
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waves were predicted by Albert Einstein. The detection of gravitational waves has

been the only missing piece from the ingenious formulation of general relativity.

The evidence of their existence establishes the superiority of general relativity at

a classical level and confirms everything that has been predicted years ago. This

discovery is expected to give a big impetus to the elucidation of gravity and con-

sequently to the advancement of quantum gravity theories. On the account of

deciphering gravity the future irrefutably shines bright.

The same argument cannot be applied for SUSY, the framework that is sup-

posed to expand the foundations of the SM into a more solid and comprehensive

picture of the universe mechanism. The LHC has been tuned on a relentless race in

search of SUSY but so far has not buzzed with any signs. An indisputable observa-

tion is that SUSY has not been detected amongst the elementary particles or their

fundamental interactions at the presently accessible energy scales, nor are there

at the present time any signs or even hints of its imminent appearance at higher

energies. Indeed, the recent LHC data seem to be giving indications against even

the most minimal version of SUSY, therefore implying that it would no longer be

capable of addressing the gauge hierarchy problem. Especially after the recent

discovery of the Higgs, the issue of stabilising the gauge hierarchy becomes all the

more pressing. While many theoretical physicists continue to feel that SUSY lurks

somewhere ready to be found, and support the idea that its discovery is only a

matter of time, there is increasing room for doubt and thus much interest in alter-

natives. So this appears to be a good moment to ponder what the implications are

for string theories and even more for string phenomenology.

As it is, there have always been distinct choices available to string model-

builders: The first one is to assume that nature is fundamentally supersymmet-

ric and that SUSY is broken so as to produce the observable non-supersymmetric

world. The second one, is to assume that nature is, by contrast, non-supersymmetric

at all levels, and then to follow what this path entails. In string theory, non-

supersymmetric and supersymmetric theories are radically different, even when

they might seem to be closely related. For most of the modern history of string

theory, and specifically after the discovery of spacetime SUSY on strings, the first
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(a)The one-loop Casimir energy
(cosmological constant) Λ.

(b)The one-loop one-point dilaton
“tadpole” diagram.

Figure 1.1: In general, the value of the dilaton tadpole is always proportional to
Λ. As a result, a non-zero cosmological constant implies a non-vanishing one-
loop dilaton tadpole diagram, in turn indicating a linear term ∼ φ in the effective
potential. This figure is adapted from Refs. [15,16].

option has been tremendously favoured over the second option. As a result, string

phenomenology has largely consisted of constructing realistic or semi-realistic

string models with N = 1 SUSY which is then broken by the operation of some

field-theoretic SUSY-breaking mechanism. Meanwhile the second option, that

of constructing non-supersymmetric models of which the low energy limit corre-

sponds to the SM, has not been dealt with an overly enthusiastic response. Hence

the possibility of developing a genuinely non-supersymmetric string phenomenol-

ogy for the weakly coupled heterotic string has not attracted the attention it de-

serves.

One of the major hurdles in constructing a string model without spacetime

SUSY is to tackle the issue of dilaton stability. As shall be discussed in Chapter 4,

non-supersymmetric strings are generally unstable, giving rise to non-zero dila-

ton tadpole diagrams. The existence of such tadpole diagrams has proved to be

extremely problematic, indicating that such strings are generally formulated on

destabilised vacua. At one-loop order, a non-vanishing value of the dilaton tad-

pole always results in a non-vanishing value for the cosmological constant which

in turn implies a non-vanishing dilaton tadpole diagram. This effect is realised by

having an extra linear term φ appearing in the effective potential of the theory,

as sketched in Fig. 1.1. In general, this is what string theorists describe as the

cosmological constant problem.

By and large, the dilaton tadpoles could be absorbed via the Fischler-Susskind

mechanism [17], as in Refs. [18,19]. However, if such tadpoles are unsuppressed
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there would be some dire consequences, in the sense that the new resulting back-

ground is expected to be very different from the initial one, thereby invalidating

the original construction. Thus, in any complete discussion of non-supersymmetric

string phenomenology, the challenge of overcoming the instabilities associated

with the dilaton tadpoles will play a crucial role. It goes without saying that this

realisation is very advantageous as regards to the cosmological constant problem.

Indeed, in any non-supersymmetric string theory it is of utmost importance to ob-

tain a value for the cosmological constant that is hierarchically smaller than the

generic value. In this way, only those special theories in which the cosmologi-

cal constant becomes zero to leading order could be deemed to be consistently

stabilised.

It is the purpose of this thesis to show that it is possible to overcome the hin-

drance of non-zero dilaton tadpoles and build non-supersymmetric perturbative het-

erotic string models which are essentially stable. In this thesis, is undertaken a ded-

icated and systematic exploration of this class of models for which the degree of

instability associated with the dilaton tadpole is exponentially suppressed, at least

at one-loop. On that account, these models could be considered as standing on

equal footing with their SUSY cousins. Moreover, it shall be demonstrated through

explicit construction that models within this class exhibit a semi-realistic particle

content, with the massless states resembling the SM while their erstwhile super-

partners have masses that can be tuned to literally any value, including values at

the TeV scale! It is thus shown that the dilaton tadpole and the associated non-

supersymmetric instabilities are suppressed while simultaneously retaining an aus-

picious low-energy phenomenology, all without any light superpartners for the SM

particles and hence no remnant of SUSY in the spectrum of the resulting string the-

ory. It is worth emphasising that these are entirely non-supersymmetric string mod-

els at all scales, including their fundamental Planck scales, and it would therefore

be a big mistake to view them as having been supersymmetric at the Planck scale

but subsequently subjected to some sort of purely field-theoretic SUSY-breaking

mechanism at lower energies.

The existence of such models establishes the beginning of a new framework
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for the development of an entirely non-supersymmetric string phenomenology. The

significant advantage of building models in this framework is that the models are

UV complete, with finiteness ensured through entirely stringy mechanisms such as

the modular invariance and “misaligned SUSY” [20–22]. Both the modular invari-

ance and misaligned SUSY are additional symmetries ingrained in string theory

and always guarantee the finiteness of the theory, even when there is no spacetime

SUSY on strings. However, they have no equivalent counterparts within Quantum

Field Theory (QFT). From this standpoint, it is only natural to wonder whether

progress in non-supersymmetric, UV complete phenomenology could provide an-

swers or explanations for possible physics beyond the SM - such as the gauge

hierarchy problem for example - which might descend directly from string theory

but which nevertheless has no traces of SUSY at any energy scale.

A large part in this thesis is invested in the methods by which suitable non-

supersymmetric UV complete strings might be constructed, the criteria for their

stabilisation and the low-energy phenomenologies to which they give rise. The

string models presented in this work are first constructed in Ref. [15] and have the

innovative advantage that their one-loop cosmological constants are exponentially

suppressed. Their dilatons are thus essentially stable, at least to one-loop order,

rendering these models as suitable platforms upon which to build a study of non-

supersymmetric string phenomenology.

The results of Ref. [15] demonstrate that hierarchically separated scales can be

natural within the context of non-supersymmetric string theories. In this, what-

ever spacetime SUSY might have otherwise existed has been destroyed through

purely string-theoretic steps in the primordial model-construction process. This

could occur through particular choices of SUSY-breaking compactifications from

ten dimensions that nevertheless respect modular invariance. Such compactifi-

cations are often considered to be generalised versions of Scherk-Schwarz com-

pactification. It is important to clarify a critical point regarding the mechanism

of Scherk-Schwarz compactification. It is common to use a heuristic language

when talking about the various steps taken in the construction of a given string

model and one might then refer to a “SUSY-breaking” step. For example, this
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applies for Scherk-Schwarz compactifications, in which case the terminology is

slightly abused so that one often speaks of this as a spontaneous breaking of

spacetime SUSY. This terminology is repeatedly used throughout this thesis, there-

fore it should be stressed that spacetime SUSY is not broken according to any

time-ordered or energy-ordered dynamics. A non-supersymmetric self-consistent

model is produced from another string model via a set of well-defined proce-

dures. As it shall be demonstrated, it is possible to produce a four-dimensional

non-supersymmetric string model from a higher-dimensional (parent) supersym-

metric theory. However, the resulting model is not inferior to the original one as it

is fundamentally non-supersymmetric at every energy level of the theory.

It is crucial to realise that the set of well-defined procedures involves purely

string-theoretic construction methods that ensure the UV-finiteness of the emerg-

ing theory with or without SUSY. Specifically, the modular invariance imposes

powerful constraints which enable the truncation of the one-loop integrals ex-

cluding those regions where the UV divergences reside, thus the finiteness of the

theory remains intact. More physically, at the level of the string spectrum, this

finiteness is maintained via the “misaligned SUSY”. This is a hidden residual sym-

metry that always remains in the spectrum of any self-consistent string theory, even

if spacetime SUSY itself is absent [20–22]. It entails a subtle configuration of

bosonic and fermionic states throughout the string spectrum and one of its dis-

tinct characteristics is the absence of any boson/fermion pairing, either exact or

approximate. Finiteness is then achieved through the contribution of all the states

in the spectrum which distribute themselves in such a way so as to produce finite

amplitudes. Given this, the major accomplishment of the semi-realistic models

constructed in Ref. [15] has been to demonstrate that these models can tolerate

large scale separations and all the while preserve their UV-finiteness.

This work by no means claims that the string models presented here are com-

pletely satisfactory as bona-fide models of the universe, or even as phenomeno-

logically acceptable string vacua. Just as with the SUSY string models, these non-

supersymmetric heterotic string models generally contain many unfixed moduli

whose VEVs ultimately remain to be determined. The main point, however, is
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to demonstrate that these non-supersymmetric models could be just as viable as

the supersymmetric ones, in the sense that the instabilities associated with the

absence of spacetime SUSY could be exponentially suppressed. Henceforth, the

phenomenology of such non-supersymmetric heterotic strings could be viewed as

mirroring that developed over the past thirty years for their traditional supersym-

metric counterparts.

However, it would be remiss of me not to mention that even though the past

three decades there has been a torrent of work focusing on supersymmetric string

model-building, there has likewise been a steady trickle of work focusing on the

diverse properties of non-supersymmetric strings. An interest on this work was

sparked by the original studies of the ten-dimensional S O(16) ⊗ S O(16) heterotic

strings [23] – the first known model of non-supersymmetric theory which is com-

pletely free of tree-level tachyons. This includes studies of the one-loop cosmolog-

ical constants of non-supersymmetric strings [20,21,24–37], their finiteness prop-

erties [20, 21, 38] and their strong/weak coupling duality symmetries [39–42].

The landscapes of such strings have also been studied [43, 44], and all studies

of strings at finite temperature are also implicitly studies of non-supersymmetric

strings. An early work on this area is found in Refs. [45–49]. Generally, the

non-supersymmetric string models studied in previous works were either non-

supersymmetric by construction or exhibited a form of Spontaneous Supersymme-

try Breaking (SSSB) [19,24,50–56] by adapting the Scherk-Schwarz mechanism to

string theory [57]. Within this class, there have been constructed a number of po-

tentially viable models which are presented in Refs. [18,25,42,58–63]. Moreover,

non-supersymmetric string models have also been studied in various other config-

urations [64–77], including studies of how the energy scales of different schemes

could possibly be related [78–84]. Eventually, moving into more recent times,

there has been a continuing progress in the study and progress of phenomenology

for non-supersymmetric string theory [15,85–90].

The rest of this thesis will be devoted to a discussion on the construction of four-

dimensional, tachyon-free, non-supersymmetric models with a low energy spectrum

that resembles either the Pati-Salam or the SM theory. The centre of attention will
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be on their properties as well as in some future ideas regarding the development of

non-supersymmetric string phenomenologies. This thesis is then organised in four

main parts. The first part, consisting of Chapter 2 through Chapter 3 lays the gen-

eral groundwork of the study presented, which is independent of the model con-

struction formalism. Chapter 2 is the preface chapter of the thesis which imparts

an overview of the theoretical foundations of the SM and SUSY, with a special

emphasis on the MSSM. Chapter 3 is an overview of the string theory framework.

It summarises the mathematical development of string theory to the present and

points at some of the possible paths that lie open ahead in the future.

The second part, consisting of Chapter 4 through Chapter 5 gives the general

theoretical features of all non-supersymmetric string models. It provides a de-

tailed explanation of the expected phenomenological properties of interpolating

models - a special class of non-supersymmetric models which interpolate between

two higher-dimensional theories at their two endpoints R→ ∞ and R→ 0, with R

being a generic radius of compactification. Moving on then to Chapter 4 there is

an introduction on the formalism used throughout this thesis for the construction

of the desired models. This is followed by details regarding the theoretical prop-

erties of all such non-supersymmetric, tachyon-free heterotic strings and a general

account on the associated finiteness and stability properties. In Chapter 5 the dis-

cussion is focused on a specific class of models, the so-called interpolating models.

There is presented the link between interpolation and the enhanced stability prop-

erties of the models constructed; the one-loop cosmological constants associated

with such strings sit at the root of this explanation. Overall, this chapter provides

a derivation of the leading and subleading terms that govern the behaviour of the

cosmological constant, paying particular attention to the role played by off-shell

string states and their contributions.

The stage having thus been set, the third part of this thesis, consisting of Chap-

ter 6 through Chapter 8 focuses on the actual construction of semi-realistic non-

supersymmetric heterotic string models with suppressed cosmological constants.

This is done in several steps, for which a general outline is provided in Chapter

6. It is first shown a particular six-dimensional free-fermionic string model from
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which the ultimate four-dimensional string models emerge upon compactification.

For comparison purposes it is also shown a traditional SUSY-preserving ZZ2 orbifold

compactification, along with a description of the associated theoretical and phe-

nomenological features. Then, in Chapter 7, there are presented two different

types of SUSY-breaking by applying different Coordinate Dependent Compactifi-

cations (CDCs). The first one is a CDC performed on a two-dimensional torus

thereby producing a non-chiral N = 2 → N = 0 four-dimensional theory, whereas

the second one is a CDC performed on ZZ2 orbifold thereby producing a chiral

N = 1 → N = 0 four-dimensional theory. For the latter, an analysis of the emerg-

ing low energy spectrum and of the cosmological constant’s behaviour is provided.

In Chapter 8 it is then shown how this model can be altered in different ways in

order to achieve the desired goal, namely models with exponentially suppressed

dilaton tadpole instabilities. Indeed, several models of this type are presented,

one whose low-energy spectrum resembles the SM, and others resembling either

Pati-Salam-like or GUT-like “unified” extensions thereof.

The fourth and final part of this thesis, consisting of Chapter 9 through Chap-

ter 11 then presents the phenomenological properties of models with exponen-

tially suppressed cosmological constants, including their Yukawa couplings and

scalar masses. There is also a brief account of the potential implications of hav-

ing a non-supersymmetric theory which is consistent with the naturalness prob-

lem in string theory. In Chapter 9 there are first discussed two theoretical prop-

erties of these models: the behaviour of the degeneracies associated with their

physical-state spectra as functions of energy, and the behaviour of their cosmolog-

ical constants as functions of their compactification radii. For both properties, it

is deduced that there are special features which are unique and which reflect the

fact that these models exhibit enhanced stability properties relative to typical non-

supersymmetric string models. Next discussed are their phenomenological prop-

erties, focusing on particle assignments, Yukawa couplings, and scalar masses. In

Chapter 10, there is a reference to the danger of having extremely large gauge

couplings at large volumes in weakly coupled heterotic strings. It is therefore pro-

posed that such dangers could be overcome through models which admit extra
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states known as “GUT precursors”. In order to demonstrate this, there is shown

an example of a ‘stable’ non-supersymmetric SM-like theory which allows a GUT

precursor structure. Chapter 11 ends the narrative with a concise summary of

everything presented in this thesis and provides an outline of some avenues for

further study in the future.

This thesis also contains five Appendices. The first three provide some additional

information on the theoretical background of this work. The next one describes

the notation and conventions used in the analytic computation of the partition

functions and subsequently of the cosmological constants. The final Appendix

presents an alternative way of breaking SUSY, known as discrete torsion.
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Chapter 2

Theoretical Foundations

The world is a construct of our

sensations, perceptions, memories. It

is convenient to regard it as existing

objectively on its own. But it

certainly does not become manifest

by its mere existence.

Erwin Schrödinger

2.1 The Standard Model of particle physics

All of the natural phenomena occurring at the microscopic level are understood

in terms of the electromagnetic, weak and strong fundamental forces. A complete

description of the behaviour of all known subatomic particles can be provided

within a single, theoretical framework which incorporates the basic principles of

the Quantum Mechanics (QM) and Special Relativity (SR). The relativistic QFT

which emerges from this framework is none other than the illustrious SM of el-

ementary particle physics. The SM, as it is discussed below, is only a very tiny

fraction of the optimum GUT that will unify the gravitational force with the re-

maining three fundamental forces and will depict the fundamental laws operating

at the roots of our world.
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In particle physics the concept of symmetry plays a crucial role for the successful

development of accurate and ‘elegant’ unified theories. The existence of various

symmetries points to the underlying principles of nature and these symmetries are

generally classified as either global or local. Exact symmetries are realised through

the latter and require the existence of gauge fields, whereas the former are usually

only approximate.

The electromagnetic, strong and weak interactions are all related to local sym-

metries described by Abelian and non-Abelian gauge theories. Consequently, the

SM is a well-defined gauge theory with the non-Abelian symmetry group

S U(3)C ⊗ S U(2)L ⊗ U(1)Y , (2.1.1)

where C, L and Y denote the colour, weak isospin and electroweak hypercharge

respectively. The first gauge group encompasses the strong interactions, while

the remaining two encompass the weak and electromagnetic interactions [91].

Specifically, the electromagnetic interactions are associated with a combination of

S U(2) and U(1) generators, i.e. Qem = T3 + Y.

2.1.1 Technical Overview

The SM is a theory of fields with spin 0, 1
2 and 1; its particle content is shown in

Fig. 2.1. The gauge interactions of the particles involved are determined by their

spin as well as their mass and quantum numbers (charges). The spin- 1
2 particles

are fermions which are either leptons or quarks. Since all of the observed mat-

ter in the universe is made up of leptons and quarks, the SM fermionic fields are

defined to be the matter fields. As it turns out, there exist sets of fermions which

have identical quantum numbers but different masses. Based on their mass hierar-

chies the fermions are organised in three families or generations. Generations with

larger masses are unstable and will eventually decay into the lightest, stable gen-

eration which forms the ordinary matter in the universe, including us! As shown

in Fig. 2.1, each column corresponds to a generation which consists of two quarks

and two leptons, distinguished by their charges under the electromagnetic and
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Figure 2.1: Particle content of the Standard Model.

strong interactions. The leptons participate solely in the electromagnetic and weak

gauge interactions, therefore they only carry an electromagnetic charge (Qem). The

quarks participate in all three gauge interactions, carrying an extra charge under

the strong interactions, the colour charge. Specifically, the quarks come in triplets

of colour, i.e. they carry an index â = 1, 2, 3 which in the experimental observa-

tions are identified with the blue, green and red colours. Among the leptons, the

neutrinos appear to have the most bizarre behaviour: although they participate

in the weak interactions they are not charged under any of the three gauge in-

teractions in the SM. In addition, the neutrinos are experimentally found to have

masses which are several orders of magnitude lighter than the masses of the other

SM fermions.

From a theoretical point of view, the spin- 1
2 fermions are associated with the

two irreducible representations of the S O(1, 3) Lorentz group, which are distin-

guished by what is known as the chirality. A massive fermion has two components

of different chirality, forming what is known as a Dirac spinor ψ which is therefore
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expressed as the sum of a left-handed part ψL, and a right-handed part ψR,

ψ = ψL + ψR , (2.1.2)

where

ψL = PLψ with PL = 1
2 (1 − γ5) (2.1.3a)

ψR = PRψ with PR = 1
2 (1 + γ5) . (2.1.3b)

The PL and PR are projection operators, projecting out the left-handed (or nega-

tive) and the right-handed (or positive) chirality states of the fermion, respectively.

They satisfy

PLPL = PL, PRPR = PR, PLPR = PRPL = 0 and PL + PR = I . (2.1.4)

As a result, each SM matter field is a chiral fermion. Although chirality is a definite

property of the fermions it is not a physical observable. In the case of massless

fermions, chirality is conserved and coincides with the helicity. In the SM, the

total number of chiral fermions organised in three generations is 48. Therefore,

each generation consists of 16 chiral fermions with the left-handed leptons and

quarks coming in doublets of the weak isospin S U(2),

lĉ
L ≡

νĉ
e

eĉ


L

=

(
1,2,− 1

2

)
and Qâĉ

L ≡

uâĉ

dâĉ


L

=

(
3,2,+

1
6

)
, (2.1.5a)

and the right-handed leptons and quarks being S U(2) gauge singlets

eRĉ = (1,1, 1); {νRĉ = (1,1, 1)}; (2.1.5b)

uRĉ =

(
3,1,−

2
3

)
; dRĉ =

(
3,1,+

1
3

)
. (2.1.5c)

Here ĉ = 1, 2, 3 is the family index, and the quantities in brackets represent the

S U(3), S U(2) representations and U(1)Y value respectively. Experimentally it is

found that only the left-handed components of the fermions participate in the
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charged current weak interactions. There are no right-handed neutrinos in the SM,

but if they exist, they could provide answers for several phenomena that cannot be

explained within the SM, including some which are discussed in the next section.

Experimental evidence from the neutrino oscillations hint to their existence but

they remain yet to be observed.

The spin-1 particles are the gauge bosons whose exchange is associated with the

fundamental interactions in the SM. These particles include the photon mediating

the electromagnetic interactions, the eight gluons mediating the strong interac-

tions and the W±, Z0 bosons mediating the weak interactions, as per Fig. 2.1.

Evidently, our world is not quite as symmetric as the theories of interactions

used for its description. The reason for this lies in the fact that nature favours many

symmetries which are broken. Symmetries can be explicitly broken due to the

presence of non-invariant terms in the Lagrangian (L) of the theory. Sometimes,

the quantisation of a theory may also lead to an explicit Symmetry Breaking (SB)

even if the Lagrangian is invariant. In such a case, the explicit SB occurs in the

measure of the Feynman path integral introducing anomalies. Only theories in

which a global symmetry is explicitly broken are regarded as consistent theories. In

the SM, the explicit breaking of the gauge symmetries introduces gauge anomalies.

The consistency of the SM as a theory is guaranteed by the cancellation of all the

gauge anomalies as a consequence of the properly arranged chiral matter fields in

each generation.

Symmetries can be also spontaneously broken, a dynamical effect which takes

place when the ground state of the system is not symmetric, so the system itself

breaks that symmetry in a ‘spontaneous’ way. When a continuous global symmetry

is spontaneously broken by the choice of the vacuum, a massless field known as

Goldstone field appears for each broken generator of the symmetry. The Goldstone

modes carry the same quantum numbers as the corresponding broken symme-

try generators. This implies that if a global symmetry with bosonic generators is

spontaneously broken the resulting massless Goldstone particles will be neutral

bosons; the so-called Goldstone bosons. The choice of the true vacuum of the the-

ory is equivalent to choosing a suitable gauge for the quantisation of that theory.
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The Goldstone bosons which can, in principle, transform the chosen vacuum state

into any other degenerate vacuum state, now influence transformations into states

which are inconsisted with the original chosen gauge. This leads to the conclusion

that the Goldstone bosons are in fact ‘unphysical’.

On the other hand, the Spontaneous Symmetry Breaking (SSB) of a gauge

(or local) invariance results in the well-known Higgs effect, where after a gauge

coupling the Degrees of Freedom (d.o.f) of a Goldstone boson associated with the

broken generator of the symmetry provide an extra helicity state, a longitudinal

component for the spin-1 local gauge boson which now becomes massive1. The

scalar fields responsible for the spontaneous breaking of such a gauge symmetry

are known as Higgs fields.

The fundamental interactions described by the symmetry group in Eq. (2.1.1)

are only valid when the gauge bosons and chiral matter fields are massless and

the gauge invariance is preserved. However, a series of accurate and successful

experimental results revealed that the weak force interactions are short range and

are mediated by the W± and Z0 bosons which are massive. The chiral fields also

get a mass at low energies, while the gluons and the photon remain massless.

These results directly contradict SM gauge invariance, so the logical explanation is

that SSB must occur. Indeed, the electroweak symmetry is spontaneously broken,

preserving only the unbroken group

S U(3)C ⊗ U(1)em . (2.1.6)

The spontaneous breaking of the electroweak symmetry in the vacuum is due

to the self-interactions of the scalar Higgs field (Φ) which permeates the entire

universe and when excited takes the form of a scalar (spin-0) particle, the famed

Higgs boson (H). The Higgs field is a complex doublet with Y = 1
2 under S U(2)L ⊗

U(1)Y and a singlet under S U(3)C.

Having introduced all the ingredients of the SM, it is now possible to write the

1A massless spin-1 gauge boson, i.e. the photon has only two d.o.f which are its polarisation
states. A massive spin-1 gauge boson has three d.o.f - helicity states.
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complete Lagrangian of the theory which is rather simple:

LS M = LS M
gauge bosons +LS M

f ermion KT +LS M
f ermion masses +LS M

Higgs , (2.1.7)

with

LS M
gauge bosons = − 1

2Tr [FµνFµν] (2.1.8a)

LS M
f ermion KT = ΨLĉγ

µDµΨLĉ (2.1.8b)

LS M
f ermion masses = − 1

2ΨT
Lĉ ChΦΨLĉ + h.c (2.1.8c)

LS M
Higgs = |DµΦ|

2 − µ2Φ†Φ + 1
2λH(Φ†Φ)2 . (2.1.8d)

The C and h in the third term are the charge conjugation matrix and the Yukawa

coupling matrix respectively. The explicit form of the terms in Eq. (2.1.8) is given

in the Appendix A.1. All coupling constants are dimensionless and as it is noted

above there is no direct mass term for any of the leptons, quarks or vector bosons.

The masses of all the SM particles, except those of neutrinos, are generated via

the Higgs mechanism in which case the arrangement of all the renormalisable

interactions causes the neutral component of the Higgs field to acquire a VEV,

v = 246.22 GeV [92]. This outcome sets the scale of the electroweak symmetry

breaking [93].

S U(3)C has eight generators in total that remain unbroken. Hence the cor-

responding gauge fields, the gluons remain massless. The S U(2)L ⊗ U(1)Y group

has four generators in total and the Higgs field has initially four real, scalar d.o.f.

When the electroweak symmetry breaks spontaneously (only for µ2 > 0) there is

a generator that remains unbroken and which is associated with the U(1)em gauge

symmetry. Its corresponding gauge field is none other than the massless photon.

The remaining three generators correspond to the gauge fields which mix with one

neutral and two charged massless Goldstone d.o.f (G0 and G± respectively). The

unphysical Goldstone bosons can be removed by a transformation to the unitary

gauge. In this gauge, their d.o.f become the longitudinal components of the Z0 and

W± physical gauge bosons respectively. At the same time two d.o.f of the Higgs
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field are absorbed by the W± and one by the Z0 gauge bosons which now become

massive. The fourth d.o.f of the Higgs field becomes a new fundamental spin-0

particle; this is the physical Higgs boson H. In the unitary gauge the Higgs field is

parametrized as

Φ =
1
√
2

 0

v + H(x)

 . (2.1.9)

The Higgs boson is a singlet under S U(3)C and is neutral under electromagnetic

interactions, therefore it does not couple at tree level to the massless gluons and

photon. The chiral matter fields become massive when the Higgs doublet field

couples to them through Yukawa interactions. However, the masses of neutrinos

are not generated by Yukawa interactions but instead through another process.

The most prevalent scenario is that of the see-saw mechanism. The masses of the

particles in the SM are beyond the scope of this thesis, however, for the enthusi-

astic readers the formulas for the computation of their values are presented in the

Appendix A.2.

2.1.2 Phenomenological Overview

Over the past few decades, the SM has been subjected to a series of experimental

tests at energies up to several hundred GeV and even after the results of the first

LHC run, it passes all tests with flying colours. At present it is the theory that

provides the best phenomenological understanding of the fundamental world with

a great accuracy. Undeniably, the rich structure of the theory has led to different

areas of research such as Quantum Chromodynamics (QCD), flavour physics which

is mainly focused on the Cabbibo-Kobayashi-Maskawa (CKM) model of flavour

mixing and Charge-Parity (CP) violation, and of course Higgs physics.

For more than 40 years, it was predicted that the missing piece required to

complete the SM puzzle was the Higgs boson, responsible for the origin of mass.

As stated in [94–96], without the Higgs boson the SM no longer exhibits pertur-

bative unitarity at high energies because the longitudinal scattering amplitude of

the W± and Z0 bosons would be allowed to grow proportionate to the increase in

the centre-of-mass energy. Furthermore, the longitudinal components of the ra-
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diative corrections to the self-energies of the gauge bosons would certainly exhibit

unpredictable logarithmic divergences [93].

The hunt for the elusive Higgs boson, finally came to fruition in July of 2012

at the LHC. The Higgs boson is measured by both ATLAS and CMS experiments

to have a combined mass of mH = 125.09 ± 0.24 GeV [97]. Although at the first

stages of its discovery physicists seemed to be suspicious whether it actually was

the SM Higgs boson, evidence shows that it is as predicted: the possibility of the

boson found at the LHC having spin-1 is excluded and the experimental results

exclude also the possibility of it having spin-2, confirming that it is in fact a spin-0

particle. Moreover, flavour calculations and CP violation measurements regarding

the Higgs are consistent with SM predictions [98].

Consequently, the long-awaited discovery of the Higgs boson validates the

Higgs mechanism and confirms the SM to be one of the greatest triumphs of 20th

century particle physics. With this discovery, the experimental verification that mH

< 1 TeV establishes that indeed the WW scattering cross-section does not violate

the perturbative unitarity as predicted in [94–96]. Most importantly, it can be seen

as the first step into finding and understanding the properties of the so significant

Higgs field. Nonetheless, the multitude of experimental results strongly imply that

the SM is a gauge theory with the potential to form part of a consistent theory all

the way to the Planck scale.

Currently, all the LHC results indicate a rich and diverse phenomenology re-

garding the Higgs physical properties, interactions with fundamental particles and

CP violation measurements. It does not come as a surprise that these outcomes, in

conjuction with other results from the first LHC run [98], point the way to Beyond

Standard Model (BSM) physics, with the SM being an EFT at the low energies (< 1

TeV). Certainly, with the discovery of the Higgs boson, the door to BSM physics

research is now wide open and the experimental results from the second LHC run

are expected to shed light on this.

Despite the astounding success of the SM, phenomenological observations leave

no room for doubt that there are still many theoretical problems to be addressed

where the SM fails spectacularly to provide answers. Given the strong experimen-
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tal indications, it is widely thought that the SM is just a small part of a bigger

picture; it is simply the low energy limit of a more fundamental theory. There are

numerous issues that render the SM a highly insufficient theory, and short descrip-

tions of some of the most important ones are provided below.

Gauge Coupling Unification

A fortuitous occurrence regarding the foundations of the SM is that each of the

gauge interactions is accompanied by a different coupling constant (or coupling

strength), with all three being independent and seemingly unrelated. In this case,

the crucial idea which arises due to the effect of higher-order quantum corrections

in the gauge boson propagators is that of running coupling constants - a termi-

nology used to describe the variation of the coupling strength as a function of a

typical energy scale µ̃. A mathematical account of the running of the gauge cou-

plings is provided by the specification of a renormalisable scheme. Variation of

the coupling strengths is then solely determined by the particle content and their

couplings inside the higher-order loops of the gauge bosons. The value of this vari-

ation is expressed by a set of RGEs. The one-loop RGE for the SM gauge couplings,

as computed in the MS are

dαi

dt
=

1
4π

biα
2
i , t = log

(
µ̃

µ̃0

)
; i = 1, 2, 3 , (2.1.10)

where αi ≡
1
4πg2

i and µ̃0 is a very high energy scale which is arbitrarily chosen. For

the SM the coefficients, as given in Ref. [99] are

bi =


b1

b2

b3

 =


0

− 22
3

−11

 + NFAM


4
3
4
3
4
3

 + NHIGGS


1
10
1
6

0

 =


41
10

− 19
6

−7

 , (2.1.11)

with NFAM = 3 being the number of chiral matter families and NHIGGS = 1 being the

number of Higgs doublets. The evolution of the inverse of the coupling strengths
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(a)Standard Model (b)MSSM MS US Y ∼ 1 TeV

Figure 2.2: The two-loop Renormalisation Group (RG) evolution of the three
gauge coupling constants gi with energy scale Q = µ̃ (GeV) in the SM and MSSM.
The evolution is calculated according to the formulas in Ref. [100], p.199 assum-
ing that the masses of the superpartners are in the range of the TeV scale. The
red, green and blue lines correspond to the running of the electromagnetic, weak
and strong couplings respectively. Shown is the inverse gauge coupling strength
αi which is parametrized as α−1i = 4πg−2i . The line thickness is a representation of
the errors in the coupling constant measurements.

as a function of the logarithm of energy is described by the solution to Eq. (2.1.10):

1
αi(µ̃2)

=
1

αi(µ̃20)
− 4πbiln

(
µ̃2

µ̃20

)
. (2.1.12)

Based on experimental data, a graphical representation of this result was origi-

nally presented in the renowned paper of Ref. [99]. A modified form of the origi-

nal graph is adopted by Ref. [101] and is shown in Fig. 2.2. A significant aspect of

the interpretation of the behaviour of each gauge interaction’s coupling strength

is the self-interaction of gauge fields that yield an antiscreening effect and hence

a negative contribution in the overall value of the gauge couplings. On the other

hand, the matter multiplets produce a counter effect - screening - which yields a

positive contribution. The S U(3) coupling is affected by asymptotic freedom to a

much greater extent than the other couplings. This is due to the numerical supe-

riority of gluons which are responsible for an antiscreening effect that outweighs
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the screening effect from the quarks. Therefore, the strong coupling strength de-

creases as the energy scale increases. In the case of the S U(2) the antiscreening

effect is slightly stronger than screening. The weak coupling strength therefore

decreases at higher energy scales but at a much slower rate than the strong cou-

pling. The U(1) group is free from gauge field self-interactions so nothing hinders

the screening effects from completely taking over. This leads to an increasing elec-

tromagnetic coupling strength at increasing energy scales. Finally, one has to take

into account the Higgs fields which are able to influence the running of the weak

coupling at one-loop. They are also able to influence the electromagnetic coupling

but to a lesser extent. In both cases, the coupling strengths increase with energy.

At one-loop the evolution is a straight line. At two-loops there is no observable

deviation from the straight line plots because the effects are relatively small and

therefore unable to cause any significant alterations. The directions of the gauge

couplings provide an indication that the couplings could possibly meet at a single

point. This indication fuels the idea for the existence of a GUT in which all three

gauge couplings become equal at a unification point. A good scientific strategy

is to check whether such claims have a reasonable ground by using the RGEs to

calculate the running of each gauge coupling at very high energy scales. It is

found that all three gauge couplings meet at an energy of O (1016) GeV, something

that forms strongly suggestive evidence for the existence of a theory at very high

energy scales which incorporates greatly enhanced gauge symmetries and allows

the unification of gauge couplings.

For a notable change in the logarithmic energy scale of gauge couplings it is

necessary to have an enormous change in the energy scale itself. Indeed, the

proposed unification scale of O (1016) GeV, is consistent with the large difference

required between the SM and the GUT energy scales. Nevertheless, Fig. 2.2a

demonstrates that within the SM the unification of gauge couplings is an imprac-

ticable dream.
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The Hierarchy problem

On gauge theories there is an imposing, order of magnitude, restriction at every

energy scale µ̃ which is a physical parameter or a set of physical parameters αi(µ̃).

These parameters are allowed to be very small provided that the αi(µ̃) = 0 re-

placement would enhance the symmetry of the theory. This enhancement is what

is defined to be the “naturalness”, a property of the gauge theories. Naturalness

arises in the case that a not well comprehended theory with strong interactions

yields a mass spectrum with various symmetry properties at energy scales µ̃>µ̃0.

If at the µ̃=µ̃0 scale some of the parameters in the uncomprehended theory are

determined to be several orders of magnitude smaller than that energy scale, then

it must be because of some form of a symmetry [102].

The basic framework for naturalness assumes the existence of a fundamental

energy scale (λ) which is the real cut-off of the theory. It is generally assumed

that the cut-off λ is the Planck scale, O (1019) GeV. The basic parameters of gauge

theories with such a cut-off are a set of dimensionless bare couplings (g0) and

masses (m0). The dimensionless bare masses are renormalised with respect to

(w.r.t) the cut-off energy scale as

m′ =
m0

λ
. (2.1.13)

According to the principle of naturalness, the physical properties of a theory at

low energies must be stable when the coupling, g0 and the renormalised masses

are subjected to very small variations. Since the ‘light’ physical mass spectrum

of the theory emerges at energies many orders of magnitude smaller than the

fundamental scale, there is clearly a large difference between the physical and

the fundamental scale. In order to ensure that the quantum effects of the higher

energy scale preserve the stability of the theory at low energies the parameters

must be adjusted in such a way so as to account for the quantum effects. The

most common quantum effect which is in conflict with naturalness occurs when a

particle receives a self-energy which is quadratic in λ. If the mass corrections are
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of the form

m2 = m2
0 + δm = m2

0 + λ2g2
0 , (2.1.14)

then the bare mass parameter from Eq. (2.1.13) must obey

m′2 =
m2

λ2
− g2

0 . (2.1.15)

If m is a physical mass of O (102) GeV and λ ∼ O (1019) GeV then

m′2 = 10−34 − g2
0 . (2.1.16)

What Eq. (2.1.16) means is that for the naturalness to manifest itself, the renor-

malisable mass m′ must be adjusted in such a way so as to produce a result of the

order of ∼ 10−34. If m′ is taken to be instead of the order of ∼ g0, then the physical

mass will come out to be m ∼ O (1019) GeV [103].

Such a scenario which involves unnatural renormalisable mass parameters only

occurs in theories with scalar particles, such as the SM. The only fundamen-

tal scalar particle in the SM is the Higgs boson and as deduced from LHiggs in

Eq. (A.1.7) of Appendix A.1, the mass-squared [(mH)2] is up to a constant coeffi-

cient a parameter of LS M. Since the Higgs boson is established as a light scalar

at energy scales µ̃�mH, there arises the question as to whether a symmetry ex-

ists that protects its mass when the renormalised Higgs mass parameter is very

small, i.e. mH,0 → 0. This is due to the naturalness criterion which distinctly

states that without a symmetry to protect the mass of the Higgs, the light scalar is

left exposed to a sensitivity in the UV region of the theory. This can be verified an-

alytically when the Higgs mass parameter is renormalised from a fermionic loop as

seen in Fig. 2.3. For the renormalisation the relevant terms in the SM Lagrangian

are the last three components of Eq. (2.1.7). Computation of the fermionic loop

yields the correction to the Higgs mass,

(δmH)2 ∼ −ĥ2
f

∫ λ

d4p Tr
[

1
(/p − mΨ)2

]
∼ −ĥ2

fλ
2 . (2.1.17)
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H

Ψ

H

Ψ

Figure 2.3: Higgs mass renormalisation from a fermion loop.

It is obvious that the Higgs mass diverges quadratically! From a theoretical per-

spective, the quadratic singularities which are sensitive to the cut-off scale λ are

not cancelled, suggesting that the Higgs mass is of the order of the Planck mass.

This is not consistent with the experimental data which verify that the Higgs boson

is a light scalar with a mass mH ≈ 125 GeV - about 15 orders of magnitude smaller

than the Planck mass. Due to the nature of this elementary particle, there is cur-

rently no experimental verification of a mechanism which could protect its mass

by providing a natural way to cancel the quantum corrections. There is, however,

compelling evidence that there are other symmetries underlying the fundamental

interactions.

The faux pas of theoretical particle physics to explain this huge discrepancy

between prediction and the experimental measurement leads to the troublesome

result:

m2
H, bare = m2

H,0 + δm2
H + counter term , (2.1.18)

where mH,0 = 1
λ
mH is the renormalised mass parameter. The counter term accounts

for the additional radiative corrections that the mass of the Higgs boson acquires

due to the symmetry (or other mechanism) that protects the mH from becoming

very large. The consequence of adding a counter term is that for the theoretical

and experimental values to be agreeable the counter term must be ‘fine tuned’ so

that it will cancel the quadratically divergent contributions to δm2
H. Moreover, this

adjustment must be made at every order in perturbation theory.

In general the Higgs mass parameter is affected by heavy particles, especially
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Figure 2.4: The Feynman diagrams for the one-loop quantum divergences to the
Higgs boson mass in the SM.

by fermions, such as the top quark which has a mass mt = 172.3 ± 1.3 GeV [104].

Aside from fermions, the Higgs boson mass is also renormalised from scalar loops.

Although the resulting corrections to mH are quite different, the dominant term

still causes the physical value of mH to diverge quadratically. Therefore the heavy

particles that couple to the Higgs induce very large radiative corrections to the

Higgs mass parameter which in turn demand a very large fine tuning to justify the

small mH. This problem is the result of introducing a physical significance to the

cut-off energy scale λ [105] with the light Higgs scalar being unable to survive in

the presence of heavy states at much higher energy scales. This disparity between

the theory and experiment is known as the hierarchy problem in the SM.

For the avid readers, an explicit calculation of the one-loop quantum diver-

gences to the Higgs boson mass due to heavy scalars and fermions is presented in

Appendix A.3 based on the work in Ref. [106]. In the SM, these divergences are

induced as depicted in Fig. 2.4.

Gravity

The most significant hole in the SM is the lack of gravitational interactions. Grav-

ity is by far the weakest fundamental force in nature, but unlike the other three

fundamental forces that are related to local symmetries, gravity has a global effect

and thus is a universal force. Gravity is thought to have its own force-carrier, a

spin−2 particle known as the ‘graviton’, which has not been observed yet. QFT

is not consistent with the framework needed to describe the gravitational interac-

tions. The impenetrable barrier to the attempt to incorporate gravity in the SM is

September 20, 2016



2.1. The Standard Model of particle physics 36

the fact that all theories turn out to be non-renormalisable. In a more precise way,

any attempt for renormalising gravity results in an infinite scattering cross-section

for interactions. This requires a very fine tuning at each order in the interaction so

as to yield a finite result [107]. At the microscopic scale, the gravitational effects

are almost negligible, in contrast to the macroscopic scale where they dominate.

Dark Matter and Dark Energy

Cosmological observations lead to the staggering conclusion that there is an un-

known form of matter which does not interact with the electromagnetic force and

hence does not absorb, reflect or emit light. It is thought to be extremely weakly

coupled and has only been detected by the gravitational effects that has on the

visible matter. Visible matter constitutes only 5% of the universe while the dark

matter constitutes the 27%. There are many conjectures about the nature of dark

matter, but there is one definite fact: it cannot possibly be a part of the SM! An-

other mystery of the universe, which has no place in the SM is dark energy which

is distributed evenly throughout spacetime and is associated with the vacuum in

space. The even distribution of dark energy causes global gravitational effects on

the universe resulting in a repulsive force. This force is believed to drive the accel-

erating expansion of the universe. The existence of dark energy is experimentally

confirmed and constitutes 68% of our universe.

Electroweak Vacuum

In the SM the electroweak vacuum is measured to be v = 246.22 GeV. However the

measured values of mt and mH, indicate that the effective potential of the theory

is shifted to a more unstable state. This is due to the dominant contribution of

the top quark in the renormalisation of the Higgs self-coupling. With these results,

the electroweak vacuum is in principle regarded to be unstable in the SM. With

more accurate results from the second LHC run the stability of the vacuum may

be improved but it is not guaranteed. BSM physics is therefore unavoidable for

dealing with this problem.
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Neutrino Masses

In the SM, neutrinos are assumed to be massless due to a global chiral lepton num-

ber symmetry [108]. This is in stark disagreement with observations of neutrino

mixing and oscillations, which can only be possible if neutrinos are massive. In-

deed, experimental results have revealed the masses of neutrinos to be small but

not negligible. The undeniable fact that neutrinos are light elementary particles

raises many questions: why is their mass many orders of magnitude smaller than

that of the other chiral matter fields, do they have Dirac or Majorana masses, are

baryon and lepton numbers conserved etc. A model that demonstrates how neu-

trinos may carry such a small mass was proposed by [109] and is widely known as

the see-saw mechanism. This is a natural way of obtaining small neutrino masses

provided that there exist heavy singlet neutrinos νR. Such a mechanism cannot be

accommodated in the SM framework, leading once again to the labyrinthine paths

of BSM physics.

Baryon Asymmetry

The observed lack of antimatter is in direct contrast with the abundance of ordi-

nary matter in the universe. It is unknown exactly why matter dominates over

antimatter, especially since the Big Bang should have created an equal amount of

each, but the answer for this asymmetry is believed to lie with CP violation [110].

2.2 Supersymmetry

In 1967, a new kind of geometrical symmetry, supersymmetry, was proposed in

the paper ‘All possible Symmetries of the S-Matrix’, by Coleman and Mandula.

Therein, they state that there are only certain symmetries of the S -matrix: the

C, P, T symmetries and Poincaré invariance, postulating the Coleman-Mandula

theorem [111].

Theorem 2.2.1 In a theory with non-trivial scattering in more than 1+1 dimensions,

the only possible conserved quantities that transform as tensors under the Lorentz
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group (i.e. without spinor indices) are the energy-momentum vector Pµ, the gener-

ators of Lorentz transformations Jµν, as well as possible scalar ‘internal’ symmetry

charges Zi which commute with Pµ and Jµν.

Hence the most general algebra of the bosonic symmetry commuting generators of

the S -matrix is obtained by the direct sum of a Poincaré algebra and a compact Lie

algebra which contains internal symmetries. Furthermore, this algebra generates

symmetries of the S -matrix consistent with relativistic QFT. Haag, Lopuszański

and Sophnius proved that the only additional symmetry of the S -matrix is the

unique extension of this general algebra by including fermionic generators with

anticommutation relations. This forms the Super-Poincaré algebra [112]. In any

number of dimensions, the Super-Poincaré - or supersymmetry - algebra has the

form:

{Qα
A,Qβ̇B} = 2σαβ̇

mPm δ
A

B

{Qα
A,Qβ

B} = {Qα̇A,Qβ̇B} = 0[
Pm,Qα

A] =
[
Pm,Qα̇A

]
= 0[

Pm, Pn
]

= 0 , (2.2.1)

where the Greek indices (α, β, . . . , α̇, β̇, . . . ) are in the range (1, 2) and denote two-

component Weyl spinors. The Latin indices (m, n, . . . ) are in the range (1, . . . , 4)

and denote Lorentz four-vectors. Finally, the indices (A, B, . . . ) are in the range

(1, . . . ,N ≥ 1). The supersymmetric algebra has N = 1, while the extended super-

symmetric algebras have N > 1.

The anticommutating generators of the SUSY transformations are the Q and

Q fermionic operators. A SUSY transformation is responsible for generating a

bosonic state from a fermionic one and vice versa:

Q | f ermion〉 = |boson〉 , Q |boson〉 = | f ermion〉 . (2.2.2)

Since the SUSY generators carry a spin angular momentum, it is concluded that

SUSY is a spacetime symmetry. However, the SUSY operation is applied in a math-
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ematical space which extends the ordinary Minkowski spacetime R4 by Grassman

variables (θα, θ̄α̇),

zA = (xµ, θα, θ̄α̇) , (2.2.3)

where (θα)∗ = θ̄α̇.

The commuting and anticommuting generators transform in the spinor repre-

sentation of the Lorentz group. This implies that fermions and bosons form dif-

ferent spin states of a single fundamental supersymmetric entity, related by their

masses and their couplings. The irreducible representations of the Super-Poincaré

algebra must contain several irreducible representations of the Poincaré algebra

in such a way that particles are grouped together. These groupings are known as

superfields or supermultiplets and contain particles differing in spin by 1
2 , related

by the action of the anticommutating generators. Furthermore, the commutation

relations between the SUSY generators and the generators of gauge transforma-

tions imply that particles which fall in the same supermultiplet must also fall in the

same representation of the gauge group. As a result, particles that are in the same

supermultiplet carry the same quantum numbers such as electric charge, weak

isospin and colour d.o.f. So for each ordinary fermion there exists a correspond-

ing particle in the supermultiplet which is interpreted as a boson superpartner and

similarly for each ordinary boson there is a corresponding fermion superpartner.

Supersymmetry is the only complex mathematical structure extended beyond

the SM framework which has been developed for many years. The primary the-

oretical goal of SUSY is to provide a complete solution for the stability of the

electroweak vacuum and the hierarchy problem. Over the last decades, research

has unveiled that SUSY has the potential to address many other issues that are

beyond the realm of SM. In the context of cosmology, SUSY predicts the existence

of supersymmetric particles which form good candidates for being dark matter

particles. In the context of particle theory, SUSY theories accommodate the uni-

fication of the couplings of the weak, strong and electromagnetic interactions at

high energies, reinforcing the theoretical idea that the three interactions originate

from a single fundamental theory [99].
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In a supersymmetric generalisation of the SM, such as the MSSM discussed

presently, the particle content of the theory is enlarged due to the inclusion of

the superpartners which are assumed to appear at an energy scale of O (1) TeV.

The superpartners contribute to the screening and antiscreening effects in such a

drastic way that the RG evolution of the three gauge couplings is modified and is

now based on a new set of coefficients:

bi =


b1

b2

b3

 =


0

−6

−9
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
2

2

2
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
3
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1
2

0

 =


33
5

1

−3

 , (2.2.4)

with NFAM = 3 and NHIGGS = 2.

The RG evolution of the gauge couplings in the MSSM model is demonstrated

in Fig. 2.2b. It is notable that the running of the strong coupling is much weaker

than the one demonstrated in Fig. 2.2a. This occurrence is mainly due to the

dominating one-loop bi contributions. Similarly, the running of the weak coupling

has opposite direction while the running of the electromagnetic coupling is faster

than in the SM case. Finally, there is a contribution from all the Higgs fields and

their supersymmetric counterparts. However, their contribution to the running

gauge couplings in comparison with the contribution of the fermions and gauge

bosons is quantitatively minor. The results of Fig. 2.2b provide a splendid evidence

for the likelihood of a GUT with the masses of superpartners at the range of 1 TeV.

To illustrate how SUSY addresses the hierarchy problem it is adequate to con-

sider the simplest supersymmetric Lagrangian with a superfield that contains a

scalar field S and a two-component Majorana spinor ζ

L = −∂µS ∗∂µS − iζ σµ∂µζ −
1
2m(ζζ + ζζ) − cS ζζ − c∗S ∗ζζ − |mS + cS 2|2 , (2.2.5)

where σµ ≡ (1,−−→σ), −→σ are the Pauli matrices, c is an arbitrary coupling constant

and m is the mass which is the same for both the scalar and fermion. This La-

grangian is invariant under the SUSY transformations and the scalar self-interactions
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Figure 2.5: The Feynman diagrams for the one-loop quantum divergences to the
Higgs boson mass due to the supersymmetric partner particles. The contribution
to the Higgs boson mass from these diagrams exactly cancels the contribution
induced from the diagrams of Fig. 2.4, thus solving the hierarchy problem.

yield a positive definite potential,

V(S , S ∗) = |mS + cS 2|2 ≥ 0 . (2.2.6)

This is a general feature of all theories in which SUSY is an exact symmetry. This

means that the strengths of the interactions between the proposed superpartners

is expected to be identical to the strengths of the interactions between the various

ordinary partners. As a result, the theory has its minimum at 〈V〉 = 0. It is straight-

forward to deduce from Eq. (2.2.5) that both the boson and fermion interactions

have the same couplings. So SUSY relates particles that differ by a spin- 1
2 but

have identical quantum numbers and masses. Revisiting Eqs. (A.3.2) and (A.3.3)

of Appendix A.3, it is obvious that the quadratic divergences from a fermion loop

cancel against those from a scalar loop, provided that the scalar and fermion inter-

actions have the same coupling. This is precisely what occurs in supersymmetric

theories. Therefore, theories with spacetime SUSY are automatically free from the

quadratic divergences and it is inferred that if there existed supersymmetric part-

ners for the SM particles then the one-loop corrections to the Higgs boson mass

would be attainable as depicted in Fig. 2.5.

However, it has been observed that there is a difference between the masses of

ordinary bosons and fermions. A striking experimental observation is that there

are no candidate supersymmetric fermion partners with the same mass and quan-

tum numbers as the scalar particles in the SM, and vice versa. Therefore, if super-
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symmetry exists it must be a broken symmetry.

2.2.1 The Minimal Supersymmetric Standard Model

The supersymmetric extension of the SM that respects the same S U(3)C ⊗S U(2)L⊗

U(1)Y gauge symmetries is known as the MSSM. The MSSM is constructed by intro-

ducing a chiral superfield for every fermion ( χS F) and a vector superfield (VS F)

for every gauge boson of the SM. Each postulated superfield contains the observed

SM particle along with the corresponding superpartner. Note that the MSSM

is constructed as an N = 1 theory, which means that the superpartners of the

fermions are necessarily scalar particles whereas the superpartners of the gauge

and Higgs boson(s) are spin- 1
2 fermions. The superfields l̂ and Q̂ thus consists of

an S U(2)L doublet of left-handed leptons and quarks (as presented in Eq. (2.1.5))

along with their scalar partners, the left-handed sleptons and squarks which are

also in S U(2)L doublets,

l̃Lĉ ≡

ν̃eĉ

ẽĉ


L

and Q̃â
Lĉ ≡

ũâ
ĉ

d̃â
ĉ


L

. (2.2.7a)

Similarly, the superfields Ê, Û and D̂ contain the right-handed, gauge singlets

leptons and quarks along with their scalar partners, the right-handed sleptons and

squarks,

ẽRĉ; ũRĉ; d̃Rĉ . (2.2.7b)

In the MSSM all the gauge bosons acquire a Majorana fermion partner, the gaug-

ino. In consistency with this particle partnering, the superfield B̂ contains the U(1)Y

gauge field (Bµ) and its fermionic counterpart (b̃ - bino). Similarly, the superfields

ĜA contain the gluon fields (GA µ) and gluinos (g̃A) whereas the superfields Ŵa con-

tain the S U(2)L gauge fields (Wa µ) and their fermionic counterparts (ω̃a - winos).

The particle content of the MSSM is summarised in Tables 2.1 and 2.2.

One important feature of the MSSM is the existence of two Higgs doublet fields

(Hu,Hd) and the corresponding superpartners - the Higgsinos (H̃u, H̃d) which are
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Superfield Spin−0 Spin− 1
2 S U(3) S U(2)L U(1)Y

Q̂ (ũLĉ, d̃Lĉ) (uLĉ, dLĉ) 3 2 1
6

Û ũRĉ uRĉ 3 1 − 2
3

D̂ d̃Rĉ dRĉ 3 1 1
3

l̂ (ẽLĉ, ν̃Lĉ) (eLĉ, νLĉ) 1 2 − 1
2

Ê ẽRĉ eRĉ 1 1 1

Ĥu (h+
u , h

0
u) (h̃+

u , h̃
0
u) 1 2 1

2

Ĥd (h0
d, h

−
d ) (h̃0

d, h̃
−
d ) 1 2 − 1

2

Table 2.1: Chiral superfields of the MSSM with their particle content and repre-
sentations under the SM gauge group. There are three copies of the quark and
lepton superfields, one for each chiral generation. The superscripts ±, 0 indicate
the Qem of the Higgs and Higgsino fields.

S U(2)L doublets of Majorana fermion fields, as it is shown in Table 2.1. The Hig-

gsino superpartner of the SM Higgs doublet contributes to the triangle of S U(2)L

and U(1)Y gauge anomalies. Although the SM fermions have the correct quantum

numbers to guarantee the cancellation of these anomalies, the contribution from

the Higgsino remains uncancelled. Since the MSSM is a gauge theory and hence

cannot have anomalies, these contributions must also cancel. This is achieved by

adding a second Higgs doublet field with the opposite U(1)Y quantum numbers to

the SM Higgs doublet field. The fermionic partner of the second Higgs doublet

will contribute to the gauge anomalies and will precisely cancel the contribution

from the first Higgsino, leaving the theory anomaly free [113]. The presence of

two Higgs doublets is also necessary for giving masses to both the up-type and

down-type quarks. Specifically, once the electroweak symmetry is spontaneously

broken the neutral component of the Hd acquires a VEV 〈h0
d〉 = vd, giving mass

to the down-type quarks, while the neutral component of the Hu acquires a VEV

〈h0
u〉 = vu, giving mass to the up-type quarks. A detailed description of the MSSM

Higgs sector is provided in Appendix B.

Due to the extended Higgs sector in the MSSM, the phenomenology of Higgs

scalar particles is quite diverse. At this point it is worth noting that in MSSM theo-

ries the particles that contribute to the cancellation of quadratic divergences in the
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Superfield Spin− 1
2 Spin−1 S U(3) S U(2)L U(1)Y

ĜA g̃A GA µ 8 1 0

Ŵa ω̃a Wa µ 1 3 0

B̂ b̃ Bµ 1 1 0

Table 2.2: Vector superfields of the MSSM with their particle content and repre-
sentations under the SM gauge group.

Higgs boson mass renormalisation are the SM particles along with the gauginos,

Higgsinos and sfermions. Revisiting Eqs. (A.3.2)-(A.3.4) of Appendix A.3, if one

identifies the scalar and fermion couplings as equal, i.e. g2
F = gS , as SUSY requires,

and m1 = m2 then the total contribution to the Higgs boson mass renormalisation

becomes

(δm2
H)total =

gS

4π2

[
m2

f ln
(
λ

m f

)
− m2

1 ln
(
λ

m1

)]
+ O

( 1
λ2

)
. (2.2.8)

If the difference between the fermion and the scalar masses is relatively small

then the overall cancellation has a very small net value, free from quadratic di-

vergences. From this perspective, the theory obeys the ‘naturalness’ requirements.

Because of this, the theory supports the requirement that supersymmetric particles

must have masses below the 1 TeV energy scale if SUSY is to be the theory that

addresses the hierarchy problem.

Having introduced all the ingredients of the MSSM, it is now possible to write

a supersymmetric renormalisable Lagrangian for chiral superfields Φ̂i and vector

superfields V̂A:

LS US Y = LS US Y
Kinetic Energy +LS US Y

interactions +LS US Y
superpotential (2.2.9)

The component fields of Φ̂i are the SM chiral fermion fields ψi and their SUSY

partners ϕi, as listed in Table 2.1. The component fields of V̂A are the SM gauge

fields and their SUSY partners λA, as listed in Table 2.2. The explicit form of

Eq. (2.2.9) is then given by:
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LS US Y
Kinetic Energy =

∑
i

{
(Dµϕ)†i (Dµϕ)i + 1

2 iψiσ
µ(Dµψ)i −

1
2 i (Dµψ)i σ

µψi

}
+

∑
A

{
− 1

4FA
µνF

µν A + 1
2 i λAσµ(Dµλ

A
) − 1

2 i (Dµλ
A)σµλ

A
}

(2.2.10a)

LS US Y
interactions = −

√
2i

∑
i j, A

gψi λ
A
T A

i j ϕ j +
√
2i

∑
i j, A

gϕ†i T A
i j ψ j λ

A

− 1
2

∑
A

(
gϕ†i T A

i j ϕ j + kA)2 (2.2.10b)

LS US Y
superpotential = LW = −

∑
i

∣∣∣∣∣∂W
∂ϕi

∣∣∣∣∣2 − 1
2

∑
i j

{
∂2W
∂ϕiϕ j

ψiψ j −
∂2W†

∂ϕ†i ∂ϕ
†

j

ψiψ j

}
. (2.2.10c)

The covariant derivative D is the S U(3)C ⊗ S U(2)L ⊗ U(1)Y gauge invariant deriva-

tive; for the fermion fields it is defined in Eqs. (A.1.3)-(A.1.5) of Appendix A.1.

The strengths of interactions are determined by the gauge couplings and g stands

for the relevant gauge coupling. The last term of Eq. (2.2.10b), gϕ†i T A
i jϕ j + kA = DA

is defined as the D-term while the first term of Eq. (2.2.10c), ∂W
∂ϕi

= Fi is defined as

the F-term. Both terms play a crucial role on the breaking of SUSY. Due to the lack

of a proper kinetic term for each of the fields corresponding to the D- and F-terms

in the supersymmetric Lagrangian, both fields are auxiliary. However, the sum of

D- and F-terms forms the positive definite potential of the theory,

V(ϕi, ϕ
†

j) =
∑

i

∣∣∣∣∣∂W
∂ϕi

∣∣∣∣∣2 + 1
2

∑
A

(
gϕ†i T A

i jϕ j + kA)2 . (2.2.11)

There is no freedom in constructing the LS US Y
Kinetic Energy and LS US Y

interactions since all the

parameters they carry are non adjustable. However, there is freedom in construct-

ing the superpotential, W which is an analytic function of the chiral superfields of

Table 2.1 only. The W contains terms up to three chiral superfields (four or more

result in non-renormalisable interactions). It is not allowed to contain the com-

plex conjugates of the superfields neither any derivative interactions. The most

general gauge invariant MSSM superpotential is

WMS S M = εi j

[
ye l̂iĤ j

dÊ + yd Q̂iĤ j
dD̂ + yu Q̂ jĤi

uÛ
]
− εi j µĤi

dĤ j
u , (2.2.12)

with the two-dimensional Levi-Civita symbol: ε12 = −ε21 = 1, ε11 = ε22 = 0.
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The term µĤi
dĤ j

u, often called the µ-term, gives mass terms for the Higgs bosons

once the electroweak symmetry is spontaneously broken. The mass is determined

from the first term of the LW and µ is considered to be the Higgs mass parameter.

The coefficients ye, yd, yu are the supersymmetric equivalents of Yukawa couplings

since their corresponding terms produce the usual Yukawa interactions from the

remaining terms of the LW in Eq. (2.2.10c). Due to the fact that these coefficients

are determined by the fermion masses and the VEVs acquired by the neutral com-

ponents of the scalar Higgs doublets, they are not free parameters of the theory.

Apart from the terms in Eq. (2.2.12), there are more gauge invariant contribu-

tions in the superpotential,

W/R = εi j

[
1
2y l̂il̂ jÊ + y′ l̂iQ̂ jD̂ + µ′ l̂ jĤi

u

]
+ y′′ÛD̂D̂ . (2.2.13)

However, these terms contribute to a lepton number violation (the first three)

and baryon number violation (the last one). Consequentially, this leads to proton

decay, mediated at tree-level through the exchange of down-type squark [114].

This result is avoided in the SM due to gauge symmetries, hence the lepton and

baryon number conservation is accidental. To strategically avoid the lepton and

baryon number violating terms in MSSM theories, an additional symmetry is re-

quired, R-parity which forbids any violating contributions ad hoc. It is a discrete

Z2 symmetry - a multiplicative quantum number through which the SM particles

are clearly distinguished from their supersymmetric partners. It is defined as

R = (−1)3B+L+2S =


+1 SM particles

−1 SUSY particles
(2.2.14)

where B, L and S stand for the baryon, lepton and spin quantum numbers of the

particles respectively. Assuming that R-parity is conserved, its multiplicative na-

ture requires an even number of supersymmetric particles produced in any inter-

action. Hence all SUSY particles are expected to be produced in pairs with their

SM partners. Another consequence of this assumption is that a supersymmet-

ric particle will undergo a chain decay until it decays to a final state producing
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the Lightest Supersymmetric Particle (LSP). The LSP is expected to be stable and

neutral. Hence, as in the case of neutrinos, the LSP is expected to interact with

ordinary matter via the weak force and is not expected to be observed by the

experimental detectors.

2.2.2 Supersymmetry Breaking

Although it is well known that SUSY is a broken symmetry, the mechanism under-

lying its breaking is not well understood. It is, however, well-known that if the

SUSY breaking scale is at the order of the GUT scale or the string scale then the

minimal theory that emerges as the low energy limit EFT is the SM.

Revisiting the Lagrangian of the unbroken MSSM, in Eq. (2.2.9), it is easy to

deduce that a breaking of SUSY will lift the masses of all the currently massless

particles, resulting in the SM particles and their corresponding superpartners hav-

ing an equal mass. This is in direct contrast with the mechanisms of nature that

are inclined to favour non-equal but larger masses for the superpartners of the SM

particles. Following the breaking of the electroweak symmetry, the most conve-

nient way to break SUSY is spontaneously, by giving some scalar fields VEVs. The

spontaneous breaking causes the ground state |0〉 to be no longer invariant under

SUSY, i.e. Qα|0〉 , 0.

Global SUSY breaking

In globally supersymmetric theories, the Hamiltonian operator is defined in terms

of the generators of the theory according to the algebra in Eq. (2.2.1):

H = P0 =
1
4

(Q1Q
†

1 + Q†1 Q1 + Q2Q†2 + Q†2Q2) . (2.2.15)

A significant property of globally supersymmetric theories, as manifest in Eq. (2.2.15),

is that the Hamiltonian operator is bounded from below such that for any state |s〉

the result is 〈s|H|s〉 ≥ 0. In the unlike scenario of unbroken SUSY, the vacuum

state has 0 energy and obeys H|0〉 = 0. Conversely, in the occurrence of SSSB the

vacuum energy is shifted and therefore implies that 〈0|H|0〉 > 0. The new vacuum

September 20, 2016



2.2. Supersymmetry 48

is strictly restricted to have a positive energy

〈0|H|0〉 =
1
4

(‖Q†1 |0〉‖
2 + ‖Q1 |0〉‖2 + ‖Q†2 |0〉‖

2 + ‖Q2 |0〉‖2) > 0 , (2.2.16)

as a direct consequence of the requirement that the Hilbert space of the theory

must have a positive norm. This can only be true iff the minimum of the scalar

potential is also taken to be strictly positive, Vmin > 0. Since Eq. (2.2.11) is the sum

of the D- and F-terms, then for the above requirement to be satisfied it is necessary

that either VF min > 0 or VD min > 0 or some combination of both must be positive.

In the event that the condition VF min > 0 is met then an F-term breaking occurs

of which the canonical example is the O’ Raifeartaigh model [115]. Although this

procedure requires that at least one scalar field ϕ gets a VEV, it is not phenomeno-

logically successful as some of the scalar superpartners of the chiral matter fields

end up having a lower mass contrary to the expectation of a higher mass. In

general, the phenomenological results of this procedure, at tree level only, are

summarised by

Str (M2) ≡
∑

(−1)S (2S + 1) m2
S = 0 , (2.2.17)

where mS is the mass associated with the real component of a spin-S field and the

supertrace is a sum over all component fields. Even though some superpartners

are lighter then the SM particles some others superpartners are heavier so the net

result in the average mass is as implied by Eq. (2.2.17). Loop corrections result

in a shift in the masses of the superpartners, violating the tree-level result while

at the same time opening the possibility of SSSB mediation by loop effects from a

hidden sector of a greater theory into the visible sector, the MSSM sector.

On the other hand, if the condition VD min > 0 is met then a D-term breaking

occurs. Contrary to the F-term breaking, the scalar field ϕ is not strictly required

to get a VEV. This is due to the Fayet-Iliopoulos term kA, which is present only for

U(1) gauge fields and means that the potential is always positive. The first scenario

is that of the scalar field acquiring a non-vanishing VEV. The general consequence

of this scenario is that instead of achieving a SSSB there is a spontaneous breaking

of a gauge symmetry resulting in the SM particles and their superpartners getting
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the same mass [116]. The second scenario is a prevention of the scalar fields

from acquiring a VEV by giving them large masses through U(1) gauge invariant

superpotential terms. The MSSM has only the U(1)Y gauge group and as it turns

out, the superpotential in Eq. (2.2.12) does not contain any U(1)Y gauge invariant

terms that can induce large masses in the scalar fields. Hence the D-term breaking

in the MSSM is also phenomenologically unsuccessful unless it occurs in a hidden

sector with a different U(1) group and then mediated to the MSSM sector.

The MSSM is a theory at the electroweak scale thus is considered as an effec-

tive low energy theory which cannot accommodate with phenomenological viabil-

ity the spontaneous breaking of SUSY. It is, therefore, expected that a complete

theory exists which also includes gravity, with its unknown or unobserved sector

introduced as a hidden sector. The breaking of SUSY is assumed to occur sponta-

neously in a hidden sector by some other fields at high energy scales. For a detailed

discussion of the hidden sector see Ref. [101]. The breaking is then mediated to

the MSSM - the visible sector of the theory via messenger fields. There are many

speculations on how the breaking is mediated to the visible sector. Among these

the most popular are the GMSB [117] and mSUGRA [118]. It is beyond the scope

of this thesis to discuss these in depth but more details are available in the relevant

references.

Due to the ambiguity in characterising the hidden sector, the terms implement-

ing the SUSY breaking are inserted by hand. These terms are basically mass terms

for the SM particles’ superpartners, i.e. the scalar components of the chiral multi-

plets and the gauginos of the vector multiplets in the supersymmetric Lagrangian.

The mass terms are defined to be ‘soft’ as they preserve the cancellation of the

quadratic divergences. The terms allowed in the soft breaking Lagrangian are de-

termined by dimensional analysis. The mass dimension of the correction to the

Higgs mass-squared is [δm2
H] = 2 and the couplings gF and gS in Eqs. (A.3.2)-

(A.3.4) are dimensionless. To prevent terms of the form gS ,Fλ
2 appearing in

[δm2
H] = 2, thus hindering the established cancellation of quadratic divergences,

the operators in the soft breaking Lagrangian must have dimension three or less,

whereas their corresponding couplings must have dimension one or more respec-
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tively. This means that the only possible soft operators allowed are mass terms for

the scalars and gauginos as well as bilinear and trilinear scalar mixing terms, pro-

vided that the gauge invariance remains intact. So the general form of soft SUSY

breaking terms which respect the MSSM gauge symmetry and R-parity is given by

the Lagrangian [114]:

LMS S M
so f t = − m2

Hu
H†u Hu − m2

Hd
H†d Hd − B (HuHd + h.c) − 1

2 (M1 b̃b̃ + M2 ω̃aω̃a + M3 g̃g̃ + h.c)

−M2
Q̃ (ũ†LĉũLĉ + d̃†Lĉd̃Lĉ) −M2

l̃ (ẽ†LĉẽLĉ + ν̃†Lĉν̃Lĉ) −M2
ũ ũ†RĉũRĉ −M2

d̃ d̃†Rĉd̃Rĉ −M2
ẽ ẽ†RĉẽRĉ

−(Au Q̃Lĉ Hu ũ†Rĉ − Ad Q̃Lĉ Hd d̃†Rĉ − Ae l̃Lĉ Hd ẽ†Rĉ + h.c) . (2.2.18)

In Eq. (2.2.18), each of the MQ̃, Ml̃, Mũ, Md̃,Mẽ
is a 3 × 3 matrix in family space

with complex, hermitian entries. Similarly, each of the Au, Ad, Ae is a 3 × 3 matrix

in family space that has a mass dimension [m]. The MSSM introduces 105 new

parameters in addition to the 19 that exist in the SM, all of which are analysed

in Ref. [119]. A positive of this is the knowledge that a measurement of these

parameters might actually reveal the particulars needed to infer the theory behind

SUSY breaking. On the negative side, however lies the difficulty in fully examining

this huge parameter space. It might be indeed a challenge to determine so many

parameters but it is certainly not an impossibility thanks to some assumptions that

dramatically restrict the parameter space. At a GUT scale:

• the gauginos have three real mass parameters which are assumed to be ex-

actly equal,

• the sfermion masses and trilinear couplings are diagonal, real and universal

for all three generations, and

• the Higgs mass parameters are real.

These assumptions are well explained in Ref. [119] and are derived by theoreti-

cal arguments that have almost no phenomenological consequences regarding the

MSSM Higgs sector. As a result, the parameter space is reduced down to just five!

It is worth emphasising that this constrained form of the MSSM requires only the

GUT scale in contrast to the mSUGRA models of Refs. [118] that require a Planck
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scale.

As per the discussion in Section 2.1.1, regardless of the mechanisms that govern

the breaking of global SUSY, the spontaneous breaking implies the existence of a

massless Goldstone mode which shares the same quantum numbers as the broken

generator of the symmetry. In supersymmetric theories the broken generators are

the fermionic charges Qα so the resulting massless Goldstone particles will be neu-

tral Weyl fermions; the so-called Goldstinos. Following the SSSB, the Goldstinos

are in fact the fermionic components of the supermultiplets whose auxiliary fields

DA or Fi acquire a VEV. There is an effective Lagrangian associated with the Gold-

stino field [114], from which one is able to derive the Goldstino interactions with

other boson-fermion pairs in a supermultiplet [120,121]. The effective Lagrangian

applies for every theory with global SUSY irrespective of how the breaking occurs.

Local SUSY breaking

A topic of great interest is the construction of supersymmetric GUTs which calls

for the inclusion of gravity in the SUSY framework. On this ground, SUSY must

be promoted to a local symmetry which means that the SUSY fields depend on

a spacetime parameter. The locally supersymmetric EFT that stems from this re-

alisation is the vaunted theory of supergravity [10]. In Supergravity (SUGRA)

theories, the symmetries of spacetime are unified with Einstein’s general relativity

in a set of equations that come under the guise of local SUSY transformations. The

superpartner of the spin−2 graviton is the spin−3
2 gravitino, which carries both a

spinor index α and a spacetime index µ and is therefore symbolised as ψαµ. Fol-

lowing the definition of Eq. (2.2.14), the gravitino has an odd R-parity. At the

four-dimensional level of an unbroken local SUSY, both the graviton and gravitino

are massless and each has two d.o.f which are spin helicity states. The spon-

taneous breaking of SUSY changes this picture quite drastically: The Goldstino

associated with the broken fermionic generator of SUSY supplies its two d.o.f to

the gravitino. These absorbed d.o.f consequently become two extra helicity states(
± 1

2

)
that constitute the longitudinal component of the gravitino. As a result, the
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gravitino now becomes massive with a total of four helicity states. This effect is

the supersymmetric analogy to the ordinary Higgs effect so it doesn’t come as a

surprise that scientists define it as the super-Higgs mechanism [122]. All the while,

the graviton remains completely unaffected by the super-Higgs effects.

In general, the gravitino mass is estimated as

m 3
2
∼

1
λ
, (2.2.19)

where λ is the SUSY breaking scale. One look at the result of Eq. (2.2.19) would

naively trick someone into believing that an estimation for the mass of gravitino is

straightforward. The reality is far more complex; the gravitino mass is a subject of

theoretical dispute. Revisiting the brief discussion on SSSB mediation, it is worth

emphasising that different methods of mediation postulate different high energy

scales which in turn yield different values for the gravitino mass. The mSUGRA

models, which postulate a Planck scale, predict a gravitino mass of at least O (100)

GeV. This value is comparable to the masses predicted for the MSSM particles. The

GMSB models postulate a much smaller energy scale than the Planck scale which

in turn predict a gravitino mass much smaller than that of the MSSM sparticles.

This leaves no room for doubt that in the GMSB models, the gravitino is considered

to be the LSP.
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Chapter 3

A glimpse into the world of string

theory

Gravity must be caused by an Agent

acting constantly according to

certain laws, but whether this Agent

be material or immaterial I have left

to the consideration of my readers.

Isaac Newton

3.1 A quantum theory of gravity?

As alluded to Section 2.1.2 of Chapter 2, there is an elephant in the room when

one attempts to unify all fundamental interactions in nature into a single consis-

tent mathematical framework; this is of course the gravitational force. A century

ago Albert Einstein put forward the theory of general relativity, a revolutionary

theory that irrevocably transformed the Newtonian definition of gravity, taking it

to an entirely different level. One consequence of gravity’s redefinition has been

the prediction of gravitational waves whose detection was confirmed by the LIGO

instruments on the 14th of September, 2015. Indeed, this is an incontrovertible

evidence of general’s relativity validity as the true theory of gravity on a classi-

cal level and makes the issue of understanding gravity on a quantum level all the
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more pressing. The word ‘understand’ is used in the sense that one needs to know

what Lagrangian interprets the interaction of the gravitational force with matter

and how could provide quantitative results for making predictions.

The major stumbling block when one attempts to include gravity within the

framework of quantum gauge theories is the phenomenal incompatibility between

quantum mechanics and general relativity. The former describes remarkably well

the world at microscopic scales whereas the latter is the par excellence theory

that describes the world at macroscopic scales. In principle, it is understandable

how quantum mechanical effects could be included into gravity as long as the

energy of interactions is below the Planck scale. The clash between the two be-

comes prominent at energies of the order of Planck scale where the perturbative

non-renormalisability of gravitational interactions becomes manifest. This con-

trasts with the established renormalisability of the gauge interactions for which it is

known how to include quantum effects at all energy scales. Given this background,

the main differences between the gravitational and renormalisable gauge forces

are: The graviton (gµν) is a spin-2 particle whereas all the existent gauge bosons

are spin-1; the gravitational coupling constant GN has a negative mass dimension,

[GN] = M−2
Pl whereas the gauge couplings are dimensionless. This is a very impor-

tant point since it turns out to be a courtesy of the gravitational coupling’s dimen-

sionality the fact that gravity is perturbatively non-renormalisable. This means

that in the regime of Planck scale, the gravitational interactions, i.e. the scat-

tering processes involving gravitons, become so large that they give rise to UV

infinities. The associated Feynman diagram is depicted in Fig. 3.1. These infinities

cannot be absorbed by a finite number of parameters (local counter terms such

as masses and couplings) as required by the processes of renormalisation. It is

instead required an infinite number of parameters to absorb the UV divergences

which in turn demand measurement, thus rendering the general relativity unquan-

tifiable at energies comparable with the Planck scale. Therefore, it is precisely in

this regime that the need for a quantum theory of gravity becomes mandatory.

As was mentioned, there is some degree of understanding how to include quan-

tum effects with gravity but the failure to formulate a complete quantum theory
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Figure 3.1: The gravitational force is mediated by gravitons whose scattering pro-
cesses, like the self-interaction presented in this figure, lead to UV divergences at
energies of the Planck scale’s order. As a result, the quantisation of gravity at these
energies is plagued by non-renormalisability. The figure is adapted from a review
on “Recent developments in String Theory”, extended version of Ref. [123].

of gravity gives strong indications that there is a deeply rooted inconsistency be-

tween the two. Nature has emitted unequivocal signals that in order to bypass the

mathematical complexities of gravity, a theory with new methods and concepts is

required. The most significant feature of this theory must be the definition of grav-

ity as a consistent quantum theory. Conceptually, a promising framework for this

theory is one based on perturbative expansions, with the emerging theory being

string theory [124]. Originally, string theory was descended from the “dual reso-

nance models” of hadrons in the pre-QCD era. However, the theory has so many

alluring features that over the years it has been established as the most privileged

contender for being a consistent perturbative theory of quantum gravity.

The issue of non-renormalisability is tackled within the formalism of perturba-

tive string theory, in which there is a set of rules that govern the computation of

on-shell amplitudes in on-shell background. In this context, as the point particles

are replaced by strings, the individual lines of Feynman diagrams are expanded

into strips and the worldlines are replaced by worldsheets of strings. Consequently,

the infinitely many gravitational interaction vertices of a Feynman diagram are re-

placed by a finite number of basic three-point interactions, as depicted in Fig. 3.2.

This modification guarantees the UV finiteness of string amplitudes [125]. In ad-

dition to the quantum corrections imposed on classical physics, there are now

stringy corrections which are related to the finite size of the strings. This size is

essentially the string length ls which takes over the role of the fundamental scale.

Except from having finite integrals in the computation of UV divergences there are

other benefits that stem from making use of finite objects. Firstly, the string length
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Figure 3.2: An interaction vertex in field theory is replaced by a strip or tube of
three-point interactions. The figure is adapted from Ref. [125].

becomes the sole unknown parameter in the Lagrangian of the theory hence there

is no need to introduce new parameters to absorb the divergences. This could

conceptually give a great predictive power to the theory since this is the only pa-

rameter that needs to be measured and set by the experiment. Secondly, the string

is the only fundamental object and has vibrational excitation modes which corre-

spond to different elementary particles. Since it necessarily includes a massless

spin-2 particle, gravity is automatically included in the picture in toto. Further-

more, there are certain symmetry transformations, known as dualities, that allow

the mutual exchange of quantum and stringy corrections.

The rich structure of string theory induced developments in a range of top-

ics such as non-perturbative dualities, gauge theories at strong couplings, alge-

braic geometry, entropy of black holes, holography and AdS/CFT correspondence

and the theory of branes. However, it is beyond the bounds of possibility to ac-

cess the energy scale of the gravitational coupling with the current technological

means available. Even though in theory it is possible to detect the point-like os-

cillations of the strings that correspond to elementary particles, the existence of

strings cannot be confirmed experimentally and thus all of the attractive features

of the theory cannot be explored in depth. Nevertheless, it still remains a huge

and rapidly expanding growing field and currently provides favourable guidelines

for the quantisation of gravity.
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3.2 Strings in D-dimensional spacetime

To start with, strings are one-dimensional extended fundamental objects - loops

known as closed strings or lines known as open strings - that propagate in a D-

dimensional background spacetime. The strings sweep out a two-dimensional

worldsheet Σ, which is a curved surface embedded in the D-dimensional space-

time. This is parametrized by σα = (τ, σ), with τ being the timelike coordinate and

σ being spacelike. To define the embedding of the worldsheet into the Minkowski

background spacetime there exists a set of scalar fields, defined as Xµ(τ, σ); with

µ = 0, . . . ,D − 1. These fields describe how the string propagates and oscillates in

the given spacetime. The worldsheet of a freely propagating closed string has the

topology of a cylinder and the boundary conditions imposed on Xµ(τ, σ) state that

the fields are periodic in σ on the cylinder:

Xµ(τ, σ) = Xµ(τ, σ + 2π) ; σ ∈ (0, 2π] . (3.2.1)

On the other hand, the topology of a freely propagating open string is a strip

and the boundary conditions imposed on the fields could be either Dirichlet (D)

or Neumann (N) at both ends of the string. The physical interpretation of N

boundary conditions specifies that there is no spacetime momentum transfer from

the string ends to the background spacetime. With D boundary conditions, one

end of the string is fixed on a dynamical object which absorbs the flow of spacetime

momentum. Such an object is called Dirichlet brane (D-brane). If p of the special

components of the fields have N boundary conditions at one end of the string while

the remaining D − p − 1 components have D boundary conditions then the other

end of the string is attached to a Dp-brane. Note that the fundamental strings

discussed here are different objects from branes, which are higher dimensional

objects. The particles that correspond to the excitations of an open string are able

to propagate only on the world-volume of the D-brane. However, the particles that

correspond to the excitations of a closed string are free to propagate throughout

the D-dimensional spacetime. For the remaining part of this thesis the discussion

encompasses only closed strings, hence branes are not relevant objects for the work
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presented in the upcoming chapters.

3.2.1 The bosonic string

The dynamics of the freely propagating bosonic string in D-dimensional Minkowski

spacetime is governed by the Nambu–Goto action, which is proportional to the area

of the worldsheet:

S NG = −T
∫

Σ

d2σ
√
−det γ . (3.2.2)

Here the constant of proportionality T is the tension (or mass per unit length) of

the string and is defined as T = (2πα′)−1; α′ is the fine structure constant and the

length of the string is given by ls =
√
α′. The induced metric on the worldsheet is

the pull-back of the flat metric on Minkowski space,

γαβ = ηµν
∂Xµ

∂σα

∂Xν

∂σβ
=

 Ẋ2 Ẋ · X′

X′ · Ẋ X′2

 , (3.2.3)

where Ẋµ = ∂Xµ

∂τ
and X′µ = ∂Xµ

∂σ
. So the Nambu-Goto action for a relativistic string is

reduced down to

S NG = −T
∫

Σ

d2σ

√
−Ẋ2X′2 + (Ẋ · X′)2 . (3.2.4)

For the quantisation of the string, the square root in Eq. (3.2.4) poses a compli-

cation. However, the quantisation procedure is simplified in another form of the

string action, which gets rid of the square root by introducing the auxiliary field

hαβ(τ, σ). This is the Polyakov action given by

S P = −
1

4πα′

∫
d2σ
√
−det h hαβ∂αXµ∂βXνgµν . (3.2.5)

What this action describes is that the D scalar fields Xµ(τ, σ) are coupled to two-

dimensional gravity, with the field hαβ(τ, σ) being a dynamical metric on the world-

sheet. Note that the action in Eq. (3.2.5) holds for a general background with

metric gµν and that at the classical level is equivalent to the Nambu-Goto action.

The Polyakov action by itself is invariant under a set of symmetries, both global

and local. These symmetries are related to:
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1. Global spacetime Poincaré transformations:

Xµ 7→ aµν Xν + bµ; ηµν aµρ aνσ = ηρσ (3.2.6)

in which the parameters aµν, bµ are constants.

2. Local reparametrization of the worldsheet: σα 7→ σ̃α(τ, σ). This is a gauge

symmetry which reflects the fact that since the worldsheet coordinates σα

have no physical meaning, there is a redundancy in the description. The

fields Xµ transform as worldsheet scalars, while hαβ transforms as a two-

dimensional metric,

Xµ(σ) 7→ X̃µ(σ̃) = Xµ(σ)

hαβ(σ) 7→ h̃αβ(σ̃) =
∂σγ

∂σ̃α

∂σδ

∂σ̃β
hγδ(σ) . (3.2.7)

3. Local Weyl invariance on the metric:

hαβ 7→ e2ω(τ,σ)hαβ . (3.2.8)

This implies the tracelessness of the energy-momentum tensor as defined in

Eq. (3.2.10), i.e. hαβTαβ = 0, and signals the conformal invariance of the

action. In contrast with the other two symmetries, the Weyl invariance is a

symmetry that does not appear in the Nambu-Goto action. It is considered

to be another gauge symmetry of Polyakov action that reflects the fact that

local dilations are an additional redundancy and the ω(τ, σ) is not a physical

field, hence no d.o.f are associated with it.

If one sets gµν = ηµν and chooses a flat metric on the worldsheet in Minkowski

coordinates, i.e. hαβ = ηαβ, the Polyakov action is reduced to a theory of D free

scalar fields. As a result, the equations of motion for Xµ are simplified to the

equation of a free wave,

S P = −
1

4πα′

∫
d2σ ∂αX · ∂αX ⇒ ∂α∂

αXµ = 0 . (3.2.9)
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There is also an equation of motion associated with the metric hαβ. The variation

of the action in Eq. (3.2.5) w.r.t to the metric gives rise to the stress-energy tensor

Tαβ = −
4π

√
−det h

δS P

δhαβ
f lat metric

= ∂αX · ∂βX − 1
2ηαβ η

ρσ∂ρX · ∂σX , (3.2.10)

which satisfies Tαβ = 0. In a more explicit form:

T01 = Ẋ · X′ = 0 (3.2.11a)

T00 = T11 = 1
2 (Ẋ2 + X′2) = 0 . (3.2.11b)

From this it is deduced that the equations of motion of the classical string are the

equations of a free wave that obey the constraints of Eq. (3.2.11). These can be

easily solved in terms of the lightcone coordinates on the worldsheet, σ± = τ ± σ,

such that

∂+∂−Xµ = 0 ; (3.2.12)

with a general solution

Xµ(τ, σ) = Xµ
L(σ+) + Xµ

R(σ−) , (3.2.13)

where the Xµ
L and Xµ

R functions are the left- and right-moving waves which propa-

gate through space at the speed of light. These functions obey the constraints of

Eq. (3.2.11) and in the case of closed strings they are expanded in Fourier modes

as follows:

Xµ
L(σ+) = 1

2 xµ + 1
2α
′pµσ+ + i

√
α′

2

∑
n,0

1
n
α̃µn e−inσ+

(3.2.14a)

Xµ
R(σ−) = 1

2 xµ + 1
2α
′pµσ− + i

√
α′

2

∑
n,0

1
n
αµn e−inσ− . (3.2.14b)

The xµ and pµ are the position and momentum of the centre of mass of the string

respectively. In addition, the Fourier modes in Eq. (3.2.14) obey αµn = (αµ−n)∗ and

α̃
µ
n = (α̃µ−n)∗ as a consequence of the fact that Xµ must be real. Note that Eq. (3.2.13)

is invariant under σ → σ + 2π whereas the Xµ
L and Xµ

R individually are not. Revis-
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iting the constraints of Eq. (3.2.11), it is found that

(∂+X)2 = (∂−X)2 = 0 , (3.2.15)

which in turn gives

∂+Xµ =

√
α′

2

∑
n

α̃µn e−inσ+

(3.2.16a)

∂−Xµ =

√
α′

2

∑
n

αµn e−inσ− . (3.2.16b)

A noteworthy result that plays a key role in the string quantisation is that the zero

modes for both the left- and right-moving waves are identified as being the same,

with α̃
µ
0 = α

µ
0 =

√
α′

2 pµ. Going back to Eq. (3.2.15), the constraints are written as

(∂+X)2 = α′
∑

n

L̃n e−inσ+

= 0 ; L̃n = 1
2

∑
m

α̃n−m · α̃m (3.2.17a)

(∂−X)2 = α′
∑

n

Ln e−inσ− = 0 ; Ln = 1
2

∑
m

αn−m · αm . (3.2.17b)

As stated, the L̃n and Ln are the sum of the oscillator modes and for the classical

string they further obey the condition

L̃n = Ln = 0 ∀ n ∈ Z . (3.2.18)

In this case, the L̃0 and L0 have a pivotal role as they provide expressions both for

the Hamiltonian (H) and the effective mass of a classical bosonic closed string in

terms of the excited oscillator modes (mS ):

H = 2(L̃0 + L0) ; (3.2.19)

m2
S =

4
α′

∑
n>0

α̃n · α̃−n =
4
α′

∑
n>0

αn · α−n or

m2
S =

2
α′

∑
n>0

(α̃n · α̃−n + αn · α−n) . (3.2.20)

The result of Eq. (3.2.20) is the so-called mass-shell level-matching condition which
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comes in handy for the quantisation of the string. It is worth mentioning that the

elements of the set {Ln, L̃n} form a commuting algebra, known as the Witt algebra:

[Ln, Lm] = (n − m) Ln+m

[L̃n, L̃m] = (n − m) L̃n+m . (3.2.21)

These elements are physically interpreted as the infinitesimal generators of an

additional set of gauge transformations that leave the action of the bosonic string

theory invariant. This additional symmetry combines both reparametrizations and

Weyl rescalings into a new symmetry, the conformal symmetry.

After presenting the main properties and the basic structure of the classical

bosonic string theory with closed strings, the next step is to proceed with its quan-

tisation. Although the quantisation of the bosonic string deviates from the scope

of this thesis, it is still relevant for the consistency of the remaining sections in this

chapter. Therefore, an account of this topic is given in Appendix C.

3.2.2 The superstring

The upshot of studying the bosonic string theory is the realisation that it falls short

as a consistent, unified quantum theory of gravity due to two missing ingredients;

stability and fermions. First, as it is discussed in Appendix C, the bosonic string is

plagued by unphysical tachyonic states implying that the vacuum of the bosonic

string theory is unstable. Second and most important, is the striking absence of

fermions from the physical mass spectrum of the theory. In string theory, the incor-

poration of fermions is described by a set of fermionic fields Ψµ(τ, σ) and requires

SUSY. There are two approaches on this construction: one approach requires

worldsheet SUSY and is known as the Ramond-Neveu-Schwarz (RNS) formalism

whereas the other requires spacetime SUSY in the ten-dimensional Minkowski

background and is known as the GS formalism. In both formalisms, the resulting

theories are termed as superstring theories.

In this work, the only formalism used is the RNS in which D free fermionic

fields are added to the D-dimensional bosonic string, so that the overall number
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of bosonic and fermionic d.o.f matches. The fermionic fields are two-component

spinors which reside on the worldsheet and transform as vectors under a Lorentz

transformation on the D-dimensional background spacetime. The action of a su-

perstring theory is found by adding the Dirac action for D massless fermionic fields

to the bosonic action:

S = −
1
2π

∫
dτ dσ ∂αXµ∂αXµ −

1
2π

∫
dτ dσ Ψ

µ
ρα∂αΨµ . (3.2.22)

Here α = 0, 1, Ψ
µ

= (Ψµ)†iρ0 and ρα is the two-dimensional representation of Dirac

matrices that satisfies the Clifford algebra {ρα, ρβ} = 2ηαβ. In this case, the compo-

nents of the matrices are all real, hence this is a Majorana representation of Dirac

matrices, defined as

ρ0 =

0 −1

1 0

 and ρ1 =

0 1

1 0

 . (3.2.23)

The fermionic fields are in fact Weyl-Majorana spinors which carry a spacetime

index µ. Hence, the reality condition could be imposed on them such that Ψ
µ

=

(Ψµ)TC with C being a 2 × 2 charge conjugation matrix. In terms of lightcone

coordinates, the fermionic part of the superstring action defined in Eq. (3.2.22) is

given by

S F =
i
2

∫
dσ+dσ− (ψµ+ ∂−ψ+µ + ψ

µ
− ∂+ψ−µ) (3.2.24)

where ψµ+, ψµ− are the explicit components of the two-dimensional Weyl-Majorana

spinors. The fermionic action yields two equations of motion: one that describes

a left-moving wave and one that describes a right-moving wave. They are deter-

mined respectively as

∂+ ψ
µ
− = 0 and ∂− ψ

µ
+ = 0 . (3.2.25)

This implies that the left- and right-handed fermions are functions of the σ+ and

σ− coordinates respectively. Similar to the case of the bosonic string theory, the

timelike spinors ψ0
L, R would yield negative norm states that need a new local sym-
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metry to be removed. This symmetry is the super-reparametrization invariance on

the worldsheet. In addition to global Poincaré symmetry, the action in Eq. (3.2.22)

has an additional global symmetry. This is the worldsheet SUSY whose action on

the worldsheet fields is given by

δXµ = ε̄ Ψµ ε =

ε−ε+

 ;

δΨµ = ρα∂αXµε , (3.2.26)

where ε is an infinitesimal Majorana spinor with real, constant components. As a

result, there are two conserved currents associated with the global symmetries,

JαA = − 1
2 (ρβραΨµ)A ∂βXµ (3.2.27)

Tαβ = ∂αXµ∂βXµ + 1
4 Ψ

µ
ρα ∂βΨµ + 1

4 Ψ
µ
ρβ ∂αΨµ . (3.2.28)

The stress-energy tensor (Tαβ) arises from the translational symmetries, and the

supercurrent (JαA) arises from SUSY. In terms of lightcone coordinates, these are

expressed as

j+ = ψ
µ
+ ∂+Xµ and j− = ψ

µ
− ∂−Xµ , (3.2.29)

T++ = ∂+Xµ ∂+Xµ +
i
2
ψ
µ
+ ∂+ψ+µ

T−− = ∂−Xµ ∂−Xµ +
i
2
ψ
µ
− ∂−ψ−µ

T−+ = T+− = 0 . (3.2.30)

The RNS superstring theory has a number of constraints imposed on quantisation,

which are given by

j+ = j− = T++ = T−− = 0 . (3.2.31)

Likewise to the bosonic string, the constraints in Eq. (3.2.31) imply that the su-

perstring theory has superconformal invariance which is used to fix the lightcone

gauge and remove the unphysical states from the quantised theory.

In order to solve the equations of motion, boundary conditions are required.
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The boundary condition for the closed string leads to two sets of fermionic modes,

one that is left- and one that is right-moving. The periodicity conditions in accor-

dance with the Lorentz invariance are

ψ
µ
±(τ, σ) = ±ψ

µ
±(τ, σ + π) . (3.2.32)

The positive sign implies periodic or Ramond (R) boundary conditions whereas

the negative sign implies antiperiodic or Neveu-Schwarz (NS) boundary condi-

tions. Either one of the two boundary conditions could be imposed on the left- and

right-movers, therefore there are two different mode expansions for the fermionic

movers. The left-movers could be expanded either as

R : ψµ+(τ, σ) =
∑
n ∈Z

d̃µn e−2 i n (τ+σ) or NS : ψµ+(τ, σ) =
∑

r ∈Z+
1
2

b̃µr e−2 i r (τ+σ) ,

(3.2.33)

and the right-movers could be similarly expanded either as

R : ψµ−(τ, σ) =
∑
n ∈Z

dµn e−2 i n (τ−σ) or NS : ψµ−(τ, σ) =
∑

r ∈Z+
1
2

bµr e−2 i r(τ−σ) .

(3.2.34)

Note that bµ†r = bµ−r and dµ†n = dµ−n. Since a state is formed by the tensor product of

a right-mover with a left-mover, there are four choices and hence four sectors in

the superstring theory: the NS-NS and the R-R sectors that consist of spacetime

bosonic states, as well as the NS-R and R-NS sectors that consist of spacetime

fermionic states.

3.3 Quantising the RNS superstring theory

In the same manner as to the bosonic string theory, the RNS superstring theory

can be quantised either via the covariant or the lightcone quantisation methods.

In this section, only the covariant quantisation is presented in detail and lightcone

quantisation will only be briefly mentioned.

Promoting both Xµ and Ψµ to operator valued fields one obtains the canonical
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equal-time commutation and anticommutation relations respectively. This means

that the modes α, α̃ derived from the bosonic fields obey the algebraic relations

in Eq. (C.2.10), and the modes b, b̃, d, d̃ derived from the fermionic fields become

operators and obey the following algebraic relations:

{ ˆ̃bµr ,
ˆ̃bνs} = {b̂µr , b̂

ν
s} = ηµνδr+s, 0

{ ˆ̃dµm,
ˆ̃dνn} = {d̂µm, d̂

ν
n} = ηµνδm+n, 0

{ ˆ̃bµr ,
ˆ̃dνn} = { ˆ̃bµr , d̂

ν
n} = {b̂µr , d̂

ν
n} = 0 . (3.3.1)

Superstrings have two distinct sectors in the spectrum: the R and the NS sectors,

thus for each sector there is a corresponding oscillator ground state defined by

âµm |0〉R = d̂µm |0〉R = 0 ∀ m > 0 , (3.3.2)

âµm |0〉NS = b̂µr |0〉NS = 0 ∀ m, r > 0 . (3.3.3)

The excited states are then constructed by acting on the ground states with the

creation operators as demonstrated for the bosonic string theory in Appendix C.

The ground state of the NS sector is unique and gives rise to a spin-0 spacetime bo-

son. Note that the oscillators âµm and b̂µr behave as spacetime vectors under Lorentz

transformations, hence the excited states in the NS sector, created by acting on the

vacuum by negative mode oscillators, all give rise to massless and massive space-

time bosons. Contrary to this, the ground state of the R sector is degenerate and

gives rise to a spin- 1
2 spacetime spinor of dimension 2 D

2 . The fermionic coordinates,

d̂µm, have zero-modes which obey the anticommutation relations

{d̂µ0, d̂
ν
0} = δ0, 0 η

µν = ηµν . (3.3.4)

This is a representation of the Dirac algebra and allows the set of degenerate states

to be written in the following form

√
2 i dµ0 |α〉 = γ

µ
αβ |β〉 , (3.3.5)
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where γµ is a D-dimensional matrix representation of d̂0 and α, β are spinor indices.

Similar to before, the oscillators âµm and d̂µm transform as spacetime vectors hence

the excited states in the R sector, created in the usual way, all give rise to massless

and massive spacetime fermions.

The elements forming the set {L̂m,
ˆ̃Lm}, m ∈ Z, are generators of the RNS su-

perstring theory, known as the super-Virasoro generators. There are two sets of

them; each one is associated with the mode expansions corresponding to the

two different sectors of the theory. The super-Virasoro generators consist of the

mode expansions of the stress-energy tensor and the supercurrent, as defined in

Eq. (3.2.29), and are determined by adding to the corresponding Virasoro gener-

ator of the bosonic part the Virasoro generator of the fermionic part:

ˆ̃Lm =
1
π

∫ π

−π

dσ ei mσT++ = ˆ̃L(b)
m + ˆ̃L( f )

m

L̂m =
1
π

∫ π

−π

dσ ei mσT−− = L̂(b)
m + L̂( f )

m . (3.3.6)

The generators from the bosonic part are defined as in Eq. (C.1.8) whereas the

fermionic part yields two Virasoro generators and two mode expansions of the

supercurrent.

• NS sector: The super-Virasoro operators for a closed superstring are ex-

pressed as

ˆ̃L( f )
m = 1

2

∑
r ∈Z+

1
2

(
r +

m
2

)
: ˆ̃bm−r ·

ˆ̃br : (3.3.7a)

L̂( f )
m = 1

2

∑
r ∈Z+

1
2

(
r +

m
2

)
: b̂m−r · b̂r : (3.3.7b)

and the modes of the supercurrent are given by

ˆ̃Gr =

√
2
π

∫ π

−π

ei rσ j+ =
∑

n

ˆ̃α−n ·
ˆ̃br+n (3.3.8a)

Ĝr =

√
2
π

∫ π

−π

ei rσ j− =
∑

n

α̂−n · b̂r+n ; (3.3.8b)
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where m, n ∈ Z, and : : indicates normal ordering. The zero-mode operators

are then defined as follows

ˆ̃L0 = 1
2

ˆ̃α2
0 + ˆ̄N ; ˆ̄NNS =

∑
n=1

ˆ̃α−n · ˆ̃αn +
∑
r=

1
2

r ˆ̃b−r ·
ˆ̃br

L̂0 = 1
2 α̂

2
0 + N̂ ; N̂NS =

∑
n=1

α̂−n · α̂n +
∑
r=

1
2

r b̂−r · b̂r . (3.3.9)

The eigenvalues of the number operators N̂ and ˆ̄N determine the mass-

squared value for the excited states of the theory, which is given by

α′m2
S S = N̂NS −

1
2 = ˆ̄NNS −

1
2 . (3.3.10)

As usual, the elements of the set {L̂m,
ˆ̃Lm, Ĝr,

ˆ̃Gr}, where m ∈ Z and r ∈ Z + 1
2

form the super-Virasoro algebra which consists of the following general alge-

braic relations:

[L̂m, L̂n] = (m − n) Lm+n +
D
8

m (m2 − 1) δm,−n

[L̂m, Ĝr] =

(m
2
− r

)
Gm+r

{Ĝr, Ĝs} = 2 Lr+s +
D
2

(
r2 − 1

4

)
δr,−s . (3.3.11)

The central charge is denoted by D and is equal to the dimension of the

background spacetime for the RNS superstring theory.

• R sector: The super-Virasoro operators for a closed superstring are expressed

as

ˆ̃L( f )
m = 1

2

∑
n

(
n +

m
2

)
: ˆ̃dm−n ·

ˆ̃dn : (3.3.12a)

L̂( f )
m = 1

2

∑
n

(
n +

m
2

)
: d̂m−n · d̂n : (3.3.12b)
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and the modes of the supercurrent are given by

ˆ̃Fm =

√
2
π

∫ π

−π

ei mσ j+ =
∑

n

ˆ̃α−n ·
ˆ̃dm+n (3.3.13a)

F̂m =

√
2
π

∫ π

−π

ei mσ j− =
∑

n

α̂−n · d̂m+n ; (3.3.13b)

where m, n ∈ Z. The mass-squared value for the excited states in this sector

of the theory is determined by

α′m2
S S = ˆ̄NR = N̂R , (3.3.14)

where the number operators are now defined as

ˆ̄NR =
∑
n=1

ˆ̃α−n · ˆ̃αn +
∑
r=

1
2

r ˆ̃d−r ·
ˆ̃dr ; N̂R =

∑
n=1

α̂−n · α̂n +
∑
r=

1
2

r d̂−r · d̂r . (3.3.15)

In the R sector, the super-Virasoro algebra is different because it is now

formed by the elements of the set {L̂m,
ˆ̃Lm, F̂n,

ˆ̃Fn} (m, n ∈ Z) and the gen-

eral algebraic relations are:

[L̂m, L̂n] = (m − n) Lm+n +
D
8

m3δm,−n

[L̂m, F̂n] =

(m
2
− n

)
Fm+n

{F̂m, F̂n} = 2 Lm+n +
D
2

m2δm,−n . (3.3.16)

Having presented the basic elements of the quantised closed superstring, the next

step is to examine the conditions imposed on the physical states ( |φ〉 ) emerging

from each sector of the RNS superstring theory.

• NS sector: The mass-shell conditions satisfy

ˆ̃Lm |φ〉 = L̂m |φ〉 = 0 m > 0 , (3.3.17a)

ˆ̃Gr |φ〉 = Ĝr |φ〉 = 0 r > 0 , (3.3.17b)

( ˆ̃L0 − zNS ) |φ〉 = (L̂0 − zNS ) |φ〉 = 0 , (3.3.17c)
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where zNS is a constant which arises due to the normal ordering ambiguity

of L̂0,
ˆ̃L0.

• R sector: The mass-shell conditions satisfy

ˆ̃Lm |φ〉 = L̂m |φ〉 = 0 m > 0 , (3.3.18a)

ˆ̃Fn |φ〉 = F̂n |φ〉 = 0 n ≥ 0 , (3.3.18b)

( ˆ̃L0 − zR) |φ〉 = (L̂0 − zR) |φ〉 = 0 , (3.3.18c)

where zR is a constant like the zNS . In general, the two constants are not

equal as they depend on the zero-mode super-Virasoro generators which are

different for each sector.

The last condition in Eqs. (3.3.17) and (3.3.18) implies that the mass of the phys-

ical states arising from a closed superstring is given by

α′m2
S S = ˆ̄NNS ,R − zNS ,R = N̂NS ,R − zNS ,R . (3.3.19)

In the covariant quantisation there are unphysical states emerging through the

same procedure as discussed for the bosonic string. It is possible to eliminate

these states from the mass spectrum of the theory if the constants are evaluated

as zNS = 1
2 and zR = 0, where the central charge is found to be D = 10 [126].

These constraints imply that the background spacetime of a covariantly quantised

superstring free from unphysical states and manifestly Lorentz invariant is ten-

dimensional. Furthermore, a superstring that lives in ten dimensions is free of any

conformal anomalies [127].

Unitarity in RNS superstring theory is manifest in the lightcone quantisation.

Recall that in the bosonic theory, the conformal symmetry of the action is a residual

bosonic symmetry which allows the lightcone gauge condition defined in Eq. (C.2.6)

to be imposed on the theory. This condition is also valid in the RNS superstring

theory, however, the theory has a superconformal symmetry. This means that there

is an additional residual fermionic symmetry which allows an extra condition to

be imposed on the lightcone gauge. As a result, the lightcone gauge in RNS super-
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string theory requires

X+(τ, σ) = x+ + p+τ and Ψ+(τ, σ) = 0 . (3.3.20)

Each sector of the theory contributes a different set of states to the physical

mass spectrum and the lightcone formalism provides an easy way to understand

it. As deduced from Eq. (3.3.19), the mass-squared of the physical states in the

NS and R sectors is determined respectively as

α′m2
NS =

∑
n=1

ˆ̃α−n · ˆ̃αn +
∑
r=

1
2

r ˆ̃b−r ·
ˆ̃br −

1
2 =

∑
n=1

α̂−n · α̂n +
∑
r=

1
2

r b̂−r · b̂r −
1
2

α′m2
R =

∑
n=1

ˆ̃α−n · ˆ̃αn +
∑
r=

1
2

r ˆ̃d−r ·
ˆ̃dr =

∑
n=1

α̂−n · α̂n +
∑
r=

1
2

r d̂−r · d̂r . (3.3.21a)

Hence it is demonstrated that the mass spectrum surviving the super-Virasoro con-

straints consists of states such as the ones presented below.

• The NS ground state is defined to be annihilated by all positive mode oscil-

lators,

ˆ̃αi
n |0; kµ〉NS = α̂i

n |0; kµ〉NS = 0 ; ˆ̃bi
r |0; kµ〉NS = b̂i

r |0; kµ〉NS = 0 , (3.3.22)

along with

ˆ̃αµ0 |0; kµ〉NS = α̂
µ
0 |0; kµ〉NS =

√
2α′kµ |0; kµ〉NS . (3.3.23)

The mass-squared value of the ground state is given by α′m2
NS = − 1

2 which im-

plies that the ground state gives rise to a tachyon. At this point the existence

of a tachyon jeopardizes the stability of the theory.

• The NS first excited state consists of one left- and one right-moving oscillator

mode. However, there are two oscillator modes, the bosonic αi
−1 and the

fermionic bi

−
1
2
, so there are two options for creating this state. It turns out

however, that the first excited state in the NS sector is formed by acting

on the vacuum state with the lowest frequency oscillator mode such that
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|Ωi j〉 = bi

−
1
2
b̃ j

−
1
2
|0; kµ〉. These states are formed by the tensor product between

two massless spacetime vectors acting on a scalar ground state. Thus, they

give rise to massless spacetime vector particles that fill out the representations

of the little group S O(8). The particles have eight d.o.f which are transverse

directions or polarizations, as required for a massless vector living in ten

dimensions.

• The R ground state is similarly defined to be annihilated by all mode oscilla-

tors with n > 0,

ˆ̃αi
n |0; kµ〉R = α̂i

n |0; kµ〉R = 0 ; ˆ̃di
r |0; kµ〉R = d̂i

r |0; kµ〉R = 0 , (3.3.24)

along with
ˆ̃Fµ
0 |0; kµ〉R = F̂µ

0 |0; kµ〉R = 0 . (3.3.25)

This condition implies that Γµ kµ |0; kµ〉R ≡ /k |0; kµ〉R = 0, which is the Dirac

equation in the momentum representation. From this result one could sur-

mise that the R ground state is a massless ten-dimensional spinor with 32

independent components and thus gives rise to massless spacetime fermions.

However, the fermionic fields on the worldsheet of the superstring theory

are Weyl-Majorana spinors. Therefore, it is acceptable to impose the Majo-

rana reality condition on the R ground state. This reduces the number of

independent components down to 16, but the 16-component Weyl-Majorana

spinor has to also obey the Dirac equation. As a result, the number of inde-

pendent components is further reduced down to eight and hence this state

carries eight d.o.f and corresponds to an irreducible spinor of S O(8).

• The R first excited state similarly consists of a left- and a right-moving os-

cillator mode. Unlike what happens in the NS sector, the R first excited

states are obtained by acting on the vacuum state with either the bosonic

oscillator mode αi
−1 or the fermionic oscillator mode di

−1. These states are

the tensor product between two spacetime vectors acting on a spinor ground

state. Thus, they give rise to massive spacetime spinors.

September 20, 2016



3.3. Quantising the RNS superstring theory 73

There are some immediate problems with the above spectrum. For one thing as

explained in Section C.2 of Appendix C, the existence of tachyon is a hindrance,

thus the tachyon must be projected from the spectrum. Another observation is

that even though the bosonic d.o.f for the first NS excited state are equal to the

fermionic d.o.f for the R ground state, they are not level matched as required

by spacetime SUSY. The local SUSY manifests itself in the form of a massless

gravitino, hence the absence of SUSY from the spectrum is problematic. Moreover,

the spectrum is inconsistent with the worldsheet modular invariance, a symmetry

that guarantees the absence of global anomalies [127].

All is not lost because the consistency of the theory at one-loop implies that

there is an additional condition imposed on the states. This is the Gliozzi, Scherk

and Olive (GSO) projection defined as

(−)F = −1 , (3.3.26)

where F is the fermion number operator:

FNS =
∑
r=

1
2

ˆ̃bi
−r ·

ˆ̃bi
r =

∑
r=

1
2

b̂i
−r · b̂

i
r ; FR =

∑
n=1

ˆ̃di
−n ·

ˆ̃di
n =

∑
n=1

d̂i
−n · d̂

i
n . (3.3.27)

The primary achievement of the GSO projection is the elimination of the tachyon

from the NS sector. For the projection to be satisfied, the FNS must be equal to an

odd number. Hence, the only states in the NS sector that survive this additional

constraint are those states created by an odd number of ˆ̃b and b̂ oscillator excita-

tions. In the case of the R sector, the GSO projection acts as a spacetime chirality

and satisfies the anticommutation relation

{(−)F , dµ0} = 0 . (3.3.28)

Hence the operator (−)F is identified with the ten-dimensional γ11 matrix and in

the absence of oscillators the GSO projection satisfies

(−)F = γ11(−)
∑

n=1 dµ−n dµn . (3.3.29)
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Hence, the states in the R sector that survive this condition are those created

either by an even or an odd number of ˆ̃d and d̂ oscillator excitations depending

on the chirality of the spinor ground state. Spinors with positive chirality satisfy

γ11 Ψµ = Ψµ whereas those with negative chirality satisfy γ11 Ψµ = −Ψµ. This now

guarantees that at the massless level of the theory there are two ground states, a

vector boson with eight d.o.f along with a Weyl-Majorana spinor with the same

number of d.o.f. The two ground states form two different real, eight-dimensional

representations of S O(8) and produce all the massless states in the four sectors,

NS-NS, NS-R, R-NS, R-R of the closed RNS superstrings. A summary of the

massless spectrum is provided in Table 3.1.

Sector S O(8) Representation Massless Fields
NS −NS 8v ⊗ 8v = 35S ⊕ 28A ⊕ 1 gµν, Bµν, φ

NS − R 8v ⊗ 8s = 8s ⊕ 56s Ψµ, λ

R −NS 8s ⊗ 8v = 8s ⊕ 56s Ψ′µ, λ
′

R − R 8s ⊗ 8s = p − f orms R − R bosons

Table 3.1: The massless spectrum of the closed ten-dimensional RNS superstring
where the massless fields are identified according to the irreducible S O(8) repre-
sentations. The subscripts v and s denote the vector and spinor representations.
The NS−NS states denote the 2-index symmetric traceless, the antisymmetric and
trace combinations that correspond to the spin-2 graviton, 2-form and spin-0 dila-
ton respectively. The fermionic states Ψµ,Ψ

′
µ are spin-32 gravitino fields, while the

λ, λ′ are spin- 1
2 dilatino fields. All fermions that fall in the same representations

have the same helicity. This spectrum coincides with the one obtained in Type IIA,
IIB N = 2 supergravity theories.

Having the same number of bosons and fermions in the massless level of the theory

is a direct consequence of spacetime SUSY and is most commonly expressed as

Bose-Fermi degeneracy. More generally, the Bose-Fermi degeneracy holds at each

mass level of the RNS superstring theory [126].
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3.4 The vacuum landscape of the RNS superstring

theory

For the formulation of a consistent quantum field theory of superstrings, the space-

time background must have ten dimensions. However, following the discovery of

anomaly cancellation by [13], in terms of the weak coupling perturbation theory

there exist five different consistent superstring theories. Three of them, known as

Type I SO(32), Type IIA, Type IIB, were introduced by [128] building on the earlier

work of Ref. [11]. The other two, known as S O(32) Heterotic and E8 ⊗ E8 Heterotic

were formulated by [12]. The Type I S O(32) is a theory that contains both open

and closed strings, and N = 1 SUSY. The Type II theories are based on closed

strings with N = 2 and a U(1) gauge group. Depending on the relative chirality be-

tween the left- and right-movers different states in both the NS and R sectors are

projected out yielding the different Type II superstring theories with different mass

spectra, theoretical and phenomenological properties. The heterotic strings form

the central piece for the completion of this thesis, therefore they are discussed in

more detail in Chapter 4.

The five superstring theories are in fact five different solutions to a unique

underlying theory [129]. Specifically, they are just perturbative expansions of the

unique theory about five different, consistent quantum vacua which are related to

each other through symmetries, known as dualities [130,131],

T : R 7→
1
R

; S : gS 7→
1

gS
. (3.4.1)

T-duality is an exact quantum symmetry of perturbative closed strings and relates

one string theory compactified on a circle of radius R to another string theory

compactified on a circle of radius R−1. The two theories are called dual and are

physically equivalent, in the sense that the worldsheet quantum field theory is

invariant under the rewriting of the radius R theory in terms of the dual string

coordinates. Type II superstring theories are related to each other via T-duality,

and the same also holds for the two Heterotic superstring theories. So, a Type
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IIA theory formulated in a nine-dimensional Minkowski spacetime times a circle

of radius R is equivalent to a Type IIB theory formulated in a nine-dimensional

Minkowski spacetime times a circle of radius R−1. In ten dimensions both theories

are two limiting cases of a continuum of consistent vacua that are connected by

tuning the value of the radius R. The value of the radius is determined by the VEV

of a modulus field and ranges from zero to infinity.

S-duality is another symmetry of perturbative closed strings and relates one

string theory with a strong coupling to another string theory with a weak coupling.

Type I S O(32) superstring theory is related to the S O(32) Heterotic superstring

theory and Type IIB is related to itself in a similar manner. The string coupling

constant gS is determined by the VEV of the dilaton. A direct implication of S-

duality is that two theories are continuously connected by varying the coupling

constant from zero to infinity. Furthermore, the strong coupling expansion of one

theory is determined by the weak coupling expansion of the other.

Even though it is not a primary goal to elaborate on dualities, there is a re-

markable upshot: all superstring theories are different manifestations of the same

“master entity”. This is on par with the expectations from a fundamental unified

theory.
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Chapter 4

Non-supersymmetric heterotic

strings

The important thing in science is not

so much to obtain new facts as to

discover new ways of thinking about

them.

Sir William Lawrence Bragg

4.1 The general framework

The heterotic string is an oriented closed string obtained by the tensor product

of the left- and the right-moving modes. All of the right-moving modes are su-

perstring modes in ten spacetime dimensions and all of the left-moving modes

are bosonic string modes in 26 spacetime dimensions1. The additional 16 di-

mensions for the right-moving modes are compactified on an internal momen-

tum lattice which bears gauge charges. The gauge charges are the momenta pI
R;

I = (1, . . . , 16), which under the one-loop modular invariance form an even self-

dual lattice (−→p R ·
−→p R ∈ Z and −→p 2 ∈ 2Z ) in 16 dimensions.

1This assignment is consistent with the KLT notation.
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The massless spectrum of the heterotic string consists of the states in the NS-

NS and R-NS sector, as given in Table 3.1. This constitutes the particle content of

N = 1 superstring theory in ten dimensions. The bosonic string modes contribute

to the formation of massless vector bosons in the spectrum. According to anomaly

cancellation, either an S O(32) or an E8 ⊗ E8 gauge symmetry is required for the

heterotic theory to be consistent. Hence there are only two self-dual lattices in 16

dimensions, one generated by the roots of S O(32) and another generated by the

roots of E8 ⊗ E8.

There are two possible ways to express the additional 16 bosonic fields. The

first one is to keep the fields as bosons. The other, more common way, is to express

each bosonic field in terms of a Weyl-Majorana fermion λ̄A, where A denotes the

d.o.f of the fermionic modes. Based on this approach, the action of the heterotic

string in the lightcone gauge is given by

S H =
1

4πα′

∫
d2ξ

(
∂αXµ∂αXµ + 2iψµ ∂+ψ−µ + 2i

32∑
A=1

λ̄A∂−λ̄
A

)
. (4.1.1)

The heterotic string is the only perturbative closed string theory that provides a

satisfactory description of the observable world and produces amazingly viable

phenomenological models in four dimensions. Since the holy grail of string phe-

nomenology is to extract the massless particle content of a theory constructed at

the string scale and to examine its properties, heterotic strings are the best can-

didates for this purpose. Of particular phenomenological interest is the E8 ⊗ E8

heterotic string, because the gauge group encompasses all the gauge groups re-

lated to the GUT scheme.

4.1.1 Weakly Coupled Free Fermionic Heterotic Strings

This study focuses on weakly coupled, perturbative non-supersymmetric heterotic

strings formulated in the free fermionic formalism. Such a framework is notably

termed the “Weakly Coupled Free Fermionic Heterotic String (WCFFHS)” and was

pioneered around the same time by two independent groups, ABK [132,133] and

KLT [134, 135]. In WCFFHS, all the worldsheet d.o.f - other than the string co-
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ordinates - are represented by free complex worldsheet fermions, which are two-

dimensional Weyl-Majorana spinors. This implies that the ten bosonic modes for

the left-movers and the ten bosonic modes for the right-movers are expressed in

terms of non-interacting fermionic modes as follows:

∂αXµ ∂αXµ → iψ∗µ ∂αψµ + i ψ̄∗µ ∂αψ̄µ − hψ∗ψ ψ̄∗ψ̄ , (4.1.2)

where h is the Thirring coupling. In this formalism, the compactification of dimen-

sions is performed on tori with radii equal to the self-dual radius. The Thirring

coupling is a function of the radius of compactification, R. At the self-dual radius

this coupling is taken to zero [136], therefore the worldsheet fermions ψ and ψ̄

are defined as free fermions. The bosonic coordinates compactified in d dimensions

undergo fermionization, i.e. from each bosonic coordinate that is compactified

on a flat torus originate two left- and two right-moving real free fermions [134].

As a result, for d compactified bosonic coordinates there are 2d left- and 2d right-

moving additional real free fermions.

The left- and right-moving fermions that correspond to the compact directions

have enhanced symmetries. The local reparametrization invariance and world-

sheet SUSY, which are essential to reconcile the Lorentz invariance with unitarity,

are inherent to the quantised action for the heterotic string. However, the two-

dimensional field theory that is defined on the string worldsheet of a consistent

string model and that naturally admits a massless graviton, must be invariant

under conformal symmetries. Conformal invariance of a compactified heterotic

string theory follows if the worldsheet d.o.f consist of the two string coordinates,

and NL = 1
2 (32 + 2d) left-moving and NR = 1

2 (8 + 2d) right-moving complex world-

sheet fermions. Note that the numbers 32 and 8 are the original numbers of real

left- and right-moving worldsheet fermions respectively in the ten-dimensional

heterotic theory. Thus, the complex free-fermions are paired as

f ≡ { fR; fL} ≡ { fiR; fiL} , (4.1.3)

where iR = 1, . . . ,NR and iL = 1, . . . ,NL. Remarkably, the number of left- and right-
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moving free fermions is such that they provide all the necessary d.o.f so as to

ensure the cancellation of conformal anomalies. The free-fermionic construction

[132, 133], [134, 135] serves as the anchor underpinning the models presented

in this work. In general, the rest of this section explores the salient features of

this construction for the special case of heterotic strings in six uncompactified

spacetime dimensions, which have NR = 8 and NL = 20.

For the entire construction of a string model, it is important to understand and

implement the necessary ingredients that specify both the local and the global

structure. Having presented the ingredients which specify the local structure, the

next step is to present those which specify the global structure of the model. This

is achieved by assigning boundary conditions to the fields which live around the

non-contractible loops of a given worldsheet topology. Conveniently, the bound-

ary conditions assigned to the integer-spin fields are fixed by the worldsheet met-

ric. On the other hand, the boundary conditions assigned to the half-integer spin

fields could be trivial. In particular, the four real fermions originating from a sin-

gle bosonic coordinate are allowed to have different boundary conditions, which

are restricted by the underlying symmetries responsible for the consistency of the

theory. Hence the criteria for the consistent assignment of boundary conditions

are that the conformal invariance, the worldsheet SUSY (as treated in detail in

Refs. [134, 136]) and, most importantly, the reparametrization invariance, must

be preserved. The latter criterion is of considerable importance because apart from

local reparametrizations, there is a special class of discrete reparametrizations not

connected to the identity. These are known as modular transformations, which un-

like local reparametrizations, play a crucial role in the boundary conditions of the

worldsheet fermions. Specifically, modular invariance is found to be a fundamental

symmetry of all closed string models.

Considering the worldsheet topology to be that of a two-dimensional torus,

there are non-contractible loops in two directions (σ1 and σ2), as depicted in

Fig. 4.1, around which the boundary conditions of the complex free fermions must

be specified. The modular transformations that leave the worldsheet action invari-

ant are expressed in terms of the one-loop modular parameter τ = τ1 + iτ2 and are
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Figure 4.1: The topology of the string worldsheet is a two-dimensional torus with
non-contractible loops in two directions. The two directions that yield the non-
contractible loops are denoted by the σ1 and σ2 coordinates. The boundary condi-
tions of free fermions are determined by the set of phases these fermions acquire
when they are parallel transported around the two non-contractible loops.

generated by

σ1 ≡ S : τ 7→ −
1
τ

; σ2 ≡ T : τ 7→ τ + 1 . (4.1.4)

The S transformation corresponds to interchanging the σ1 and σ2 coordinates,

which in physical terms means the interchanging of the UV with the Infrared (IR)

limit of the string theory. The T transformation corresponds to cutting the torus at

some constant σ2 slice, rotating one end through 2π and then reconnecting it back

to the other end.

The complex free fermions are parallel transported around the (σ1, σ2) non-

contractible cycles of the one-loop worldsheet, acquiring a set of phases which

determine their respective boundary conditions,

S : fiR/L → −e−2 π i viR/L fiR/L

T : fiR/L → −e−2 π i uiR/L fiR/L . (4.1.5)

For toroidal compactifications the phases are collected in two sets of vectors for

each of the two non-contractible cycles of the torus,

v ≡ {vR; vL} ≡ {viR; viL}

u ≡ {uR; uL} ≡ {uiR; uiL} , (4.1.6)

September 20, 2016



4.1. The general framework 82

where viR , viL , uiR , uiL ∈
[
− 1

2 ,
1
2
)
. The allowable values these phases can take are con-

strained within the given range by modular invariance as well as the conditions

imposed on the left-movers by worldsheet SUSY. Specifically, modular invariance

restricts the values of phases to rational numbers, and further requires that the

sets of {v} and {u} vectors must be equivalent. As a result, there exists only one

set of such specified phases and it is called a spin structure. Since different mod-

els are characterised by different boundary conditions assigned to the worldsheet

free fermions, the spin structure is the key component which defines the models

constructed and, in general, is expressed in terms of a set of basis vectors Vi [135].

Consistent models are constrained by the modular invariance conditions, in-

variance of the worldsheet supercurrent, and correct space-time spin-statistics; all

of these constraints will be satisfied so long as

m j ki j = 0 mod (1)

ki j + k ji = Vi · V j mod (1)

kii + ki0 + si =
1
2

Vi · Vi mod (1) , (4.1.7)

where the ki j are otherwise arbitrary structure constants that completely specify

the theory, mi is the lowest common denominator amongst the components of Vi,

and si ≡ V 1
i is the spin-statistics associated with the vector Vi. The basis vectors

span a finite additive group G =
∑

k αkVk where αk ∈ {0, . . . ,m − 1}, each element

of which describes the boundary conditions associated with a different individ-

ual sector of the theory. Within each sector (αV ), the physical states are those

which are level-matched and whose fermion-number operators (NαV) satisfy the

generalised GSO projections:

Vi · NαV =
∑

j

ki j α j + si − Vi · αV mod (1) ∀ i . (4.1.8)
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The worldsheet energies associated with such states are given by

M2
L,R =

∑
l

E
αV l +

∞∑
q=1

[
(q − αV l)nl

q + (q + αV l − 1)nl
q

] − (D − 2)
24

+

D∑
i=2

∞∑
q=1

qMi
q ,

(4.1.9)

where l sums over left or right worldsheet fermions, nq, nq are the occupation num-

bers for complex fermions, Mq are the occupation numbers for complex bosons, D

is the number of uncompactified spacetime dimensions, and E
αV l is the vacuum-

energy contribution of the lth complex worldsheet fermion:

E
αV l =

1
2

[
(αV l)2 −

1
12

]
. (4.1.10)

Level-matching then simply requires that M2
L = M2

R. Explicitly, the fermions are

labelled in the conventional manner:

• two complex space-time fermions, denoted by ψ34, ψ56, which correspond to

the transverse modes of the ψµ, where µ = 1, . . . , 6;

• two complex internal fermions, denoted by χ34, χ56, which are present in the

original ten-dimensional heterotic string model;

• eight real right-moving internal fermions, denoted by y3,...,6, ω3,...,6, which are

obtained from the fermionization of each compactified bosonic coordinate in

the six-dimensional theory.

The left-moving worldsheet fermions consist of twenty complex degrees of free-

dom:

• sixteen complex left-moving fermions, denoted by ψ
1,...,5

, η1,...,3, φ
1,...,8

, which

are present in the ten-dimensional heterotic theory;

• eight real left-moving internal fermions, denoted by y3,...,6, ω3,...,6, correspond-

ing to the internal right-moving fermions obtained from the fermionization

procedure.
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In terms of the fields listed above, the worldsheet supercurrent is defined as

TF(z) = ψµ(z) ∂zXµ(z) +

6∑
I=3

χIyIωI . (4.1.11)

Moreover, the vector of U(1) charges for each complex worldsheet fermion is given

by

Q = NαV + αV , (4.1.12)

where αV is 0/− 1
2 for an NS/R boundary condition. This has only been a quick

summary on the particulars of the free-fermionic construction. There are, how-

ever, numerous subtleties which come into play when dealing with necessarily real

worldsheet fermions, especially if there is to be a subsequent coordinate depen-

dent compactification, as in this work. For this reason, extreme care is required for

the construction and analysis of these models, and one must adopt a consistent set

of phase conventions in agreement with the GSO projections and real-fermionic

modes. For this study, however, the conventions adopted are exactly those of

Ref. [135].

4.2 Theoretical groundwork

In this section, a review of the aspects of those strings which will be important for

this work is presented, and in particular those aspects related to the theoretical

properties with which every heterotic string theory is endowed.

4.2.1 The partition function

The one-loop partition function Z(τ) forms a powerful tool when examining the

stability properties of a given closed string. Generally, such a partition function is

expressed as the trace over the left- and right-moving string Fock spaces, and for
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a string formulated in D spacetime dimensions, it takes the form

Z(τ) = Tr (−1)F qHRqHL

= τ2
1− D

2

∑
m, n

amn qmqn , (4.2.1)

where q ≡ e2πiτ. Here (HR,HL) are the right- and left-moving worldsheet Hamiltoni-

ans whose eigenvalues are the right- and left-moving worldsheet energies (ER, EL),

and F denotes the spacetime fermion number. In addition, τ1 ≡ Re τ, τ2 ≡ Im τ,

and amn counts the net number of spacetime bosonic minus fermionic string states

with right- and left-moving worldsheet energies (ER, EL) = (m, n).

The spacetime mass M of a given (m, n) state is given by α′M2 ∼ m + n where

Mstring ≡
1
√
α′

is the string scale; as a result states with m + n < 0 are tachyonic.

Level-matched states with m = n are physical and can survive the generalised GSO

projections; these are the states that are usually described as being part of the

string spectrum. By contrast, states with m , n are unphysical or “off-shell”; such

states cannot survive in the string spectrum but can nevertheless propagate within

and hence contribute only to loop amplitudes. For heterotic strings, m ≥ − 1
2 , n ≥ −1

and the leading factors of τ2 in Eq. (4.2.1) are obtained from the “traces” over the

continuum of states corresponding to the uncompactified transverse spacetime

dimensions.

Modular invariance requires that the partition function Z(τ) be invariant under

the modular transformations in Eq. (4.1.4). Invariance under the T transformation

therefore requires that any (m, n) string states have m − n ∈ ZZ, with the physical

states satisfying m − n = 0. If the heterotic string in question has a spectrum

exhibiting spacetime SUSY, then amn = 0 for all (m, n) and hence Z(τ) = 0 for

every supersymmetric theory. On the other hand, string theories with Z(τ) , 0

are therefore necessarily non-supersymmetric, which is one reason the partition

function is a particularly powerful tool for the exploration of non-supersymmetric

theories.

It is worth emphasising that modular invariance is a fundamental symmetry of

all closed perturbative strings, regardless of the absence of spacetime SUSY. There
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is still a surviving myth in some quarters that modular invariance somehow re-

quires spacetime SUSY. However, this is a misconception since there are a number

of non-supersymmetric theories that are nevertheless modular invariant. Another

misconception that still survives and deserves explicit refutation is that string the-

ories that do not exhibit spacetime SUSY have tachyons surviving in their spectra.

This assertion is not valid, at least at tree level; there exist many examples of

non-supersymmetric string models whose tree-level spectra are entirely tachyon-

free. Note that freedom from tachyonic states in this context merely requires that

ann = 0 for all n < 0, i.e. that the number of bosonic tachyons match the number

of fermionic tachyons at all tachyonic mass levels. However, fermionic tachyons

with m = n < 0 are generally forbidden by Lorentz invariance, therefore the claim

that ann = 0 for all n < 0 actually implies that there are no tachyonic states of

any spin whatsoever. Bear in mind that once quantum effects are included, the

vacua of non-supersymmetric theories which are tachyon-free at tree level can

generally shift, and tachyons might be generated at higher loops. A brilliant ex-

ample of a modular invariant, non-supersymmetric, tachyon-free model is the ten-

dimensional O(16)⊗O(16) heterotic string theory which was originally constructed

in Ref. [23]. Indeed, all of the string theories that shall be discussed in this paper

are of this variety.

In the case that a D-dimensional string theory with partition function Z(D) is

compactified on a d-dimensional volume Vd, then the resulting (D−d)-dimensional

string theory has a partition function Z(D−d), which is related to Z(D) via

Z(D) = lim
Vd→∞

[
1

MdVd
Z(D−d)

]
. (4.2.2)

HereM ≡ (2π)−1Mstring =
(
2π
√
α′

)−1 is the reduced string scale. Likewise, for theo-

ries with closed strings, the Vd → 0 limit generally yields a D-dimensional string,

as a result of T-duality. The relation is still the same as in Eq. (4.2.2) but with Vd

replaced with a suitably identified T-dual volume Ṽd.

As a whole, there is a diversity in the kinds of physical and unphysical states

which contribute to Z(τ) and there is a theorem pertaining to this feature of string
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theories. The theorem holds regardless of the specific class of non-supersymmetric

string model under study and regardless of the particular GSO projections that

might be imposed [30].

Theorem 4.2.1 Every non-supersymmetric string model necessarily contains off-shell

tachyonic states with (m, n) = (0,−1), leading to a0,−1 , 0.

To understand the origin of these states and their effect on the partition function,

recall that every string model contains an NS-NS sector from which the gravity

multiplet arises:

graviton ⊂ ψ̃
µ

− 1
2
|0〉R ⊗ αν−1 |0〉L . (4.2.3)

Here |0〉R, L are the right- and left-moving vacua of the heterotic string: ψ̃µ
−
1
2

rep-

resents the excitation of the right-moving worldsheet NS fermion ψ̃µ, and αν
−1 rep-

resents the excitation of the left-moving coordinate boson Xν. There is no self-

consistent GSO projection which can possibly eliminate this gravity multiplet from

the string spectrum, hence it always contains the graviton. Along with the graviton

there always exists in the string spectrum a corresponding state for which the left-

moving vacuum is not excited. This state is called “proto-graviton” and is identified

as

proto-graviton → ψ̃
µ

− 1
2
|0〉R ⊗ |0〉L . (4.2.4)

The proto-graviton state has worldsheet energies (ER, EL) = (m, n) = (0,−1), and is

thus both off-shell and tachyonic. Normally, such states are considered to be irrel-

evant for phenomenology purposes, as they cannot appear as asymptotic states in

any scattering. Furthermore, in a supersymmetric theory, there likewise exists in

the spectrum a superpartner state, known as the “proto-gravitino” which automati-

cally cancels any contribution to the partition function from the proto-graviton. As

a result, the full partition function lacks a contribution ∼ q−1, and hence vanishes

entirely. The “proto-gravitino” is ultimately related to the gravitino in exactly the

same way as the proto-graviton is related to the graviton and is identified as

proto-gravitino → {ψ̃0}
µ |0〉R ⊗ |0〉L . (4.2.5)
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Here {ψ̃0}
α schematically indicates the R zero-mode combinations which collec-

tively give rise to the spacetime Lorentz spinor index µ. In the context of non-

supersymmetric strings, however, any GSO projection that eliminates the gravitino

from the string spectrum, will also correspondingly eliminate the proto-gravitino

state. This is a direct consequence of the fact that GSO projections are ‘blind’ to the

excitations of the bosonic coordinates. Once the proto-gravitino is projected from

the spectrum, there is nothing to cancel the contribution from the proto-graviton

states, and the resulting non-supersymmetric partition function will necessarily

have a0,−1 > 0. As deduced from Eq. (4.2.4), the off-shell, tachyonic states trans-

form as vectors under the transverse spacetime Lorentz symmetry S O(D−2). Con-

sequently, the first term in the partition function of a non-supersymmetric string

theory in D uncompactified spacetime dimensions is always of the form

Z(τ) =
D − 2

q
+ . . . . (4.2.6)

This outcome provides a convenient way of verifying the overall normalisation of

a given string partition function.

4.2.2 The one-loop cosmological constant

There is one known physical parameter which is not natural: the cosmological con-

stant Λ. Undeniably, various experimental tests verify that our world is quantum

mechanical and the value of the cosmological constant is found to be already at a

very low energy scale, Λ∼ (10−3 eV)4. Even if it is set to zero, there is no symmetry

enhancement of any form. This indicates that the gravitational phenomena violate

naturalness, something that no one can argue against since quantum gravity is not

fully yet understood. On a theoretical level, the value of the cosmological constant

is measured in QFT and is found to be many orders of magnitude greater than its

actual value. This discrepancy between the theory and experiment is known as

the cosmological constant problem [28].

If string theory is the framework for the unification of all fundamental forces in

nature, then it must provide convincing explanations about the observed vanishing
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of the cosmological constant. Similarly to QFTs, in superstring theories a zero

cosmological constant is attainable as a result of spacetime SUSY, at least in a

flat background [137–140]. Spacetime SUSY, however, is a broken symmetry and

hence string theory must be able to provide a mechanism for a vanishing or almost

vanishing cosmological constant which does not depend on SUSY. So far, no such

mechanism is known, therefore the purpose of this work is to open an investigation

into how the cosmological constant problem could be addressed in the context of

non-supersymmetric, tachyon-free string theories. To proceed on this course, it is

essential to give the background details on the cosmological constant calculations

in heterotic non-supersymmetric string theories.

Generally, the cosmological constant is the vacuum energy density and admits

contributions from both the physical and unphysical states of the theory. The

dominant contribution to this quantity comes at one-loop order because confor-

mal invariance eliminates the tree-level contribution. So, for any string model

in D uncompactified dimensions with partition function Z(τ), the corresponding

D-dimensional one-loop vacuum energy density is evaluated as

Λ(D) ≡ − 1
2M

D
∫
F

d2τ

τ22
Z(τ) , (4.2.7)

whereM is the reduced string scale and

F ≡
{
τ : |Re τ| ≤ 1

2 , Im τ > 0, |τ| ≥ 1
}

(4.2.8)

is the fundamental domain of the modular group. For convenience, the fundamen-

tal domain F is regarded as being composed of two separate regions, an “upper”

region with τ2 ≥ 1 and a “lower” region with τ2 < 1. The upper region extends

across the full width − 1
2 ≤ τ1 ≤ + 1

2 ; in this region, the τ1-integration then guaran-

tees that only the states with m = n survive as contributors to Λ. In addition, the

unphysical states with m − n ∈ ZZ , 0 contribute to Λ through integration over the

curved lower region (τ2 < 1) within F .

In the case that a D-dimensional string with partition function Z(D) is compact-

ified on a d-dimensional volume Vd, resulting in a (D − d)-dimensional string with
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partition function Z(D−d), then Λ(D−d) will typically diverge as Vd → ∞. To avoid

this, the cosmological constant of the (D − d)-dimensional theory is redefined as

Λ̃(D−d) ≡ Λ(D−d)(Vd)−1. Even though Λ̃(D−d) describes the (D − d)-dimensional theory,

it now has the mass dimensions appropriate for a D-dimensional vacuum energy

density. Substituting this result into Eq. (4.2.2) it is found that

Λ(D) = lim
Vd→∞

Λ̃(D−d) . (4.2.9)

The same relations also hold in the Vd → 0 limit, provided that Vd is replaced

with the appropriate T-dual volume Ṽd. In the following, the prefactor 1
2M

D in

Eq. (4.2.7) is disregarded and Λ remains a pure real number.

For reasons that will become clear in the next chapter, it is necessary to have a

frame of reference regarding the relative sizes of the contributions to the cosmo-

logical constant that arise from individual (m, n) string states. A given state with

(ER, EL) = (m, n) contributes a term qmqn to the partition function, which in turn

yields the following contribution to the one-loop cosmological constant:

I(D)
m, n ≡

∫
F

d2τ

τ22
τ1−D/2
2 qmqn . (4.2.10)

Taking into account all states that contribute in Eq. (4.2.10), it is a common sup-

position that massless physical states (i.e., states which satisfy m = n = 0) make

the dominant contributions to vacuum amplitudes. It can be demonstrated that

Inn ∼ e−4π n for large n, confirming the trend that the contributions from heavy phys-

ical states are exponentially suppressed relative to those from lighter states. It can

be also demonstrated that the contributions from states with m , n are generally

suppressed relative to those with m = n, even for fixed total energy/mass m + n.

A calculation of the contribution from relatively light states in a ten-dimensional

and four-dimensional heterotic string theory is presented in Table 4.1. It is evident

that the states that make the largest contributions to the cosmological constant are

actually the off-shell tachyonic states with (ER, EL) = (m, n) = (0,−1)! These states

are the proto-gravitons discussed above and remarkably the contributions from

these states are actually bigger than those from the physical massless states by a
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m n I(10)
m, n I(4)

m, n

0 −1 −14.258 −12.192

1 −1 0.014 0.010

1/2 −1/2 −0.038 −0.032

0 0 0.257 0.549

2 −1 −2.569 × 10−5 −1.803 × 10−5

3/2 −1/2 4.682 × 10−5 3.456 × 10−5

1 0 −1.029 × 10−4 −8.463 × 10−5

1/2 1/2 3.021 × 10−4 3.304 × 10−4

Table 4.1: The contribution of the lightest states to the one-loop cosmological
constant of a heterotic string theory constructed in ten and four dimensions.

factor of ∼ 55 for D = 10 and ∼ 22 for D = 4. Thus, these large contributions to Λ

are necessarily present for any non-supersymmetric string model, and any attempt

to cancel Λ must therefore find a way of cancelling these contributions as well.

4.3 Exploring the finiteness and stability

In this section, a review of the aspects related to the finiteness and stability prop-

erties of non-supersymmetric strings, is presented.

4.3.1 Misaligned Supersymmetry

As was mentioned in the previous section, supersymmetric string theories neces-

sarily have vanishing one-loop partition functions, i.e. ann = 0 for all n, and hence

Λ = 0. This cancellation is at the root of the finiteness properties which unbroken

spacetime SUSY bestows upon the theories in which it is exhibited. Moreover, this

cancellation makes spacetime SUSY an unparalleled candidate for solving the hier-

archy problems associated with the Higgs mass mH and the cosmological constant

Λ.

Finiteness effects are commonly quantified through the calculation of super-

traces, which are essentially statistics-weighted sums over the entire spectrum of
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the theory:

StrM2β ≡
∑

states i

(−1)F(Mi)2β . (4.3.1)

In supersymmetric theories the direct pairing of degenerate bosonic and fermionic

states implies the vanishing of all supertraces:

StrM2β = 0 ∀ β ≥ 0 . (4.3.2)

These supertraces are important because they relate directly to hierarchy issues by

governing the quantum-mechanical sensitivities of light energy scales (such as mH

or Λ) to heavy mass scales (e.g., a cut-off λ):

δm2
H ∼ (StrM0)λ2 + (StrM2) log λ + . . . (4.3.3a)

Λ ∼ (StrM0)λ4 + (StrM2)λ2 + (StrM4) log λ + . . . (4.3.3b)

These relations hold supermultiplet by supermultiplet across the entire spectrum.

In the case of the cosmological constant, all states in the theory are included,

whereas in the case of the Higgs, only those states to which it is coupled are

included. Thus, from Eq. (4.3.2) it is proved that supersymmetric theories solve

both the hierarchy problem associated with the Higgs mass and cause Λ to vanish

completely.

Nature complicates things as it does not exhibit unbroken SUSY. Given how

well the properties of supersymmetric theories tackle the hierarchy issues, it is

only logical to wonder if the non-supersymmetric strings could possibly possess

any of these properties. It turns out that string theory maintains a degree of finite-

ness which stems directly from the nature of strings as extended objects. The

preeminent agent that sits at the root of the extra finiteness properties, even when

spacetime SUSY is completely absent, is none other than modular invariance.

At the level of a QFT without any trace of spacetime SUSY, it is well understood

how modular invariance achieves finiteness: the expected field-theoretic one-loop

divergences reside in the UV (i.e. τ → 0) region of the modular-group’s funda-

mental domain. During the calculation of quantum effects, the emerging modular
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symmetries truncate the integrals and exclude this specific region, leaving the the-

ory UV finite. Hence, modular symmetries act as automatic ‘regulators’ of the

one-loop UV divergences. It turns out that in string theory, modular invariance

does amazingly well due to the fact that it provides a powerful restriction on the

degree to which SUSY can actually be broken. In principle, in any tachyon-free

closed string theory, spacetime SUSY may be broken but a residual so-called “mis-

aligned supersymmetry” must always remain in the string spectrum [20].

Misaligned SUSY is a general feature of all non-supersymmetric string models,

and forms the basic mechanism by which the spectrum of such theories manages

to configure itself at all mass levels so as to maintain finiteness. In supersymmetric

theories, there is an equal number of bosonic and fermionic states at each mass

level, hence all associated cancellations occur level by level across the entire spec-

trum. The marked contrast in non-supersymmetric theories is that level by level

cancellations are not possible. The reason lies in the fact that if at a given mass

level there is a surplus of spacetime bosonic states, then in the next higher mass

level there will be an even larger surplus of fermionic states, which is then fol-

lowed by an even larger surplus of bosonic states at an even higher energy level,

and so forth. This pattern, as illustrated in Fig. 4.2, is therefore characterised

by the exponential growth of bosonic states succeeded by fermionic states at al-

ternate mass levels. All states tend to oscillate and progress upwards across the

entire spectrum of the non-supersymmetric theory. It is deduced, therefore, that

the cancellation of UV divergences is achieved via a combination of contributions

from all the different levels across the whole string spectrum. This is the most

prominent phenomenological signature of misaligned SUSY, which is essential for

this study.

When a theory exhibits spacetime SUSY, the number of bosonic states matches

exactly the number of fermionic states at every mass level. So, even though each

number separately undergoes an exponential growth, their difference - ann - re-

mains strictly zero and thus there are no oscillations in the string spectrum such

as that in Fig. 4.2. By contrast, in a theory with no spacetime SUSY, the bosonic

states are “misaligned” resulting in a discernible oscillatory behaviour.
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Figure 4.2: A plot of the boson/fermion oscillations which are the hallmark of a
hidden “misaligned supersymmetry” existing in the spectrum of all tachyon-free
non-supersymmetric closed strings. At each mass level n, the quantity plotted is
± log(|ann|), where ann is the number of bosonic minus fermionic states at that level.
The overall sign is chosen according to the sign of ann; thus in this convention the
positive values indicate surpluses of bosonic states over fermionic states, and neg-
ative values indicate the reverse. The points are connected in order of increasing n
so as to emphasise the alternating, oscillatory behaviour of the boson and fermion
surpluses throughout the spectrum. These oscillations represent the mechanism
through which non-supersymmetric string theories exhibit UV finiteness. The plot
is adapted from Ref. [15].

The plot shown in Fig. 4.2 is an ideal case for a simple system. The actual semi-

realistic string models admit quite complex oscillation patterns. Nevertheless, the

general signature of misaligned SUSY remains intact. Specifically, the string spec-

trum is characterised by repeating patterns of oscillations between bosonic and

fermionic degeneracies (ann) which lie in an exponentially growing envelope. The

behaviour of the degeneracies as a function of the mass level n, is generally gov-

erned by the functional forms Φ(n) ∼ |ann| ∼ ec
√

n. Thus, a given bosonic surplus

may have magnitude Φ(ni), but this requires a corresponding fermionic surplus of

magnitude Φ(ni + ∆n), which in turn requires a corresponding bosonic surplus of

magnitude Φ(ni + 2∆n), and so forth. To be more precise, different sectors of the

theory correspond to different bosonic and fermionic envelope functions Φ
(i)
B (n)

and Φ
(i)
F (n), as discussed in Ref. [20]. There are well-defined methods to gener-

ate analytically exact expressions for the functional forms [141] and it is found

that these functional forms take the form of a leading “Hagedorn” exponential,
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followed by an infinite series of subleading exponential functions, followed ulti-

mately by terms which are polynomial in n. This is a well-known feature of all

string theories, supersymmetric or not, and leads directly to the string Hagedorn

transition [142]. Given this, misaligned SUSY requires that the sum of the bosonic

functional forms necessarily experiences a relative cancellation against the sum of

the fermionic functional forms, i.e.

∑
i Φ

(i)
B (n) −

∑
i Φ

(i)
F (n)∑

i Φ
(i)
B (n) +

∑
i Φ

(i)
F (n)

→ 0 as n→ ∞ . (4.3.4)

The precise degree to which
∑

i Φ
(i)
B (n) cancels directly against

∑
i Φ

(i)
F (n) as a func-

tion of n depends on the off-shell tachyonic structure of the theory as well as its

overall stability properties; this cancellation is even conjectured to be complete

under certain circumstances. Even for large n, the net degeneracies ann never

head towards zero; the spacings between energy levels remain fixed, and the os-

cillations between bosonic and fermionic surpluses continue unabated with ever-

growing amplitudes. Alternating surpluses thus no longer cancel in any pairwise

fashion, and it is only through a combination between the states at all mass levels

across the entire string spectrum that finiteness is ultimately achieved. Further

technical details regarding the idea of misaligned SUSY are extensively presented

in Ref. [20].

In a sense, there is a fundamental limit on the extent to which spacetime SUSY

can be broken in string theory; it can be broken only to the extent that a “mis-

aligned” SUSY remains in the spectrum. Just as in the case of unbroken spacetime

SUSY, the finiteness inherent in misaligned SUSY is also encoded in supertrace

cancellations. Due to the infinite towers of states with exponentially growing de-

generacies, the string supertrace is regulated as shown [21]:

Str M2β ≡ lim
y→0

∑
states

(−1)F M2β e−yα′M2
. (4.3.5)

Note that the regulator y, which respects modular invariance, leads to a convergent

sum over states and is then removed once the sum is evaluated. The spectrum of
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any non-supersymmetric, tachyon-free closed string theory, in D uncompactified

spacetime dimensions is then found to satisfy [21]:

Str M0 = 0, Str M2 = 0, . . . Str MD−4 = 0 , (4.3.6a)

Str MD−2 = 6 (−4π)
D
2

(D
2
− 1

)
!

Λ

M2
string

. (4.3.6b)

Here the convention used is the standard normalisation for closed strings, where

the spacetime mass of any state with worldsheet energies (m, n) is determined by

M2 = 2(m + n)M2
string.

The results in Eqs. (4.3.5) and (4.3.6) are independent of the construction

method, the compactification manifold or the low energy phenomenology of the

associated theory, and represent the collective behaviour of states at all mass lev-

els simultaneously. A notable outcome of these supertrace relations is the fact that

Str MD−2 is actually directly proportional to Λ. This is greatly encouraging because

the issues of finiteness and cancellation of the cosmological constant are deeply

intertwined, and modular invariance in conjuction with misaligned SUSY are pow-

erful tools in the quest to achieve both. Furthermore, as it is discussed below, in a

given string model the value of the cosmological constant is directly connected to

its ultimate stability. Thus in string theory, the issues of hierarchy, finiteness, and

stability are all connected to each other. Consequently, any mechanism that leads

to a suppressed cosmological constant for a given string model will simultaneously

help to stabilise it and enhance its finiteness properties, regardless of the absence

of spacetime SUSY.

4.3.2 Dilaton tadpoles and higher-loop tachyons

Having explored the finiteness of non-supersymmetric strings it is time to move

on the subject of self-consistency and examine whether such strings admit stable

ground states. Recall that in supersymmetric strings there are flat directions at all

orders of perturbation theory which correspond to massless moduli. So long as the

flat directions remain unchanged then superstrings exhibit an equilibrium. This

equilibrium is sensitive and is not de facto stable, as any attempt to lift these flat
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directions results in a runaway behaviour wherein moduli fields acquire VEVs that

tend to run off to infinity. One of these moduli fields is the dilaton φ whose VEV

determines the value of the string coupling thus such a runaway behaviour will

yield phenomenologically unacceptable string couplings. For non-supersymmetric

strings, the situation is considerably worse because a massive dilaton field implies

a non-vanishing one-loop cosmological constant as illustrated in Fig. 1.1, and vice

versa.

The existence of a non-zero dilaton tadpole is extremely dangerous as this en-

tails that a dilaton can simply be absorbed into (or emitted from) the vacuum

with no other consequences. Such a process can repeat itself ad nauseum, ren-

dering the ground state of the relevant theory totally unstable. As explained in

Chapter 1, the dilaton potential V(φ) contains a non-zero linear term proportional

to φ itself which destabilises the vacuum, thereby producing a non-consistent the-

ory. In the context of non-supersymmetric strings, the vacuum destabilisation is

taken to another level altogether. For one thing, there is no assurance at all that

there exists a “nearby” vacuum which continues to be non-supersymmetric but for

which stability is restored. One could attempt to absorb the non-zero dilaton tad-

poles via the Fischler-Susskind mechanism [17]. However, if such tadpoles remain

unsuppressed then the resulting new background will be vastly different to the

original one, thus invalidating the basic construction. For another thing, unsup-

pressed dilaton tadpoles could very well alter significantly the emerging spectra,

especially when quantum effects are taken into account. The most dangerous al-

teration, which could have a strongly negative impact on the consistency of such

non-supersymmetric strings, is the appearance of tachyonic states at higher orders,

even if they are absent at tree-level.

Over the past thirty years, there has been considerable effort in constructing

non-supersymmetric strings with (almost) vanishing, or suppressed cosmological

constants [28–30, 32–34], without success. It has been conjectured however in

Ref. [22] that if such theories are constructed, they could lead to an entirely new

approach towards string phenomenology. The conclusion derived from this sec-

tion is that the first and most critical issue when attempting to formulate a con-
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sistent non-supersymmetric string theory as an underlying platform for a non-

supersymmetric string phenomenology is to ensure the stability of the strings.

Since the experimental value of Λ is not absolutely set to zero, it is sufficient

to achieve a very small value for it so that it matches the observational limit.

Such a negligible value should be adequate for the suppression of the one-loop

dilaton tadpole and thereby ensuring that all the stability properties exhibited by

non-supersymmetric, tachyon-free theories remain unaltered.
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Chapter 5

Exploring the class of interpolating

heterotic string models

Nothing in life is to be feared, it is

only to be understood. Now is the

time to understand more, so that we

may fear less.

Marie Curie

5.1 Motivation for interpolation

The critical issue in this study is to construct non-supersymmetric strings for which

the corresponding one-loop cosmological constant Λ is almost vanishing. Before

proceeding with the construction of any such models, it is important to understand

what the mass scales are that come into play in a given theory. In general, string

theories (whether open or closed) are defined by a single mass scale Mstring ≡

1
√
α′

, where α′ is the string tension. There are, however, additional mass scales

introduced due to the effect of the background geometry in which the strings are

formulated and propagate.

A common example of an additional mass scale is the one associated with the

compactification volume of a given theory. For strings with worldsheet SUSY the

background spacetime has a critical dimension D = 10, which in order to yield a
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four-dimensional world, six of the spacetime dimensions have to be compactified.

The process of compactification then introduces a new mass scale Mc into the

problem, which is associated with the six-dimensional compactification volume

Mc ≡ (V6)−1/6. Both the string and compactification scales play a crucial role in

determining the masses of individual string states in a given string theory. On the

one hand, the string oscillator states that reflect the internal twisting and stretching

of a string depend solely on the former mass scale: Mosc
` ∼

√
`Mstring. On the other

hand, because the string sits within a compactified geometry, each string oscillator

state is accompanied by an infinite tower of Kaluza Klein (KK) excitations. Relative

to the mass of the zero-mode state, these excited KK modes have masses set by the

latter mass scale: MKK
m ∼ mMc. Finally, a closed string state can stretch and wrap

around the compactified geometry, yielding winding-mode states whose masses

depend on both Mstring and Mc simultaneously: Mwinding
n ∼ nM2

stringMc
−1. All three

kinds of states typically appear together within the spectra of closed strings and

contribute to the overall value of the one-loop cosmological constant. Therefore,

Λ is expect to be affected by the effects of both fundamental scales, namely Mstring

and Mc.

Naturally, it is assumed that Mc ∼ Mstring; this configuration of scales is “mini-

mal” and does not require a dynamical mechanism by which a hierarchy of scales

might be generated. Such models are characterised by the fact that there is not

always a clear distinction between the oscillator, KK and/or winding states, and

typically the cosmological constant is found to be of order Λ ∼ Mstring. Through-

out the years, various proposals have been presented regarding the possibility of

suppressing Λ through some other mechanism. For example, the proposals in

Refs. [28–30, 32] all rely on different kinds of symmetry arguments for reducing

the value of Λ within closed string models that satisfy Mc ∼ Mstring. However, there

has been no success in constructing string models that exhibit the symmetries pro-

posed in Refs. [28–30], and the mechanism proposed in Ref. [32] may actually fail

at higher loops [34,35].

An alternate approach to tackle this problem is to consider models in which

Mstring is fixed, but Mc (which characterises the compactification volume) is taken
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to be a free, adjustable variable. Considering a scenario in which the d-dimensional

compactification manifold is a d-torus with different radii of compactification Ri;

i = 1, . . . , d, then the compactification volume Vd admits many different compact-

ification scales M(i)
c , each of which could be considered as a free parameter. As

Vd → ∞, there is a string model produced in d additional spacetime dimensions,

denoted as M1. T-duality ensures that as Vd → 0, there is another string model

produced in d additional spacetime dimensions, denoted as M2. Thus, any model

constructed with variable compactification volumes could be said to interpolate

between these two higher-dimensional endpoints, models M1 and M2.

Such interpolating models form a unique class of non-supersymmetric models

and provide the necessary circumstances under which it is possible for the cosmo-

logical constant to be exponentially suppressed, with Λ ∼ O(e−Mc/Mstring):

• It is possible to dial Vd to a sufficiently large value in order to obtain a cos-

mological constant of whatever small size is desirable. This stems from

the realisation that if the model M1 is supersymmetric, while M2 is non-

supersymmetric, then spacetime SUSY is restored at Vd → ∞ but is likely to

be broken for all finite Vd. This idea resembles the scenario for large volume

compactification, as suggested in Refs. [24,79]. Thus, large compactification

volumes are relatively easy to be incorporated in the interpolating-model

framework at Mc ∼ O (1) TeV.

• Like all non-supersymmetric models, the spectra of these interpolating mod-

els exhibit a misaligned supersymmetry, with boson/fermion oscillations. This

ensures that they are finite and well behaved at the UV limit.

• The scale of the cosmological constant need not necessarily be tied to the

effective scale of the SSSB. In fact, the interpolation framework offers the

intriguing possibility of separating the effective scale of SSSB from the scale

of the cosmological constant, thereby bestowing a certain enhanced stability

on these models even if the effective scale of SSSB is relatively large. This

can also be important phenomenologically because the magnitude of the

first non-vanishing supertrace in Eq. (4.3.6) is set by Λ rather than by the
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expected Mc; this is only consistent because the supertrace relations are not

satisfied supermultiplet by supermultiplet across the entire string spectrum.

Due to these properties, interpolating models are the centrepiece of this work.

5.2 The general structure of interpolation

The discussion in this section is centred on the structure of the simplest case of

heterotic interpolating string models in which the compactification manifold is a

circle with a ZZ2 twist. Such models were originally introduced in Ref. [24,26,27]

and later in Ref. [79]1. There are many different construction techniques that

might be followed, depending on various factors such as the spacetime dimension

of the original model, the number of spacetime dimensions to be compactified,

and so forth. Fortunately, these constructions all share certain common features.

The first step in the construction of interpolating models is to choose a het-

erotic string theory formulated in D spacetime dimensions, with partition function

Z(τ), as given in Eq. (4.2.1). This theory will ultimately serve as one endpoint of

interpolation.

The next step is to compactify this theory on a circle of radius R. For any

compactification radius R, the corresponding dimensionless radius is defined as

R ≡ r
√
α′

. Any field compactified on a circle with this radius then accrues integer

momentum and winding modes around this circle, resulting in left- and right-

moving spacetime momenta given by

pL =
1
√
2α′

(
`

r
+ r

)
, pR =

1
√
2α′

(
`

r
− r

)
. (5.2.1)

The quantities ` and  represent the momentum and winding quantum numbers of

the field respectively. The contribution to the partition function from such modes

1Through the temperature/radius correspondence, such models also serve as the finite-
temperature extensions of zero-temperature heterotic string models and thus appear frequently
in studies of string thermodynamics [49].
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is then given by

Zcirc(τ,R) =
√
τ2

∑
`, ∈ ZZ

q
α′ p2L
2 q

α′ p2R
2 =

√
τ2

∑
`, ∈ ZZ

q
1
4
(
`
r + r

)2
q

1
4
(
`
r− r

)2
, (5.2.2)

whose trace is sufficient for compactifications on a circle. Note that Zcirc → r as

r−1 → 0, while Zcirc → r−1 as r−1 → ∞. For such an untwisted compactification,

each field within the original D-dimensional string theory accrues the same set

of momentum and winding modes. Therefore, the total partition function of the

resulting (D − 1)-dimensional string theory representing the untwisted compactifi-

cation is simply given by

Z(r) = Z(τ) Zcirc(r) . (5.2.3)

It is actually deduced from Eq. (5.2.2) that in the limit of r → ∞ or r → 0 one

recovers the original D-dimensional theory. Thus, due to the T-dual nature of

this compactification, this process results in a (D − 1)-dimensional string model

which trivially interpolates between the original higher-dimensional string model

as R→ ∞ and the T-dual of itself as R→ 0.

Finally, the purpose of this work is actually to focus on the (D − 1)-dimensional

string theories which represent the compactifications of the original D-dimensional

string theory on twisted circles, i.e. on ZZ2 orbifolds, and illustrate the general

structure of interpolating models. To this end, a twist is introduced into the (D−1)-

dimensional model; the choice of which is constrained by a number of factors

that are relevant to the self-consistency of the resulting interpolation. This twist is

ultimately what allows the interpolation of the (D−1)-dimensional theory between

two different endpoints and thus allows the breaking of spacetime SUSY within

interpolation. Any such (D − 1)-dimensional models have a partition function that

takes the general form [24,45–48]

Zstring(τ,R) = Z(1)(τ) E0(τ,R) + Z(2)(τ) E1/2(τ,R)

+ Z(3)(τ) O0(τ,R) + Z(4)(τ) O1/2(τ,R) . (5.2.4)

Here the E0, 1/2 and O0, 1/2 functions indicate various restricted summations over
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KK ( ` ) and winding modes (  ), as described in Sect. III.B of Ref. [15], and are

defined as in Ref. [24]:

E0 = {` ∈ ZZ,  even}

E1/2 =

{
` ∈ ZZ + 1

2 ,  even
}

O0 = {` ∈ ZZ,  odd}

O1/2 =

{
` ∈ ZZ + 1

2 ,  odd
}
. (5.2.5)

The models are considered to be “interpolating” between two different endpoints.

As was discussed in the previous section, these two endpoints are the D-dimensional

models M1 and M2 as R → ∞ and R → 0, respectively. A (D − 1)-dimensional in-

terpolating model can thus be considered to be a twisted compactification of the

D-dimensional model M1; the possible twists correspond to the possible choices

for self-consistent D-dimensional models M2 at the other end of the interpolation.

As a result, M1 and M2 must be related to each other through ZZ2 twists which are

in fact self-consistent ZZ2 orbifolds of the D-dimensional string model. Given this,

the partition functions of both M1 and M2 models are related to the partition func-

tion in Eq. (5.2.4); Z(1) + Z(2) reproduces the partition function of M1 and Z(1) + Z(3)

reproduces the partition function M2.

From a different perspective, the fact that two D-dimensional models M1 and

M2 are directly related to each other through a ZZ2 orbifold twist Q implies that

these models serve as ideal candidates for the structure of a (D − 1)-dimensional

interpolating model. Specifically, one could construct a (D − 1)-dimensional in-

terpolating model by compactifying M2 on a circle of radius R, and orbifold the

resulting (D − 1)-dimensional theory by the twist TQ. In this case Q acts on the

internal part of the string, while T acts on the compactified circle. In particular, T

corresponds to the ZZ2 shift y → y + πR where y is the T-dual coordinate along the

compactified dimension. States with even values of , such as those within E0, 1/2

are invariant under T , while those with odd values of , such as those within O0, 1/2

pick up a minus sign. Together, the resulting orbifold procedure yields a partition

function of the form in Eq. (5.2.4).
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If M1 has spacetime SUSY but M2 does not, the relevant ZZ2 orbifold twist Q must

at least include (−1)F. However, Q normally includes additional twist factors which

act on the purely internal gauge quantum numbers and provide different choices

of how the breaking of spacetime SUSY occurs. Thus, specifying the separation

of the M1 partition function into Z(1) and Z(2) is tantamount to specifying these

additional gauge twists, and thereby specifying a choice for the ultimate breaking

of SUSY in M1. If the M2 is tachyonic, then the R → ∞ limit of the interpolating

model will be tachyon-free. As the radius shrinks towards zero, certain states

which were previously massive for radii R exceeding some critical radius R∗ will

become massless at R = R∗ and tachyonic for all R < R∗, hence the associated

interpolating models would certainly be tachyonic.

However, and indeed this is the case that is of utmost interest in this study,

the M2 could be non-supersymmetric and tachyon-free, thus yielding interpolat-

ing models that are tachyon-free for all radii 0 ≤ R ≤ ∞. Two concrete examples

of such interpolating models are provided with extensive details in Sect. III.B of

Ref. [15]. For ease of analysis, the examples are the simplest heterotic interpolat-

ing models that can be constructed: two distinct nine-dimensional string models

which interpolate between different ten-dimensional endpoints. For the first ex-

ample, M1 is the ten-dimensional supersymmetric S O(32) string model and M2 is

the ten-dimensional non-supersymmetric S O(16)×S O(16) string model, whereas in

the second example M1 is replaced by the ten-dimensional supersymmetric E8⊗E8

string model while M2 is the same as before. Having concrete examples allows the

examination of the emerging mass spectra in detail, and determines the manner

in which SUSY is broken in these models.

5.3 Mass spectra in (D-1)-dimensional theories

To understand the spectrum of such interpolating models at all energies, one calcu-

lates the net degeneracies of physical bosonic minus fermionic states as functions

of the worldsheet energy level ER = EL = n. Specifically, for a given interpolating

model, the degeneracies ann are extracted from the total partition function which
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is expanded as a double power series into the form given in Eq. (4.2.1). The

entire spectrum of the theory is then displayed in a plot of ± log(|ann|) versus n,

where the overall sign is chosen so that it matches with the statistics of ann. These

plots demonstrate the Bose-Fermi non-degeneracies of (D− 1) non-supersymmetric

tachyon-free theories that fall in the class of interpolating models. For the nine-

dimensional model that interpolates between the supersymmetric E8⊗E8 and non-

supersymmetric S O(16) ⊗ S O(16), the plots are shown in Fig. 5.1, evaluated at

several different values of the dimensionless inverse radius a ≡
√
α′R−1 [15].

Several important features are immediately evident from Fig. 5.1. First and

foremost, the spectrum exhibits an oscillatory behaviour which stems from sur-

pluses of bosonic states alternating with surpluses of fermionic states as one pro-

ceeds upwards in n. Looking back to Section 4.3.1 of Chapter 4, this is the signa-

ture trademark of misaligned SUSY, a mechanism which applies within all mod-

ular invariant non-supersymmetric tachyon-free string theories and which is ulti-

mately responsible for their UV finiteness. Even more interestingly, the densities

of states begin to exhibit a distinct pattern as the radius increases to infinity. On

the whole, string models in which all the compactification radii admit small, finite

values, i.e. the radii are of the order of the string scale, are characterised by a

spectrum which resembles the one illustrated in the upper left panel of Fig. 5.1.

The densities of states are marked by oscillations between bosonic and fermionic

surpluses which are mathematically described by an exponentially rising envelope

function |ann| ∼ ec
√

n. Indeed, this exponential rise in the total state degenera-

cies is triggered by the exponential rise in the number of oscillator string states as

opposed to KK or winding states2. However, as the values of the compactification

radii increase, it is observed that the oscillator string states and their KK excitations

begin to establish a hierarchy between them: The oscillator states have worldsheet

energies which are quantised in units of n and continue to exhibit exponentially

growing state degeneracies (even though the rate of growth becomes somewhat

smaller as the radii values increase). By contrast, the KK excitations of these os-

2This ultimately leads to a Hagedorn transition.
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Figure 5.1: Degeneracies of physical states for a particular nine-dimensional inter-
polating model. The model is described in Ref. [15] and the results are shown for
a = 1 (upper left), a = 0.33 (upper right), a = 0.25 (lower left), a = 0.125 (lower
right). Within each plot, points are connected in order of increasing worldsheet
energy n. It is evident that surpluses of bosonic states alternate with surpluses
of fermionic states as the energy level increases; this behaviour is due to an un-
derlying “misaligned supersymmetry” which exists within all modular invariant
non-supersymmetric tachyon-free string theories and which is ultimately respon-
sible for the UV finiteness of closed strings. For R =

√
α′ (or a = 1), the oscillation

between bosonic and fermionic surpluses occurs within the exponentially growing
envelope function |ann| ∼ ec

√
n. As the value of R (or a → 0) increases, a hierar-

chy begins to emerge between the oscillator states and their KK excitations; the
oscillator states continue to experience exponentially growing densities of states
as functions of n. All the while, their corresponding KK excitations are densely
packed within each interval (n, n + 1) and, as expected, exhibit constant state de-
generacies. This figure is adapted from Refs. [15,16].

cillator states have worldsheet energies which are quantised in units of R−1 ≤ n.

So, string models in which all of the compactification radii admit very large finite

values, are characterised by a spectrum which resembles the one illustrated on the

lower right panel of Fig. 5.1. The densities of states increase dramatically, with

each interval (n, n + 1) populated by the different KK excitations of the oscillator

states at the energy level n. It is worth stressing the observation that within these
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intervals, the degeneracies of KK states continue the same oscillatory pattern as

before but do so only within an envelope function of constant amplitude.

This spectral information clearly indicates that there is no soft SUSY breaking

in such models. So long as the values of the compactification radii are finite, it is

not possible to restore SUSY, no matter how large the values may be. Hence the

spectrum is entirely non-supersymmetric with amn , 0 for all (m, n). Despite this

feature, for large but finite R the low-lying spectrum resembles that of a higher-

dimensional theory in which spacetime SUSY is broken (with towers of KK modes

and their slightly displaced would-be superpartners). At the same time, the inter-

mediate and heavy spectra remain purely non-supersymmetric and thereby pro-

duce important non-supersymmetric threshold effects. Eventually, as the values of

compactification radii tend to infinity the KK states become infinitely dense. The

bosonic and fermionic degeneracies fall into alignment so that level by level can-

cellations are possible and hence spacetime SUSY is restored. Consequently, the

cosmological constant vanishes exactly.

In general, the spectra of non-supersymmetric strings do not have bosonic and

fermionic states which could be identified as belonging to the same supermultiplet.

However, interpolating models are privileged in this aspect due to the fact that

they contain a free tunable parameter, the compactification radius, which allows

these models to connect smoothly back to a supersymmetric limit. At this limit,

states could be identified as belonging to the same supermultiplets. From this

standpoint, the spectra of non-supersymmetric models belonging in the class of in-

terpolation differ fundamentally from those of other non-supersymmetric models.

Interpolating models are nevertheless endowed with all the features of misaligned

SUSY, including the supertrace relations given in Eq. (4.3.6). These supertrace

relations ultimately depend on Λ rather than Mc and rely on the combination of

contributions from the KK, winding and oscillator modes all inextricably tied to-

gether through modular invariance. Thus, situations in which Λ is suppressed give

rise to supertraces whose overall magnitudes are smaller than those supertraces

which are evaluated supermultiplet by supermultiplet.
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5.4 Suppression of the cosmological constant at one-

loop

Clearly, as R → ∞, it is established that Λ → 0, reflecting the restoration of SUSY

in this limit. This piece of information, in conjuction with the significant outcomes

derived from the mass spectrum examination, provide compelling evidence: In

order to successfully suppress the one-loop cosmological constant Λ associated

with such interpolating models one has to require a large and finite value for

the compactification radius R. The stage having thus been set, it is imperative

to understand the behaviour of Λ for large R. This task requires the derivation

of the leading and subleading corrections that emerge when R is large but finite.

The following discussion presents the general results regarding the leading and

subleading contributions to the one-loop Λ. Note that in all the following results

the unit − 1
2M

D included in Eq. (4.2.7) is omitted!

5.4.1 Contribution of physical states

First, since SUSY is restored in the R→ ∞ limit, then Z(2) = −Z(1) is true at the level

of their q-expansions. As a result, the general partition function of the interpolat-

ing model, given in Eq. (5.2.4), takes the form

Zstring(τ,R) = Z(1)(τ) [E0(τ,R) − E1/2(τ,R)]

+ Z(3)(τ) O0(τ,R) + Z(4)(τ) O1/2(τ,R) . (5.4.1)

Hence, there are only three different sectors making non-supersymmetric contri-

butions to the cosmological constant: E0 − E1/2, O0, and O1/2.

Starting from the sectors that have vanishing winding modes, i.e.  = 0, the only

contributions to the cosmological constant come from the E0 and E1/2 sectors, thus

only the first term in Eq. (5.4.1) is taken into account. Assuming that the theory

is devoid of on-shell tachyonic states, there are contributions both from massless

and massive states.
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• For the massless states, i.e. mi = 0 the partition function is written as

Zstring(τ,R) = τ−42

[
(N(0)

b − N(0)
f )(q0q0)(E0 − E1/2) + . . .

]
, (5.4.2)

where N(0)
b and N(0)

f represent the numbers of bosonic and fermionic string states,

respectively, that remain massless in the theory after SUSY breaking has already

occurred. For  = 0 and large R ≡ r
√
α′

, the quantity E0 − E1/2 is determined by

E0 − E1/2 =
√
τ2

∑
` ∈ ZZ

[
(qq)`

2r−2/4 − (qq)(`+1/2)2r−2/4
]

+ . . .

=
√
τ2

∑
` ∈ ZZ

[
e−πτ2`

2r−2 − e−πτ2(`+1/2)2r−2
]

+ . . .

=
√
τ2

[
ϑ3(iτ2r−2) − ϑ2(iτ2r−2)

]
+ . . .

= r
[
ϑ3(ir2τ2−1) − ϑ4(ir2τ2−1)

]
+ . . .

= r
∑
` ∈ ZZ

[
e−π`

2r2τ2−1 − (−1)`e−π`
2r2τ2−1

]
+ . . .

= r
∑
`= odd

e−π`
2r2τ2−1 + . . . , (5.4.3)

where the modular transformations ϑ3,2(τ) = 1
√
−iτ
ϑ3,4

(
− 1

τ

)
are used in passing

from the third to the fourth line. The generalised Jacobi ϑ-functions are explicitly

defined in Eq. (D.0.6) of Appendix D. These transformations effectively resum the

infinite series so that the leading large-R behaviour can be reliably extracted. It is

then deduced from Eq. (5.4.3) that the dominant contribution from the massless

states is given by the ` = ±1 terms, thus

E0 − E1/2 ∼ 4r e−πr2τ2−1 as r → ∞ . (5.4.4)

In a general setup, where a string theory in D = 10 is compactified on a ZZ2 orbifold

of radius R, the cosmological constant is evaluated as

Λ = 4r (N(0)
f − N(0)

b )
∫
F

d2τ

τ26
e−πr2τ2−1 + . . .

≈
96
π5r9

(N(0)
f − N(0)

b ) + . . . , (5.4.5)
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and for a string theory in D = 4, the compactification goes through as above,

resulting in:

Λ = 4r (N(0)
f − N(0)

b )
∫
F

d2τ

τ23
e−πr2τ2−1 + . . .

≈
4
π2r3

(N(0)
f − N(0)

b ) + . . . . (5.4.6)

In the final results above, the range of integration is restricted to the upper (τ2 ≥ 1)

portion of the modular group’s fundamental domain. The above integral is solved

analytically and the resulting subleading terms of order O (e−πr2) are disregarded.

In general, for all spacetime dimensions D it is deduced that

Λ =

[
4
π

D
2

(
D
2
− 1

)
! (N(0)

f − N(0)
b )

]
1

rD−1 + . . . , (5.4.7)

with the understanding (relevant for odd D) that
(
1
2

)
! = Γ

(
3
2

)
= 1

2
√
π, etc.

• For the massive states, i.e. mi , 0 the partition function is written as

Zstring(τ,R) = τ−42

[
(N(i)

b − N(i)
f )(qmiqmi)(E0 − E1/2) + . . .

]
, (5.4.8)

where N(i)
b and N(i)

f represent the numbers of bosonic and fermionic string states,

respectively, that have a mass mi in the theory after SUSY breaking has already

occurred. For  = 0 and large R ≡ r
√
α′

, the quantity E0 − E1/2 is determined by

an expression similar to the one in Eq. (5.4.3); the main difference being that for

the massive states there is an additional exponential factor which depends on the

masses of the states. The integral that describes the contributions to the cosmolog-

ical constant from the individual states within the Z(1) sector of such interpolating

models is given by

Ĩm, n

( 1
r

)
≡ 4r

∫
F

d2τ

τ22
τ1−D/2
2 qmqn e−πr2τ2−1 . (5.4.9)

Following the same procedure as in the case for the massless states, in general, the

contribution to the cosmological constant from the massive states in the sectors
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with vanishing winding modes is found to be

Ĩn, n ≈ 4 (N(i)
f − N(i)

b )
(2mi

r

)(D−1)/2
e−4πmi r as r → ∞ . (5.4.10)

It is evident that at large R values, these terms are exponentially suppressed. How-

ever, the largest contributions arise from light but physical massive states within

Z(1), i.e. states with m = n for small n. In general, this value of n is deter-

mined by examining the individual terms within Z(1); the result is generally model-

dependent since it is sensitive to the nature of the orbifold twists involved in the

construction of the model at hand.

Moving on to the sectors that have non-vanishing winding modes, i.e.  , 0, the

cosmological constant admits contributions from each one of E0−E1/2, O0, and O1/2

sectors of the partition function. The physical states coming from the E0−E1/2 part

of the partition function are all exponentially suppressed at large R values. In fact,

the exponential suppression of these states exceeds the exponential suppression

of the physical massive states coming from sectors with vanishing winding modes.

The reason for this can be clearly deduced from the general expression of the

partition function, given in Eq. (5.2.2): the E0 − E1/2 quantity for these states

carries an extra exponential factor which depends on the value of the winding

mode. This additional exponential factor in conjuction with the exponential factor

that depends on the mass mi of such physical states, cause the resulting Λ terms to

be heavily suppressed.

It is also observed that all physical states within the O0 and O1/2 sectors are

extremely heavy as a result of non-vanishing winding modes  , 0. Similarly,

the contributions from such heavy states are also exponentially suppressed. The

contributions of the physical states from the O0 and O1/2 sectors in the limit of

large but finite R are evaluated through an algebraic procedure which parallels

the analysis of E0 −E1/2 in Eq. (5.4.3). As before, the O0, 1/2 functions in the R→ ∞
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limit are now related to the generalised Jacobi ϑ-functions as follows:

O0 = 2
√
τ2 e−πτ2r2 ϑ3(τ1, iτ2r2) + . . .

O1/2 = 2
√
τ2 e−πτ2r2 ϑ2(τ1, iτ2r2) + . . . . (5.4.11)

Using the modular transformations of ϑ-functions, as given in Eq. (D.0.7) of Ap-

pendix D, and keeping only the leading terms, it is found that

O0, 1/2 ≈ 2r e−π|τ|
2r2τ2−1 as r → ∞ . (5.4.12)

Thus, a given state with worldsheet energies (m, n) within the O0, 1/2 sectors con-

tributes to the cosmological constant as follows:

Îm, n

( 1
r

)
≡ 2r

∫
F

d2τ

τ22
τ1−D/2
2 qmqn e−π|τ|

2r2τ2−1 as r → ∞ . (5.4.13)

From this result follows that the physical states from O0, 1/2 with masses mi con-

tribute to the one-loop cosmological constant terms given by

În, n

( 1
r

)
≈

2
√
2

π

1
r2

(N(i)
b − N(i)

f ) e−4πm2
i e−πr2 as r → ∞ . (5.4.14)

Note that this result is independent of the spacetime dimensionality D on which a

theory is formulated prior to the compactification on the ZZ2 orbifold.

5.4.2 Contribution of unphysical states

As pointed out in Section 4.2.1 of Chapter 4, the spectrum of every non-supersymmetric

string model contains off-shell proto-graviton states with (m, n) = (0,−1) and whose

contributions to the partition function are completely uncancelled. In general,

such states come from the E0 − E1/2 sector of the partition function and there is a

plethora of other similar light (or even off-shell tachyonic) states in the spectra of

such strings. The results shown in Table 4.1, indicate that such states often make

the largest contributions to the one-loop cosmological constant. The integral that

describes the contributions to the cosmological constant from such states is the
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same one as in Eq. (5.4.9).

In contrast to the massive physical states whose contributions are model-dependent,

the contribution of proto-gravitons is model-independent. It turns out that as

R → ∞, these states contribute a correction term to the cosmological constant

which scales approximately as

Ĩ0,−1
( 1
r

)
≈

4
√
2

π

1
r2

e2π Nproto e−πr2 + . . . as r → ∞ , (5.4.15)

where Nproto is the number of proto-graviton states in the model. In general, since

the proto-graviton states generally transform as a vector of the transverse Lorentz

group S O(D − 2), their number is expected to be Nproto = D − 2.

A comparison of the results from massless states and proto-graviton states for

the nine-dimensional model interpolating between the supersymmetric E8 ⊗ E8

and non-supersymmetric S O(16)⊗S O(16) is shown in the plot of Fig. 5.2 [15]. The

plot is performed in terms of the dimensionless inverse radius a ≡
√
α′R−1 and it is

observed that the contributions from the massless states exceed the contributions

from the proto-graviton states in the R → ∞ limit. This demonstrates that the

physical massless states indeed dominate for large and finite values of R.

Of all unphysical states, i.e. states for which m , n, it turns out that the contri-

butions from the proto-gravitons are the largest. In fact, the result in Eq. (5.4.15)

is only a special case of the more general result

Ĩm, n

( 1
r

)
≈ −

4
√
2

π

1
r2

e−2π(m+n) e−πr2 + . . . as r → ∞ . (5.4.16)

Quite remarkably, this result holds for all D as well as for all (m, n), as long as

m , n; this result is even independent of |m − n|.

The final task is to determine the contributions of the unphysical states that emerge

in the O0 and O1/2 sectors of the partition function. Similarly to the case of the mas-

sive states, the integral that governs the contribution of these states is the same as

given in Eq. (5.4.13). Recalling that the states within Z(4) have worldsheet ener-

gies (m, n) with m − n ∈ ZZ + 1/2, whereas those within Z(3) have m − n ∈ ZZ, it turns
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Figure 5.2: Vacuum-energy contributions from massless states (solid line) ver-
sus proto-gravitons (dashed line) for a particular nine-dimensional interpolat-
ing model. The model is described in Ref. [15] and the results are shown for
log ( | Ĩ(10)

0,0 (a) | ) and log ( | Ĩ(10)
0,−1(a) | ) plotted versus a. It is evident that the former

exceeds the latter in the R → ∞ (or a → 0) limit. The figure is adapted from
Ref. [15].

out that these states contribute a correction term of the form

Îm, n

( 1
r

)
≈

2
√
2

π

1
r2

e−2π(m+n) e−πr2 as r → ∞ . (5.4.17)

Indeed, this result holds for all spacetime dimensions D as well as all energy con-

figurations, regardless of whether m = n or not.

This result is quite remarkable, since it exactly duplicates the result obtained

in Eq. (5.4.16) for the E0 − E1/2 sector up to an overall sign and a factor of two!

This duplication occurs even though the form of the integral in Eq. (5.4.9) is quite

different from the form of the integral in Eq. (5.4.13), and even though the result

in Eq. (5.4.16) is subjected to a restriction (namely m , n) which does not apply

to the result in Eq. (5.4.17). Clearly, the mathematical elegance of these features

resides in the power of the asymptotically large but finite radii limit. However,

there are also potentially important phenomenological implications that stem from
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this deduction: the contribution from a state in the E0 − E1/2 sectors with energy

configuration (m, n) can be completely cancelled by the contribution of a state in

the O0 or O1/2 sectors with a completely different energy configuration (m′, n′), so

long as m + n = m′ + n′. Even more remarkably, focusing on the special case with

m′ = n′ = 1
2 (m + n), it is deduced that the contribution of an unphysical state in

the E0 − E1/2 sectors can be cancelled by the contribution of a physical state in

the O0-sector! These results provide a myriad of potential new ways of further

suppressing the contributions to the cosmological constant.

A direct comparison of all the key results presented so far, leads to the deriva-

tion of some important conclusions, associated with the expected behaviour of

the cosmological constant. The first conclusion originates from the comparison

of the results in Eq. (5.4.7), (5.4.10),(5.4.15) and (5.4.17) and states that the

leading terms in the overall Λ calculation are the ones from the physical mass-

less states that come from the sectors with vanishing winding modes. Specifically,

the contributions from the physical massless states dominate not only over the

contributions from the physical massive states, but also over the contributions of

the proto-graviton states, as demonstrated in Fig. 5.2! Undoubtedly, the leading

term in the evaluation of the one-loop cosmological constant Λ of an interpolating

model in (D− 1) spacetime dimensions is the term given in Eq. (5.4.7). The second

conclusion comes with the realisation that all the other terms that contribute in

the evaluation of Λ must be subleading. A cursory examination of Eq. (5.4.10),

(5.4.15) and (5.4.17) reveals that the largest subleading terms are the ones ob-

tained from the lightest physical states within Z(1). These contributions, which are

given in Eq. (5.4.10) always scale as e−r. Obviously, this factor is larger than the

scale factor of the subleading terms given in Eq. (5.4.15) and (5.4.17) which in

both cases scale as e−r2. Moreover, any other subleading terms, especially the ones

associated with much heavier states, are all exponentially suppressed.

In summary, within such interpolating models, the contributions to the cosmo-

logical constant in the a → 0 limit from a given state with worldsheet energies

(m, n) in the different E/O sectors are listed in Table 5.1 [15].

To verify the expected behaviour of the one-loop cosmological constant for the
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Sector State Λ terms
E0 − E1/2 m = n = 0 −4 π−D/2 (D/2 − 1)! aD−1

E0 − E1/2 m = n = mi , 0 4 (2mia)(D−1)/2 e−4πmi a−1

E0 − E1/2 m , n −[4
√
2 π−1] e−2π(m+n)a2e−π a−2

O0,1/2 any (m, n) [2
√
2 π−1] e−2π(m+n)a2e−π a−2

Table 5.1: The contributions to the cosmological constant in the a → 0 limit from
a given state with worldsheet energies (m, n) in the different E/O sectors. In this
table, D represents the dimensionality of the theory prior to the compactification
on the ZZ2 orbifold.

interpolating models, one calculates the Λ associated with the full partition func-

tion, which is given in Eq. (5.2.4), as a function of a. For the nine-dimensional

model that interpolates between the supersymmetric E8⊗E8 and non-supersymmetric

S O(16)⊗S O(16), the results are plotted as shown in Fig. 5.3 [15]. The plot is of the

rescaled (2a−1)Λ versus a (solid line) and is based on the numerical integration of

the cosmological constant. The numerical integration is performed over the entire

fundamental domain of the modular group and includes all terms in the partition

function of the supersymmetric E8 ⊗ E8 theory. Note that the factor of (a/2) is

the effective (T-dual) “volume” of compactification in the a → ∞ limit; dividing

by this factor allows the interpolating nine-dimensional cosmological constant to

asymptote to a finite ten-dimensional limit as a→ ∞.

As shown in Fig. 5.3, the model successfully interpolates between Λ = 0 at

a = 0 and Λ ≈ 725 at a→ ∞, where Λ ≈ 725 is the cosmological constant associated

with the ten-dimensional S O(16)⊗S O(16) heterotic string. It should be noted that a

similar plot appears in Ref. [26]. Moreover, it is verified that the leading term Λ ∼

6144
π5

a9 ∼ (20.08) a9 as a → 0 indeed provides an excellent approximation to the

cosmological constant for a � 1, holding to several significant digits throughout

the relevant range. This verifies not only the overall radius-dependence (scaling

power-law behaviour) predicted in Eq. (5.4.7) but also the numerical coefficient

which precedes it.

There is also another conclusion extracted from all of these detailed remarks,

which is by far the most significant. At the limit of large and finite radius of com-
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Figure 5.3: A plot of the one-loop cosmological constant for a particular nine-
dimensional interpolating model. The model is described in Ref. [15] and the
results are shown for (2a−1)Λ plotted versus a ≡

√
α′R−1 (solid line). It is evident

that (2a−1)Λ indeed interpolates between Λ = 0 at R → ∞ and Λ ≈ 725 as R → 0,
where Λ ≈ 725 is the cosmological constant associated with the ten-dimensional
S O(16) ⊗ S O(16) heterotic string. The dashed line shows the behaviour of the
cosmological constant for large and finite R, which is governed by the term Λ ∼
6144
π5

a9. The figure is adapted from Ref. [15].

pactification, the contributions from the lightest states and proto-graviton states

are also exponentially suppressed! The only states that yield a very large contribu-

tion and are therefore responsible for a non-vanishing cosmological constant, are

the physical massless states. Their general contribution takes the form

Λ ∼ (N(0)
b − N(0)

f )
1

rD−1 + . . . . (5.4.18)

In a more general setup, where a D-dimensional supersymmetric theory is com-

pactified down to d dimensions one would find

Λd ∼ (N(0)
b − N(0)

f )
1
rd + . . . . (5.4.19)

September 20, 2016



5.4. Suppression of the cosmological constant at one-loop 119

For a compactification on a twisted two-torus S 1 ⊗ S 1, where each circle S 1 has its

own radius Ri ≡
ri√
α′

and is subjected to its own SUSY breaking ZZ2 orbifold twist,

the one-loop cosmological constant of the interpolating model in (D−2) spacetime

dimensions is given by

Λ ∼
4 r1 r2
πD/2

(D
2
− 1

)
!
[
(N(0)

b − N(0)
f )

1
r1D + (Ñ(0)

b − Ñ(0)
f )

1
r2D

]
+ . . . as r1, r2 → ∞ .

(5.4.20)

Here N(0)
b − N(0)

f and Ñ(0)
b − Ñ(0)

f denote the net numbers of physical massless states

which are invariant under the first and second twists, respectively. Note that the

leading factor ∼ (a1a2)−1 is the volume factor for the two-torus, which according to

the discussion in Section 4.2.2 of Chapter 4 is expected to appear in this expres-

sion. Moreover, taking either r1 or r2 to be infinite then one would reproduce the

D-dimensional supersymmetric theory.

A non-vanishing cosmological constant implies that the theories emerging from

interpolation admit large dilaton tadpoles and are therefore unstable. Fortunately,

there is a way to remedy this shortcoming; if the number of massless bosonic states

equals the number of massless fermionic states then the leading term will cancel. In

such case, the contributions from the subleading terms are of critical importance

because they yield an exponentially suppressed and hence almost vanishing one-

loop cosmological constant. It should be stressed that N(0)
b = N(0)

f is a statement

which is applied only for the massless states. By having an equal number of mass-

less bosonic and fermionic d.o.f neither means that the massless spectrum is su-

persymmetric nor implies that all these d.o.f exist in a visible sector. Indeed, some

of the massless d.o.f may carry quantum numbers that correspond to visible-sector

states with N(0)
b , N(0)

f , provided that other massless d.o.f may carry quantum num-

bers that correspond to hidden-sector states so that all states fill out the matching

condition N(0)
b = N(0)

f .
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Chapter 6

General outline for constructing

stable, semi-realistic interpolating

string models

A ship in port is safe, but that is not

what ships are for. Sail out to sea

and do new things.

Grace Hopper

6.1 Recipe for the construction technique

At this point, the narrative of this thesis turns to the construction of phenomeno-

logically viable semi-realistic interpolating models which incorporate all the fea-

tures described in the preceding chapters. Ultimately, the goal is to find a non-

supersymmetric SM-like theory that has an equal number of massless bosonic

(N(0)
b ) and massless fermionic (N(0)

f ) d.o.f and hence an exponentially suppressed

cosmological constant. In this context, recall that demanding N(0)
b = N(0)

f does not

imply that the theory maintains spacetime SUSY. It is not an absolute requirement

that all of these massless string states come from the visible sector of the theory.

Due to this outcome, there is a perfectly valid reason to expect that the observed

low-energy world - for which there are obviously unequal numbers of bosonic
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and fermionic states - emerges from this class of non-supersymmetric tachyon-free

theories exhibiting N(0)
b = N(0)

f without demanding any additional visible states.

Models with N(0)
b = N(0)

f are not easy to construct; an even more difficult task

is to ensure that they simultaneously exhibit low-energy spectra resembling either

the SM or one of its numerous extensions. As discussed in Chapter 5, one aspect

of this class of models is that they have one or more adjustable radii (Ri); more-

over, it is required that at Ri → ∞ limits the models have SUSY restored, with

vanishing cosmological constant. To accomplish this, it is reasonable to start with

a supersymmetric semi-realistic model in higher dimensions, and then compactify

on some sort of twisted manifold. This procedure will introduce the needed radii,

thereby ensuring that the corresponding cosmological constant vanishes when the

radii are taken to be infinite.

As a result, the construction of such models in a four-dimensional spacetime

follows a rather deliberate, step-by-step approach which involves starting in six di-

mensions and then performing a so-called “CDC” down to four dimensions. CDCs

are generalisations of ordinary Scherk-Schwarz compactifications [57] which were

introduced and developed in Refs. [48,50–52,80]. The best course of action is to

begin with six-dimensional M1 models that have N = 1 SUSY. Such models serve

as a starting point for the following analysis and are most conveniently obtained

by lifting already existing semi-realistic four-dimensional N = 1 string models,

for example those in Refs. [143–150], into six dimensions. A direct implication

of this procedure is that the newly derived six-dimensional theories are already

endowed with many desirable phenomenological features of their semi-realistic

four-dimensional ‘parent’ theories.

Once suitable M1 models are successfully constructed, the next step is to com-

pactify two spacetime dimensions so as to yield a four-dimensional theory. There

are actually various methods of compactification; one being on a two-torus result-

ing in a non-chiral four-dimensional N = 2 theory, another being on a ZZ2 orbifold

resulting in a chiral N = 1 four-dimensional theory which under certain choices

for GSO projections can produce an MSSM-like theory. Finally, one can perform

a CDC on a ZZ2 orbifold using the techniques of Refs. [50–52], thereby obtaining
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a four-dimensional N = 0 theory. Again, under certain choices for GSO projec-

tions one can produce a SM-like theory. In particular, it is useful to compare

the partition function of the four-dimensional model that results from the com-

pactification on a ZZ2 orbifold with the partition function of the four-dimensional

N = 0 model that results from a CDC on the same orbifold. This comparison will

demonstrate directly how the breaking of SUSY manifests itself. Be aware that the

four-dimensional models obtained from compactifications are expected to have

different spin structures from the semi-realistic four-dimensional ‘parent’ model

which serves as the construction basis of the six-dimensional theory.

The final step is to use the resulting N = 0 model and introduce modifications

so as to obtain N(0)
b = N(0)

f , as required to produce an exponentially suppressed

cosmological constant. One way to get SM-like theories with N(0)
b = N(0)

f is to

alter the final CDC twist but retain the prior GSO symmetry breaking. However,

if one alters the final CDC twist and also removes prior GSO projections then a

number of different N(0)
b = N(0)

f models can be obtained, e.g. a Pati-Salam-like

model, a flipped-S U(5) “unified” model, and an S O(10) “unified” model. These

examples are only a small number of possible models that one could construct

using interpolation and gives a strong indication that the interpolation class is

still in its infancy; in a sense these examples could be considered as drops of

water in a vast ocean that still remains unexplored. A schematic illustration of the

construction is depicted in Fig. 6.1.

Throughout this study, the formalism employed is the free-fermionic formalism

of Refs. [132–135], which was described in Section 4.1 of Chapter 4, and the no-

tation used is that of Refs. [134,135]. All the d.o.f required for the cancellation of

conformal anomalies are provided by real two-dimensional worldsheet fermionic

fields which are complexified, i.e. in this context two real free fermions pair up to

make a single complex two-dimensional Weyl-Majorana spinor. This technicality

is essential because it provides an explicit way to understand the CDC mecha-

nism and its impact on breaking SUSY. Due to this particular technicality though,

it has proven to be extremely difficult to construct a consistent five-dimensional

theory which is modular invariant and phenomenologically viable. The origin of
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Figure 6.1: A schematic illustration of the procedure for constructing semi-realistic
non-supersymmetric string models with N(0)

b = N(0)
f in four dimensions, as dis-

cussed in the text.

this hurdle lies with the right-moving worldsheet free fermions. Recall that these

are the internal free fermions obtained through fermionization and the spacetime

d.o.f which define the spacetime spin-statistics of the theory. Recall also that in

D-dimensional string theories, there are D − 2 real spacetime d.o.f and hence the

worldsheet fields that define the spacetime spin-statistics reside in the representa-

tions of the S O(D−2) internal group. This means that in five dimensions there are

three real worldsheet free fermions that define the spin-statistics and in turn, this

implies that they cannot be complexified properly. One of these spacetime free

fermionic d.o.f will always be left out to pair up with an internal free fermionic

d.o.f. Such a pairing turns out to be catastrophic for the modular invariance, and

thereby the consistency of the theory. Luckily, such an inconvenience is bypassed

in six-dimensions because the number of real spacetime free fermionic d.o.f is

four, thus yielding two complex free fermionic d.o.f that govern the spacetime

spin-statistics of the theory. Therefore, it is advantageous to interpolate between

M1 and M2 models in six dimensions rather than five. Moreover, the orbifold com-

pactification from six to four dimensions can be treated using the “unified” for-

malism of Ref. [151], which is a generalisation of the work in Ref. [134, 135]. In

particular, as shall be discussed, only the untwisted sectors feel the CDC, hence

the presence of the orbifold does not change the physics of SUSY breaking.
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6.2 A supersymmetric theory in six dimensions

Having determined the route that must be followed in the construction process,

all is set for embarking upon this journey. The starting point is the construction

of the N = 1, 6D theory. Following the discussion in Section 4.1 of Chapter 4,

each two-dimensional free fermion is assigned a set of boundary conditions which

preserve modular invariance and SUSY (both worldsheet and spacetime). To in-

sure the cancellation of conformal anomalies, it is required to have 40 left- and

16 right-moving real free fermions which are complexified such that there are 20

left- and 8 right-moving complex free fermionic d.o.f. Thus, the spin structure of

the model is summarised by the set of basis vectors in Table 6.1. Along with these

vectors is a matrix ki j which specifies the phases involved in the corresponding

GSO projections:

ki j =



0 0 0 0 1
2

1
4

0 0 1
2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 0 1
4

1
2 0 0 0 0 3

4

0 0 0 0 0 3
4


. (6.2.1)

Note that different choices of ki j may break SUSY by discrete torsion. This scenario

is examined in Appendix E.

The vectors {V0,V1,V2} correspond to the so-called NAHE [143] vectors {1,S, b1},

lifted into six dimensions. In contrast, the additional vectors V5, V6, and V7 are

inspired by the four-dimensional MSSM-like theories listed in the Appendix of

Ref. [150], which in turn are based on the earlier models of Refs. [144–148]. The

vector V1 is the SUSY generator of the model (with the superpartners of the states

in sector αV residing in V1 + αV). The internal right-moving fields χ34, χ56 carry

the supersymmetric charges. Of course V1 also projects out the tachyonic states

from the spectrum thanks to the generalised GSO projections in Eq. (4.1.8). By

themselves, the vectors V0,V1 generate an N = 4 theory which is broken to N = 2

by V2. The NS-NS sector of the theory (αV = 0) gives rise to not only the gravity
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V2 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1
V6 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0
V7 0 0 0 1 1 0 0 0 1 0 1 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1 1

2
1
2

1
2 1 1 1

2

Table 6.1: Spin structure of the N = 1, 6D model, where all entries are understood
to be multiplied by a factor of − 1

2 . Thus the ‘1’ entries denote R ground states,
while ‘0’ entries are NS and ‘ 12 ’ entries denote phases of − 1

4 for the corresponding
complexified fermions. These conventions apply to all subsequent tables in which
explicit spin structures are listed. As has become standard practice in string theory,
the spacetime states listed on the top left are the right-moving fermions while
those on the right are left-moving fermions.

multiplet but also to the massless scalar states required to build N = 2 gauge mul-

tiplets, as well as hypermultiplets. The sector V2 produces the sets of fermions in

the spinorial representations of the parent S O(16) ⊃ S O(10) ‘visible sector’ gauge

group defined by the internal left-moving complex fermions ψ
1
, . . . , ψ

5
. The super-

partners arise in V1 and V1 + V2 sectors accordingly. Introducing V5,6,7 breaks the

gauge group to

[S U(3)]2 ⊗ [S U(2)]2 ⊗ [S O(4)] ⊗ [U(1)]8 . (6.2.2)

The additional vectors do not overlap with V1, and therefore spacetime SUSY is not

broken further at this stage. However, these vectors are needed to break the hor-

izontal symmetries embedded in the gauge group. These horizontal symmetries

arise from fermions that are not complexified with a phase of 1
2 in the V7 sector.

Since the horizontal symmetries are generation-dependent, their breaking reduces

the number of net generations of matter fields obtained from the V2 sector.

6.3 Orbifold compactification

Since anN = 1, 6D theory is now specified, the next step in the model-construction

procedure is to compactify this model to four dimensions, by applying one of the

methods proposed in the previous section. If one compactifies the two extra di-

mensions on a T2 torus, the N = 1, 6D theory is converted into a N = 2, 4D theory.
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This toroidal compactification immediately signals two problems: The first one is

that there is an extended SUSY that needs to be broken and the second one is that

phenomenologically this theory is not viable as it is not chiral. Of course, these

problems are solved if one compactifies the theory on a Z2 orbifold so as to get an

N = 1, 4D model.

Such compactifications are obtained from toroidal compactifications by iden-

tifying fixed points under some discrete subgroup of the internal rotations [127].

These points are basically transformations on the smooth toroidal manifold that

remain as an exact symmetry of the compactified theory; this is the reason for the

characterisation ‘fixed’. Even though there are singularities associated with the

fixed points, the consistency of the string theory remains unaffected due to modu-

lar invariance. This is achieved by requiring the presence of a new sector, defined

as twisted, which corresponds to string states that are localised at the fixed points

of the orbifold. The internal rotations of the two-dimensional compact space form

an S O(2) ≡ U(1) group and the condition for unbroken SUSY requires that the T2

torus has a discrete subgroup of U1 that leaves one of the two gravitinos invariant.

Thus, the ZZ2 orbifold reduces the number of supersymmetries by half, and inverts

the sign of the two internal coordinates Xi → −Xi, (i = 1, 2) and of their super-

partners [127]. As a result, ZZ2 acts non-trivially on the left-moving free fermions

which are essentially the gauge d.o.f and in addition to SUSY it can also break the

gauge symmetries.

6.3.1 A chiral supersymmetric theory in four dimensions

It is common practice to translate the possible action of the orbifold on the world-

sheet d.o.f by introducing twists. In mathematical terms, a twist is a collection of

the phases that the free fermions acquire under a specific orbifold action. In the

present case, there are actually two twists introduced, which correspond to the

vectors b3 and b4. The resulting model then has the spin structure summarised

in Table 6.2. Note that in writing the four-dimensional model in terms of a six-

dimensional spin structure, it should be implicitly recognised that the remaining

two dimensions are not fermionized: they are instead retained as bosons compact-
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V2 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
b4 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1
V6 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0
V7 0 0 0 1 1 0 0 0 1 0 1 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1 1

2
1
2

1
2 1 1 1

2

Table 6.2: Spin structure of the worldsheet fermions of the N = 1, 4D model
before applying the CDC. This spin structure is accompanied by two bosonic d.o.f
compactified on a ZZ2 orbifold with twist action corresponding to the vectors b3,4.

ified on a twisted two-torus with arbitrary radii, and thus their treatment is beyond

the scope of the free fermionic formalism. However, as discussed in the Appendix

of Ref. [41], there is an alternative way of specifying the resulting four dimen-

sional string model. This permits a description of the resulting model in terms of

a four-dimensional spin structure, and the free fermionic radii are required to be

Ri =
√
2α′. This model can then be extended back to arbitrary radii following the

procedure outlined in Ref. [41].

In the remainder of the discussion of this model, the terms “twisted” and “un-

twisted” will be used to refer to the two compactified dimensions. The ZZ2 projec-

tion is

ĝφ =


φ ĝ for φ < b3 or b4

−φ ĝ for φ ∈ b3 or b4 ,

where ĝ is a generator of the ZZ2 orbifold. Furthermore, this particular choice of

b3 and b4 is consistent with global invariance of the worldsheet supercurrent as

defined in Eq. (4.1.11):

ĝ TF(z) = −TF(z) ĝ . (6.3.1)

As mentioned above, the right-moving free fermionic d.o.f define the spacetime

spin-statistics of the theory. In addition, they determine the spacetime supersym-

metries that remain unbroken. Therefore, the b3 and b4 right-moving entries are

assigned so as to break the extended spacetime supersymmetries after compactifi-
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cation, leaving only an N = 1 SUSY. As the vector

V4 = b3 + b4

= − 1
2
[
0 0 1 0 1 1 0 1 | 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

]
(6.3.2)

itself provides an additional untwisted sector, an entirely equivalent route is to

start with an N = 1, 6D fermionic theory that has V4 as an additional vector, and

from there to compactify on the ZZ2 orbifold with a single twist action (b3, for

example).

In the {V0,V1,V2, b3,V4,V5,V6,V7} basis, the structure constants that define the

generalised GSO projection phases are as follows:

ki j =



0 0 0 0 0 0 1
2

1
4

0 0 0 0 0 0 0 0

0 1
2 0 1

2 0 1
2 0 0

0 1
2

1
2 0 0 0 0 3

4

0 1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0 1

4
1
2 0 0 0 0 0 0 3

4

0 0 0 0 0 0 0 3
4



. (6.3.3)

Considerable care has to be taken when assigning these constants. As described

in Appendix E, an incorrect choice could amount to breaking SUSY explicitly or,

conversely, disallow SSSB in the case of CDC. This scenario shall be examined in

Section 7.3 of Chapter 7.

The left-moving free fermionic d.o.f are the ones which govern the gauge struc-

ture of the theory. Therefore, the b3 and b4 left-moving entries are assigned so

as to initially break the S O(16) gauge group to S O(10) ⊗ S O(6), ensuring that the

matter fields carry the correct SM charges once V5, V6, and V7 are added. The final

gauge group of the theory is then found to be

S U(3) ⊗ S U(2) ⊗ U(1)Y ⊗ G′semi−hidden ⊗ G′hidden , (6.3.4)
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where the convention for the weak hypercharge is given by

−
1
2

U(1)Y ≡
1
3

[
U(1)

ψ
1 + U(1)

ψ
2 + U(1)

ψ
3

]
+

1
2
[
U(1)

ψ
4 + U(1)

ψ
5

]
. (6.3.5)

Note that string states which are charged under the SM gauge group are derived

directly from the visible sector of the theory. However, there are additional string

states that are charged both under the SM gauge group as well as other gauge

groups. These string states are called semi-hidden and their associated gauge

groups form the G′semi−hidden. Moreover, there are string states that remain com-

pletely uncharged under the remaining gauge groups. These states are called

hidden as they are derived directly from the hidden sector of the theory, hence the

gauge groups that do not admit any charged string states form the G′hidden.

6.3.2 Mass spectrum of the supersymmetric four-dimensional

theory

This N = 1, 4D model obviously has string states that are charged under the

SM gauge group. For phenomenological purposes, and in order to verify that

indeed the emerging theory at the low-energy limit resembles the MSSM, it is

wise to consider the massless spectrum of this theory. At the level of an unbroken

SUSY (and hence an unbroken electroweak symmetry), all the MSSM states are

massless. Therefore, it should be natural for these states to be accommodated in

the massless spectrum of this N = 1, 4D theory.

The massless spectrum is obtained by applying the generalised GSO projec-

tions in Eq. (4.1.8) but one must also take into account the additional effects of

the orbifolding, which can be found in Ref. [151]. Alternatively, they can be de-

duced from the form of the partition function presented in Eq. (6.3.15). One first

evaluates the would-be projections on the states, i.e. one evaluates the projection

coefficients Cα
β with b3 and b4 obeying the same rules as for the other basis vectors.

Under the orbifolding, the oscillators in a given state may be odd, and thus con-

tribute additional phase shifts that must be included in the projections. This can

be deduced from a generic state with total winding number (in untwisted sectors)
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 = 1 + 2 and KK number ` = `1 + `2 which transforms under the orbifold (with

action β · V ≡ b3, b4) as

∏
c=1

X(ac)
− c

∏
e=1

Ψ
(be)
−`e

∏
d=1

X̃(ad)
− d

∏
f =1

Ψ̃
(b f )
−` f
|`, 〉

−→ (−1)A
∏
c=1

X(ac)
− c

∏
e=1

Ψ
(be)
−`e

∏
d=1

X̃(ad)
− d

∏
f =1

Ψ̃
(b f )
−` f
|−`,− 〉 . (6.3.6)

The overall phase A is calculated by introducing an overall minus sign for each

excitation in the X5 or X6 direction and maintaining the other GSO phases. For

the untwisted states, invariance under the orbifold action is equivalent to shifting

the GSO projections of b3, b4 by the additional phase coming from the compact

bosons, 1
2
∑

ac,ad ∈ 5,6 (since 1
2
∑

be,b f ∈ b3,4 is already included). For states with non-

zero  or `, one then has opposite projections for the even/odd wave-functions,

so the remaining invariant combination is 1
√
2

(
| , `〉 + (−1)A|− ,−`〉

)
, while any zero-

modes that are odd under the orbifolding are projected out in the usual way. To

understand this procedure it is better to discuss contributions from the untwisted

and the twisted b3 and b4 sectors in turn.

• Untwisted sectors without V4 = b3 + b4: Here none of the projections are al-

tered by the orbifold action on the bosonic oscillators except for that of the radion,

and the vacuum energies obey

EL,R =
1
2

∑
l

[
(αV l)2 −

1
12

]
−

(D − 2)
24

−
1
12
. (6.3.7)

Here D = 4, the sum is over complex fermions, and the factor of − 1
12 accounts for

the two real compactified bosons. The NS-NS sector yields the massless bosons for

the gauge and gravity sector including the complex radion for dimensions (5,6).

In addition, it yields three pairs of complex Higgs scalars and three pairs of singlet

scalar states. The V1 sector generates their superpartners. The resulting observable

content from these sectors is summarised in Tables 6.3 and 6.4.

An attractive feature of this model is that there are no massless Higgs triplets,

and the only massless visible-sector scalars transform in the
(
2,± 1

2

)
representation

of S U(2) ⊗ U(1)Y . Specifically the three pairs of Higgs doublets HUi and HDi that
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Sector States remaining after CDC Spin Particles

0

ψ34
− 1

2
|0〉R ⊗ X34

−1 |0〉L
2

Graviton gµν,
Antisymmetric tensor B[µν],

0 Dilaton φ

ψ56
− 1

2
|0〉R ⊗ X56

−1 |0〉L 0 Complex radion Φ

ψ34
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1 Gauge bosons Vµ

ψ56
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 0 Complex scalars HU1, HD1, Ξ1, Ξ′1

V1

|α〉R ⊗ Ψi
− 1

2
Ψ

j
− 1

2
|0〉L 1

2 Weyl spinors H̃U2, H̃D2, Ξ̃2, Ξ̃′2

|α〉R ⊗ Ψi
− 1

2
Ψ

j
− 1

2
|0〉L 1

2 Weyl spinors H̃U3, H̃D3, Ξ̃3, Ξ̃′3

Table 6.3: The ZZ2-untwisted visible-sector states of the N = 1, 4D model. All of
these states will remain massless after the CDC is imposed. The Ψi refer to generic
left-moving d.o.f, with indices i, j = 1, . . . , 20.

Sector States projected after CDC Spin Particles

V1

|α〉R ⊗ X34
−1 |0〉L

3
2 Gravitino ψµ,
1
2 Dilatino φ̃

|α〉R ⊗ X56
−1 |0〉L

1
2 Radino Φ̃

|α〉R ⊗ Ψi
− 1

2
Ψ

j
− 1

2
|0〉L 1

2 Gauginos λµ

|α〉R ⊗ Ψi
− 1

2
Ψ

j
− 1

2
|0〉L 1

2 Weyl spinors H̃U1, H̃D1, Ξ̃1, Ξ̃′1

0
χ34
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 0 Complex scalars HU2, HD2, Ξ2, Ξ′2

χ56
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 0 Complex scalars HU3, HD3, Ξ3, Ξ′3

Table 6.4: Additional Z2-untwisted visible-sector states of the N = 1, 4D model.
By contrast, these states will no longer remain in the massless spectrum after the

CDC is imposed, and will instead obtain masses 1
2

√
R−21 + R−22 .

survive the GSO and orbifold projections are

[
HU1

]
1,0,0,0,0,0,0 ,

[
HD1

]
−1,0,0,0,0,0,0 = ψ56

− 1
2
|0〉R ⊗ ψ

4,5
− 1

2
η1
− 1

2
|0〉L[

HU2

]
0,1,0,0,0,0,0 ,

[
HD2

]
0,−1,0,0,0,0,0 = χ34

− 1
2
|0〉R ⊗ ψ

4,5
− 1

2
η2
− 1

2
|0〉L[

HU3

]
0,0,1,0,0,0,0 ,

[
HD3

]
0,0,−1,0,0,0,0 = χ56

− 1
2
|0〉R ⊗ ψ

4,5
− 1

2
η3
− 1

2
|0〉L . (6.3.8)

In addition to these, the three pairs of singlet scalar states Ξi and Ξ′i that survive
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the GSO and orbifold projections are given by

[Ξ1]0,1,−1,0,0,0,0 ,
[
Ξ′1

]
0,−1,1,0,0,0,0 = ψ56

− 1
2
|0〉R ⊗ η2− 1

2
η3
− 1

2
|0〉L

[Ξ2]1,0,−1,0,0,0,0 ,
[
Ξ′2

]
−1,0,1,0,0,0,0 = χ34

− 1
2
|0〉R ⊗ η1− 1

2
η3
− 1

2
|0〉L

[Ξ3]1,−1,0,0,0,0,0 ,
[
Ξ′3

]
−1,1,0,0,0,0,0 = χ56

− 1
2
|0〉R ⊗ η1− 1

2
η2
− 1

2
|0〉L . (6.3.9)

The generalised GSO projections pick out the relevant components, i.e. b4,5

−
1
2

or d4,5

−
1
2

(in the notation of Ref. [135]) of the ψ
4,5

−
1
2

operators for the electroweak doublets,

and of the η1,2,3 for the singlet states. The presence of these scalar doublets and

their superpartners in the massless spectrum is correlated with the existence of

U(1) horizontal symmetries embedded in the larger broken gauge group. The sub-

scripts on the states above are the charges under these horizontal U(1) symmetries;

more details on these are given in Section 9.2.2 of Chapter 9.

At the level of four-dimensional theories, the V2 sector gives rise to 16 gener-

ations of massless fermionic states, which transform in the 16 of the S O(10) with

scalar superpartners in the V2 + V1 sector. However, half of the generations are

projected out by the ZZ2 twists, while V5, V6, and V7 overlap non-trivially with V2,

b3, and b4, constraining the total number of generations to two from the V2 sector.

The states derived from the V2 sector are listed in Table 6.5 and their superpartners

in Table 6.6; they are the usual decomposition of a 16 representation of S O(10)

under S U(3) ⊗ S U(2) ⊗U(1)Y . At this point, it should be noted that it is possible to

use another choice of the V5, V6, and V7 vectors, along with real instead of com-

plexified free fermions, in order to further break the horizontal symmetries and

get one generation of matter fields from the V2 sector. However, the primary goal

is to construct a viable phenomenological SM-like theory with an exponentially

suppressed cosmological constant, so the number of chiral generations is not of

critical importance.

• Untwisted sectors with V4 = b3 + b4: As mentioned above, this combination of

the two orbifold twist actions is effectively just another untwisted sector. Check-

ing the entirety of all sectors containing the combination b3 + b4, it is found that
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Sector States remaining after CDC Spin Particles

V2

|α〉R ⊗ |α̂〉L
1
2 eR

|α〉R ⊗ ψ
4
0ψ

5
0 |α̂〉L

1
2 νR

|α〉R ⊗ ψ
i
0ψ

a
0 |α̂〉L

1
2 QL

|α〉R ⊗ ψ
i
0ψ

j
0 |α̂〉L

1
2 dR

|α〉R ⊗ ψ
i
0ψ

j
0ψ

4
0ψ

5
0 |α̂〉L

1
2 uR

|α〉R ⊗ ψ
1
0ψ

2
0ψ

3
0ψ

a
0 |α̂〉L

1
2 LL

Table 6.5: The ZZ2-untwisted chiral multiplets of the N = 1, 4D model, where
i, j ∈ S U(3) and a ∈ S U(2). Just as with the states in Table 6.3, all of these
states will remain massless after the CDC is imposed. The |α〉R represent right-
moving R ground states which are spacetime spinors, while |α̂〉L represents the left-
moving R excitations that do not overlap with the SM gauge group. The multiplets
are essentially the decomposition of the 16 of S O(10). The same decomposition
applies for the generations derived from the b3 and b4 twisted-sectors. However,
the twisted-sector chiral matter fields remain unaffected by the CDC effects and
therefore maintain their supersymmetric status.

Sector States projected after CDC Spin Particles

V1+V2

|α〉′R ⊗ |α̂〉L 0 ẽR

|α〉′R ⊗ ψ
4
0ψ

5
0 |α̂〉L 0 ν̃R

|α〉′R ⊗ ψ
i
0ψ

a
0 |α̂〉L 0 Q̃L

|α〉′R ⊗ ψ
i
0ψ

j
0 |α̂〉L 0 d̃R

|α〉′R ⊗ ψ
i
0ψ

j
0ψ

4
0ψ

5
0 |α̂〉L 0 ũR

|α〉′R ⊗ ψ
1
0ψ

2
0ψ

3
0ψ

a
0 |α̂〉L 0 L̃L

Table 6.6: The ZZ2-untwisted superpartners of the chiral multiplets in the N = 1,
4D model where i, j ∈ S U(3) and a ∈ S U(2). Just as with the states in Table 6.4,

these states will also obtain masses 1
2

√
R−21 + R−22 by the CDC. The |α〉′R represent

right-moving R ground states that are not spacetime spinors.

the only massless states are either singlets or additional Higgs-like doublets, albeit

with charges that may prohibit their direct coupling to the matter fields in Yukawa

couplings.

• Twisted sectors: In the twisted sectors, in addition to the orbifold itself acting
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on the compact bosonic oscillators, the vacuum energies are given by

EL,R =
1
2

∑
l

[
(αV l)2 −

1
12

]
−

(D − 2)
24

+
1
24

, (6.3.10)

where now 1
24 accounts for the twisted complex boson. Similar to the untwisted V2

sector, the twisted b3 and b4 sectors each give rise to additional 16 generations of

chiral massless fields, each of which are projected down to a single generation for

each fixed point of the ZZ2 orbifold. As there are four fixed points, each one of the

b3 and b4 sectors gives rise to an additional four generations. The states derived

from b3 and b4 are like those in Tables 6.5 and 6.6. Of course, there are many

other linear combinations of twisted sectors b3 + αV and b4 + αV that contribute

extra hidden states and singlets to the massless spectrum of the theory. However,

these twisted sectors states are ultimately of minor phenomenological importance.

6.3.3 Partition function of the MSSM-like theory

Naturally, the quantum effects and the stability properties of the N = 1, 4D theory

discussed above can be extracted from the partition function. In this case, the

construction of the partition function relies on the results and definitions from

Appendix D. In the untwisted sector, the modular invariant partition function for

the two compact bosonic d.o.f in terms of the KK numbers ~̀ = {`1, `2}, winding

numbers ~ = { 1, 2}, and the radii r1, r2 is given by

ZB

[
0
0

]
(τ) =

∑
~̀,~

Z~̀,~ ; (6.3.11)

Z~̀,~ =
M2r1r2
τ2η

2η2

∑
~̀,~

exp
{
−
π

τ2

[
r21 |`1 − 1τ|

2 + r22 |`2 − 2τ|
2
] }

. (6.3.12)

In Eq. (6.3.11), the notation
[
0
0

]
indicates untwisted boundary conditions in both

the spacelike and timelike toroidal directions. In contrast, the contribution from
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the twisted sectors is given by

ZB

[
(α3 + α4)/2
(β3 + β4)/2

]
(τ) = 2| η(τ) |2

∣∣∣∣∣∣ϑ[ 1/2 − (α3 + α4)/2
1/2 − (β3 + β4)/2

]
(τ)

∣∣∣∣∣∣−2 , (6.3.13)

where α3 + α4 and β3 + β4 indicate the Z2 twists on the complex boson as given in

Ref. [151]. In Eq. (6.3.13) it is assumed that either α3 + α4 or β3 + β4 is odd. The

modular transformations of ZB are as follows:

ZB

[
1/2
1/2

]
(τ + 1) = ZB

[
1/2
0

]
(τ) , ZB

[
1/2
1/2

](
−

1
τ

)
= ZB

[
1/2
1/2

]
(τ)

ZB

[
1/2
0

]
(τ + 1) = ZB

[
1/2
1/2

]
(τ) , ZB

[
1/2
0

](
−

1
τ

)
= ZB

[
0
1/2

]
(τ)

ZB

[
0
1/2

]
(τ + 1) = ZB

[
0
1/2

]
(τ) , ZB

[
0
1/2

](
−

1
τ

)
= ZB

[
1/2
0

]
(τ) . (6.3.14)

Note that the modular transformations of the ZB(τ) bosonic factors do not intro-

duce any additional phases. Moreover, the untwisted ZB

[
0
0

]
(τ) partition function

is modular invariant by itself; in general its divergent contribution to the total par-

tition function is cancelled by vanishing contributions from worldsheet fermions

so that it yields finite results. Putting all the pieces together, the complete one-loop

partition function Z(τ) for the N = 1, 4D model is found to be

Z(τ) =
M2

τ2| η(τ) η(τ) |2
1

[η(τ)]8 [η(τ)]20
∑
{α, β}

Cα
β ZB

[
(α3 + α4)/2
(β3 + β4)/2

]
(τ)

×
∏

iR

ϑ
[
αVi

−βVi

]
(τ)

∏
iL

ϑ
[
αVi

−βVi

]
(τ) . (6.3.15)

The generalised GSO-projection coefficients are determined according to the con-

ventions in Ref. [135] where the factor of e2 π i βV ·αV from the partition function in

Eq. (D.0.11) is absorbed into the following definition:

Cα
β = exp

[
2πi

(
αs + βs + βi ki j α j

)]
. (6.3.16)
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Chapter 7

Coordinate Dependent

Compactification

A scientist is happy, not in resting on

his attainments, but in the steady

acquisition of fresh knowledge.

Max Planck

7.1 A summary of the general properties of CDC’d

models

As already mentioned, the CDC can be viewed as the string analogue of gener-

alised Scherk-Schwarz compactifications from higher dimensions. As such, all the

models constructed through CDC obey a specific SUSY breaking mechanism and

share certain properties. In particular, the breaking of SUSY in this class of models

is spontaneous: the models have an identifiable order parameter for the breaking,

namely the compactification scale, which is referred to generically as R−1 where R

in this context is the generic radius of the compact (5, 6) dimensions. Therefore,

the CDC lifts the mass of some of the states, including the mass of the gravitino,

while the KK modes are split non-supersymmetrically at a scale ∼ R−1. Likewise,

the cosmological constant generically goes like R−4.
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From this standpoint, the spectrum of the resulting theory is unerringly non-

supersymmetric at all energy scales. The winding modes of the theory have masses

proportional to R and experience gross shifts, which only increase with R. Indeed,

there is no value of large and finite R beyond which the spectrum appears to be

effectively supersymmetric. However, for R→ ∞ these theories effectively become

higher-dimensional and spacetime SUSY is restored. Therefore, one should not

confuse the theories obtained via CDC with theories which are supersymmetric at

high energy scales and are subsequently subjected to a SUSY breaking mechanism

at low energy scales.

It does makes sense though, at least to a certain extent, to consider the emerg-

ing four-dimensional theory as an effective spontaneously broken supersymmetric

field theory, at the lowest orders of perturbation theory. Despite the threshold

contribution to the non-supersymmetric EFT from heavy string modes, the theory

does not lack UV finiteness so long as it is modular invariant due to the misaligned

SUSY, which nevertheless remains in the spectrum of any CDC’d model. The over-

all outcome, then, is a theory in which the SUSY-breaking terms can be dialed

to any value, even to the string scale itself, with non-supersymmetric UV diver-

gences. In this way, CDC allows the parametric deformation of a theory away

from one with supersymmetric content towards another one that is entirely non-

supersymmetric. This property is on par with the interpolation and is therefore an

integral and significant feature of the models constructed in this work.

7.2 A concise description of the method

In general, the CDC is a deformation which is designed to incorporate the super-

Higgs phenomena of the Scherk-Schwarz procedure but in more general string

configurations [48]. From the spacetime perspective, as described in Section 2.2.2

of Chapter 2, the super-Higgs mechanism involves the auxiliary field of some su-

permultiplet acquiring a non-vanishing VEV while the gravitino becomes massive

by absorbing a Goldstino. From the worldsheet perspective however, the occur-

rence of super-Higgs mechanism requires the deformation of the worldsheet La-
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grangian Lw by a non-Becchi-Rouet-Stora-Tyutin (BRST) invariant operator that

must preserve only a discrete subgroup of a U(1) symmetry [48]. The super-Higgs

effect manifests itself when this discrete symmetry is spontaneously broken and

auxiliary fields on the worldsheet develop a VEV.

In practice this means deforming an already existing model by adding a local

generator Q of the parent U(1) worldsheet symmetry, which at least partly involves

the R-symmetry (in order to ensure that gravitinos and the graviton have the cor-

rect R charges). For the breaking to be spontaneous, the worldsheet supercurrent

defined in Eq. (4.1.11) has to be invariant under the discrete symmetry, but it must

not commute with the local generator Q:

[TF(z),Q(z)] , 0 . (7.2.1)

Before proceeding to apply CDC to the six-dimensional supersymmetric theory

defined by the spin structure in Table 6.1, it is necessary to specify the complexifi-

cation of the internal right-moving fermions. This is given by

χ(1)
c ≡ χ34 =

1
√
2

( χ3 + iχ4) χ(2)
c ≡ χ56 =

1
√
2

( χ5 + iχ6)

ω(1)
c ≡ ω34 =

1
√
2

(ω3 + iω4) ω(2)
c ≡ ω56 =

1
√
2

(ω5 + iω6) . (7.2.2)

The y fields will be largely irrelevant for this discussion; therefore their complexi-

fication is of no importance. This complexification admits two discrete worldsheet

symmetries, J1 and J2, which are subgroups of the internal S O(4) group of the

compactification from ten to six dimensions. Each of these symmetries is explicitly

defined by the eight transformations

χ3 → − χ3 ω3 → − ω3

χ4 → − χ4 ω4 → − ω4

χ5 → − εχ5 ω5 → − εω5

χ6 → − εχ6 ω6 → − εω6 , (7.2.3)
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where the y fields remain invariant under each symmetry and where ε = +1 for

J1 and ε = −1 for J2. Since the y fields do not acquire a phase, the CDC can be

expressed in terms of the U(1) charges of the complex states fc ≡ {χ
(i)
c , ω

(i)
c }:

J1, 2 : fc → e2π i e(1,2)
fc , (7.2.4)

where e(1)
i and e(2)

i take the values

e(1)
i , e

(2)
i =


1
2 for χ(1)

c , ω
(1)
c

1
2ε for χ(2)

c , ω
(2)
c

0 otherwise .

(7.2.5)

Henceforth the choice applicable to this study is ε = +1. The advantage of this

complexification is of course that the operator associated with the J1 symmetry

can easily be written in the basis of the original N = 1, 6D model of Table 6.1:

Ĵ1 = e2π i e·Q , (7.2.6)

where

e · Q =
1
2

1
2πi

∫
dz

(
χ(i)

c (z)χ(i)
c (z) + ω(i)

c (z)ω(i)
c (z)

)
=

1
2
(
Qχ34 + Qχ56 + Qω34 + Qω56

)
. (7.2.7)

It is then convenient to work with e charges in which the right-moving d.o.f are

defined in this basis:

e = 1
2
[
0 0 1 0 1 1 0 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
. (7.2.8)

For later reference note that |e2| = 1 is necessary for modular invariance.

At the current stage of this work, the main aim is to examine the effects that

arise when the N = 1, 6D model of Table 6.1 undergoes a CDC. Following the

discussion in Section 6.3 of Chapter 6, it is known that there can be a CDC on

a two-dimensional torus or on a ZZ2 orbifold. Even though the first option does
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not produce phenomenologically viable theories, it is still necessary to develop a

general approach for the models constructed via CDC.

7.2.1 Non-chiral non-supersymmetric four-dimensional theory

For convenience, the spin structure of the toroidally compactified N = 2 model is

specified only by the untwisted vectors V0, 1, 2, 4, 5, 6, 7. This model, serves only as a

stepping stone towards the final result, which is discussed in the next section.

In order to realise the effects of CDC on the resulting spectrum, it is appropriate

to study the CDC-deformed one-loop partition function. For any supersymmetric

six-dimensional theory that undergoes a CDC down to four dimensions, the one-

loop partition function in the “charge-lattice” formalism is given by the following

general form:

Z(τ) = Tr
∑
`1,2, 1,2

g q[L′0]q[L′0] , (7.2.9)

where the primes indicate that these expressions are CDC deformations of the

traditional supersymmetric Virasoro operators. The g is the generalised GSO

fermion-number projection operator, which is independent of the values of the

e charges. Following the conventions of Eq. (5.2.2), the Virasoro operators for the

left- and right-moving sectors of the tachyon-free, non-supersymmetric model are

expressed as

[L′0] =
α′p2

L

2
+ osc. , [L′0] =

α′p2
R

2
+ osc. (7.2.10)

The explicit form of the operators in Eq. (7.2.10) is obtained through the same pro-

cedure as described in Ref. [50–52], but with two additional bosonic coordinates

(X5, X6) compactified with radii R1 = r1√
α′

and R2 = r2√
α′

. Defining the respective KK

and winding numbers to be `1,2 and 1,2, the general forms of the Virasoro operators

September 20, 2016



7.2. A concise description of the method 141

are expressed as

L′0 =
1
2
[
QL − eL( 1 + 2)

]2
+

1
4

`1 + e · Q − 1
2 ( 1 + 2)e2

r1
+ 1r1

2
+

1
4

`2 + e · Q − 1
2 ( 1 + 2)e2

r2
+ 2r2

2 − 1 + other osc. contributions ,

L′0 =
1
2
[
QR − eR( 1 + 2)

]2
+

1
4

`1 + e · Q − 1
2 ( 1 + 2)e2

r1
− 1r1

2
+

1
4

`2 + e · Q − 1
2 ( 1 + 2)e2

r2
− 2r2

2 − 1
2

+ other osc. contributions , (7.2.11)

where L0 and L0 are the Virasoro operators of the original supersymmetric model

in four dimensions, i.e. the Virasoro operators with e = 0. It follows that

L′0 + L′0 = L0 + L0 +
1
2

[
e · Q −

( 1 + 2)
2

e2
]2 ( 1

r12
+

1
r22

)
− ( 1 + 2) (eL · QL + eR · QR)

+
1
2

( 1 + 2)2
(
e2L + e2R

)
+

(
`1

r21
+
`2

r22

) [
e · Q −

( 1 + 2)
2

e2
]
,

L′0 − L′0 = L0 − L0 , (7.2.12)

where eR, L and QR, L refer to just the right- or left-moving elements of these vectors

and where e · Q denotes a Lorentzian dot product. Given this form of the Virasoro

operators it is deduced that at the massless level of the resulting theory, i.e. for ` =

 = 0, the CDC shifts the masses of those states with non-zero charges overlapping

e. The mass that the string states accrue is then given by

α′m2 = |e · Q|2
(
1

r12
+

1
r22

)
. (7.2.13)

From these expressions it is easy to read off the effect of the CDC on the particle

spectrum shown in Tables 6.3 through 6.6. The end result is that the states in Ta-

bles 6.3 and 6.5 survive the GSO projections and remain in the massless spectrum,

while the states in Tables 6.4 and 6.6 gain masses and are eliminated. These states

are just a subset of the total spectrum, which is altered dramatically after the CDC.
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It is straightforward to understand why some states remain massless whereas the

mass of some others is lifted. First, in the NS-NS sector, all the charges Qi of the

free fermions that overlap the ei entries are zero. Likewise, all KK and winding

masses are also unshifted. However, in the V1 sector there are charges overlapping

e, and these can be ± 1
2 , depending on the chirality of the string state. In order

to see which states remain massless, one needs to examine the generalised GSO

projections on the gravitinos. These projections include

V0 · N +
1
4

(
1 − γψ34γψ56γχ34γχ56

)
= k01 +

1
2
− V0 · V1 mod (1)

1
4

(
1 − γψ34γψ56γχ34γχ56

)
= k11 +

1
2
− V1 · V1 mod (1)

V4 · N +
1
4

(
1 − γχ34γχ56

)
= k41 − V4 · V1 mod (1) , (7.2.14)

where N corresponds to the number operator associated with the NS d.o.f and Γ

corresponds to the number operator associated with the R d.o.f. There are also

the general constraints

V4 · V1 = k14 + k41 =
1
2

mod (1)

V0 · V1 = k01 + k10 = 0 mod (1) , (7.2.15)

to be taken into account. Thus, the V4 projection removes those gravitinos of the

N = 4 theory for which

1
4

(
1 − γχ34γχ56

)
= k14 mod (1) , (7.2.16)

leaving behind an N = 2 theory. This outcome, in conjuction with the result

in Eq. (7.2.13), reveals that states with chiralities such that e · Q = ± 1
2 acquire

masses of 1
2

√
R−21 + R−22 , while states with e · Q = 0 mod (1) remain massless. Thus,

the γχ34γχ56 = 1 states become heavy while the γχ34γχ56 = −1 states are unaffected. It

is therefore deduced that the N = 2 spacetime SUSY is broken completely by the

CDC for states with γχ34γχ56 = 1. Clearly the same splitting applies to all fermions

in the V2 sector, as per Table 6.5. The mechanism whereby fermions gain masses
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while scalars (a.k.a. Higgses) remain massless is essentially the same as the one

described in Ref. [80] for the Higgs/Higgsino, namely that the fermion masses are

supersymmetric “µ-terms” while the scalars have soft terms that precisely cancel

this contribution to their squared masses.

However, it is possible that the theory obtained via CDC could still be N = 2

supersymmetric if there is no V4 sector. After a cursory examination of Eq. (7.2.16),

it is realised that if k14 = 0, then indeed there are no massless gravitinos remaining

in the spectrum, whereupon the theory is non-supersymmetric. By contrast, the

choice of k14 = 1
2 leaves the N = 2 symmetry of the original theory intact. In this

case it is a different SUSY which is preserved and the conflict between the two

supersymmetries is a matter of choice of the structure constants ki j. Note, that

the choice of structure constants is crucial so as to avoid the “discrete torsion”

scenario, described in Appendix E.

7.2.2 Chiral non-supersymmetric four-dimensional theory

Given the previous model, attention is now turned on the orbifolding with action

b3 and b4 so as to achieve chirality. It turns out that the CDC does not change the

spectrum of the twisted sectors, which remain (globally) supersymmetric [48].

Therefore the following discussion is solely focused on what happens to the spec-

trum derived from the untwisted sectors of the N = 1, 4D theory presented in Ta-

ble 6.2. As noted in Ref. [50], an orbifold in the X5,6 dimensions reverses the sign

of the KK and winding modes. Following the discussion surrounding Eq. (6.3.6),

as well as from the expressions of the Virasoro operators in Eq. (7.2.11), it is

deduced that the orbifolding does not form a sensible projection on states with

degenerate masses unless an odd element of the orbifolding acts on the charges as

e · Q → −e · Q. More succinctly, a sufficient condition for ensuring that the CDC’d

theory is a four-dimensionalN = 0 theory, where all symmetries are spontaneously

broken by e, is that the operator Ĵ1 must obey the condition [50]

{L, ĝ } = 0 , (7.2.17)

September 20, 2016



7.2. A concise description of the method 144

where L = e · Q and ĝ corresponds to the possible odd actions b3,4 under the ZZ2

orbifold in Eq. (6.3.1).

Orbifold actions that obey Eq. (7.2.17) then act on the fields appearing in e

as a generalised conjugation, ĝχ(i)
c = ±χ(i)

c and ĝω(i)
c = ±ω(i)

c . This can be achieved

if one takes the original b3 and b4 and applies them in a rotated complexification

where they could overlap with the CDC vector e, with

b3 : (χ35, ω46)→ (−χ35,−ω46)

b4 : (χ46, ω35)→ (−χ46,−ω35) , (7.2.18)

so that for example b3 : χ34 → −χ34. In order to clarify the connection with the

N = 1, 4D model, a complex basis is used in which the e vectors are diagonal.

Since it is also possible to write the results in Eq. (7.2.18) using real-fermion

boundary conditions, a convenient notation is introduced in which the complex-

fermion boundary conditions are expressed using the real ones. In this notation,

the boundary condition χ→ χ is represented with ‘0’, while χ→ −χ is represented

with ‘1’; to be more precise: 0 ≡ (00)r and 1 ≡ (11)r are the same as before, while

0 ≡ (01)r and 1 ≡ (10)r.

The CDC’d model is then given by the boundary conditions in Table 7.1 with the

same set of structure constants as in Eq. (6.3.3). Additional adjustments that have

been made are due to the rotation of the orbifold basis; namely that certain entries

within the vectors V5,7 have also acquired bars in order to keep them aligned with

the orbifold actions. This distinction is irrelevant for the other vectors in the spin

structure because it is explicit that the barred and unbarred vectors are the same.

Moreover, V4 = b3 + b4 is also unchanged, and therefore the action of the e shift

on the untwisted massless spectrum is precisely as described in the N = 2 theory

with the appropriate change of basis.

Clearly, the theory which remains unaffected by the CDC effects is identical to

the original theory, but with a different complexification, e.g. χ36 = χ3 + iχ6 and

χ45 = χ4 + iχ5. Hence, the orbifolding and the CDC are effectively operating in

different complexifications and it is therefore worth elucidating how this works
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V2 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
b4 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1
V6 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0
V7 0 0 0 1 1 0 0 0 1 0 1 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1 1

2
1
2

1
2 1 1 1

2

e 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.1: Spin structure of the worldsheet fermions of the N = 0, 4D model after
applying the CDC. The overlined entries in these vectors are explicitly defined in
the text. This spin structure is accompanied by two bosonic d.o.f compactified on
a ZZ2 orbifold with twist action corresponding to the vectors b3,4. As always, every
entry in this table is understood to be multiplied by − 1

2 .

for a particular state. Based on the notation of Ref. [135], with bn and dn denoting

the positive and negative coefficients in a normal-mode expansion of these fields,

and with boundary condition v, the b3 projection then generally takes the form

b3 · Q =
1
2

∑
n

(
b†

n+v− 1
2
bn+v− 1

2
− d†

n+ 1
2−v

bn+ 1
2−v

)
+ . . . mod (1) . (7.2.19)

Suppose there is a massless state χ36
− 1

2
|0〉R ≡ (b†

χ36, 12
⊕ d†

χ36, 12
) |0〉R allowed by the b3

projection. Such a projection cannot distinguish b† from d†. In the meantime, e · Q

shifts the spectrum of states; in terms of the coefficients of real fermions this shift

is written as, e.g. bχ36,n = 1
√
2
( χ3

n + iχ6
n) and dχ36,n = 1

√
2
( χ3

n − iχ6
n). Every other state

that remains unshifted must necessarily satisfy

e · Q =
1
2

∑
l = 34, 56

(
b†
χl, 12

bχl, 12
+ b†

ωl, 12
bωl, 12

− d†
χl, 12

dχl, 12
− d†

ωl, 12
dωl, 12

)
+ . . . = 0 mod (1)

=
i
2

∑
l = 3, 5

(
χl†

1
2
χl+1

1
2
− χl+1†

1
2
χl

1
2

+ ωl†
1
2
ωl+1

1
2
− ωl+1†

1
2
ωl

1
2

)
= 0 mod (1) . (7.2.20)

In the case of χ36
− 1

2
|0〉R, the condition in Eq. (7.2.20) is not fulfilled, therefore this

state would gain degenerate masses from the CDC of order ∼ R−1. There is an

alternative way to see this, if one considers the same states written in the original

complex basis as, e.g. χ34
− 1

2
|0〉R ≡

(
b†
χ34, 12
⊕d†

χ34, 12

)
|0〉R. Even though such states would

also become massive, the b3 projection leaves only the conjugation-invariant linear
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combination 1
√
2

(
b†
χ34, 12

+ d†
χ34, 12

)
|0〉R = χ3

− 1
2
|0〉R. In a similar fashion the b3 projection

on the state χ56
− 1

2
|0〉R leaves behind only χ6

− 1
2
|0〉R. Thus, either way, the states χ36

− 1
2
|0〉R

remain in the spectrum with mass ∼ R−1. This finding should not come as a surprise

because the orbifold action could be considered as a conjugation action in the

original basis. This means that it is blind to states that remain neutral under the

corresponding CDC charges. For example, such states are b†
χ34, 12

d†
χ34, 12
|0〉R.

In this discussion real fermions are employed only as they appear in the com-

plexification of the shifted charge lattice. However, as suggested above, the entire

formalism for this class of models can actually be recast in a more straightforward

manner using real fermions from the beginning of the construction procedure. Us-

ing real free fermions, the previous discussion becomes self-evident and it is also

clarified how the CDC interacts with the V5,7 vectors.

In order to write a model in terms of real fermions it is convenient to use the

technique of Ref. [135]. Since the relevant phase in the GSO projection is either 0

or − 1
2 , the overall relative sign is of no particular importance, and hence the sign of

the d†d entries in the charge operators could be reversed. Employing this change,

the theory is no longer defined in terms of a charge lattice, but the charge operator

appearing in the GSO projections is replaced by the sum of number operators

associated with the real fermions in addition to a vacuum “charge”:

e · Qr ≡
1
2

∑
l = 34, 56

(
b†
χl, 12

bχl, 12
+ b†

ωl, 12
bωl, 12

+ d†
χl, 12

dχl, 12
+ d†

ωl, 12
dωl, 12

)
+ . . . = 0 mod (1)

=
1
2

∑
l = 3, 6, 4, 5

(
χl†

1
2
χl

1
2

+ ωl†
1
2
ωl

1
2

)
+ . . . = 0 mod (1) . (7.2.21)

Revisiting the action of the CDC on the Virasoro operators, it is necessary to de-

fine the real number operator at level nl as N
nl+αV

l
− 1

2
= b†

nl+αV− 1
2
bnl+αV− 1

2
. With this

alteration, the Virasoro operators before the CDC are expressed as

L0 =
∑

l

∑
nl = 1

(
nl + αV

l
−

1
2

)
N

nl+αV
l
− 1

2
+

1
2

(αV
l
)2 + . . . , (7.2.22)

and similar for L0. Here the quadratic piece is the relevant vacuum-energy con-

tribution, and the dots indicate terms that do not depend on the fermion bound-
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ary condition. Of course, it is crucial that modular invariance remains intact.

This is achieved by the CDC inducing a correct shift in the Virasoro operators of

Eq. (7.2.11). A shift in the vacuum “charge” like αV → αV − e( 1 + 2), generates

the following shift in the Virasoro operators:

L0 → L′0 = L0 − ( 1 + 2) e ·
(
N

nl+αV
l
− 1

2
+ αV

)
+

1
2
eL · eL( 1 + 2)2 , (7.2.23)

and similar for L0 → L
′

0. Therefore, in the real-fermion formalism, Q in the CDC is

replaced with

Qr ≡ N
nl+αV

l
− 1

2
+ αV

l
(7.2.24)

and real Lorentz products are performed accordingly. Note that in practice the

massless spectrum remaining after CDC could be determined by simply adding the

general constraint e · Q = 0 mod (1), with real-fermion contributions incorporated,

as described above, to the GSO projections. Indeed, it is in this notation that the

spectra of theories including vectors with real fermions are more easily analysed.

Putting all the pieces together in the context of the model at hand, it is con-

cluded that the states fulfilling the condition e · Q , 0 mod (1) are lifted. In this

particular example, two pairs of Higgs fields and two of the singlet scalar states

accrue masses while the scalars

HU1 ,HD1 = ψ56
− 1

2
|0〉R ⊗ ψ

4,5
− 1

2
η1
− 1

2
|0〉L

Ξ1, Ξ′1 = ψ56
− 1

2
|0〉R ⊗ η2− 1

2
η3
− 1

2
|0〉L , (7.2.25)

remain massless. Likewise, there remain two pairs of massless Higgsinos and Weyl

spinors in the spectrum:

H̃U2 , H̃D2 = {χ34
0 } |0〉R ⊗ ψ

4,5
− 1

2
η2
− 1

2
|0〉L

H̃U3 , H̃D3 = {χ56
0 } |0〉R ⊗ ψ

4,5
− 1

2
η3
− 1

2
|0〉L

Ξ̃2, Ξ̃′2 = {χ34
0 } |0〉R ⊗ η

1
− 1

2
η3
− 1

2
|0〉L

Ξ̃3, Ξ̃′3 = {χ56
0 } |0〉R ⊗ η

1
− 1

2
η2
− 1

2
|0〉L . (7.2.26)
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The Higgsinos can be coupled to the singlet scalars through Yukawa couplings of

the form

H̃D2 H̃U3Ξ1 + H̃U2 H̃D3Ξ
′
1 . (7.2.27)

These and the other Yukawa couplings are discussed in Section 9.2.2 of Chapter 9.

The phenomenological importance of Eq. (7.2.27) is evident from the fact that if

the singlet scalars accrue a VEV, the Higgsinos will effectively become massive. So

the low-energy theory will be free of Higgs superpartners. The fermionic matter

fields in the V2 sector are somewhat similar to those in the NS-NS sector in the

sense that they have no charges overlapping with e and thus their masses are

unshifted. However their superpartners in the V1 + V2 sector behave precisely as

for the V1 sector, and all receive the same masses as the gravitinos if k14 = 0, as per

Table 6.6.

From a phenomenological perspective, this splitting is very appealing: one pair

of Higgs scalars and the chiral matter fields, which basically constitute the SM par-

ticle content, all remain massless. At the same time, all their superpartners become

massive, with a mass of the order of ∼ R−1. This indicates that the emerging theory

is a chiral, N = 0, SM-like theory in four dimensions. Note, however, that the

twisted sectors are unaffected, so only the untwisted generations are truly split,

while the net twisted generations remain (quasi-) supersymmetric.

7.3 Partition function of the SM-like theory

Thus far, two models of interest have been presented: an MSSM-like model in

Section 6.3 of Chapter 6 and an SM-like model in the previous section. In order to

further elucidate the structure of the CDC’d model, examine the quantum effects

and also study the cosmological constant behaviour, it is necessary to employ a

powerful tool; the partition function.

Before examining the partition function of this model, recall that the partition

function of the N = 1, 4D theory is given by Eq. (6.3.15). Since the twisted sectors

of this theory remain supersymmetric, even after the CDC, their contributions to

the partition function are nil. Therefore, it will be useful for later purposes to focus
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on the explicit form of the contributions to the partition function of the N = 1, 4D

theory from the untwisted sectors. In general, as with any ZZ2-orbifolded theory,

the contributions to the total partition function are of the form

Z =
1
2

Z[
0
0

]
+ Z

[
g
0

]
+ Z

[
0
g

]
+ Z

[
g
g

]  , (7.3.1)

where ‘0’ and ‘g’ indicate the sum over all untwisted and twisted sectors, respec-

tively. As mentioned above and as discussed in Ref. [51], contributions with a

twist on either cycle are independent of the vector e. This is obvious when there

is a twist on the a-cycle, but less so for the term Z
[
0
g

]
. However, the reason the

latter also does not depend on e is that, as described above, the orbifold reverses

charges, windings and/or KK modes, and therefore precisely half of these states

are projected out, leaving the invariant combination (| , `,Q〉+ | − ,−`,−Q〉). Since

there is an overall factor of 1
2 in the projection, all states with non-zero , ` or with

a Q that conjugates under the orbifolding are already counted by the untwisted

1
2Z

[
0
0

]
contribution. However, these are the only states that have e-dependence in

their Hamiltonian, and therefore Z
[
0
g

]
simply provides extra contributions from

the orbifold projections on the rest of the spectrum. Consequently, the partition

function of the N = 0, 4D theory can be written as

Z(e) = Z(0) +
1
2

Z[
0
0

]
(e) − Z

[
0
0

]
(0)

 =
1
2

Z
[
0
0

]
(e) , (7.3.2)

Note that since the supersymmetric partition function results in a vanishing cos-

mological constant Λ, this result is useful for determining the Λ associated with

the CDC’d theory. In this case, any effect on Λ would only be from the untwisted

sectors of the CDC’d theory. Due to this particular feature, the effects on Λ can

also be deduced if one works entirely within the toroidally compactified theory

as long as all the untwisted-sector contributions are taken into account, including

those containing the combination V4 = b3 + b4.

In order to understand clearly how the spontaneous SUSY breaking manifests
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itself in the spectrum of the CDC’d theory, it is more convenient to separate out the

action of V1 from the partition function, as this is what governs the supersymmetric

cancellations. In addition to V5, 6, 7, a convenient basis corresponds to the following

linear combination of the vectors defined in Table 6.2:

V ′0 = V0 + V1 = − 1
2
[
0 0 0 1 1 0 1 1 | 1 . . . 1

]
V1 = − 1

2
[
1 1 1 0 0 1 0 0 | . . .

]
V ′2 = V2 + V0 + b3 + b4 = − 1

2
[
0 0 0 0 0 0 0 0 | . . .

]
V4 = b4 + b3 = − 1

2
[
0 0 1 0 1 1 0 1 | . . . ] . (7.3.3)

In this basis, only V4 overlaps with V1; consequently terms that cancel due to

supersymmetry will largely factor out. In addition the vectors Vi can be divided

into two sets: {V1,V4} and {Va} where a < {1, 4}. Without loss of generality one can

choose k1a = 0, so that the partition function takes the form

Z(τ) =
M2

τ2 η10 η
22

∑
α1, 4
β1, 4

ZB

[
0
0

]
(τ) Cα

β

∏
iR ∈

{1, 2, 3, 6}

ϑ
[
αVi

−βVi

]
(τ)

×
∑

α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

∏
iR <

{1, 2, 3, 6}

ϑ
[
αVi

−βVi

]
(τ)

∏
iL

ϑ
[
αVi

−βVi

]
(τ) . (7.3.4)

The factors Cα
β can also be split. Letting a ≡ 0′, 2′, 5, 6, 7, the partition function

coefficients are written as

Cα
β = exp

[
2πi

(
αs + βs + βiki jα j

)]
= eπ i (α1+β1) exp

[
2πi (βakabαb + β4k4bαb + βaka4α4 + β1k14α4 + β4k41α1)

]
= eπ i (α1+β1) exp

[
2πi (β4k4bαb + βaka4α4 + β1k14α4 + β4k41α1)

]
Ĉα
β . (7.3.5)

One can then identify contributions involving different V4 contributions to the spin

structure:

Z(τ) =
M2

τ2 η10 η
22 ZB

[
0
0

] ∑
α4, β4

Ω

[
α4
β4

]
. (7.3.6)

Using the double-index shorthand for the ϑ-functions as defined in Appendix D,
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the Ω functions take the form

Ω

[
0
0

]
=

[
ϑ4
00 − ϑ

4
01 − ϑ

4
10 + ϑ4

11

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
β

∏
iR <

{1, 2, 3, 6}

ϑ
[
αVi

−βVi

]∏
jL

ϑ
[
αV j

−βV j

]
,

Ω

[
1
0

]
=

[
ϑ2
00 ϑ

2
10 − (−1)2k14 ϑ2

01 ϑ
2
11 − ϑ

2
10 ϑ

2
00 + (−1)2k14 ϑ2

11 ϑ
2
01

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
βe2πi βa ka4

∏
iR <

{1, 2, 3, 6}

ϑ
[
αVi

−βVi

] ∏
jL

ϑ
[
αV j

−βV j

]
,

Ω

[
0
1

]
=

[
ϑ2
00 ϑ

2
01 − ϑ

2
01 ϑ

2
00 − (−1)2k41 ϑ2

10 ϑ
2
11 + (−1)2k41 ϑ2

11 ϑ
2
10

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
βe2πi k4a αa

∏
iR <
{1,2,3,6}

ϑ
[
αVi

−βVi

] ∏
jL

ϑ
[
αV j

−βV j

]
,

Ω

[
1
1

]
=

[
ϑ2
00 ϑ

2
11 − (−1)2k14 ϑ2

01 ϑ
2
10 − (−1)2k41 ϑ2

10 ϑ
2
01 + (−1)2(k14+k41) ϑ2

11 ϑ
2
00

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
βe[2πi (k4aαa+βaka4+k44)]

∏
iR <

{1, 2, 3, 6}

ϑ
[
αVi

−βVi

] ∏
jL

ϑ
[
αV j

−βV j

]
. (7.3.7)

Since this is the partition function of the supersymmetric theory it is known that

these contributions undergo an exact cancellation. The first term vanishes as a

result of the first identity listed in Eq. (D.0.3), and the remaining ones vanish by

inspection as a consequence of Eq. (7.2.15).

The procedure followed then, in order to obtain the partition function of the

non-supersymmetric model, after CDC, is the same as described in Refs. [50–52].

For convenience the winding and KK numbers are defined as  = ( 1 + 2) mod (1)

and ` = (`1+`2) mod (1) respectively. It is also useful to define  = 1−  and ` = 1−`.
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The CDC’d partition function is then given by

Z′(τ) =
M2

τ2 η10 η
22

∑
~̀, ~

Z~̀, ~
∑
α4, β4

Ω`, 

[
α4
β4

]
, (7.3.8)

where

Ω`, 

[
α4
β4

]
=

∏
iR ∈

{1, 2, 3, 6}

ϑ
[
αVi − ei

−βVi + `ei

]

×
∑

α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

C̃α
β

∏
iR <

{1, 2, 3, 6}

ϑ
[
αVi − ei

−βVi + `ei

] ∏
jL

ϑ
[
αV j − e j

−βV j + `e j

]
. (7.3.9)

In this expression, the coefficients of the partition function are given by

C̃α
β = exp

[
−2πi

(
e · βV −

1
2
 ` e2

)]
Cα
β , (7.3.10)

where Cα
β are the coefficients of the untwisted partition function before CDC, as

given in Eq. (7.3.5).

Recall that up until now, all the d.o.f of the CDC vector e are assigned in a

specific basis which is defined in Eq. (7.2.8). From this it is deduced that the

partition function of the CDC’d model is the same as the old one, except that the

e shifts the iR = 3, 5, 6, 8 arguments by a half unit when  or ` is odd, and there is

a phase e−2π i e·βV . This phase is only sensitive to V1 and V4 as these are the only

untwisted vectors that overlap with e in the right-moving part. This phase is trivial

when β1 + β4 is even, and gives a factor (−1)  when β1 + β4 is odd. In total, then, it

is obtained that

Ω`, 

[
0
0

]
= (−1)  `

[
ϑ2
00 ϑ

2
 ` − (−1)  ϑ2

01 ϑ
2
 `
− ϑ2

10 ϑ
2
 ` + (−1) ϑ2

11 ϑ
2
 `

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
β

∏
iR ∈ {4,7}

ϑ
[
αVi

−βVi

] ∏
iR ∈ {5,8}

ϑ
[
αVi − ei

−βVi + `ei

] ∏
jL

ϑ
[
αV j

−βV j

]
, (7.3.11a)

September 20, 2016



7.3. Partition function of the SM-like theory 153

Ω`, 

[
1
0

]
= (−1)  `

[
ϑ2
00 ϑ

2
 ` − (−1)2k14+  ϑ2

01 ϑ
2
 `
− ϑ2

10 ϑ
2
 ` + (−1)2k14+  ϑ2

11 ϑ
2
 `

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
βe2π i βa ka4

∏
iR ∈ {4,7}

ϑ
[
αVi

−βVi

] ∏
iR ∈ {5,8}

ϑ
[
αVi − ei

−βVi + `ei

] ∏
jL

ϑ
[
αV j

−βV j

]
,

(7.3.11b)

Ω`, 

[
0
1

]
= (−1)  `

[
(−1)  ϑ2

00 ϑ
2
 `
− ϑ2

01 ϑ
2
 ` − (−1)2k41+  ϑ2

10 ϑ
2
 `

+ (−1)2k41 ϑ2
11 ϑ

2
 `

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
βe2π i k4a αa

∏
iR ∈ {4,7}

ϑ
[
αVi

−βVi

] ∏
iR ∈ {5,8}

ϑ
[
αVi − ei

−βVi + `ei

] ∏
jL

ϑ
[
αV j

−βV j

]
,

(7.3.11c)

Ω`, 

[
1
1

]
= (−1)  `

[
(−1)  ϑ2

00 ϑ
2
 `
− (−1)2k14 ϑ2

01 ϑ
2
 ` − (−1)2k41+  ϑ2

10 ϑ
2
 `

+ (−1)2(k14+k41) ϑ2
11 ϑ

2
 `

]
×

∑
α0′ ,2′ ,5, 6, 7
β0′ ,2′ ,5, 6, 7

Ĉα
βe2π i (k4aαa+βaka4+k44)

∏
iR ∈ {4,7}

ϑ
[
αVi

−βVi

] ∏
iR ∈ {5,8}

ϑ
[
αVi − ei

−βVi + `ei

] ∏
jL

ϑ
[
αV j

−βV j

]
.

(7.3.11d)

Previously in this chapter, it was claimed that if a CDC is performed on a torus,

it is possible to maintain the N = 2 SUSY of the emerging theory. This scenario

takes place if one chooses to assign different values to the structure constants.

Specifically, for k14 = 1
2 , the generalised GSO projections allow the two gravitinos

to survive in the massless spectrum and hence the theory remains supersymmetric.

This claim can now be tested for the theory obtained when a CDC is performed

on the ZZ2 orbifold so as to check whether the theory still has N = 1 SUSY when

k14 = 1
2 . In order to do this, it is sufficient to study the expressions in Eq. (7.3.11).

By inspection as well as through the first identity in Eq. (D.0.3), it is deduced that

all the prefactors cancel for any  and ` when k14 = 1
2 , and that they do not when

k14 = 0.

A corollary is that the theory without V4 is inevitably still supersymmetric de-
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spite the CDC: there is still a shift in the spectrum due to CDC but this shift is

simply tantamount to shifting the R-charges of the states on the KK tower. This

remark is supported by the fact that the expression in Eq. (7.3.11a) vanishes com-

pletely, regardless of `,  and k14.

7.4 Cosmological constant of the SM-like theory

As always, it is important to examine the one-loop cosmological constant Λ for

the SM-like theory so as to study its stability properties. The analytical evaluation

of Λ is based on the full expression of the partition function in Eq. (7.3.2). As

discussed above, the CDC affects only the untwisted sectors of the theory, hence

all the twisted sectors of the theory are still supersymmetric and make no net

contribution to Λ. Moreover, since the model without V4 is supersymmetric even

after CDC, there are no contributions from the expression in Eq. (7.3.11a). As

a result, in order to ensure that the theory is non-supersymmetric, the choice

applicable to this study is k14 = 0. While the ` indices correspond to resummed

KK modes, the sectors with  , 0 correspond to winding-mode contributions. As

can be seen from Eq. (6.3.12), and as anticipated by the discussion in Section 5.4

of Chapter 5, the winding-modes contributions are heavily suppressed by a factor

of at least O (e−πr2) for generic radius r. Therefore such terms are neglected in the

following evaluation.

It is found that the only contributions to the partition function arise for odd `

when the winding number  is zero or even:

Ω`,0

[
1
0

]
= −

[
ϑ2
00 ϑ

2
11 − ϑ

2
01 ϑ

2
10 − ϑ

2
10 ϑ

2
01 + ϑ2

11 ϑ
2
00

]
+ . . . = 2ϑ2

10 ϑ
2
01 + . . .

Ω`,0

[
0
1

]
= −

[
ϑ4
00 − ϑ

4
01 + ϑ4

10

]
+ . . .

Ω`,0

[
1
1

]
= − [ϑ2

00 ϑ
2
10 − ϑ

2
01 ϑ

2
11 + ϑ2

10 ϑ
2
00 − ϑ

2
11 ϑ

2
01] + · · · = −2ϑ2

00 ϑ
2
10 + . . . (7.4.1)

Although it is possible to evaluate the entire integral methodically, in order to
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examine the effect of the CDC for the  = 0 contributions, it is simpler to go back

to the original expression for the partition function in Eq. (7.3.8). When there

are no winding-mode excitations, there are no shifts on the a-cycle and the only

change is on the b-cycle due to the phase 2πe · Q. Also, from Eq. (7.3.10), the Cα
β

remains unshifted, so the GSO projections are the same as for the supersymmetric

theory. For the evaluation procedure it is also useful to define the vectors

~̀ ≡ (r1 `1, r2 `2) , ~ ≡ (r1 1, r2 2) . (7.4.2)

Using the trace formula in Eq. (D.0.11) the non-vanishing contributions are writ-

ten as

Z′=0(τ) =
M2

τ2η10η
22

∑
~̀= odd

Z~̀,0
∑
α4, β4

e2π i e·Q Ω

[
α4
β4

]

=
M4r1r2
τ22 η

12 η24

∑
~̀= odd

e−
π
τ2
|~̀|2e2π i e·Q

∑
α4, β4

Ω

[
α4
β4

]
, (7.4.3)

where the Ω’s are the expressions for the supersymmetric non-CDC theory. Note

that e2π i e·Q is an operator that does not depend on α, β so in the sum it becomes

a simple overall factor. As a result, the net effect of the CDC on the Poisson-

resummed partition function can be interpreted as one in which the sign of the

contributions with e · Q = 1
2 in the supersymmetric theory, is reversed so that there

are no longer exact cancellations.

This is especially straightforward in the large-τ2 region which dominates the

one-loop integral, where the τ1-integral projects onto the physical spectrum and

allows the counting of the physical states in the theory. Every fermion that is

lifted by the CDC counts +2 and every boson −2. Conversely the partition-function

contribution is proportional to the states remaining unshifted in the spectrum after

CDC, namely 2(N(i)
b − N(i)

f ), at some degenerate mass level i. After the τ1-integral

has fixed the level-matching condition, it is found that

Λ = r1r2M4
∫ ∞

1
µ2
≈1

dτ2
τ42

∑
~̀=odd
level i

(N(i)
f − N(i)

b )e−
π
τ2
|~̀|2e−πτ2α

′m2
i , (7.4.4)
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where m2
i is the physical mass of the state i, and N(i)

b and N(i)
f are the numbers of

unshifted bosons and fermions at the i’th mass level. The lower limit µ−2 reflects

the fact that the τ1 dependence of the UV end of the fundamental domain is not

taken into account. Note that this expression is completely general for any model

in six dimensions that after a CDC yields a non-supersymmetric four-dimensional

theory.

Writing Λ =
∑

level i Λi, it is obvious that there are then two types of contribu-

tions, depending on whether the states are massless or massive. Assuming that r1

is the smaller radius, the net contribution from massless states is determined by

Λ0 =
2r1r2M4

π3
(N(0)

f − N(0)
b )

∑
~̀=odd

|~̀|−6
[
1 − O(e−π|~̀|

2µ2)
]

=
4r1r2M4

π3
(N(0)

f − N(0)
b ) (2r1)−6 ζ

(
6,

1
2

)
+ . . .

= r1r2M4 (N(0)
f − N(0)

b )
π3

240r61
+ . . . , (7.4.5)

where ζ(a, b) is the Hurwitz zeta-function and where a factor of two arises from ` =

±1. Decompactifying to five dimensions by taking the r2 → ∞ limit and factoring

out the infinite volume r2 reproduces the single compactified-dimension result of

Eq. (5.4.7) for D = 6.

The net contribution from massive states is determined by a saddle-point ap-

proximation with the saddle at τ2 = 1
√
α′mi
|~̀| (which is valid for

√
α′mi � 1) and is

found to be

Λi,0 = r1r2M4(N(i)
f − N(i)

b )
∑
~̀=odd

|~̀|−7/2(
√
α′mi)5/2e−2π

√
α′mi |~̀|

1 − O  1
2π|~̀|

√
α′mi

 .
(7.4.6)

Again the r2 → ∞ decompactification limit yields the 5D correction already antici-

pated in Eq. (5.4.10). Note that the subleading terms neglected in the saddle-point

approximation are larger than the  , 0 contributions, so it would not be appro-

priate to consider the latter at this order of approximation.

In summary, the leading and subleading terms on the one-loop cosmological

constant of the non-supersymmetric theory emerged via CDC are the same as those
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found in Section 5.4 of Chapter 5, for the cosmological constant of the interpolat-

ing models. This conclusion is of utmost importance because it gives strong indi-

cations that CDC is a suitable method for constructing interpolating models which

are all non-supersymmetric, UV finite due to the inherent misaligned SUSY and

which could also be stable. As remarked in the discussion of interpolating models,

stability could be achieved in a model with equal numbers of massless bosons and

fermions. Indeed, if the SM-like theory presented here had N(0)
b = N(0)

f , then in

the large but finite r1, r2 limit its one-loop cosmological constant would have been

exponentially suppressed.
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Chapter 8

Semi-realistic string models with

exponentially suppressed

cosmological constants

If the facts don’t fit the theory,

change the facts.

Albert Einstein

8.1 Additional requirements imposed on the construc-

tion

Given the important preparatory model-building work in the previous Chapter as

well as in Chapters 5 and 6, everything is ready for the centrepiece of this paper

which is the construction of non-supersymmetric string models with exponentially

suppressed cosmological constants. As alluded to above, only those models with

almost vanishing cosmological constants will have suppressed one-loop dilaton

tadpoles, as required for a theory to be stable in the absence of spacetime SUSY.

Naturally, these models will have a variety of semi-realistic features and they could

be identified as being either SM-like, Pati-Salam-like, or resembling a unified ex-

tension thereof, such as flipped S U(5) or S O(10). Despite these features, it should
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be noted that these models are not fully realistic and contain a number of direct

phenomenological flaws. However, the purpose of this work is not to construct

the absolute candidate model governing the mechanism of our world, but rather

to demonstrate that it is indeed possible to construct phenomenologically viable

theories, which are completely non-supersymmetric and possess an acceptable de-

gree of stability. Moreover, the construction techniques that are mainly centred on

a CDC method suggest that such models are only the tip of the iceberg, consid-

ering all the possible theories that could be constructed. This can then hopefully

pave the way for more refined model-building and future enhanced studies on

their phenomenological properties.

Even though it might come as a surprise, it is in fact easier to construct N(0)
b =

N(0)
f unified theories than N(0)

b = N(0)
f SM-like theories for models which are realised

through the free-fermionic construction followed by a CDC. The term “unified” in

this context implies that the gauge group is (semi-)simple and contains the SM

gauge group as a subgroup1. Such unified models are constructed by stripping

away the V5, 6, 7 vectors from the previous constructions. However, in order to

construct a model with the desired leading-order cancellation of the cosmological

constant, two important adjustments must be included.

The first is that unlike before, the CDC vector e can act both on the right-moving

part, where it adjusts the structure of the SUSY breaking, and simultaneously on

the left-moving side, where it adjusts the structure of the gauge group. As noted

in Section 7.2 of Chapter 7, the only constraint on the form of this vector is that

one should retain e · e = 1 in order to have modular invariance. Keeping the

vectors V1,...,4 as before, where the new basis now is related to that in Table 6.2

with V1 → V1 + V0 and V2 → V2 + V0, it is found that the CDC vector given by

e = 1
2 [ 0 0 1 0 1 1 0 1 | 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 ] (8.1.1)

generates N(0)
b = N(0)

f in the toroidally compactified N = 2→ N = 0 theory.

1Note that at this level of analysis, it is not a particular concern whether or not the Higgses
required for breaking the GUT symmetry are present.
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The second adjustment arises from the fact that, as per Eq. (7.3.2), only the

untwisted sectors yield non-vanishing contributions to the partition function of

the spontaneously broken theory. Therefore, it is acceptable to start by finding

an N = 2 → N = 0 theory with N(0)
b = N(0)

f , such as the one above. Any orbifold

twisting that is added in order to generate a chiral theory is then guaranteed (with

a suitable adjustment of structure constants) to preserve the cancellation of N(0)
b =

N(0)
f because it halves the number of bosonic and fermionic d.o.f that contribute

with an e dependence. At this point, one must be cautious because although the

orbifolding twisting halves the massless d.o.f, this might not always be true for

other theories. The only constraint then on the orbifold action is that in at least

one sector it should overlap with precisely one-half of the CDC elements when

written in the real formalism (with the possibility that more general twisted sectors

may arise through the introduction of additional untwisted boundary-condition

vectors). This additional constraint on the orbifolding means that it is somewhat

more difficult to find twisted matter.

Of course, one must always recall that the choice of structure constants ki j

throughout this process is pivotal. There is always the danger lurking in the back-

ground of breaking SUSY by discrete torsion before even applying the CDC, or

leaving the post CDC model with N = 1 SUSY. In each case the presence or ab-

sence of spacetime SUSY can also be seen directly at the level of the partition

function. Along the way, a significant number of other constraints are applied:

As always, the boundary-condition vectors and ki j structure constants must satisfy

the constraints imposed by modular invariance. Likewise, the additional modular

invariance constraints for real fermions must also be satisfied. For the construction

to be in agreement with interpolation, it is required that upon removing the CDC,

SUSY is restored. Likewise, it is required that there exists an alternative choice

of certain ki j’s which can also restore SUSY. Finally, it is required that in at least

one twisted sector, the boundary conditions, including the orbifold vector b3, must

overlap with precisely one-half of the entries of the CDC vector e. Moreover, in
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0
V4 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
e 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Table 8.1: Spin structure of the worldsheet fermions of the N = 0, 4D S O(10)
theory. This spin structure is accompanied by two bosonic d.o.f compactified on a
ZZ2 orbifold with twist action corresponding to the vector b3. As always, the entries
of the table are understood to be multiplied by − 1

2 .

this context overlaps of ‘− 1
4 ’ phases2 with the CDC vector are not allowed; this

ensures that there is a basis in which the orbifold acts as a charge conjugation on

the CDC charges (plus possible untwisted phases, depending on the sector). These

constraints apply to all the models presented below.

8.2 “Unified” SO(10) and flipped SU(5) theories

An example of an N = 1 → N = 0 S O(10) unified model with N(0)
b = N(0)

f is

presented in Table 8.1. The associated structure constants are given by

ki j =



0 0 0 1
2 0

0 0 0 1
2 0

0 1
2 0 0 0

1
2 0 0 0 0

0 1
2 0 0 0


, (8.2.1)

and the overall gauge group of the theory is

G = [S O(4)]4 ⊗ [U(1)]4 ⊗ S O(10)︸  ︷︷  ︸
contains SM

⊗ S O(6) . (8.2.2)

This model has fundamental 10’s as well as eight complex 16’s in the untwisted

2These phases correspond to the ‘ 12 ’ entries in the spin structures presented throughout this
thesis.
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sector, all quasi-supersymmetric and with 328 massless complex d.o.f in total.

As usual, the untwisted matter multiplets appear in the V0 + V2 sector. By re-

introducing a V7 vector, one can construct a flipped-S U(5) model with N(0)
b = N(0)

f .

An example is presented in Table 8.2 and its structure constants are given by

ki j =



0 0 0 1
2 0 0

0 0 0 1
2 0 0

0 1
2 0 1

2 0 1
2

1
2 0 1

2 0 0 1
2

0 1
2 0 0 1

2
3
4

1
2

1
2 0 1

2 0 1
2


. (8.2.3)

The overall gauge group of this theory is then given by

G = [S O(4)]3 ⊗ [U(1)]6 ⊗ U(5)︸︷︷︸
contains SM

⊗ S O(6) . (8.2.4)

This model has twisted massless matter as well as untwisted matter with 152

massless complex d.o.f in total. It contains not only four complete chiral quasi-

supersymmetric untwisted generations of matter but also massless twisted gener-

ations of fermions arising in the V4 + b3 sector, along with superpartners in the

V0 + V1 + V4 + b3 sector. All these states are in the fermionic representation of the

parent S O(10), so it is natural to associate the above U(5) gauge-group factor with

the S U(5)⊗U(1)X gauge group of the flipped S U(5) unification scenario. The model

also has the vector-like 5 + 5 Higgs representations required for electroweak sym-

metry breaking, but no GUT Higgses.

As usual, the αV = 0 sector gives rise to the gravity multiplet and adjoint

gauge bosons that are not removed by the particular choices of e shown above.

Furthermore, there is no massless gravitino or dilatino, and likewise there are no

corresponding massless gauginos in the V0 + V1 sector. The fact that these models

have N(0)
b = N(0)

f at the level of the spectrum, can be confirmed by the original and

large-radius Poisson-resummed partition functions. This can also be seen in the

evaluation of the untwisted partition function, which contains no constant term.
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1
V4 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1
V7 0 0 0 1 1 0 0 0 1 1 1 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 0 0 1 0 0

e 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1

Table 8.2: Spin structure of the worldsheet fermions of the N = 0, 4D S U(5)
theory.

8.3 SM-like theories

In a similar way, it is also possible to construct SM-like models with N(0)
b = N(0)

f .

Recall that the N = 0, 4D theory described in Section 7.2 of Chapter 7, has a

single complex Higgs pair that remains massless, as well as matter fields, two from

the untwisted V2 sector and extra ones from the twisted sectors. Given this, it is

possible to construct models with similar mass spectra and with N(0)
b = N(0)

f ; one

such model is presented in Table 8.3. In this example, there are N(0)
b = N(0)

f = 136

complex massless bosons and fermions. The structure constants of this theory are

given by

ki j =



0 0 0 0 0 0 0

0 0 0 1
2 0 0 0

0 1
2 0 0 0 1

2 0

0 0 0 1
2 0 0 0

0 1
2 0 0 0 1

2
1
2

0 0 0 1
2 0 0 3

4
1
2

1
2 0 1

2 0 1
2 0



, (8.3.1)

while the full gauge group is given by

G = [S O(4)]3 ⊗ [U(1)]9 ⊗ U(3) ⊗ U(2)︸         ︷︷         ︸
contains SM

. (8.3.2)

In here the U(1)Y is the same as the one defined in Eq. (6.3.5). The resulting

mass spectrum from the αV = 0 and V0 + V1 sectors is the same as that sum-

marised in Tables 6.3 and 6.4, including extra “Higgses”. The model has two
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1
V4 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1
V7 0 0 0 1 1 0 0 0 0 1 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 0 1 1 0 0 0 0

e 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1

Table 8.3: Spin structure of the worldsheet fermions of the N = 0, 4D SM-like
theory.

entire supersymmetric chiral generations arising in the V0 + V2 sector, with the

spectrum shown in Table 6.5. There also appears to be a third untwisted gener-

ation in the V0 + V1 + V4 + V7 and V0 + V1 + V4 + 3V7 sectors, while the twisted b3

and b3 + V4 sectors provide mainly singlets with additional Higgs/Higgsinos. This

model could be considered to be quite remarkable. It has chiral generations of

SM-like matter and is clearly non-supersymmetric, but it also has equal numbers

of massless bosons and fermions and hence an exponentially small one-loop cos-

mological constant.

8.4 A Pati-Salam-like theory

An alternative route to achieving N(0)
b = N(0)

f is to remove the final breaking to

unitary gauge groups which is driven by V7. As was mentioned earlier, this vector

makes the task of building a consistent modular invariant model significantly more

difficult due to the − 1
4 phases. As a result, constructions that do not involve a V7

sector are significantly less constrained than those with V7. The enlarged theory

obtained from the SM-like theory presented above but without the additional V6

and V7 vectors is Pati-Salam-like with 208 massless complex d.o.f in total. The spin

structure of this theory is defined in Table 8.4, the associated structure constants
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1
V4 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1
e 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Table 8.4: Spin structure of the worldsheet fermions of theN = 0, 4D S O(6)⊗S0(4)
model.

are

ki j =



0 0 0 1
2 0 0

0 0 0 1
2 0 0

0 1
2 0 0 0 1

2
1
2 0 0 0 0 1

2

0 1
2 0 0 0 0

0 0 0 0 0 0


, (8.4.1)

and the full gauge group is given by

G = [S O(4)]3 ⊗ [U(1)]6 ⊗ S O(6) ⊗ S O(4)︸             ︷︷             ︸
contains SM

⊗ S O(6) . (8.4.2)

The spectrum for S O(2N) representations can be decomposed under the corre-

sponding U(N) in a complex basis of worldsheet fermions, so that for example

the adjoint of S O(4) ∼ S U(2)L ⊗ S U(2)R is a 1 ⊕ 4 ⊕ 1 of U(2) [which is related

as U(2) ⊃ S U(2) ≡ S U(2)L]. As always, the NS-NS sector gives rise to the grav-

ity multiplet as well as the adjoint gauge bosons, including the 15 and 6 adjoint

gauge bosons of the visible sector. Again the theory is characterised by the ab-

sence of a massless gravitino or dilatino and there are no corresponding massless

gauginos in the V0 + V1 sector. In addition, the removal of both V6 and V7 nat-

urally enables more pairs of light Higgs scalars and singlets to survive the GSO

and orbifold projections in the NS-NS sector. Therefore, more than one pair of

Higgses and singlets remain massless after CDC. Specifically, the complex scalar
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electroweak doublets H that survive the GSO and the orbifold projections are

H1 ≡ {HU1 ,HD1} = ψ56
− 1

2
|0〉R ⊗ ψ

4,5
− 1

2
η1
− 1

2
|0〉L

H2 ≡ {HU2 ,HD2} = ψ56
− 1

2
|0〉R ⊗ ψ

4,5
− 1

2
y36,45
− 1

2
|0〉L

H3 ≡ {HU3 ,HD3} = χ36
− 1

2
|0〉R ⊗ ψ

4,5
− 1

2
η3
− 1

2
|0〉L

H4 ≡ {HU4 ,HD4} = χ36
− 1

2
|0〉R ⊗ ψ

4,5
− 1

2
ω45
− 1

2
|0〉L

H5 ≡ {HU5 ,HD5} = χ45
− 1

2
|0〉R ⊗ ψ

4,5
− 1

2
η2
− 1

2
|0〉L . (8.4.3)

Note that in these expressions, the labels of the left-moving internal complex

fermions are different from those of the SM-like theory defined in Eq. (7.2.25)

and (7.2.26). The purpose of this labelling is to ensure that the horizontal symme-

tries in the PS-model are completely aligned. Similarly, the singlets X and exotic

states E that survive the projections are

X1 ≡ {X1, X′1} = ψ56
− 1

2
|0〉R ⊗ η2− 1

2
η3
− 1

2
|0〉L

X2 ≡ {X2, X′2} = ψ56
− 1

2
|0〉R ⊗ ω45

− 1
2
η2
− 1

2
|0〉L

X3 ≡ {X3, X′3} = χ36
− 1

2
|0〉R ⊗ η1− 1

2
η2
− 1

2
|0〉L

X4 ≡ {X4, X′4} = χ36
− 1

2
|0〉R ⊗ y36,45

− 1
2
η2
− 1

2
|0〉L

X5 ≡ {X5, X′5} = χ45
− 1

2
|0〉R ⊗ η1− 1

2
η3
− 1

2
|0〉L

X6 ≡ {X6, X′6} = χ45
− 1

2
|0〉R ⊗ y36,45

− 1
2
ω45
− 1

2
|0〉L

X7 ≡ {X7, X′7} = χ45
− 1

2
|0〉R ⊗ ω45

− 1
2
η1
− 1

2
|0〉L

X8 ≡ {X8, X′8} = χ45
− 1

2
|0〉R ⊗ y36,45

− 1
2
η3
− 1

2
|0〉L

E = χ45
− 1

2
|0〉R ⊗ ψ

1,2,3
− 1

2
ω36
− 1

2
|0〉L . (8.4.4)

Likewise more Higgsino-like states and other Weyl spinors are left massless; these

are states which appear in the V0 + V1 sector. The resulting mass spectrum from

the αV = 0 and the V0 + V1 sectors is summarised in Tables 8.5 and 8.6. Naturally,

there are also additional states from the hidden sector that survive the GSO and

orbifold projections. However, beyond their contributions to enforcing N(0)
b = N(0)

f ,

these states do not contribute anything phenomenologically and thus will not be
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considered in this discussion.

Sector Massless states after CDC Spin Representations Particles

0

ψ34
− 1

2
|0〉R ⊗ X34

−1 |0〉L
2 (1, 1, 1)

gµν, B[µν]

0 Dilaton φ

ψ56
− 1

2
|0〉R ⊗ X56

−1 |0〉L 0 (1, 1, 1) Complex radion Φ

ψ34
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

(Adj, 1, 1)+

Gauge bosons Vµ
(1,Adj, 1)+
(1, 1,Adj)+
Adj Ghidden

ψ56
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 0

(1, 2, 2) Complex scalar H1

(1, 1, 1) Complex scalar X1

χ36
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 0

(1, 2, 2) Complex scalar H4

(1, 1, 1) Complex scalar X4

χ45
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 0

(1, 1, 1) Complex scalar X7

(1, 1, 1) Complex scalar X8

V0 + V1

ψ56
0 |α〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

2
(1, 2, 2) Weyl spinor H̃2

(1, 1, 1) Weyl spinor X̃2

χ36
0 |α〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

2
(1, 2, 2) Weyl spinor H̃3

(1, 1, 1) Weyl spinor X̃3

χ45
0 |α〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L

1
2

(1, 2, 2) Weyl spinor H̃5

(1, 1, 1) Weyl spinor X̃5

(1, 1, 1) Weyl spinor X̃6

(4, 1, 1) Exotic spinor Ẽ

Table 8.5: The ZZ2-untwisted visible-sector states of the N = 1, 4D Pati-Salam
theory which remain massless after the CDC. The Ψi refer to generic left-moving
d.o.f, with indices i, j = 1, . . . , 20. Here |α〉R refers to the remaining unspecified R
ground states. The massless fields are identified according to the S U(4)⊗S U(2)L⊗

S U(2)R representations.

The fermionic matter arises in the untwisted V0 + V2 sector and is identified by the

(4,2,1) and (4,1,2) representations of S U(4) ⊗ S U(2)L ⊗ S U(2)R, where the SM
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Sector States projected after CDC Spin Representations Particles

V0 + V1

|α〉R ⊗ X34
−1 |0〉L

3
2 (1, 1, 1)

Gravitino ψµ
1
2 Dilatino φ̃

|α〉R ⊗ X56
−1 |0〉L

1
2 (1, 1, 1) Radino Φ̃

|α〉R ⊗ Ψi
− 1

2
Ψ

j
− 1

2
|0〉L 1

2

(Adj, 1, 1)+

Gauginos λµ
(1,Adj, 1)+
(1, 1,Adj)+
Adj Ghidden

ψ56
0 |α〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

2
(1, 2, 2) Weyl spinor H̃1

(1, 1, 1) Weyl spinor X̃1

χ36
0 |α〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

2
(1, 2, 2) Weyl spinor H̃4

(1, 1, 1) Weyl spinor X̃4

χ45
0 |α〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

2
(1, 1, 1) Weyl spinor X̃7

(1, 1, 1) Weyl spinor X̃8

0

ψ56
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

2
(1, 2, 2) Complex scalar H2

(1, 1, 1) Complex scalar X2

χ36
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L 1

2
(1, 2, 2) Complex scalar H3

(1, 1, 1) Complex scalar X3

χ45
− 1

2
|0〉R ⊗ Ψi

− 1
2
Ψ

j
− 1

2
|0〉L

1
2

(1, 2, 2) Complex scalar H5

(1, 1, 1) Complex scalar X5

(1, 1, 1) Complex scalar X6

(4, 1, 1) Exotic boson E

Table 8.6: The ZZ2-untwisted visible-sector states of the N = 1, 4D Pati-Salam

theory that will accrue a mass of 1
2

√
R−21 + R−22 by the CDC. The Ψi refer to generic

left-moving d.o.f, with indices i, j = 1, . . . , 20 and the massless fields are identified
according to the S U(4) ⊗ S U(2)L ⊗ S U(2)R representations.

matter fields are embedded as

FL ≡ {QL, LL}

FR ≡ {eR, νR, uR, dR} . (8.4.5)

The identification of S U(2)L ⊗ S U(2)R ∼ S O(4) implies then that the 2 spinor of

S O(4) is in the fundamental of S U(2)L while the 2 spinor is in the fundamental of
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Sector States remaining after CDC Spin Representations Particles

V0 + V2

|α〉R ⊗ ψ
i
0ψ

a
0 |α̂〉L 1

2 (4,2,1) FL

|α〉R ⊗ ψ
1
0ψ

2
0ψ

3
0ψ

a
0 |α̂〉L

|α〉R ⊗ |α̂〉L

1
2 (4,1,2) FR|α〉R ⊗ ψ

4
0ψ

5
0 |α̂〉L

|α〉R ⊗ ψ
i
0ψ

j
0 |α̂〉L

|α〉R ⊗ ψ
i
0ψ

j
0ψ

4
0ψ

5
0 |α̂〉L

V1 + V2
|α〉R ⊗ |β〉L 0 (4,2,1) Exotic spinor E

|α〉R ⊗ |β〉L 0 (4,1,2) Complex scalar K

Table 8.7: Chiral ZZ2-untwisted multiplets of the N = 1, 4D Pati-Salam theory that
remain massless after the CDC. Here i, j ∈ S U(4) and a ∈ S U(2)L ⊗ S U(2)R. The
|α〉R represent right-moving R ground states which are spacetime spinors, while
|α̂〉L and |β〉L represent different left-moving R excitations that do not overlap with
the Pati-Salam gauge group. The multiplets are essentially decomposed under the
16 of S O(10), but here the massless fields are identified according to the S U(4) ⊗
S U(2)L ⊗ S U(2)R representations.

S U(2)R. Meanwhile the electroweak Higgses H are in the fundamental of S O(4)

which corresponds to the (2,2). The visible matter in this particular example is still

quasi-supersymmetric. The removal of the V6 and V7 vectors leaves some of the

horizontal symmetries embedded in the gauge group unbroken. As a result, there

are more generations of visible matter than in the SM-like theory. In particular,

there is an unbroken S O(4) horizontal symmetry, arising from the y36, y45 fermions,

which allows four chiral generations from the V0 + V2 sector rather than the two

of the SM-like theory. Similarly to the SM-like theory, this Pati-Salam-like theory

has no massless twisted-sector matter.

Despite the globally supersymmetric matter spectra, the scalar partners would

be expected to pick up masses from RG running in the usual way. As a result, the

theory is somewhat “no-scale” from the point of view of the visible sector, with

gauginos dominating the contributions. It should be noted that the (4,1,2) scalars

can play the role of the Higgs field K in breaking the Pati-Salam gauge symmetry

down to the SM gauge symmetry. The mass spectrum for the generations of matter

fields in the theory is summarised in Tables 8.7 and 8.8. Of course, in presenting
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Sector States projected after CDC Spin Representations Particles

V1 + V2
|α〉′R ⊗ |β〉L

1
2 (4,2,1) Spinor Ẽ

|α〉′R ⊗ |β〉L
1
2 (4,1,2) Spinor K̃

V0 + V2

|α〉′R ⊗ ψ
i
0ψ

a
0 |α̂〉L 0 (4,2,1) F̃L

|α〉′R ⊗ ψ
1
0ψ

2
0ψ

3
0ψ

a
0 |α̂〉L

|α〉′R ⊗ |α̂〉L

0 (4,1,2) F̃R|α〉′R ⊗ ψ
4
0ψ

5
0 |α̂〉L

|α〉′R ⊗ ψ
i
0ψ

j
0 |α̂〉L

|α〉′R ⊗ ψ
i
0ψ

j
0ψ

4
0ψ

5
0 |α̂〉L

Table 8.8: Chiral ZZ2-untwisted multiplets of the N = 1, 4D Pati-Salam theory

which will accrue a mass of 1
2

√
R−21 + R−22 by the CDC. As in the previous table i, j ∈

S U(4) while a ∈ S U(2)L⊗S U(2)R. The |α〉′R represent right-moving R ground states
that are not spacetime spinors and once again the massless fields are identified
according to the S U(4) ⊗ S U(2)L ⊗ S U(2)R representations.

a Pati-Salam-like theory, there is an implicit assumption that the final stage of

symmetry breaking can be consigned to the EFT without destabilising the original

theory. As is evident above, this Pati-Salam theory has the Higgs fields required

for this additional stage of breaking.

To conclude, all four different models presented in this section have N(0)
b = N(0)

f

and therefore all have exponentially suppressed one-loop cosmological constants

and dilaton tadpoles. Whilst none of these models are completely realistic, it is

evident that from a phenomenological point of view each exhibits varying de-

grees of success. Therefore each model can be viewed as a stepping stone for the

potential construction and development of more refined theories with enhanced

phenomenological properties.
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Chapter 9

Properties of string models with

exponentially suppressed

cosmological constants

When I am working on a problem I

never think about beauty. I only

think about how to solve the

problem. But when I have finished, if

the solution is not beautiful, I know

it is wrong.

Buckminster Fuller

9.1 Interpolation Properties

The successful exponential suppression of their cosmological constants sparks a

torrent of work on the properties of models with equal numbers of massless bosons

and fermions. Given that these non-supersymmetric, tachyon-free models belong

to the class of interpolating models, it is a priority to investigate their interpolation

associated behaviour. There are several subjects in the agenda including: the mass

spectrum behaviour at large radii, and if one expects the small radius limit to

exhibit the same form; the interpolation of the cosmological constant Λ from large
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to small radii of compactification; an examination of whether there is a possibility

of tachyons appearing at some critical radius R ∼ 1, signalling a Hagedorn-like

instability and last but perhaps not least, whether there is restoration of gauge

symmetry and/or SUSY.

9.1.1 Behaviour of mass spectrum

In the limit of large interpolating radius, i.e. a ≡ R−1 → 0, the low-energy spec-

trum of models with exponentially suppressed cosmological constants is divided

into a visible and a hidden sector. In general, “visible” refers to the states as-

sociated with the SM (or one of its unified extensions) and “hidden” refers to

states which do not carry SM gauge quantum numbers. Along with these states,

both sectors also contain their would-be superpartners whose masses are lifted by

the CDC, so that they acquire a mass ∼ (2R)−1. As a result, neither sector is su-

persymmetric (except in the infinite-radii limit where the theory becomes higher

dimensional and SUSY is restored). At low energies, the particle landscape is poor

of variety, in the sense that the lightest states in each sector consist of the mass-

less (n = 0) string states, along with their KK excitations. This picture is altered

dramatically at higher mass levels M > Mstring because these sectors also contain

string oscillator states, winding states and of course the twisted sectors contribute

additional string states. This is a generic behaviour of the mass spectrum which

applies for all semi-realistic interpolating models. However, interpolating models

with suppressed cosmological constants have a distinct feature: the visible sector

contributes exactly equal and opposite net (bosonic minus fermionic) numbers of

string states with masses M < Mstring to those from the hidden sector. This property

holds for all sufficiently small radii, even if the strict R → ∞ limit is not satisfied.

This general structure of the mass spectrum for the semi-realistic interpolating

models is depicted schematically in Fig. 9.1.

A remark worth emphasising is that for the lightest physical states in the spec-

trum, i.e. M < Mstring, the cancellation of net physical-state degeneracies between

the visible and hidden sectors does not imply that this is the result of any space-

time SUSY, either exact or approximate, in the string spectrum. Nonetheless, this
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Figure 9.1: A schematic illustration of the mass spectrum structure for a generic
interpolating model with suppressed cosmological constant in the limit of large
interpolating radius. At mass scales below Mstring (or below n = 1) the spectrum
consists of massless states coming from the visible and hidden sectors, their would-
be superpartners and their lightest KK excitations. For these lightest states, the net
physical-state degeneracies between the visible and hidden sectors cancel for all
large radii. This property leads to the exponential suppression of the cosmologi-
cal constant and hence the dilaton tadpole, so that the stability properties of the
theory are enhanced. At mass scales above Mstring the mass spectrum includes
also string oscillator, winding and twisted sector states. Therefore, there are no
longer cancellations between the net numbers of d.o.f from the visible and hidden
sectors. Nevertheless, the behaviour of these states is governed by misaligned su-
persymmetry which guarantees the finiteness of the theory. This figure is adapted
from Refs. [15,16].

cancellation has a vital role because it sits at the root of the one-loop cosmological

constant’s exponential suppression. Consequently, this guarantees the suppression

of the dilaton tadpole, thereby enhancing the stability properties of these strings.

By contrast, for the heavier states, i.e. M > Mstring, the visible and hidden sectors

can no longer contribute equal and opposite numbers of d.o.f due to the variety of

states in the spectrum. Nevertheless, the properties of these sectors are governed

by misaligned SUSY constraints, and the entire string spectrum continues to sat-

isfy the supertrace relations in Eq. (4.3.6). These relations ensure that the overall

string theory maintains its UV finiteness even without spacetime SUSY.

These properties of the mass spectrum could be better perceived if one rewinds
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back to Chapter 5, where the general framework of the ZZ2 interpolating models is

presented. Recall that the interpolating models constructed via a compactification

on a ZZ2 orbifold have four sectors whose states contribute to the partition function

traces Z(a), with a = 1, 2, 3, 4. The general form of the partition function for such

interpolating models is then found to be the one given in Eq. (5.2.4). Under

the assumption that SUSY is restored in the R → ∞ limit it is deduced that at

the level of q-expansions Z(2) = −Z(1). Thus the partition function takes the form

given in Eq. (5.4.1). The Z(1) contains the contributions from the massless states

coming from the visible sectors, while the Z(2) contains the contributions from

their would-be superpartners. For low-lying mass levels, the functions E0 and E1/2

serve to tally the KK excitations of the would-be superpartner states, which are

shifted relative to each other by masses ∼ (2R)−1. Depending on the low-energy

EFT, it is expected that the massless states of the visible sector do not contain

an equal number of bosonic and fermionic d.o.f. It is then concluded that the

only way to achieve N(0)
b = N(0)

f is for the Z(1) itself to contain also contributions

from a separate hidden sector, which is not necessarily related to the visible sector.

The only requirement is for the hidden sector to provide the additional bosonic

and fermionic d.o.f needed so as to fulfil the condition N(0)
b = N(0)

f in Z(1). Since

Z(2) = −Z(1), the same must also be true of the would-be superpartners, whereupon

their respective multiplications by the E0 and E1/2 functions implies that the same

will also be true for their associated low-lying KK states.

At energy scales above Mstring, Z(1) may generally have a non-zero net number of

physical states. Thus, there are no exactly equal and opposite numbers of bosonic

(N(n)
b ) and fermionic (N(n)

f ) d.o.f with masses mn, where n is the energy level, and

hence a condition of the form N(n)
b = N(n)

f cannot be fulfilled. However, these

heavier states are subjected to the misaligned SUSY constraint, and along with

states across the entire string spectrum they contribute to the cancellation of UV

divergences.

Based on these outcomes, it is easy to examine the behaviour of the actual

physical-state degeneracies ann as a function of n for such interpolating models

with suppressed one-loop cosmological constants. The entire spectrum of the Pati-
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Salam-like theory defined by the spin structure in Table 8.4 is displayed in a plot

of ± log ( |ann| ) versus n. Such plots demonstrate the Bose-Fermi non-degeneracies

of this theory and are shown in Fig. 9.2. The results are presented for several

different values of the dimensionless inverse radii a1,2 ≡
√
α′r−11,2 [15], and can be

compared with the results for general interpolating models which are illustrated

in Fig. 5.1. As required by misaligned SUSY, there are distinct bosonic/fermionic

oscillations and for a ∼ O (1), the physical-state degeneracies oscillate within

smoothly growing exponential functions which are determined by the oscillator

states. For a1,2 ∼ O (1) the KK and winding states have masses similar to those

of the oscillator states and thus their contributions are not readily distinguish-

able from those of the oscillator states. However, as a1,2 → 0, it is observed

that the KK states begin to separate out from the oscillator states, which leads

to the step-wise growth in the envelope function shown in the last three panels

of Fig. 9.2. From those three panels it is also deduced that for sufficiently large

radii, the physical-state degeneracies ann for all relevant mass levels n < 1 develop

exact Bose-Fermi degeneracies. Despite the absence of spacetime SUSY, the light-

est physical-state degeneracies vanish exactly; this confirms the cancellation of

bosonic against fermionic d.o.f between the observable and hidden sectors respec-

tively, as illustrated in Fig. 9.1. The vanishing or “evacuation” of net physical-state

degeneracies below n = 1 as a1,2 → 0 is thus the hallmark of interpolating string

models with exponentially suppressed cosmological constants and therefore en-

hanced stability properties.

There is another way to understand the behaviour of the mass spectrum of

such non-supersymmetric theories. This is through the expressions in Eq. (7.2.11),

where at large r1, r2 the non-zero 1, 2 terms can be neglected in the evaluation of

the cosmological constant because they are heavily suppressed and can be consid-

ered negligible. So, at low energies the mass spectrum is almost identical to the

massless spectrum. The difference is that the KK numbers of the lightest states are

shifted by e · Q due to the CDC effects. However, e · Q shifts an equal number of

bosons and fermions in the massless sector, as well as all of their KK modes. As

a result, despite the fact that the spectrum is completely non-supersymmetric, it
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Figure 9.2: Degeneracies of physical states for the Pati-Salam-like theory defined
in Table 8.4. The results are shown for inverse radii values that vary from a1 =

a2 = 3 (upper left) to a1 = a2 = 0.1 (lower right). Comparing these plots with those
in Fig. 5.1, it is evident that all the features associated with general interpolating
models survive the CDC: First, there is a smoothly growing exponential envelope
function for a ∼ O (1) which slowly deforms into a discretely step-wise growing
exponential function as a→ 0, reflecting the emerging hierarchy between KK and
oscillator states. Second, it is observed that there are no net state degeneracies
ann for n ≤ 1 for sufficiently large radius. This critical feature implies that at
this limit, the spectrum of such models develops exact Bose-Fermi degeneracies
for all n < 1, even though spacetime SUSY is absent, whereupon it confirms the
cosmological constant’s exponential suppression. As illustrated in Fig. 9.1, this
degeneracy is the result of cancelling non-zero net degeneracies associated with a
non-supersymmetric visible sector against the degeneracies associated with a non-
supersymmetric hidden sector. The plots are adapted from Refs. [15,16].
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actually exhibits Nb = N f for all states up to the first-excited string oscillator mass

level.

Up until now, the analysis of the mass spectrum is performed in the large radii

limit of the theories where the exponential suppression of the cosmological con-

stant is achieved. At the beginning of this chapter, it was questioned whether the

spectrum exhibits the same behaviour at the small radii limit. Considering instead

this opposite limit, it is found that the 1, 2 become closely packed and the states

with non-zero “net KK number” `1,2 + e · Q − 1
2 ( 1 + 2) become very heavy. In order

to understand this better, it is useful to consider first the winding modes of the

massless sector that remains unshifted by CDC, i.e. e · Q = 0, and that satisfy

N(0)
b = N(0)

f . Denoting by Q0 the charges in this sector, it is observed that at small

r1, r2, different winding modes can be light if they have a shift Q = Q0 + e( 1 + 2),

provided also that the corresponding KK numbers have a shift `i = − 1
2 ( 1 + 2) so as

to cancel the net contribution of the KK modes. Hence at generic but small r1, r2

only the even 1 + 2 combinations of the e · Q = 0 states are light. Note that this

statement does not mean that one simply takes the physical states with e · Q0 = 0

and maps them to a set of even winding modes with charge and net KK number

given respectively by Q = Q0 + e( 1 + 2) and `i = − 1
2 ( 1 + 2). This would imitate

what happens for the KK modes at large radii but it is incorrect to assume that it

also happens in the small radii limit. The explanation for this lies in the fact that

in the small radii limit, any shift in Q affects the factor g (and subsequently affects

the GSO projection) in Eq. (7.2.9) which includes a phase 2πiβV · Q. This phase is

shifted by a factor 2πi( 1 + 2)βV · e w.r.t the non-winding sector, and some of the

overlaps Vi · e generate 1
4 -integer values. Thus, while the subset of winding modes

that satisfies 1 + 2 = 0 mod (4) still exhibits the N(0)
b = N(0)

f cancellation of the

massless sector, the subset of winding modes that satisfies 1 + 2 = 4k + 2mod (4),

k ∈ Z has different projections and generally does not exhibit this cancellation.

This could be seen within the large-(a1 = a2) plot in the first two panels of Fig. 9.2,

where it is evident that the light states do not exhibit Bose-Fermi degeneracies. It

is therefore concluded that maintaining the exponential suppression of the cosmo-

logical constant when the model interpolates to r1,2 → 0 (or a1,2 → ∞) is no longer
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feasible.

Meanwhile, the winding modes of the states that satisfy e · Q , 0 and thus

become massive at the large radii limit, behave differently at the opposite limit.

At the small radii limit these states can have low-lying odd winding modes while

the KK numbers are shifted, with the `1,2 again compensating to make the net

KK contribution vanish. Denoting by Q1 the charges of the original non-winding

states, it is observed that the charges of the low-energy winding states are shifted

as: Q = Q1 + e( 1 + 2), with

`1,2 + e · Q −
1
2

( 1 + 2)e2 = 0 . (9.1.1)

This confirms that there are indeed odd-winding/KK states with no net KK number.

A notable observation is that due to the 2πi( 1 + 2)βV · e shift in the GSO phase

the generalised GSO projections in the V0 sector remain the same as before the

shift, whereas the generalised GSO projections in the V1 sector are reversed for the

low-energy odd-winding modes. Thus the projection in Eq. (E.0.2) at small radii

removes the odd winding modes of the gravitinos but in principle allows the odd

winding modes of the NS-NS tachyons. The squared masses of these tachyons

which could be found in the low-energy states of the theory are given by

α′M2

4
= −

1
2

+
21 r

2
1 + 22r

2
2

4
, (9.1.2)

with r1, r2 <
√
2. If such states existed, they would have e · Q = 1

2 mod (1). How-

ever, as discussed above, in these models the phase in the generalised GSO projec-

tions is altered by shifts in the odd-winding sectors. Because of this modification,

the NS-NS tachyons are projected out by the generalised GSO projections in the

V4 sector. Thus, one does not expect to find a tachyon-induced (Hagedorn-like)

instability at r1 = r2 ∼ 1, and this can indeed be verified through an inspection of

the partition function. The absence of such tachyon-induced Hagedorn-like insta-

bilities is in fact a special property of all generic non-supersymmetric string models

that interpolate between a supersymmetric r → ∞ endpoint (a.k.a. M1) and a non-

supersymmetric r → 0 endpoint (a.k.a. M2) which is also tachyon-free. However,
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it is necessary to investigate this property further as there is strongly suggestive

evidence that it might actually be a special feature of all interpolating models with

N(0)
b = N(0)

f .

Continuing on the analysis of the generic spectrum as a function of radius, the

point T = U = i (or r1 = r2 = 1) is normally a point of enhanced gauge symmetry

for T2 compactifications. At this point the entire theory can be fermionized so as

to take the form of a fermionic string, as explained in Ref. [152]. Indeed, the

4D theory obtained without CDC carries additional massless states which appear

with `1,2 = 1,2 = ±1 when either r1 = 1 or r2 = 1; something that can also be

deduced from Eq. (7.2.11). However, the 4D theory obtained via the CDC, does

not allow symmetry enhancements of this form. This enhancement is impossible

for states with e · Q = 0 mod (1) because it is required to have 1 + 2 = odd,

which counterintuitively results in a non-zero net KK number. Alternatively, this

argument could be realised through the lightest squared masses of the would-be

additional massless states:

α′M2
L

4
=

1
4

(
−
1
2r1

)2
+

1
4

(
−
1
2r1
− 1r1

)2
α′M2

R

4
=

1
4

(
−
1
2r1

)2
+

1
4

(
−
1
2r1

+ 1r1

)2
. (9.1.3)

For the level-matching constraints to be satisfied, there must be equal numbers

of left- and right-moving excitations. This condition is clearly not fulfilled for

Eq. (9.1.3), so these states are eliminated from the spectrum through the gener-

alised GSO projections in the V0 sector of the theory. By similar arguments, wind-

ing modes of states with e · Q1 = 1
2 mod (1) cannot yield any additional massless

states either. Therefore, it is concluded that at the traditional enhanced symme-

try point of the CDC’d theory, there does not seem to be a direct link to the 4D

fermionic string. It could be conjectured though that the model at that point corre-

sponds to a conventional 4D model broken to a tachyon-free non-supersymmetric

model by discrete torsion.
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9.1.2 Behaviour of one-loop cosmological constant

Given these observations about the physical mass spectrum of the Pati-Salam-like

theory obtained via a CDC, it is easy to evaluate the one-loop cosmological con-

stant Λ as a function of the generic inverse radius a = r−1. A plot of the results is

illustrated in Fig. 9.3, from which one can actually deduce all the gross features

described in the above discussion. For large a, the rescaled cosmological constant

tends to a large but constant value, a behaviour which is similar to that in Fig. 5.2.

This outcome forms compelling evidence for the existence of a zero-radius end-

point model which is entirely non-supersymmetric and tachyon-free (a.k.a. M2);

such a model is a 6D fermionic string which could be constructed with discrete tor-

sion. Since the entire curve is finite, it is deduced that no tachyons emerge at any

intermediate radii and therefore there are no Hagedorn-like instabilities. However,

at the limit of small a, the curve is radically different from that in Fig. 5.2. The

first immediate observation is that the Λ is not power-law suppressed as in Fig. 5.2,

but rather it undergoes an exponential suppression. Second, it is observed that Λ

changes sign as a → 0 increases to a → ∞. A finding that comes as a surprise is

the stable anti-de Sitter minimum which appears just above the self-dual radius.

Despite not being clear what the physical interpretation of this minimum could be,

a possible scenario is to consider this minimum as an indication for gauge symme-

try and/or SUSY restoration. This situation is similar to the one encountered in

the Type II models considered in Ref. [56]. Moreover, the cosmological constant

crosses zero at yet another, slightly higher radius than the self-dual, at which point

it is also unclear whether there might exist a hidden unbroken SUSY.

Although all these features are significant and suggest the possibility of sta-

bilising the radius modulus near a ∼ O (1), the main interest is in the large-radii

limit where the exponential suppression of the one-loop cosmological constant,

and hence of the one-loop dilaton tadpole, is successfully achieved. It is only

under such conditions that the purpose of this thesis manifests itself by neatly

addressing the momentous dilaton-related stability issues associated with non-

supersymmetric strings. Moreover, in this limit, ∂Λ(r)/dr is also suppressed yield-

ing an effectively flat potential for the radius modulus in this region.
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Figure 9.3: The rescaled cosmological constant Λa−2 for the Pati-Salam-like theory
defined in Table 8.4. The results are plotted versus a ≡

√
α′r−1. It is evident that

the entire curve remains finite which means that there are no tachyons emerging
in the theory, at any radii values. As expected, at the small but finite a limit the
cosmological constant Λ is exponentially suppressed. For finite a values Λ remains
finite but forms a stable minimum just above the self-dual radius which might be
a signal for a gauge symmetry or SUSY restoration. At a slightly higher radius Λ

crosses zero and changes sign so that at the large a limit tends to a large non-zero
but constant value, indicating that the a → ∞ limit of this model is a 6D non-
supersymmetric and tachyon-free theory. This plot is adapted from Refs. [15,16].

9.2 Phenomenological Properties

Another priority of equal importance is the phenomenological study of the mod-

els with exponentially suppressed cosmological constants, especially the aspects

which relate directly to hierarchy and stability issues. Some phenomenological

properties are quite general and would apply to any non-supersymmetric string

model of this type. However there are others, like the natural particle assign-

ments and Yukawa couplings which depend on the structure of a specific model

and are best analysed within the context of the associated theory. A remarkable

feature that is closely related to the behaviour of the cosmological constant is the

behaviour of the scalar masses. In particular, as it is discussed below, there is a
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possibility to also suppress the radiative contributions to scalar masses, thereby

paving a new path for tackling those issues related to hierarchy.

9.2.1 Natural particle assignments

Among the more model-independent phenomenological aspects is the identifica-

tion of the SM particles in terms of specific string states. Recall that for the SM-like

theory specified by the spin structure in Table 7.1, the SSSB is manifest only for

the untwisted generations at leading order. This SSSB will inevitably appear in the

twisted generations as well due to RG running but the breaking in these genera-

tions will almost certainly be smaller than that in the untwisted ones, assuming

that untwisted matter exists at all.

As it is argued in Refs. [153,154], Scherk-Schwarz configurations may enhance

“naturalness” in the sense advanced in Ref. [155]. From this standpoint, a natural

assignment is to take the untwisted generations to be the first and second gen-

erations of the SM and one of the twisted generations to be the third. The large

SUSY-splitting within the first generation does indeed then indicate a certain de-

gree of naturalness. This observation seems like a good starting point for having

reduced third generation masses while having relatively partial cancellations of

radiative contributions to the third generation. Note that since the second gen-

eration is also relatively light, there are many flavour-related issues that would

need to be carefully examined. Within QFT, these would be difficult questions to

address as there are threshold contributions from the entire tower of states in the

spectrum. Probably one would have to resort to setting soft terms as boundary

conditions at the compactification scale. By contrast, one appealing aspect of the

present constructions is that one does not have to rely on field theory because all

the leading effects, including thresholds and RG running can in principle be simply

computed from scratch within string perturbation theory.
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9.2.2 Yukawa couplings

Even though the SM-like theory specified by the spin structure in Table 7.1 does

not successfully meet the N(0)
b = N(0)

f condition, it is useful to study the relevant

Yukawa couplings. This study will serve as a benchmark for the Pati-Salam-like

theory with realistic Higgs sectors.

• The SM-like theory with N(0)
b , N(0)

f : The possible Yukawa couplings are de-

termined by the non-SM charges under horizontal U(1) symmetries. The number

of horizontal symmetries depends on the assignment of the boundary conditions

in the defining spin structure. Every model has at least three horizontal U(1)Lk

(k = 1, 2, 3) symmetries for the left-moving worldsheet currents and three matching

global U(1)Rk (k = 1, 2, 3) symmetries from the right-moving worldsheet currents.

With Jψ ≡ 1
2π

∫
dz ψ†

− 1
2
(z)ψ− 1

2
(z), these worldsheet currents may be denoted

Jηi=1,2,3 → U(1)Li=1,2,3 ; Jψ56, χ34, χ56 → U(1)R1, 2, 3 . (9.2.1)

A cursory examination of the spectrum reveals that the chiral matter states arising

from the V2, b3, and b4 sectors as well as the Higgses HUi=1,2,3 and HDi=1,2,3, carry

charges under U(1)Li=1,2,3 and U(1)Ri=1,2,3 respectively. Given that SSSB affects only

the untwisted sectors, and in this case is concentrated in the V2 sector, then it is

safe to assume that the states coming from the V2 sector are the first and second

SM generations.

In addition to these symmetries there are other horizontal U(1)Lk=4,5,... symme-

tries which arise when pairs of real worldsheet fermions are complexified. The real

left-moving worldsheet fermions which can be complexified belong in the subsets{
y3,4,5,6

}
,
{
ω3,4} and

{
ω5,6}. Correspondingly, the complexified right-moving fermions

from the subsets
{
y3,4,5,6

}
,
{
ω3,4} and

{
ω5,6} give rise to four U(1)Rk=4′ ,4,5,6 symmetries

assigned as

Jy34,y56,ω56,ω34 → U(1)L4′ ,4, 5, 6 ; Jy34,y56,ω56,ω34 → U(1)R4′ ,4, 5, 6 . (9.2.2)

The non-vanishing Yukawa couplings for the states from the sectors V2, b3, and b4
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then depend on the boundary conditions assigned to the real fermions of the V7

sector. The ultimate requirement that must be imposed for the correct assignment

of the Yukawa couplings, is that the charge vectors for the states in a given cou-

pling sum up to zero, Q1 + Q2 + Q3 = 0. The states with non-vanishing Yukawa

couplings are then determined according to the value of [147]

|V7,Rk+3 − V7, Lk+3 | , (9.2.3)

where the subscript refers to the element of V7 corresponding to that particular

worldsheet fermion. The value of this parameter can be either 0 or 1
2 and deter-

mines which type of coupling is generated, i.e. involving dR, eR, or uR, νR respec-

tively. Both couplings cannot be present for the same generation. As mentioned

in the previous section, the V2 sector gives rise to two generations which are cor-

related with the U(1)4 and U(1)4′ horizontal symmetries. The b3 and b4 sectors

give rise to more generations but the generations from each twisted sector are

correlated with the existence of U(1)5 and U(1)6, respectively. In total, from all the

sectors of the unbroken N = 1 theory the only non-vanishing couplings are

W ⊃ uR1HU1QL1 + νR1HU1LL1 + dR1′HD1QL1′ + eR1′HD1LL1′ + dR2HD2QL2 + eR2HD2LL2

+ uR3HU3QL3 + νR3HU3LL3 + HU1HD2Ξ3 + HU2HD3Ξ1 + HU1HD3Ξ2 + HD1HU2Ξ
′
3

+ HD2HU3Ξ
′
1 + HD1HU3Ξ

′
2 + Ξ1Ξ

′
2Ξ3 + Ξ′1Ξ2Ξ

′
3 , (9.2.4)

where indices ‘1’ and ‘1′’ on the matter fields label the two generations from the

V2 sector while indices ‘2’ and ‘3’ correspond to the twisted-sector generations.

All these Yukawa couplings arise with the same degenerate magnitude and de-

spite being written in the form of superpotential terms, all the relevant would-be

superpartners are massive.

For the original N = 0 theory defined in Table 7.1, the non-vanishing Yukawa

couplings are given by

W ⊃ uR1HU1QL1 + νR1HU1LL1 + dR1′HD1QL1′ + eR1′HD1LL1′ + HU2HD3Ξ1 + HD2HU3Ξ
′
1

+ Ξ1Ξ
′
2Ξ3 + Ξ′1Ξ2Ξ

′
3 , (9.2.5)
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where they are written again as superpotential terms. From this result, it is clear

that out of the three Higgses in this model, the best suited to be the actual Higgs

is the HU1. This is the only Higgs that remains massless after CDC, while HD2

and HU3 become massive. Interestingly, this generic situation is quite similar to

the phenomenological ‘one-Higgs-doublet’ model [156], which was adopted in

the context of Scherk-Schwarz breaking in Ref. [154]. The masses for the bot-

tom and tau can then be generated via the ‘wrong-Higgs’ couplings coming from

the Kähler potential. As usual the charm mass can be calculated by higher-order

corrections. Note that any superpotential-like terms would violate the usual non-

renormalization theorems, therefore even though they would be present they are

subjected to a suppression given by the scale of SSSB.

• The Pati-Salam Theory with N(0)
b = N(0)

f : This model admits a greater number of

horizontal U(1) symmetries than those of the SM-like theory discussed above, but

it contains the same U(1)L1,2,3,5,6 and U(1)R1,2,3,5,6 symmetries as expected. In this case,

there is no V7, so there is no extra condition imposed for determining the Yukawa

couplings, except from the condition that the overall charge (Qtotal) of the coupled

states should vanish. It turns out that there exist many possible trilinear terms.

Just as for the SM-like theory, the actual Higgs which remains massless after CDC

is H1, and the non-vanishing Yukawas associated with it are given in the form of

superpotential terms as

W ⊃ FR1H1FL1 + H3X5H1 + H5X3H1 + H4X7H1 . (9.2.6)

Here, each coupled term involves the relevant component fields, i.e. the fields of

the SM-like theory, as defined in Eqs. (8.4.3)-(8.4.5). For convenience, the label

‘1’ here represents all the generations of matter fields arising from the V2 sector.

For future purposes, it is also useful to consider the larger set of all the Yukawa

couplings involving the H1 Higgs and other Higgs states:

W ⊃ FR1H1FL1 + FR2H4FL2 + H3X5H1 + H5X3H1 + H2X6H4 + H5X2H4

+ H3H5X1 + H2H5X4 + H2H3X8 + X5X3X1 + X2X6X4 + X2X3X7 . (9.2.7)
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Note that the Higgsinos (H̃) as well as the spinorial singlet fields (X̃) that remain

massless after the CDC can be made massive by their Yukawa couplings to the

scalar fields that also remain massless after CDC, provided that these fields acquire

a VEV.

9.2.3 Scalar masses

The Scherk-Schwarz mechanism applied to string compactification enables the

calculation of all threshold corrections, including those that generate the scalar

masses. For convenience, this discussion is focused on the mass-squared of the

Higgs-like states that always remain massless in the CDC’d theory. The mass-

squared operator for the states is given by

HU1,D1 ≡ ψ
56
− 1

2
|0〉R ⊗ ψ̃ j

− 1
2
ψ̃k
− 1

2
|0〉L . (9.2.8)

In principle, the typical contributions to the scalar two-point functions can be cal-

culated either in field theory or in string theory. At one-loop order, the leading

contribution to scalar mass-squared at large radius can be computed through a

field-theoretic calculation because it is dominated by the physical modes propa-

gating in the loops. The same calculation can be performed string-theoretically by

directly determining the two-point function for the scalar, but with the appropriate

Scherk-Schwarz modified partition function. The result no longer vanishes, and

the amplitude can be written as

A(k,−k) = − (2π)4
g2

Y M

16π2

∫
F

d2τ

4τ2

∑
α, β, `

(
Y2

g2
Y M

−
1

4πτ2

)
|~̀|2

τ22
Z`,0 Z

 αβ
 , (9.2.9)

where the term Y2g−2Y M includes those states coupling to the Higgs. The computa-

tion includes the gauge fields, for which Y ≡ gY M, and closely follows that of the

cosmological constant. The term (4πτ2)−1 will be proportional to the overall cosmo-

logical constant and is therefore exponentially suppressed. The contribution from

the massless physical states to the canonically normalised 4D Higgs mass-squared
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is given by

M2
H1

=
1

16π2

∫ ∞

1
µ2
≈1

dτ2
4τ52

∑
`= odd, i

Y2 (N(i)
f H − N(i)

bH) |~̀|2 e−
π
τ2
|~̀|2e−πτ2α

′m2
i

≈
2
α′

Y2

16π2
(N(0)

f H − N(0)
bH)

π2a6

320
, (9.2.10)

where the sum is divided into mass-levels mi. By contrast, the contribution from

the massive states is given by

M2
H1

=
2
α′

Y2

16π2
(N(i)

f H − N(i)
bH)

∑
`= odd

|~̀|−5/2(
√
α′mi)7/2e−2π

√
α′ mi |~̀| . (9.2.11)

Note that the result in Eq. (9.2.10) does not necessarily vanish even if its analogue

does for the cosmological constant. This is because the Higgs couples differently

to the states that become massive by the CDC. Thus, even though N(0)
b = N(0)

f , the

condition (N(0)
bH − N(0)

f H) = 0 may in general not be fulfilled. Note, however, that

if this particular condition is successfully met, then the Higgs mass will also be

exponentially suppressed. This has some very significant implications regarding

the hierarchy issues as it provides a ‘natural’ way to suppress the large radiative

corrections to the Higgs mass.

The above results can be shown explicitly for the Pati-Salam-like theory. In-

specting the Yukawa and gauge couplings, it is found that the matter fields (F)

and their scalar superpartners (F̃) both remain in the massless spectrum at lead-

ing order and therefore do not contribute to the mass-squared of H1. On the

other hand, both the gauge fields and singlets are removed by the spectrum in a

non-supersymmetric fashion, with Y2 involving contraction over the massless pairs

H̃3X̃5, H̃5X̃3, H4X7 and AµH1. This yields a net result which is basically the coef-

ficient of the one-loop quadratic divergence of the Higgs mass in the EFT of the

massless d.o.f:

Y2(N(i)
f H − N(i)

bH) ≡ C2(�) g2
S U(2)L

+ C2(�) g2
S U(2)R

− Y2 =
g2
YM

2
. (9.2.12)

On a final note, the other scalars, and in particular the superpartners of the mat-
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ter multiplets, naturally receive similar contributions. A detailed analysis of the

threshold contributions to scalar masses is presented in Section IX.C of Ref. [15].
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Chapter 10

Consistency of stable

non-supersymmetric models with

naturalness

The opposite of a correct statement is

a false statement. But the opposite of

a profound truth may well be

another profound truth.

Neils H. D. Bohr

10.1 The “decompactification” problem

The main purpose thus far has been to establish a framework for constructing sta-

ble non-supersymmetric models and studying their associated phenomenological

features. A natural development of this work is the surface of many questions re-

garding the energy and mass scales involved in the phenomenological structure of

such models. An issue of special concern is the all-important question of whether

some scalar fields, and most specifically the Higgs discussed in Section 9.2.2 of

Chapter 9, might naturally remain light. It is indeed possible to suppress the

mass-squared corrections to the Higgs field that survives the CDC procedure and

remains in the massless spectrum, provided that (N(0)
bH − N(0)

f H) = 0. However, the

189



10.1. The “decompactification” problem 190

question that remains here is whether it is feasible to construct such a model

that satisfies both this condition as well as the condition N(0)
b = N(0)

f , required

for the suppression of the cosmological constant. There are also other pressing

scale-related phenomenological issues, such as the the large-volume “decompact-

ification” problem which is discussed in Refs. [157–161].

The decompactification problem encompasses the contributions to the gauge-

coupling beta functions due to the predominance of KK modes that necessarily

appear in such models. In the weakly coupled heterotic string these contributions

yield large gauge couplings at large volumes (or large compactification radii). In

order to understand the impact of a parametrically large volume on the gauge

couplings recall that the coupling expansion for n−point diagrams in heterotic

string theory behaves as

VD−4 gn−χ
c , (10.1.1)

where VD−4 is the compactification volume. This then gives the tree-level result

g−2tree = g−2c vD−4

M2
P = g−2c vD−4α

′−1, (10.1.2)

where vD−4 = VD−4α
′−3 is the volume normalised w.r.t the fundamental string scale

and gtree is the tree-level Yang-Mills coupling. Note that the expansion parameter

is gc while the volume contributes with a single factor. One assumption, that is not

applicable in a large volume scenario, is that g2
tree ≈ g2

GUT ≈ 0.5. From this result it

is deduced that for the weakly coupled heterotic string theory is required to have

vD−4 ∼ 1, while

M2
P = g−2tree α

′−1 , (10.1.3)

indicates a string scale that is within an order of magnitude of the Planck scale. If

one wishes to allow a parametrically large volume but maintain a weak coupling

gc . 1, then it is clear that is required to have gtree � 1.

Assuming that the D = (4 + d)-dimensional theory prior the CDC is supersym-

metric implies that, from a 4D point of view, the KK modes of the CDC’d theory
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fall into incomplete multiplets of a ‘parent’ N = 2 SUSY, that is ultimately broken

by the action of the ZZ2 orbifold prior the CDC. The N = 2 multiplets are split

by the Scherk-Schwarz mechanism and the N = 2 sectors feel the entirety of the

large extra dimensions. A rough approximation of the number of KK modes in the

theory below the string scale is given by the volume (vD−4), while the expansion

parameter g2
c = Ng2

tree evidently plays the role of the 4D ’t Hooft coupling. The

one-loop gauge coupling can then be estimated within field theory as presented

in Refs. [162, 163]. For this estimate the logarithmic contribution is ignored, and

only the N = 2 sector contribution between the string scale Ms = 1
√
α′

and the KK

scale MR = R−1 is considered. Then for d large dimensions it is obtained that

α−1(µ) = α−1(MR) +
b̃ Vol(S d)

2πd

( µ

MR

)d

− 1
 , (10.1.4)

where b̃ ≡ 2Nc − N f is the N = 2 beta function coefficient from a single set of KK

modes. This expression can be obtained in string perturbation theory by perform-

ing the one-loop integral on a curved background related to µ as in Refs. [164,

165]. From this standpoint, the six-dimensional EFT flows from a UV fixed point

[162,163]. Setting µ = Ms the generic result is then obtained:

α−1(MR) ≈
4πvd

g2
c
−

b̃vd

2πd
. (10.1.5)

Despite the fact that this result might be altered, depending on the model under

study, it is still evident that phenomenology requires α−1(MR) ∼ 1. This means

that in order to achieve order-one couplings in a generic theory, a fine-tuning of

one-loop corrections against tree-level ones is required. In the context of Scherk-

Schwarz breaking of SUSY, this constitutes to a certain degree a dimensionally

transmuted naturalness problem. However, a possible solution to overcome this

fine-tuning problem is based on a dynamical mechanism that requires a gY M to

become strong in the IR. This idea will be presented in forthcoming work [166],

which to a great extent utilises ideas from Ref. [167] and particularly from Ref. [162].
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10.2 “GUT precursors”

As it is established, for the construction of ‘stable’ non-supersymmetric theories, it

is mandatory to have a perturbative UV complete framework and at the same time

have parametrically large volumes in order to have exponentially suppressed cos-

mological constants and hence dilaton tadpoles. Following the discussion above,

in order to make such models consistent with the naturalness problem it is impera-

tive that the couplings flow as a power-law in a unified way from order-one values

at the weak scale to extremely small values at the string scale. This in turn implies

that there is a restoration of the GUT symmetry at the compactification scale, with

KK and winding modes falling into complete GUT multiplets. The attainment of

this scenario is allowed through the existence of configurations known as GUT

precursor models [162,163].

The need for a model which accommodates GUT precursors becomes apparent

if one revisits the assumption that gc ∼ 1 at the string scale where the Yang-Mills

couplings are tiny. Thus, the only couplings which can be significant at low scales

are those which are asymptotically free. In addition, any IR free couplings would

also become very small at low scales. Recall that the gauge couplings are uni-

versal at the string scale, therefore the one-loop corrections governed by b̃ must

be asymptotically free and also universal. This requirement is trivially satisfied

if the KK modes fall into complete GUT multiplets at the compactification scale.

Consequently, this requirement can be achieved if the theory has a GUT precursor

structure. The net effect from the EFT perspective is one in which the SM gauge

couplings flow from a Gaussian fixed point in the UV to order-one values at the

compactification scale. What is remarkable is that below this scale, the gauge

couplings obey the normal logarithmic power-law running.

An interesting remark is that one might naively and erroneously suppose that

an outcome in which a one-loop contribution balances a tree-level one must neces-

sarily be non-perturbative and receive even more pronounced corrections at higher

loops. However, as explained in Refs. [162, 163, 168], this is clearly not the case

because the subsequent two-loop and higher-loop contributions do not require the
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same degree of tuning as the one-loop ones. The reason lies in the fact that from a

field theory perspective the L-loop diagrams that involve only KK modes areN = 2

and hence are cancelled for L ≥ 2. Thus a non-vanishing contribution is one that

has at least one N = 1 propagator, implying from Eq. (10.1.1) that higher order

diagrams are only proportional to g2L−2
c . An additional remark is that the one-loop

approximation works more effectively for larger compactification volumes and for

gc ∼ 1 a single tuning at one-loop is the only thing required. Indeed, the higher

order contributions do not necessitate further tuning.

On a final note, the GUT precursor structure is achievable only if the KK modes

feel the entire volume of the compactification manifold. Taking also into account

the fact that the N = 2 sectors typically feel the volume of complex sub-planes

on the compactification manifold, it is inferred that there is only one way to form

a consistent theory: The first step is to consider compactification to an N = 1

six-dimensional theory on a string-sized orbifold or manifold; this will yield a

model with a similar spin structure as the one defined in Table 6.1, but the overall

gauge group of this theory will include the S U(5) GUT group. This step is then

followed by compactification on a large two-dimensional orbifold down to four

dimensions; this will yield anN = 1 S U(5) GUT. The final stage of compactification

is then given a coordinate dependence which breaks spontaneously the N = 1

SUSY yielding an entirely non-supersymmetric theory.

10.3 A SM-like theory from a GUT precursor model

Having established the general phenomenological framework, it is now presented

how an explicit SM-like theory that displays Bose-Fermi degeneracy of the mass-

less modes, and hence enhanced stability, can be obtained from a GUT precursor

model. As alluded to above, the starting point is an N = 1 six-dimensional theory

which is first compactified on a freely acting ZZ2 orbifold with a b3 action, and with-

out the deformations of CDC. This yields an N = 1 four-dimensional theory which

includes the S U(5) GUT group; an example that serves as a benchmark for the

purpose of this section is specified by the spin structure displayed in Table 10.1.
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1
V5 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1
V7 0 0 0 1 1 0 0 0 0 1 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 1 1 0 1 0

Table 10.1: Spin structure of the worldsheet fermions of the N = 1, 4D S U(5)
GUT model before applying the CDC. This model serves as a benchmark so as to
demonstrate the GUT precursor structure of the theory once the effects of CDC are
turned on. This spin structure is accompanied by two bosonic d.o.f compactified
on a ZZ2 orbifold with twist action corresponding to the vector b3.

As always, along with the spin structure is the matrix ki j which specifies the phases

involved in the corresponding GSO projections:

ki j =



0 0 0 0 0 0

0 0 0 0 0 0

0 1
2 0 1

2 0 1
2

0 1
2

1
2

1
2 0 3

4

0 0 0 0 0 3
4

1
2

1
2

1
2 0 0 1

2


. (10.3.1)

The full gauge group is found to be

S U(5) ⊗ S O(6)2 ⊗ [U(1)]9 . (10.3.2)

The physical spectrum from both the twisted and untwisted sectors of the GUT

theory is presented in Table 10.2. As always, the NS-NS sector gives rise to the

gravity multiplet as well as the massless scalar states required to build N = 2

gauge multiplets and hypermultiplets. There are five untwisted 10 representa-

tions of the S U(5). These 10s along with the (5 ⊕ 1)s form complete chiral and

vector-like 16 spinorial representations of the S O(10). As a result, this model has

four net generations of chiral matter fields: two of them coming directly from the

V0 + V2 while the remaining two come from the V0 + V1 + V2 + αV7 untwisted sec-

tors (where α = 1, 3), and with the scalar superpartners in the V1 + V2 and V2 + αV7
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Fields State U(1) U(1) U(1) S O(6) U(5) U(1) U(1) U(1) U(1) S O(6) U(1) U(1)

L / R -
handed
matter
fields +
Higgs
fields

A(1)
−1/2 . 1/2 . 10 −1/2 . . . . . .

A(2) 1/2 . 1/2 . 10 −1/2 . . . . . .
A(3) . . . . 10 −1/2 1/2 1/2 . . . .
A(4) . . . . 10 −1/4 1/4 1/4 . . −1/2 −1/2

A(5) . . . . 10 −1/4 1/4 1/4 . . −1/2 1/2

Qc(1)
−1/2 . −1/2 . 5 −1/2 . . . . . .

Qc(2) 1/2 . −1/2 . 5 −1/2 . . . . . .

Qc(3) 1/2 . −1/2 . 5 . −1/2 1/2 . . . .

Qc(4)
−1/2 . −1/2 . 5 . −1/2 1/2 . . . .

Qc(5) . 1/2 1/2 . 5 1/4 1/4 1/4 −1/2 . . −1/2

Qc(6) . −1/2 1/2 . 5 1/4 1/4 1/4 −1/2 . . −1/2

Qc(7) . 1/2 1/2 . 5 1/4 1/4 1/4 −1/2 . . 1/2

Qc(8) . −1/2 1/2 . 5 1/4 1/4 1/4 −1/2 . . 1/2

Qc(9) . . . . 5 1 . . . . . .

Qc(10) . . . . 5 −1/2 −1/2 −1/2 . . . .

Qc(11) . . . . 5 −3/4 −1/4 −1/4 . . 1/2 −1/2

Qc(12) . . . . 5 −3/4 −1/4 −1/4 . . 1/2 1/2

Qc(13) . . . . 5 1/4 3/4 −1/4 . . 1/2 1/2

Qc(14) . . . . 5 1/4 3/4 −1/4 . . 1/2 −1/2

Qc(15)
−1/2 −1/2 . . 5 . . . −1/2 . −1/2 .

Qc(16)
−1/2 1/2 . . 5 . . . −1/2 . −1/2 .

Qc(17) 1/2 −1/2 . . 5 . . . −1/2 . −1/2 .

Qc(18) 1/2 1/2 . . 5 . . . −1/2 . −1/2 .

R / L -
handed
matter
fields +
Higgs
fields

Ac(1) . . . . 10 1/2 −1/2 −1/2 . . . .
Q(1) 1/2 . 1/2 . 5 . −1/2 1/2 . . . .
Q(2)

−1/2 . 1/2 . 5 . −1/2 1/2 . . . .
Q(3) . −1/2 −1/2 . 5 −1/4 −1/4 −1/4 −1/2 . . −1/2

Q(4) . 1/2 −1/2 . 5 −1/4 −1/4 −1/4 −1/2 . . −1/2

Q(5) . −1/2 −1/2 . 5 −1/4 −1/4 −1/4 −1/2 . . 1/2

Q(6) . 1/2 −1/2 . 5 −1/4 −1/4 −1/4 −1/2 . . 1/2

Q(7) . . . . 5 −1 . . . . . .
Q(8) . . . . 5 1/2 1/2 1/2 . . . .
Q(9) . . . . 5 −1/4 1/4 −3/4 . . −1/2 1/2

Q(10) . . . . 5 −1/4 1/4 −3/4 . . −1/2 −1/2

Q(11)
−1/2 1/2 . . 5 . . . −1/2 . 1/2 .

Q(12)
−1/2 −1/2 . . 5 . . . −1/2 . 1/2 .

Q(13) 1/2 1/2 . . 5 . . . −1/2 . 1/2 .
Q(14) 1/2 −1/2 . . 5 . . . −1/2 . 1/2 .

Table 10.2: The ZZ2 massless GUT states of the N = 1, 4D model derived from the
twisted and untwisted sectors. Some of the states that give rise to the 5 and the
5 of the S U(5) GUT group produce the Higgs doublets. The remaining states that
give rise to the 16 representation produce the left- and right-handed chiral matter
fields as well as a vector-like set of fermionic matter.

sectors respectively. There is also a vector-like generation of matter fields coming

directly from the V0 + V1 + 2V7 untwisted sector, with the scalar superpartners in

the 2V7 sector. The remaining 5 and 5 pairs can be identified as Higgs fields, with

A and Q labelling antisymmetrics and 5 ’s respectively.
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The final stage of compactification is then, as described above, given a coor-

dinate dependence so as to obtain a chiral N = 1 → N = 0, 4D SM-like theory.

The resulting CDC preserves all the vital features of the original theory, in par-

ticular modular invariance and hence finiteness. As discussed in Section 8.1 of

Chapter 8, there are multiple conditions involved in the construction of stable

non-supersymmetric theories, which add up to an extremely constraining set of

requirements for any consistent model. Therefore, finding working examples is

non-trivial as all of these constraints must be appreciated. On top of all the above,

there are also imposed two additional constraints for the present context:

• In order to have GUT precursor structure, only the orbifold action b3 and/or

the CDC itself may break a GUT symmetry;

• The N = 0 model interpolates between the N = 1 6D model presented above

in the R → ∞ limit and a 6D model in the R → 0 limit which in this case

may not be necessarily non-supersymmetric. In the R→ 0, the CDC vector e

reverts to the role of a normal vector and is added in the spin structure of that

model (a more detailed explanation of this argument will be presented in

Ref. [169]). Therefore, the e vector must obey the same modular invariance

constraints as the other Vi vectors that define the model in four dimensions.

These constraints are given in Eq. (4.1.7).

Despite all these constraints it is still possible to construct a model that in the

low energy limit bears a resemblance to the SM. Before presenting its details, it is

useful to make some very general statements about where the matter generations

and the Higgses may appear. In order to do this it is a requisite to extend the

discussion of the previous Chapters so as to include cases where both the CDC

vector (e) and the orbifold vector (b3) can overlap with more general complex

GSO phases in the spin structure. Under such an extension the light states that

survive the orbifold projections are formed by a linear combination of excitations

in different winding sectors, namely

|ψphys〉 =
1
√
2

(
|ψ(N=2)

qe, ,`
〉 + |ψ(N=2)

−qe,− ,−`
〉
)
, (10.3.3)
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where qe = e · Q is the CDC charge of the associated state. As stated above, in order

to have a consistent projection this must be conjugated under the orbifolding.

There are various consistent bases that one could work with but they are not quite

obvious. Despite being relevant, this issue is beyond the scope of this discussion,

but is extensively treated in the Appendix A of Ref. [166]. For a consistent model,

it is then required that there is at least one pair of complete worldsheet fermions

whose phases must overlap as follows:

Vn = − 1
2

[
. . . . . . . . . . . . | . . . 1

4
1
4 . . .

]
;

b3 = − 1
2

[
0 0 1 0 0 0 0 1 | . . . 0 1

2 . . .
]

;

e = + 1
2

[
0 0 1 0 1 1 0 1 | . . . 1

2
1
2 . . .

]
. (10.3.4)

A general form about how the phases of the vectors should overlap so as to obtain

a SM-like theory from a GUT precursor model, is then given in Table 10.3. The

phases of the left-moving fermions in the basis vectors Vi=2,...,n−1 are assigned so as

to act degenerately on the components of the GUT group that must be preserved

and be asymptotically free. This breaks the gauge symmetry at the string scale, to

S U(5) ⊗ U(1)1 ⊗ U(1)2 ⊗ U(1)3 . . .. The ∗ in Table 10.3 is used as wildcard for − 1
2

or 0 phases, allowing these vectors to break the S O(6) factor at the string scale.

Finally, the vector Vn is required to break the theory to unitary groups, with the use

of − 1
4 complex phases on the worldsheet fermions. This is precisely the form of the

supersymmetric model specified in Table 10.1, but the overlap of e is prescribed

by the form of Eq. (10.3.4).

The final breaking of the S U(5) gauge symmetry occurs through the e, which

at the same time breaks SUSY spontaneously. By choosing the e for the breaking

of the gauge symmetry, it allows the retainment of an untwisted Higgs state which

appears in the NS-NS sector as a bi-fundamental of the general form

HU ∼ ψ56
− 1

2
|0〉 ⊗ ψ̃U(2)

− 1
2
ψ̃

U(1)†1,3
− 1

2
|0〉

HD ∼ ψ56
− 1

2
|0〉 ⊗ ψ̃U(2)†ψ̃

U(1)1,3
− 1

2
|0〉 . (10.3.5)
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Sector ψµ ψ56 . . . . . . U(3) ⊗ U(2) U(1)3 . . . . . .

V0 1 1 . . . . . . 1 1 1 1 1 1 1 1 . . . . . .
V1 0 0 . . . . . . 1 1 1 1 1 1 1 1 . . . . . .

Vi=2,...,n−1 0 0 . . . . . . 0 0 0 0 0 ∗ ∗ ∗ . . . . . .
Vn 0 0 . . . . . . 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 . . . . . .

b3 0 0 . . . . . . 1 1 1 1 1 0 1 0 . . . . . .
e 0 0 . . . . . . 0 0 0 1 1 1 0 1 . . . . . .

Table 10.3: A general spin structure for a chiral SM-like theory obtained from a
GUT precursor model in 4D. The ∗ is used as a wildcard ‘0’ or ‘1’. As with the
previous spin structure specifications, all entries are understood to be multiplied
by a factor of − 1

2 .

The generalised GSO projections in this sector are very general but the important

one is that from the orbifold which takes the form b3 · N0 = 1
2 . Because of this

projection, no Higgs states involving ψ̃U(1)2 are allowed to remain in the spectrum;

light vector-like triplets of the form

T ∼ ψ56
− 1

2
|0〉 ⊗ ψ̃U(3)

− 1
2
ψ̃

U(1)†2
− 1

2
|0〉 , (10.3.6)

plus its conjugate, are however allowed. The benefit of choosing e to break the

GUT symmetry is now apparent: States which satisfy e · Q = 1
2 mod (1) become

massive by the CDC, so if the e is chosen so that it has degenerate entries across

S U(3) ⊗ S U(2) it will inevitably either make all Higgs states massive or leave a

larger S U(4) symmetry unbroken. The resulting CDC’d model is then defined by

the spin structure in Table 10.4, with structure constants as in Eq. (10.3.1).

Evidently, the vector e breaks the gauge group down to Gvisible ⊗ Gsemi−hidden ⊗

Ghidden, where Gsemi−hidden = [U(1)]11 and the visible sector contains the SM gauge

group. The convention for the hypercharge of the SM particles is now chosen as

1
2

U(1)Y ≡ −
1
3

[
U(1)

ψ
1 + U(1)

ψ
2 + U(1)

ψ
3

]
+

1
2
[
U(1)

ψ
4 + U(1)

ψ
5

]
. (10.3.7)

As always, the twisted sectors remain globally supersymmetric. In the untwisted

sectors all states satisfying Qe = e · Q , 0 mod (1) become massive, while those

states remaining massless satisfy Qe = 0. The massless particle content from both

the twisted and untwisted sectors is summarised in Tables 10.5-10.8. Even though
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Sector ψ34ψ56χ34 y34ω34χ56y56ω56 y34ω34y56ω56ψ
1
ψ
2
ψ
3
ψ
4
ψ
5
η1 η2 η3 φ

1
φ
2
φ
3
φ
4
φ
5
φ
6
φ
7
φ
8

V0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
b3 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1
V5 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1
V7 0 0 0 1 1 0 0 0 0 1 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 1 1 0 1 0

e 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0

Table 10.4: Spin structure of the N = 0, 4D chiral SM-like theory obtained from a
GUT precursor model after applying the CDC. This theory has Bose-Fermi degen-
eracy at the massless level which guarantees the exponential suppression of the
one-loop cosmological constant and dilaton tadpole, thereby having enhanced sta-
bility and finiteness properties. Note also that the entries of the CDC vector e are
assigned so that it spontaneously breaks SUSY and the S U(5) gauge symmetry to
S U(3)⊗ S U(2), while at the same time it obeys the modular invariance constraints
applied to the other vectors.

the graviton and gauge bosons of the theory are not listed, they can be generally

identified in the NS-NS sector in the usual way, along with the complex Radion.

Conversely, the gravitino as well as the gauginos become massive after the CDC.

It should be noted that linear combinations of the basis vectors {V0, . . . ,V7} can

potentially produce sectors that yield gauge bosons in the spinorial representa-

tions of the observable S U(3) ⊗ S U(2) and/or the hidden gauge group, indicating

unwanted gauge enhancement. These states can be projected from the massless

physical spectrum of the theory through a consistent set of generalised GSO pro-

jections, which greatly depend on the value of the structure constants. Such states

are non existent for the GUT precursor model presented here.

This model should be thought of more as an existence proof rather than the

finished product. Nevertheless, to a certain extent it resembles the actual SM.

From Table 10.5, it is observed that there are 18 sets of Higgs pairs. Explicitly in

the notation of Ref. [135], the Higgs states remaining in the NS-NS sector are

H(1),(2)
U = {b, d}56

− 1
2
|0〉R ⊗ b̃4,5

− 1
2

d̃1
− 1

2
|0〉L

H(1),(2)
D = {b, d}56

− 1
2
|0〉R ⊗ d̃4,5

− 1
2

b̃1
− 1

2
|0〉L . (10.3.8)

The other Higgses as well as the singlets are produced from various untwisted or

twisted sectors and they all carry charges under the semi-hidden sector’s gauge
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Higgs fields
State U(1) U(1) U(1) U(1) U(3) U(2) U(1) U(1) U(1) U(1) U(1) S O(4) S O(4) U(1) U(1) Y

H(1)
U . . . . . 2 −1 . . . . . . . . 1/2

H(2)
U . . . . . 2 −1 . . . . . . . . 1/2

H(3)
U . . . . . 2 1/2 1/2 1/2 . . . . . . 1/2

H(4)
U . . . . . 2 1/2 1/2 1/2 . . . . . . 1/2

H(5)
U . . . . . 2 3/4 1/4 1/4 . . . . −1/2 1/2 1/2

H(6)
U . . . . . 2 −1/4 −3/4 1/4 . . . . −1/2 1/2 1/2

H(7)
U . . . . . 2 −1/4 1/4 −3/4 . . . . −1/2 −1/2 1/2

H(8)
U −1/2 −1/2 . . . 2 . . . 1/2 . . . 1/2 . 1/2

H(9)
U −1/2 1/2 . . . 2 . . . −1/2 . . . 1/2 . 1/2

H(10)
U 1/2 1/2 . . . 2 . . . 1/2 . . . 1/2 . 1/2

H(11)
U 1/2 −1/2 . . . 2 . . . −1/2 . . . 1/2 . 1/2

H(12)
U 1/2 . 1/2 . . 2 1/2 . . . . . . . . 1/2

H(13)
U 1/2 . 1/2 . . 2 . 1/2 −1/2 . . . . . . 1/2

H(14)
U −1/2 . 1/2 . . 2 . −1/2 1/2 . . . . . . 1/2

H(15)
U . 1/2 −1/2 . . 2 −1/4 −1/4 −1/4 1/2 . . . . −1/2 1/2

H(16)
U . −1/2 −1/2 . . 2 −1/4 −1/4 −1/4 −1/2 . . . . −1/2 1/2

H(17)
U . −1/2 −1/2 . . 2 −1/4 −1/4 −1/4 1/2 . . . . 1/2 1/2

H(18)
U . 1/2 −1/2 . . 2 −1/4 −1/4 −1/4 −1/2 . . . . 1/2 1/2

H(1)
D . . . . . 2 1 . . . . . . . . −1/2

H(2)
D . . . . . 2 1 . . . . . . . . −1/2

H(3)
D . . . . . 2 −1/2 −1/2 −1/2 . . . . . . −1/2

H(4)
D . . . . . 2 −1/2 −1/2 −1/2 . . . . . . −1/2

H(5)
D . . . . . 2 −3/4 −1/4 −1/4 . . . . 1/2 −1/2 −1/2

H(6)
D . . . . . 2 1/4 3/4 −1/4 . . . . 1/2 −1/2 −1/2

H(7)
D . . . . . 2 1/4 −1/4 3/4 . . . . 1/2 1/2 −1/2

H(8)
D −1/2 1/2 . . . 2 . . . 1/2 . . . −1/2 . −1/2

H(9)
D −1/2 −1/2 . . . 2 . . . −1/2 . . . −1/2 . −1/2

H(10)
D 1/2 −1/2 . . . 2 . . . 1/2 . . . −1/2 . −1/2

H(11)
D 1/2 1/2 . . . 2 . . . −1/2 . . . −1/2 . −1/2

H(12)
D −1/2 . −1/2 . . 2 −1/2 . . . . . . . . −1/2

H(13)
D 1/2 . −1/2 . . 2 . 1/2 −1/2 . . . . . . −1/2

H(14)
D −1/2 . −1/2 . . 2 . −1/2 1/2 . . . . . . −1/2

H(15)
D . −1/2 1/2 . . 2 1/4 1/4 1/4 1/2 . . . . −1/2 −1/2

H(16)
D . 1/2 1/2 . . 2 1/4 1/4 1/4 −1/2 . . . . −1/2 −1/2

H(17)
D . 1/2 1/2 . . 2 1/4 1/4 1/4 1/2 . . . . 1/2 −1/2

H(18)
D . −1/2 1/2 . . 2 1/4 1/4 1/4 −1/2 . . . . 1/2 −1/2

Table 10.5: The scalar Higgs states of the SM-like theory obtained from a GUT
precursor model. These states come from the twisted and untwisted sectors, and
survive in the physical massless spectrum after the CDC. The H(1),(2)

U and the H(1),(2)
D

come from the NS-NS sector of the theory and are explicitly identified in the text.

group. Note that although the supersymmetric counterparts of the Higgses in Ta-

ble 10.5 become massive, there are other Higgsino states that remain massless

even after the CDC, but can be lifted by their Yukawa couplings. Once the S U(5)

GUT symmetry is broken by the CDC there are only two net chiral fermion gener-

ations from the original four supermultiplets. One generation is in the V0 + V2 and

the other is in the V0 + V1 + V2 + αV7 untwisted sectors. These states are listed in
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L / R - handed matter fields
State U(1) U(1) U(1) U(1) U(3) U(2) U(1) U(1) U(1) U(1) U(1) S O(4) S O(4) U(1) U(1) Y

q(1) 1/2 . 1/2 . 3 2 −1/2 . . . . . . . . 1/6

q(2) . . . . 3 2 −1/2 1/2 1/2 . . . . . . 1/6

q(3) . . . . 3 2 −1/4 1/4 1/4 . . . . −1/2 1/2 1/6

`(1) 1/2 . −1/2 . . 2 −1/2 . . . . . . . . −1/2

`(2) 1/2 . −1/2 . . 2 . −1/2 1/2 . . . . . . −1/2

`(3) . −1/2 1/2 . . 2 1/4 1/4 1/4 −1/2 . . . . −1/2 −1/2

`(4) . 1/2 1/2 . . 2 1/4 1/4 1/4 −1/2 . . . . 1/2 −1/2

`(5) . . . . . 2 −3/4 −1/4 −1/4 . . . . 1/2 1/2 −1/2

`(6) . . . . . 2 1/4 3/4 −1/4 . . . . 1/2 1/2 −1/2

`(7)
−1/2 1/2 . . . 2 . . . −1/2 . . . −1/2 . −1/2

`(8) 1/2 −1/2 . . . 2 . . . −1/2 . . . −1/2 . −1/2

uc(1)
−1/2 . 1/2 . 3 . −1/2 . . . . . . . . −2/3

uc(2) . . . . 3 . −1/4 1/4 1/4 . . . . −1/2 −1/2 −2/3

dc(1)
−1/2 . −1/2 . 3 . −1/2 . . . . . . . . 1/3

dc(2)
−1/2 . −1/2 . 3 . . −1/2 1/2 . . . . . . 1/3

dc(3) . 1/2 1/2 . 3 . 1/4 1/4 1/4 −1/2 . . . . −1/2 1/3

dc(4) . −1/2 1/2 . 3 . 1/4 1/4 1/4 −1/2 . . . . 1/2 1/3

dc(5) . . . . 3 . 1 . . . . . . . . 1/3

dc(6) . . . . 3 . −1/2 −1/2 −1/2 . . . . . . 1/3

dc(7) . . . . 3 . −3/4 −1/4 −1/4 . . . . 1/2 −1/2 1/3

dc(8) . . . . 3 . 1/4 3/4 −1/4 . . . . 1/2 −1/2 1/3

dc(9)
−1/2 −1/2 . . 3 . . . . −1/2 . . . −1/2 . 1/3

dc(10) 1/2 1/2 . . 3 . . . . −1/2 . . . −1/2 . 1/3

ec(1)
−1/2 . 1/2 . . . −1/2 . . . . . . . . 1

ec(2) . . . . . . −1/4 1/4 1/4 . . . . −1/2 −1/2 1
νc(1)

−1/2 . 1/2 . . . 1 1/2 −1/2 . . . . . . .
νc(2) . 1/2 −1/2 . . . 3/4 −1/4 −1/4 1/2 . . . . 1/2 .
νc(3) . −1/2 −1/2 . . . 3/4 −1/4 −1/4 1/2 . . . . −1/2 .
νc(4) . . . . . . 3/4 −3/4 1/4 . . . . −1/2 −1/2 .
νc(5) 1/2 −1/2 . . . . 1 . . 1/2 . . . 1/2 . .
νc(6)

−1/2 1/2 . . . . 1 . . 1/2 . . . 1/2 . .
νc(7) . . . . . . . −1 1 . . . . . . .
νc(8) . . . . . . . 1 −1 . . . . . . .

Table 10.6: The chiral matter fields of the SM-like theory obtained from a GUT
precursor model. These fields come from the untwisted sectors of the theory and
remain massless after the CDC. There are only two net generations of chiral matter
fields; each one remains from an initial two in the V0 + V2 and V0 + V1 + V2 + αV7
(α = 1, 3) sectors once the CDC is performed. The third generation is vector-like
and does not fall into complete multiplets.

Tables 10.6, 10.7 along with their SM representations and hypercharges.

Moreover, there are Smatter chiral fields surviving in the massless spectrum,

as shown in Table 10.8. It should be emphasised that the charges of those fields

under the horizontal gauge groups are different from those of the matter fields

in Table 10.6. This outcome forms another remarkable piece of evidence that

spacetime SUSY is indeed absent from the mass spectrum of this theory.
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L / R - handed partner matter fields
State U(1) U(1) U(1) U(1) U(3) U(2) U(1) U(1) U(1) U(1) U(1) S O(4) S O(4) U(1) U(1) Y

qc(1) . . . . 3 2 1/2 −1/2 −1/2 . . . . . . −1/6

`c(1) 1/2 . 1/2 . . 2 . −1/2 1/2 . . . . . . 1/2

`c(2) . 1/2 −1/2 . . 2 −1/4 −1/4 −1/4 −1/2 . . . . −1/2 1/2

`c(3) . −1/2 −1/2 . . 2 −1/4 −1/4 −1/4 −1/2 . . . . 1/2 1/2

`c(4) . . . . . 2 −1/4 1/4 −3/4 . . . . −1/2 1/2 1/2

`c(5)
−1/2 −1/2 . . . 2 . . . −1/2 . . . 1/2 . 1/2

`c(6) 1/2 1/2 . . . 2 . . . −1/2 . . . 1/2 . 1/2

d(1)
−1/2 . 1/2 . 3 . . −1/2 1/2 . . . . . . −1/3

d(2) . −1/2 −1/2 . 3 . −1/4 −1/4 −1/4 −1/2 . . . . −1/2 −1/3

d(3) . 1/2 −1/2 . 3 . −1/4 −1/4 −1/4 −1/2 . . . . 1/2 −1/3

d(4) . . . . 3 . −1 . . . . . . . . −1/3

d(5) . . . . 3 . 1/2 1/2 1/2 . . . . . . −1/3

d(6) . . . . 3 . −1/4 1/4 −3/4 . . . . −1/2 −1/2 −1/3

d(7)
−1/2 1/2 . . 3 . . . . −1/2 . . . 1/2 . −1/3

d(8) 1/2 −1/2 . . 3 . . . . −1/2 . . . 1/2 . −1/3

ν(1)
−1/2 . −1/2 . . . −1 1/2 −1/2 . . . . . . .

ν(2) . −1/2 1/2 . . . −3/4 1/4 1/4 1/2 . . . . 1/2 .
ν(3) . 1/2 1/2 . . . −3/4 1/4 1/4 1/2 . . . . −1/2 .
ν(4) . . . . . . −3/4 −1/4 3/4 . . . . 1/2 −1/2 .
ν(5) 1/2 1/2 . . . . −1 . . 1/2 . . . −1/2 . .
ν(6)

−1/2 −1/2 . . . . −1 . . 1/2 . . . −1/2 . .

Table 10.7: The chiral partner matter fields in the untwisted sectors of the SM-like
theory obtained from a GUT precursor model. These fields remain massless after
the CDC.

L / R - handed Smatter fields
State U(1) U(1) U(1) U(1) U(3) U(2) U(1) U(1) U(1) U(1) U(1) S O(4) S O(4) U(1) U(1) Y

q̃(1) . . . . 3 2 −1/4 1/4 1/4 . . . . −1/2 −1/2 1/6

q̃(2)
−1/2 . 1/2 . 3 2 −1/2 . . . . . . . . 1/6

ũc(1) . . . . 3 . −1/2 1/2 1/2 . . . . . . −2/3

ũc(2) . . . . 3 . −1/2 1/2 1/2 . . . . . . −2/3

ũc(3) . . . . 3 . −1/4 1/4 1/4 . . . . −1/2 1/2 −2/3

ũc(4) 1/2 . 1/2 . 3 . −1/2 . . . . . . . . −2/3

d̃c(1) . . . . 3 . −3/4 −1/4 −1/4 . . . . 1/2 1/2 1/3

d̃c(2) . . . . 3 . 1/4 3/4 −1/4 . . . . 1/2 1/2 1/3

d̃c(3) . . . . 3 . 1/4 −1/4 3/4 . . . . 1/2 −1/2 1/3

d̃c(4)
−1/2 −1/2 . . 3 . . . . 1/2 . . . −1/2 . 1/3

d̃c(5)
−1/2 1/2 . . 3 . . . . −1/2 . . . −1/2 . 1/3

d̃c(6) 1/2 1/2 . . 3 . . . . 1/2 . . . −1/2 . 1/3

d̃c(7) 1/2 −1/2 . . 3 . . . . −1/2 . . . −1/2 . 1/3

d̃c(8) 1/2 . −1/2 . 3 . −1/2 . . . . . . . . 1/3

d̃c(9) 1/2 . −1/2 . 3 . . −1/2 1/2 . . . . . . 1/3

d̃c(10)
−1/2 . −1/2 . 3 . . 1/2 −1/2 . . . . . . 1/3

d̃c(11) . 1/2 1/2 . 3 . 1/4 1/4 1/4 1/2 . . . . −1/2 1/3

d̃c(12) . −1/2 1/2 . 3 . 1/4 1/4 1/4 −1/2 . . . . −1/2 1/3

d̃c(13) . −1/2 1/2 . 3 . 1/4 1/4 1/4 1/2 . . . . 1/2 1/3

d̃c(14) . 1/2 1/2 . 3 . 1/4 1/4 1/4 −1/2 . . . . 1/2 1/3

ẽc(1) . . . . . . −1/2 1/2 1/2 . . . . . . 1
ẽc(2) . . . . . . −1/2 1/2 1/2 . . . . . . 1
ẽc(3) . . . . . . −1/4 1/4 1/4 . . . . −1/2 1/2 1
ẽc(4) 1/2 . 1/2 . . . −1/2 . . . . . . . . 1

Table 10.8: The chiral Smatter fields produced in the untwisted sectors of the
theory that remain massless after the CDC.
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In summary, this particular model has a total of N(0)
b = N(0)

f = 576 complex d.o.f,

thus the cosmological constant is exponentially suppressed making this the first

construction of a stable, non-supersymmetric SM-like theory which addresses the

decompactification problem, albeit having only two generations of chiral matter

fields.

10.4 Effective Field Theory

Before bringing the narrative of this chapter to an end, it is worth examining the

EFT description of the SM-like theory presented above. As mentioned, a key aspect

of this framework is that the non-supersymmetric four-dimensional theory interpo-

lates between two six-dimensional theories, one of which is supersymmetric. This

sets the compactification scale as a large free parameter by which the one-loop

cosmological constant can be exponentially suppressed in theories that have equal

numbers of massless bosons and fermions, N(0)
b = N(0)

f . A scale of R−1 provides a

dimensionful order parameter for SUSY breaking, which in conjuction with the UV

finiteness (due to misaligned supersymmetry) guarantees that all stringy thresh-

old corrections appear as soft terms in the EFT. Despite the absence of spacetime

SUSY, this is beneficial for writing down a spontaneously broken SUGRA theory

for the low-lying spectrum, with parametrically large SUSY breaking terms.

A SSSB does not yield any contributions at tree-level to the kinetic terms and as

a result the symmetries of the Kähler manifold are the same in the broken theory

as they are in the theory without the CDC. Therefore the EFT can be built around

the structure of the unbroken N = 1 SUGRA; a review of which can be found in

Ref. [170]. The metric of a general T2 torus in the absence of Wilson lines is given

by Eq. (D.0.9), Appendix D. The supermultiplets containing the Higgs scalars are

associated with continuous Wilson line moduli along the two cycles of the T2. The

U modulus remains unaffected by the Wilson lines, while the T2 combines with

them in the Kähler metric according to

T2 → T2 −
ΦΦ̄

U2
, (10.4.1)
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where Φ is a particular linear combination of the untwisted Higgs fields that can

be identified as 2Φ =
(
hu + h̄d

)
[171–174]. In order to be in agreement with most

of the SUGRA literature, the convention used here is

iU = U1 + iU2

iT = T1 + iT2, (10.4.2)

and thus 2T2 = T + T̄ , and det G = T 2
2 . The Kähler potential is then found to be

K = log Y − log 4(T2U2 − ΦΦ̄) . (10.4.3)

The dilaton combination (Y) generally includes a term from the (Heterotic) Green-

Schwarz mechanism given by

Y = S + S̄ +
1

8π2
δGS log 4(T2U2 − ΦΦ̄) , (10.4.4)

where S is the holomorphic tree coupling. Note that the low-energy effective

action obeys the shift-symmetry

hu → hu + C ; hd → hd −C∗ , (10.4.5)

for constant (superfield) C. This symmetry is allowed by the partition function

of the original theory which is modular invariant. The latter has been introduced

so that the overall effect will result in a massless Higgs state, given by the linear

combination h = 1
√
2

(
hu − h̄d

)
, while the orthogonal combination H = 1

√
2

(
hu + h̄d

)
can be massive [175–179]. As per Ref. [180], a shift symmetry can be protected to

some extent beyond tree-loop if one takes highly asymmetric configurations, but

in general these configurations do not hold at one-loop order. Nevertheless, there

is a larger symmetry in the kind of theories discussed in this work that protects the

masses of both h and H at tree-level. This larger symmetry is in fact an N = 2 sub-

sector of the theory living on the T2 torus. Even though in this set-up the gauge

kinetic term of the original N = 1 SUGRA theory is not discussed, the avid readers
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can find it in the review of Ref. [170].

Based on the previous work of Ref. [52], the shift in the masses of the light

d.o.f induced by the CDC results in a superpotential that is dependent on the U

modulus. To demonstrate this, one considers the gravitino mass which in the EFT

is determined by

m2
3
2

= eK |W |2 . (10.4.6)

It is known that the Scherk-Schwarz compactification causes a half-integer shift in

both of the KK numbers `1, `2, so that adding left- and right-moving contributions,

the total mass-squared of the gravitino becomes

(
m2

3
2

)(string)
=

1
α′

m̂i Gi j m̂ j

=
1

4α′
1

T2U2 − ΦΦ̄
|1 − iU |2 . (10.4.7)

As deduced in the Appendix D, the square T2 with radii (normalised to the string

length) r1,2 has T2 = r1r2, U2 = r1r−12 . Therefore, the gravitino mass is actually

determined by (
m2

3
2

)(string)
=

1
4α′

1
r21

(
1 +

r21
r22

)
, (10.4.8)

The physical mass of the gravitino can then be identified as

m2
3
2

=
1

2Y
(
T2U2 − ΦΦ̄

) |iU − 1|2 , (10.4.9)

which in turn yields

W =
√
2(iU − 1) . (10.4.10)

As expected, there are no small parameters in the superpotential because the large

radii of compactification in the Scherk-Schwarz mechanism allow the suppression

of soft terms, while SUSY can be restored in the infinite radii limit. Note that the

expression in Eq. (10.4.10) is similar to the expression in Refs. [63,86]; the differ-

ence being that in this case the Scherk-Schwarz twists act along both large extra

dimensions. In the string spectrum the tree-level gaugino masses are degenerate

with the gravitino, and it is indeed checked in Ref. [166] that this effective SUGRA
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theory agrees with this statement.

There is at least one Higgs state coming from the untwisted sectors that re-

mains massless, while the corresponding Higgsino (as well as others) pick up a

mass which is equal to that of the gravitino. Explicitly, for the Higgsinos, the

Kähler potential is expanded as

K ⊃ − log
(
4T2U2 − |hu + h̄d|

2
)

= − log 4T2U2 +
1

4T2U2
(|hu|

2 + |hd|
2 + huhd + h̄uh̄d) . (10.4.11)

Using the result in Eq. (10.4.10), the effective tree-level fermion mass terms (i.e.

µ-terms) are calculated as

µ = m 3
2

(
4T2U2

Wi j

W
−

W̄
W

)
. (10.4.12)

In the case that there are no explicit Wi j µ-terms in the superpotential, this auto-

matically has the same magnitude as the gaugino and gravitino masses in accord

with the string theory spectrum. Finally, it is worth checking that all the scalars

remain massless. The only possible non-zero contributions after SUSY breaking

could come from U derivatives of W. However, using K j̄iKi = −2(S 2,T2,U2, Φ̄,Φ) it

is found that these contributions vanish as well resulting in

V ⊃ eK
(
K j̄W̄K j̄UWU + W̄Ū KŪiKiW + W̄Ū KŪUWU

)
= eK

[
−(U + Ū)(Ū − i) − (U + Ū)(U + i) + (U + Ū)2

]
= 0 . (10.4.13)

It is therefore inferred that the SUGRA effective theory discussed provides an ac-

curate description of the SUSY breaking up to the compactification scale ∼ R−1c at

which the lightest stringy modes appear.
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Conclusions

Nature uses only the longest threads

to weave her patterns, so that each

small piece of her fabric reveals the

organisation of the entire tapestry.

Richard P. Feynman

In our current era, theoretical particle physicists are in a relentless pursuit of ele-

gant and intelligible theories that would elucidate the mechanisms governing the

inner workings of our universe. It is an irrefutable fact though that up until now

they have managed to successfully build only a partially comprehensive picture

of the observable world; having seen only a part of the bigger picture, there are

still many unavoidable questions that demand lucid answers. Fortunately, theo-

rists are not alone in this pursuit; the rapid technological advancements of our

time have led to the development of powerful accelerators which have experi-

mentally validated theories, discarded others and altered the direction of other

theoretical pursuits. A prominent accelerator is the LHC, which sits at the root

of diverse experimental collaborations with ambitions to tackle some of the most

urgent issues head on. One of the challenges that the LHC faces is the discovery

of spacetime SUSY, which is the strongest contender for addressing the gauge hi-

erarchy issue. Indeed, the victorious discovery of the Higgs boson makes the need

for stabilising the gauge hierarchy mandatory, and has thus sparked a huge surge

in experimental activity. At the same time, the stark absence of spacetime SUSY
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from the currently accessible energy scales has forced theorists to resort to finding

alternative methods which could serve as its coequal substitutes.

One of the most disconcerting aspects of strings is their lack of stability once

they are formulated in the absence of spacetime SUSY. While most perturbative

strings have unfixed moduli, non-supersymmetric strings carry an extra degree

of difficulty: they admit non-zero dilaton tadpoles, which shift the vacuum and

destabilise the theory. This is a general feature of all non-supersymmetric strings,

and afflicts even those which are free of physical tachyons at tree level. This

represents an inescapable fundamental obstacle for the use of such strings as the

basis for constructing consistent non-supersymmetric string theories with viable

phenomenologies.

In this thesis, great care has been taken to demonstrate that this obstacle can

be overcome within a class of perturbative four-dimensional heterotic strings con-

structed through CDCs. Specifically, these strings belong in a class of models that

interpolate between two different six-dimensional theories at R → ∞ and R → 0,

where R is the generic radius of compactification from six to four dimensions.

The discussion in this work begins with a concise description of the prerequisite

theoretical background. This entails details that appear throughout the narrative

of the entire thesis, and set the stage for presenting new ideas. A more extensive

description of the basic mathematical framework used for the construction of all

models presented in this work then follows. The end of this discussion signals the

beginning of the original work in this thesis. The main part starts with a presenta-

tion of several crucial aspects associated with the spectra of non-supersymmetric

string models. Included among these aspects is the study of the one-loop partition

functions, the existence of off-shell states such as the proto-gravitons and proto-

gravitinos, as well as the study of the leading and subleading contributions from

these and other states to the corresponding one-loop cosmological constants. A

particular emphasis is placed on how such strings preserve their finite properties

when spacetime SUSY is no longer present in the spectrum. This led to the intro-

duction of “misaligned SUSY”, the mechanism which in conjuction with modular

invariance maintains the finiteness of the strings. The generic class of models that
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interpolate between supersymmetric and non-supersymmetric models at their two

endpoints is then explored. In particular, it is demonstrated how the one-loop

cosmological constant, and hence the dilaton tadpole of such models, can be ex-

ponentially suppressed, thus enhancing the stability properties of the associated

theory.

It is then outlined how one can actually construct phenomenologically appeal-

ing models that have equal numbers of massless bosonic and fermionic d.o.f. In-

deed, this is the condition that must be satisfied for the exponential suppression

of the cosmological constant. As demonstrated, such models are most easily built

by starting with existing self-consistent supersymmetric four-dimensional string

theories, and lifting them to N = 1 in six dimensions. The higher-dimensional

supersymmetric theory then undergoes a CDC on a ZZ2 orbifold, thus yielding a

four-dimensional theory in which SUSY is spontaneously broken. The CDC is con-

sidered to be a generalisation of a Scherk-Schwarz compactification. It should

be stressed that even though the breaking of SUSY is spontaneous, from a four-

dimensional perspective this SUSY breaking is not “soft” in the usual sense of the

term. Actually, there is no longer an exact cancellation between the numbers

of bosonic and fermionic d.o.f at every energy level, but instead there is a net

degeneracy of bosonic minus fermionic d.o.f at adjacent energy levels. These de-

generacies grow exponentially with energy therefore such models are genuinely

non-supersymmetric by construction and at all energy scales.

All models are constructed in the so-called free-fermionic formalism, but there

is no reason why this procedure cannot be duplicated within other formalisms.

In addition, all the interpolating models in four dimensions are derived from the

same N = 1 six-dimensional theory. Each model can be constructed so as to have

a different gauge group and particle content. Most importantly, the models can be

constructed so as to have chiral generations coming from either both the twisted

and untwisted sectors or only from one of them. This is achieved by altering the

boundary conditions assigned to the vectors of the theory as well as adjusting

the choice of CDC vector e. An S O(10) grand-unified model, a flipped S U(5), a

Pati-Salam and finally a SM-like theory are then presented.
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Despite the fact that all these models exhibit equal numbers of massless bosonic

and fermionic d.o.f and thus suppressed instabilities, each one of these demon-

strates a different degree of phenomenological success. However, none has all of

the desirable phenomenological features one would want in order to serve as the

starting point for a detailed phenomenological study. All their properties were

examined in three independent ways: through their partition functions, through

their Poisson-resummed large-radius expansions, and finally through explicit con-

struction and study of their low-energy spectra. These models could be considered

as a stepping stone in the fabrication of non-supersymmetric string models which

are not plagued by instabilities, and in the evolution of string phenomenology.

They are distinctly characterised by a Bose-Fermi degeneracy exhibited by the KK

excitations of the massless modes. This is essentially a cancellation of an aggregate

of bosonic states in an observable sector against an aggregate of fermionic states

in a presumably hidden sector, and vice versa. Since this is a feature applicable

only to the massless modes, it implies that there is no remnant spacetime SUSY in

the spectrum. Indeed, the massive string-oscillator excitations do not exhibit any

such bosonic/fermionic degeneracies, and instead it is only through misaligned

SUSY at all mass levels that the finiteness of such strings is ensured.

A general phenomenological feature of these models is that SUSY can be spon-

taneously broken only in the untwisted sectors of the theory, while the twisted

sectors remain globally supersymmetric. Depending on the choice of CDC vector

e, the states in the gauge sector and the untwisted matter sectors that do not fulfil

the condition e · Q = 0 gain masses of order R−1. By contrast, the twisted sectors

are initially unaffected, with states gaining masses only radiatively. One appeal-

ing aspect of this setup is that all radiative terms, including their RG running, are

completely calculable within the string theory, and are finite.

Aside from general phenomenological features which are in fact derived from

the interpolating structure of the model, there is also a discussion on some model-

dependent phenomenological properties. These include the natural particle as-

signment, the Yukawa couplings, and the masses of the scalar particles. Specif-

ically for the latter, it is shown that it might be possible to suppress the radia-
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tive corrections to the scalar particles that survive in the massless spectrum of

the theory after CDC, thereby achieving naturally light scalars and addressing

the issue of naturalness. There can be a range of mass scales for which non-

supersymmetric string theories can be consistent and produce interesting, suffi-

ciently small, cosmological-constant values and at the same time reasonable ra-

diative physical masses for scalars. However, for such models there appear to

be low string scales, implying ultimately either some form of strong coupling or

large gauge threshold corrections from KK modes. This occurrence is more com-

monly referred to as the “decompactification problem”. There are configurations

which prevent these unwanted scenarios, and may be compatible with perturba-

tive unification near the canonical heterotic string scale. The configurations are

known as GUT precursors and their existence provide the freedom to construct a

non-supersymmetric string theory with small couplings at large volumes.

The issues addressed in this thesis regarding the cosmological constant, vac-

uum stability, and the mass hierarchy for light scalars such as the Higgs are some

of the most challenging and unique problems of non-supersymmetric string mod-

els. It must not come as a surprise that they are all related within this framework.

This is precisely because there is only one source of SSSB which is applicable for all

of them and hence they are all intrinsically non-supersymmetric, even at the string

scale. Moreover, the tight self-consistency constraints of the string constructions

unavoidably tie the resolutions of these different problems to each other.

In particular, the exponential suppression of the cosmological constants sug-

gests that there is hope of stabilising such models within field theory. This is due

to the fact that stability issues in general are considered to have the same sta-

tus and degree of severity as in a SUGRA theory in which SUSY is softly broken by

non-perturbative field-theory effects. A possible scenario is that field theory effects

can dominate over the exponentially suppressed dilaton tadpole, or that there is

some interesting interplay between the two effects.

Significantly, it was suggested a long time ago that non-supersymmetric string

compactifications would benefit from exponentially suppressed cosmological con-

stants if there were an exact cancellation between the massless bosonic and fermionic

September 20, 2016



Chapter 11. Conclusions 212

d.o.f. This thesis has explored the ideas relevant to this suggestion, has presented

their development and eventually has demonstrated the successful construction

of actual models which exhibit enhanced stability. Therefore, this work paves

a new pathway for studying non-supersymmetric models built entirely within a

heterotic string framework. In regards to the phenomenological viability of the

resulting models, it should be emphasised that they stand on equal grounds with

non-stabilised supersymmetric strings; when the latter undergoes a SUSY breaking

typically, a runaway dilaton potential appears which is comparable to the potential

of these models. In order to verify the full stability of theories with exponentially

suppressed cosmological constants, it will be necessary to study their complete

moduli spaces, also taking extreme care to prevent the F-flat directions from be-

coming tachyonic.

Clearly, all the ideas encompassed in this thesis are still in their infancy, which

implies that they require a perpetual and meticulous approach in order to develop

into tools for powerful theories. Consequently, at this stage there are many pos-

sibilities for future work, beyond those related to the purely technical side (con-

struction) of the models. First, it is important to understand the precise nature

of the model under interpolation, which requires the identification of the com-

plete structure of the tachyon-free non-supersymmetric six-dimensional theory at

the R → 0 endpoint. This would help to clarify how the six-dimensional theory

at R → 0 relates to the six-dimensional theory at R → ∞, it would provide more

details on the phenomenological structure of the interpolating theory and it would

also shed light on the full effects of CDC at that endpoint. Second, one issue of

particular interest is to identify the precise form of the potential and how it is asso-

ciated to an EFT in which SUSY is spontaneously broken. It is equally important to

understand and interpret the various features related to potentials, such as those

in Fig. 9.3, as they would undoubtedly provide useful details about the dynamics

of the theory.

From a phenomenological perspective, it would be ideal if a three-generation

SM-like theory with an exponentially small one-loop cosmological constant and

a working Higgs sector could be formulated. The benefit of constructing such a
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model is that all scalar masses would be calculable and finite. In addition, being

non-supersymmetric by construction, the Yukawa couplings would also receive

radiative corrections suppressed by powers of RM−1. This outcome brings forth

the question of whether these radiative corrections would have any impact on the

SM hierarchies. Furthermore, it would be interesting to examine how one can

relate the suppressed Yukawa terms with those terms obtained in field theories

with softly-broken SUSY.

One other issue that certainly deserves further investigation is whether the

exponential suppression of the cosmological constant continues beyond one-loop

order. In general, higher-order contributions depend not only on the spectra of the

theories but also on the particle content interactions. One would speculate that

as long as there are no contributions from the massless d.o.f to the cosmological

constant, then the suppressions exhibited at one-loop would continue to persist to

higher loops. In the EFT, all loops would then be expected to experience the same

cancellations, while the couplings exhibit a high degree of degeneracy. However,

this is just speculation and needs to be handled with extra care, requiring careful

analysis before being turned into a definite fact. Another issue, on a par with the

former, that requires clarification, is whether there can be scalar particles in the

theory which remain naturally light. As demonstrated, the contributions to the

mass-squared of the Higgs field that survives in the massless spectrum could be

suppressed, provided that the numbers of massless bosonic and fermionic states

that couple to the Higgs cancel each other. This finding is truly significant as

it would undoubtedly help to elucidate the naturalness problem in string theory.

Hence, finding a model that satisfies this condition and that also has an exponen-

tially suppressed cosmological constant is of utmost priority. It should be noted

that in the construction of such theories there are various different scales involved,

such as the Planck scale, the string scale, the unification scale and of course the

compactification scale O (R−1). Generally, these scales are related to each other

through the string coupling and the volume of compactification. In light of the

above discussion about ensuring a naturally light Higgs, great attention must be

paid to what constitutes reasonable energy and mass scales for the phenomenolo-
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gies of such models.

Finally, this setup was focused on model building and phenomenology in weakly

coupled heterotic strings. However, there is no restriction on applying these ideas

to other types of string theories so as to yield more diverse results. These ideas

could also be extended into QFT by attempting to reproduce at least to some ex-

tent some of the most significant aspects of the theories presented. There is also

potential for such theories to be applied in string cosmology, opening new doors

in the field of inflation and other relevant studies.

In conclusion, then, there are numerous compelling pieces of evidence to sug-

gest that the models and methods presented here could be considered as a bench-

mark for the emergence and evolution of a genuine non-supersymmetric string

phenomenology. This work has inevitably triggered an avalanche of issues, both

on a theoretical and a phenomenological level; some of them are presently under

investigation while others clearly remain an attractive challenge for future works.

Although this could be considered as downside, it still cannot outshine the evi-

dent existence of numerous models which are fundamentally non-supersymmetric

and at the same time admit suppressed dilaton tadpoles. Inevitably, the existence

of such models correlates with the existence of a vast landscape of finite non-

supersymmetric theories which bear enhanced stability properties. All such mod-

els carry a promising theoretical background as well as fascinating phenomeno-

logical prospects. Because of this, they can be considered as suitable candidates

for providing a good description of nature, especially at the low energies where

our observable non-supersymmetric world resides. Therefore, it is imperative that

the landscape must be explored with every tool that string phenomenologists have

at their disposal in order to determine the extent to which a remarkably accurate

non-supersymmetric string phenomenology is achievable. This thesis is coming

to an end, however as is always the case, this end marks a new beginning! This

is a turning point for bringing together auspicious, ambitious and perhaps even

revolutionary ideas in order to target some of the most crucial and perpetuating

issues in theoretical particle physics. It goes without saying that nature will never

cease to amaze us and that there are certainly exciting times to look forward to.
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Appendix A

Basic theoretical tools for the

Standard Model

A.1 The full form of the Standard Model Lagrangian

In this section the explicit form of each component that constitutes the SM La-

grangian, as per Eq. (2.1.8) of Chapter 2 is presented. The first component is the

L for the SM gauge bosons:

LS M
gauge bosons = − 1

2Tr [FµνFµν]

= − 1
4BµνBµν − 1

4Fa
µνF

a µν − 1
4FA

µνF
A µν +Lgauge

f ixing
+L FP

ghosts
, (A.1.1)

where Bµν = ∂µBν − ∂νBµ is the hypercharge field strength. The second term cor-

responds to the S U(2) field strength with a = 1, 2, 3 corresponding to each S U(2)

vector boson. The third term is the gluon kinetic term with A = 1, . . . , 8 for each

gluon. For explicit perturbative calculations, it is necessary to do some gauge fix-

ing. This requires the consideration of additional terms which include the gauge

fixing terms and the Fadeev-Popov (FP) ghosts. Since the form of these terms

depends on the choice of gauge, the final form of the fourth and fifth terms in

Eq. (A.1.1) is not predefined.

The second component of the LS M contains the kinetic terms of the SM chiral
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matter fields:

LS M
f ermion KT = ΨLĉγ

µDµΨLĉ

= i l
T
Lĉγ

µDµlLĉ + i eRĉγ
µDµeRĉ + i νRĉγ

µ∂µνLĉ

+ i Q
T
Lĉγ

µDµQLĉ + i dRĉγ
µDµdRĉ + i uRĉγ

µ∂µuRĉ . (A.1.2)

The covariant derivatives are defined as

Dµ = ∂µ + igTaWa
µ + ig′YlL Bµ for the lL and QL fields (A.1.3)

Dµ = ∂µ + igsTs
AGA

µ + ig′YdR Bµ for the dR fields (A.1.4)

Dµ = ∂µ + ig′YeR Bµ for the eR fields (A.1.5)

where g, g′ and gs are the weak and strong coupling respectively, Ts
A are the S U(3)

generators, GA
µ are the gluon fields, Wa

µ are the S U(2)L gauge fields, and Y f is

the hypercharge of fermion f . Similarly, the third component is the Lagrangian

that determines the masses of the SM chiral matter fields, through their Yukawa

couplings:

LS M
f ermion masses = − 1

2ΨT
Lĉ ChΦΨLĉ + h.c

= −ĥeĉĝlLĉΦeRĝ − ĥdĉĝqLĉΦdRĝ − ĥuĉĝqLĉΦ̃uRĝ + h.c , (A.1.6)

where ĉ (and ĝ) = 1, 2, 3 are the fermion families, ĥ are the Yukawa couplings and

Φ̃ = iσ2Φ
∗. Note that in this case a neutrino Yukawa term is omitted because

neutrinos do not get their masses from Yukawa interactions. Finally, the last piece

of the SM Lagrangian is the Higgs part:

LS M
Higgs = |DµΦ|

2 − µ2Φ†Φ − λH(Φ†Φ)2 . (A.1.7)

The Lagrangian associated with the the spontaneous breaking of the electroweak

September 20, 2016



A.2. Masses of particles in the Standard Model 217

symmetry is found by substituting Eq. (2.1.9) to the equation above. The result is

LS S B
Higgs = 1

2 (∂µH)2 + λHv2H2 +
g2v2

4
W+µW−

µ +
g2v2

8 cos θW
ZµZµ

+ interactions . (A.1.8)

The expression λHv2H2 = 1
2m2

HH2 defines the mass of the Higgs boson (mH), and λH

is the Higgs coupling. The weak mixing angle, θW , is defined by the expression

tan θW =
g1

g2
, (A.1.9)

where g1, g2 are the coupling strengths of the U(1) and S U(2) gauge bosons. The

g2 is directly the coupling strength of the W± bosons and is analogous to the value

of the electromagnetic coupling for photons, e = g2 sin θW = 1√
g2
1+g2

2

g1g2.

A.2 Masses of particles in the Standard Model

The mass of the physical gauge bosons W± and Z0, is determined by the kinetic

term of the LS M
Higgs,

m2
W± = 1

4g2v2 m2
Z0 = 1

4 (g′2 + g2)v2 . (A.2.1)

where v = 246.22 GeV is the VEV.

The masses of the chiral matter fields, except neutrino masses, are determined by

LS M
f ermion masses,

m f =
1
√
2

ĥ f v . (A.2.2)

where f labels the fermions.

A.3 One-loop corrections to the Higgs mass

As it is seen in Eq. (A.1.7), the L of the scalar Higgs boson includes a term m2Φ†Φ.

The m2 parameter is the bare mass. At tree level it obeys m2 = m2
th and the value

is equivalent to the experimental result mH. At one-loop the theoretical mass is
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H

Ψ

H

Ψ

Figure A.1: Higgs mass renormalisation from a fermion loop.

subjected to quantum corrections so the total Higgs mass is given by

m2
bare = m2

renormalised + δm2 . (A.3.1)

The quantum corrections are due to scalar and fermion loops generated by Higgs

self-interactions as it is demonstrated in the Feynman diagrams depicted in Figs. A.1-

A.3. Considering the renormalisation of the scalar mass from a fermion loop

shown in Fig. A.1 using the LS M there is a resulting contribution [106]:

−iΣ(Q2) ≡ (δm2
H)F = i

(
−i gF
√
2

)2 ∫ λ d4p
(2π)4

Tr [(/p + mF)((/p − /Q) + mF)]
(p2 − m2

f )[(p − Q)2 − m2
F]

= −
g2

F

8π2

{
λ2 + (Q2 − 6m2

F) ln
(
λ

mF

)
+

(
2m2

F −
1
2Q2

)[
1 + I1

(
Q2

m2
F

)]}
+ O

( 1
λ2

)
, (A.3.2)

where I1(x) =
∫ 1
0 dy log

[
1 − xy(1 − y)

]
and mF is the physical mass of the fermion Ψ.

From the diagram of Fig. A.2, the contribution to the Higgs mass renormalisation

due to scalar fields φ interacting with the Higgs boson is calculated as in [106]:

(δm2
H)S 1 = −gS

∫
d4p

(2π)4

[
i

p2 − m2
1

+
i

p2 − m2
2

]
=

gS

16π2

{
2λ2 − 2m2

1 ln
(
λ

m1

)
− 2m2

2 ln
(
λ

m2

)}
+ O

( 1
λ2

)
, (A.3.3)

where gS is the scalar coupling and m1,2 are the physical masses of the scalar par-
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H H

φ1−2

Figure A.2: Higgs mass renormalisation from a scalar loop.

ticles φ1,2.

After SSB, the part of the LS M that determines the renormalisation of the Higgs

mass parameter from scalar loops leads to a cubic interaction shown in the dia-

gram of Fig. A.3 which yields a non quadratically divergent contribution, as calcu-

lated in [106]:

(δm2
H)S 2 = −gS

∫
d4p

(2π)4

[ 1
(p2 − m2

1 )2
+

1
(p2 − m2

2)2

]
=

g2
S v2

16π2

{
− 1 + 2 ln

(
λ

m1

)
− I1

(
m2

H

m1

)}
+ (m1 → m2) + O

( 1
λ2

)
. (A.3.4)

Even though the calculations presented above are applied to the case of the Higgs

boson mass, it is worth emphasising that they are valid for any light, scalar particle.

H

φ1−2

H

φ1−2

Figure A.3: Higgs mass renormalisation from a scalar loop of cubic interaction.
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The MSSM Higgs sector

As described in Section 2.2.1 of Chapter 2, in the MSSM it is necessary to add a

second complex Higgs doublet field with opposite hypercharge
(
Y = − 1

2

)
. There-

fore, the two complex Higgs doublet fields are postulated as

Hd =

h0
d

h−d


Y=−

1
2

and Hu =

h+
u

h0
u


Y=+

1
2

. (B.0.1)

The Higgs scalar potential (at tree level) in the MSSM is determined by

V = (µ2 + m2
d) |Hd|

2 + (µ2 + m2
u) |Hu|

2 −
∑

i j

µB (εi jHi
dH j

u + h.c)

+
g2 + g′2

8
(|Hd|

2 − |Hu|
2)2 +

g2

2
|H†d Hu|

2 . (B.0.2)

The terms proportional to µ2 come from F-terms. Similarly, the terms proportional

to (g2 + g′2) come from D-terms, and the remaining ones are contributions from

the soft breaking terms [181]. The scalar potential also includes many other terms

that are contributions from squark and slepton fields. However, these terms are

omitted in Eq. (B.0.2) since they are not relevant for the upcoming discussion.

The potential has a trivial minimum V = 0 which is satisfied for Hd = Hu = 0,

so no spontaneous breaking takes place. To achieve a spontaneous breaking of the
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S U(2) ⊗ U(1) symmetry to the U(1)em, it is essential to break first SUSY1. Without

loss of generality, one can set h−d = h+
u = 0 as justified in Ref. [114]. The scalar

potential is now modified to

V = (µ2 + m2
d) |h0

d |
2 + (µ2 + m2

u) |h0
u |
2 −

∑
i j

µB (εi jh0
dh0

u + h.c)

+
g2 + g′2

8
(|h0

d |
2 − |h0

u |
2)2 +

g2

2
|h0†

d h0
u |
2 . (B.0.3)

Requiring gauge breaking and having a potential that is necessarily bounded from

below yields the following constraints:

(µB)2 > (|µ|2 + m2
d)(|µ|2 + m2

u) (B.0.4a)

2 |µB| < (|µ|2 + m2
d) + (|µ|2 + m2

u) , (B.0.4b)

which surprisingly are fulfilled provided that the condition m2
d , m2

u is satisfied. In

GMSB and mSUGRA models, m2
d , m2

u at tree level so that the electroweak breaking

is driven by the different evolution of the m2
d and m2

u. This is the mechanism

of radiative electroweak symmetry breaking. Once this breaking occurs the two

Higgs fields obtain a VEV:

〈Hd〉 =
1
√
2

vd

0

 and 〈Hu〉 =
1
√
2

0vu

 , (B.0.5)

where both vd and vu are taken to be real and positive. Note that the two VEVs

add up quadratically to a net VEV value, as in the SM, and their ratio is written as

tan β ≡
vu

vd
, v2 ≡

√
v2d + v2u . (B.0.6)

The value of tan β is largely dependent on the parameters of the MSSM Lagrangian

and as a result can be determined quantitatively. The condition

1This is defined to be a radiative breaking of the gauge group.
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∂V
∂h0

d

=
∂V
∂h0

d

= 0 , (B.0.7)

minimises the potential of Eq. (B.0.3) yielding:

µ2 + m2
d = (−Bµ)2 tan β +

g2 + g′2

4
(v2d + v2u) (B.0.8a)

µ2 + m2
u = (−Bµ)2 cot β +

g2 + g′2

4
(v2d + v2u) . (B.0.8b)

These expressions relate the parameters on which tan β depends to the gauge cou-

plings, the soft breaking terms and the mass parameter µ. They also eliminate the

parameters B and µ from the Lagrangian but do not produce any value for the

latter. From this result it is concluded that the ratio of vd and vu, along with the

mass parameter µ are significant parameters in describing the phenomenology of

the Higgs sector.

The complex scalar Higgs field has originally eight real scalar d.o.f. After elec-

troweak SSB, three d.o.f correspond to the Goldstone bosons G0 and G± which are

absorbed into the longitudinal modes of the Z0 and W± massive vector bosons un-

der a unitary gauge transformation. This leaves five d.o.f which are actually five

Higgs physical states. Two of them are identified as charged: the H+ with charge

+1 along with its conjugate state H− with charge −1. The remaining three are iden-

tified as neutral states: the h0 and H0 with CP = +1 and the A0 with CP = −1. The

eigenstates of the Goldstone and Higgs fields is a mixture of the mass eigenstates

which have the same charge and CP quantum numbers:

G−

H−

 =

cos β − sin β

sin β cos β


h−dh+

u

 , (B.0.9a)

G0

A0

 =
√
2

cos β − sin β

sin β cos β


Im (h0

d)

Im (h0
u)

 , (B.0.9b)

H0

h0

 =

 cosα sinα

− sinα cosα


Re (h0

d) − vd

Re (h0
u) − vu

 , (B.0.9c)

G+ = (G−)† , H+ = (H−)† , (B.0.9d)
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where α is the mixing angle between the two Higgs physical states with CP = +1

quantum number. Provided that the scalar potential in Eq. (B.0.3) is minimised

and with the Goldstone masses being m2
G0 = m2

G± = 0, the mass eigenvalues of the

eigenstates in Eq. (B.0.9) are found to be:

m2
H± = 1

4

[
g2 + 2

(µB)2

vdvu

]
(v2d + v2u) , (B.0.10a)

m2
A0 =

(µB)2

vdvu
(v2d + v2u) = (µB)2(tan β + cot β) = m2

H± − m2
W± , (B.0.10b)

m2
H0, h0 = 1

2

(
m2

A0 + m2
Z0 ±

√
m2

A0 + m2
Z0 − 4m2

Z0m2
A0 cos2 2β

)
. (B.0.10c)

The mixing angle α is then determined at tree level in terms of the eigenvalues in

Eq. (B.0.10) as shown:

sin 2α = − sin 2β
(m2

h0 + m2
H0

m2
h0 − m2

H0

)
, cos 2α = − cos 2β

(m2
A0 + m2

Z0

m2
h0 − m2

H0

)
. (B.0.11)

These ingredients can now be used to determine the masses of the SM gauge

bosons and fermions. The procedure is the same as described in Appendix A.2 and

yields:

m2
W± =

√
g2

4
(v2d + v2u) , mZ0 =

√
g2 + G′2

4
(v2d + v2u) , (B.0.12)

ml =
ĥl
√
2

v1 , md =
ĥd
√
2

v1 , mu =
ĥu
√
2

v2 . (B.0.13)

As deduced from Eq. (B.0.9), all three neutral Higgs physical states are a mixture

of the two Higgs fields. This property allows the couplings of A0, h0andH0 with the

up- and down-type quarks. The coupling of the pseudoscalar A0 with the gauge

bosons violates CP invariance at tree level and hence is not allowed. A comparison

between the masses of all the Higgs and gauge bosons which have the same charge

in the MSSM theory, as presented in Eq. (B.0.10) and (B.0.12) respectively, yields:

mH0 ≤ (mA0 ,mZ0) ≤ mh0 , mW± ≤ mH± . (B.0.14)

An interesting outcome from this relation is that the lightest neutral Higgs state is
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predicted to be lighter than the Z0 boson. This is a perplexing outcome since the

successful experimental discovery of Higgs boson, and subsequently the accurate

measurements of its mass, rule out any possibility of a Higgs boson being lighter

than Z0. The outcome ceases to be perplexing when one realises that this is a result

derived at tree level where radiative corrections due to higher order loop diagrams

are neglected. If one takes the radiative corrections into account, the upper bound

for the mass of the lightest Higgs boson is significantly lifted. Nevertheless, and

despite the contribution from the radiative corrections, the mass of the Higgs is

found to have the definite value of mH = 125.09 ± 0.24 GeV.
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Appendix C

Quantising the bosonic string

The classical bosonic string theory and all of its properties and structure are stud-

ied in Section 3.2.1 of Chapter 3. Even though this type of string theory is not

quite realistic, it provides a good understanding on the type of analysis that takes

place in string theory. Therefore, the next step of this analysis is the study of

the quantised theory. The best course of action is to consider first what options

are available for quantising this classical theory. It is found that there are three

options:

1. Covariant quantisation

2. Lightcone quantisation

3. BRST quantisation

Each one of them bears different features and each points out some hurdles that

must be overcome if the quantisation is to be considered successful. The following

discussion is focused only on the main characteristics of each quantisation proce-

dure and to the most important problems that arise in each.

C.1 Covariant Quantisation

The first step is to promote the fields Xµ and their canonical momenta Pµ = 1
2πα′ Ẋ

µ,

to operator valued fields which obey the canonical equal-time commutation rela-
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tions,

[X̂µ(τ, σ), P̂ν(τ, σ′)] = i ηµνδ(σ − σ′)

[X̂µ(τ, σ), X̂ν(τ, σ′)] = [P̂µ(τ, σ), P̂ν(τ, σ′)] = 0 . (C.1.1)

Plugging into Eq. (C.1.1) the mode expansions for the Xµ and Pµ one obtains

the canonical equal-time commutation relations in terms of the Fourier modes

xµ, pµ, αµn, which are now also promoted to operators:

[x̂µ, p̂ν] = i ηµν

[ ˆ̃αµm, ˆ̃ανn] = [α̂µm, α̂
ν
m] = m ηµνδm+n,0

[ ˆ̃αµm, α̂
ν
n] = 0 . (C.1.2)

By defining new operators: âµn ≡ 1
√

n α̂
µ
n and âµ†n ≡ 1

√
n α̂

µ†
−n ∀ n > 0; the expressions in

Eq. (C.1.2) clearly satisfy

[ ˆ̃aµm, ˆ̃aν†n ] = [âµm, â
ν†
n ] = ηµνδm, n ∀ m, n > 0 . (C.1.3)

From the results presented so far, it is inferred that from each scalar field’s left-

and right-moving modes emerge two infinite towers of creation and annihilation

operators. The vacuum state of the string ( |0〉 ) is then defined as the state which

is annihilated by all of the annihilation operators ˆ̃aµn or âµn,

ˆ̃aµn |0〉 = âµn |0〉 = 0 ∀ n > 0 . (C.1.4)

The physical states of the string are states that are constructed by acting on the

ground state with the creation operators ˆ̃aµ†n or âµ†n ,

|φ〉 = âµ1†n1
âµ2†n2

. . . ˆ̃aν1†m1
ˆ̃aν2†m2

. . . |0; k〉 . (C.1.5)

The physical states are momentum eigenstates, i.e. pµ |0; k〉 = kµ |0; k〉, where kµ is

the momentum eigenvalue. Since there are infinite towers of operators, there is an
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infinite number of string excitations. All the excitations are different states of the

string and their physical interpretation is that they are in fact different particles

in the spectrum of the string theory. The set of all physical states in the theory is

known as the Fock space.

The problem with this quantisation procedure arises in the Fock space of the

theory. Due to the signature of the Minkowski metric, the commutation relations

in Eq. (C.1.3) yield a negative sign for the µ = ν = 0 modes,

[ ˆ̃a0
m, ˆ̃a0†

n ] = [â0
m, â

0†
n ] = η00δm, n = −δm, n . (C.1.6)

This outcome has dire implications because it leads to the prediction of negative

norm physical states,

〈k′; 0| â0
n â0†

n |0; k〉 ∝ −δD(k − k′) , (C.1.7)

known also as ghost states. These states are unacceptable in the theory as they

are unphysical. However, it is possible to remove these unphysical states at the

expense of imposing a constraint on the number of background spacetime dimen-

sions.

A direct implication of the Fourier modes promotion to operators is that the

generators L̃n, Ln are also upgraded to the status of operators. The expressions for

the classical theory, given in Eq. (3.2.17) are now modified to

ˆ̃Ln = 1
2

∑
n

: ˆ̃αm−n · ˆ̃αn : and L̂n = 1
2

∑
n

: α̂m−n · α̂n : , (C.1.8)

where the : : indicates normal ordering. Similarly to the classical strings, the ˆ̃L0

and L̂0 operators play a pivotal role in determining the physical spectrum of the

quantised string theory. The operators carry an ambiguity as a result of the normal

ordering and hence are determined by

ˆ̃L0 = 1
2

ˆ̃α2
0 +

∞∑
n=1

ˆ̃α−n · ˆ̃αn ; L̂0 = 1
2 α̂

2
0 +

∞∑
n=1

α̂−n · α̂n . (C.1.9)
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The mass-shell conditions for the quantised closed strings become

( ˆ̃L0 − z) |φ〉 = 0 (C.1.10a)

(L̂0 − z) |φ〉 = 0 , (C.1.10b)

where z is a constant which arises due to the normal ordering ambiguity of L̂0,
ˆ̃L0.

Subsequently, the mass of the physical states of a quantised closed string is given

by

m2
S =

4
α′

( ∞∑
n=1

ˆ̃α−n · ˆ̃αn − z
)

=
4
α′

( ˆ̄N − z)

=
4
α′

( ∞∑
n=1

α̂−n · α̂n − z
)

=
4
α′

(N̂ − z) , (C.1.11)

with the ˆ̄N and N̂ defined as the number operators for the left- and right-moving

modes respectively. Back to Eq. (C.1.10), subtracting the condition for the left-

moving physical state from the right-moving one implies that the numbers of left-

and right-moving oscillator modes are equal, i.e.

(L̂0 −
ˆ̃L0) |φ〉 = 0⇒ ˆ̄N = N̂ ; (C.1.12)

thus setting the level-matching condition for a quantised bosonic string theory with

closed strings. In turn, the generators L̂0, ˆ̃L0, form an algebra which is a central

extension of the Witt algebra. It is known as the Virasoro algebra and the gener-

ators are called Virasoro operators, satisfying the following general commutation

relations

[L̂m, L̂n] = (m − n) L̂m+n +
c
12

m (m2 − 1) δm,−n

[ ˆ̃Lm,
ˆ̃Ln] = (m − n) ˆ̃Lm+n +

c
12

m (m2 − 1) δm,−n , (C.1.13)

where c is the central charge and is equivalent to the dimension of the background

spacetime for the bosonic string theory. Even though in the covariant quantisation

string theory is plagued by unphysical states, these states are eliminated if z = 1
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and c = 26. These constraints imply that the background spacetime dimension

of a covariantly quantised bosonic string theory free from unphysical states and

manifestly Lorentz invariant is in fact twenty-six.

C.2 Lightcone quantisation

An advantage of this choice over the previous one is that there are no negative

norm states predicted. This advantage is eclipsed by a serious disadvantage; the

theory is no longer manifestly Lorentz invariance as shall be shortly demonstrated.

As was presented in Section 3.2.1, even though the spacetime dynamical metric

hαβ becomes flat, the bosonic string theory still carries residual gauge symmetries

which are the conformal transformations. Under conformal transformations, the

lightcone coordinates on the worldsheet are reparametrized as

σ± 7→ σ′± = ξ±(σ±) , (C.2.1)

leaving the bosonic string action invariant. The conformal symmetry allows the

freedom of choosing a particular noncovariant gauge, known as the lightcone

gauge which removes the negative norm states from the theory. Following the

definition of the lightcone coordinates on the worldsheet, the corresponding co-

ordinates on the background spacetime are defined to be the set {X−, X+, Xi} for

i = 1, . . . ,D − 2 and with

X± ≡
1
√
2

(X0 ± XD−1) . (C.2.2)

Here the X0 is the choice for the time direction and the XD−1 is the choice for

the transverse spatial direction. Due to the different treatment of the lightcone

spacetime coordinates, the manifest Lorentz invariance of the symmetry does not

hold any longer. Instead, the new Lorentz symmetry becomes S O(D − 2) and the

spacetime Minkowski metric now is defined as

ds2 = −2 dX+dX− +

D−2∑
i

dXidXi . (C.2.3)
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The solution to the equation of motion of the X+ now becomes

X+ = X+
L (σ+) + X+

R (σ−) ; (C.2.4)

with

X+
L (σ+) = 1

2 x+ + 1
2α
′p+σ+ and X+

R (σ−) = 1
2 x+ + 1

2α
′p+σ− , (C.2.5)

which results in

X+ = x+ + α′p+τ . (C.2.6)

This is the lightcone gauge in which all the oscillator modes for the X+ of the closed

string are set to zero. Subsequently, the form of the X− coordinates is expected

to be similar to that of Eq. (C.2.5) and is derived using the lightcone gauge in

conjuction with the constraints in Eq. (3.2.15). These coordinates differ from the

X+ as they carry mode expansions:

X−(σ+)L = 1
2 x− + 1

2α
′p−σ+ + i

√
α′

2

∑
n,0

1
n
α̃−n e−inσ+

X−(σ−)R = 1
2 x− + 1

2α
′p−σ− + i

√
α′

2

∑
n,0

1
n
α−n e−inσ− , (C.2.7a)

where the x− (along with the xi) describes the string’s centre of mass. The mode

expansions are given by

α̃−n =
1
√
2α′

1
p+

∑
m

D−2∑
i=1

α̃i
n−m · α̃

i
m

α−n =
1
√
2α′

1
p+

∑
m

D−2∑
i=1

αi
n−m · α

i
m , (C.2.8a)

where the p+ (along with the pi) describes the string’s momentum. In the light-

cone gauge, the bosonic string theory is expressed in terms of 2(D − 2) transverse

oscillators only and so a string with c = 26 has only transverse oscillations. Note

that the transverse oscillators are not regarded as the transverse excitations of the

string. As in the case of the classical string, it is found that the zero modes satisfy
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α̃−0 = α−0 =

√
α′

2 p−. Hence, applying the constraints of Eq. (3.2.15) it is found that:

α′

2
p− =

1
2p+

D−2∑
i=1

(
1
2α
′pi · pi +

∑
n,0

α̃i
n · α̃

i
−n

)
=

1
2p+

D−2∑
i=1

(
1
2α
′pi · pi +

∑
n,0

αi
n · α

i
−n

)
. (C.2.9)

Moving on to the quantisation procedure, it is not surprising to find that some

equal-time commutation relations are the same as the ones defined for the covari-

ant quantisation in Eq. (C.1.2). In fact, this occurrence is natural as some of the

physical d.o.f in the lightcone quantisation are the same as those in the covari-

ant quantisation. A distinct difference of lightcone quantisation from covariant

quantisation is that the former has additional fields, the x+ and p−, which must be

promoted to operators. As a result the equal-time commutation relations for the

quantisation of a bosonic closed string in the lightcone gauge are given by

[x̂i, p̂ j] = i δi j

[ ˆ̃αi
m, ˆ̃α j

n] = [α̂i
m, α̂

j
n] = n δi j δm+n, 0

[ ˆ̃αi
m, α̂

j
n] = 0

[x̂+, p̂−] = i , [x̂−, p̂+] = −i . (C.2.10)

Identically to the covariant quantisation method, the string vacuum and physical

states are defined as

ˆ̃ai
n |0〉 = âi

n |0〉 = 0 and pµ |0; k〉 = kµ |0; k〉 ∀ n > 0 , (C.2.11)

whereas the Fock space is built up by acting on the physical states with the creation

operators ˆ̃αi
−n or α̂i

−n. It should be noted that since the spatial index takes values

i = 1, . . . ,D − 2, the Hilbert space of the theory is positive definite. This clearly

demonstrates that said theory has no unphysical states. Thence the expressions in

Eq. (C.2.9) are modified in the sense that they obey the normal ordering condition.

From the resulting normal ordered expressions one is able to derive the mass-shell
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level-matching condition for closed strings in lightcone gauge:

m2
S = 2p+ · p− −

D−2∑
i=1

pi pi =
4
α′

( D−2∑
i=1

∑
n>0

ˆ̃αi
−n ·

ˆ̃αi
n − z

)
=

4
α′

( ˆ̄N − z)

=
4
α′

( D−2∑
i=1

∑
n>0

α̂i
−n · α̂

i
n − z

)
=

4
α′

(N̂ − z) . (C.2.12)

The ˆ̄N and N̂ are the number operators of the left- and right-moving transverse

oscillator modes respectively. Naturally, the next step required for the completion

of quantisation is to fix the value of the constant z. In Ref. [107], there is a very

detailed derivation of the value, which is achieved when one employs tools from

conformal field theory. It turns out then that the value of the constant is directly

proportional to the number of background spacetime dimensions (D), i.e.

z =
D − 2
24

. (C.2.13)

To overcome the hurdle of not having a manifest Lorentz invariance, a constraint

needs to be imposed on the theory. This means that z and hence D can each take

a specific value. Through a series of calculations one derives z ≡ 1, thus D = 26

which is equivalent to the value obtained for the central charge of this theory.

Substituting Eq. (C.2.13) into the formula in Eq. (C.2.12) it is straightforward to

determine the mass spectrum of said theory:

• In the absence of oscillator modes, the ground state |0〉 = |0; kµ〉 has mass-

squared equal to −4(α′)−1. It does not actually make much sense for a

state to have negative mass-squared, thus the state is deemed unphysical.

Such states give rise to particles which are commonly known as tachyons.

Tachyons in the bosonic string theory contribute extra terms in the poten-

tial resulting to the destabilisation of vacuum. Therefore, tachyons are un-

wanted states; they make the theory look extremely problematic as it is not

in toto stable.

• For the first excited states there is one left- and one right-moving oscillator
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mode such that, |Ωi j〉 = αi
−1α̃

j
−1 |0; kµ〉1. This is a tensor product between two

massless vectors, one left- and one right-moving, and the total number of

states is 242 = 576. The first excited states give rise to massless bosonic par-

ticles which fill out the 24 ⊗ 24 representation of the little group S O(24).

This representation is further decomposed into three irreducible represen-

tations and the corresponding particles are associated with a massless field

in spacetime. The irrepresentation which is symmetric in (i, j) transforms

under S O(24) as a massless spin-2 particle; this is the graviton (gµν). The

irrepresentation which is antisymmetric in (i, j) transforms under the little

group as a massless tensor; this is also called a “2-form” (Bµν). Finally, the

trace irrepresentation transforms as a massless scalar, which is the dilaton

(φ).

• Higher excited states are infinite in number and all of them are massive.

Such states give rise to massive bosonic particles which fill the representations

of the S O(25) Lorentz group.

So far, it has been made clear that both methods utilised to quantise the string

have their advantages and disadvantages. Covariant quantisation ensures that the

theory is manifestly Lorentz invariant. However, it is difficult to identify the phys-

ical states and it allows negative norm states in the mass spectrum of the theory.

On the other hand, lightcone quantisation ensures that the mass spectrum of the

theory has no unphysical states and is relatively easy to identify the physical states.

The drawback of this method is that the theory is no longer manifestly Lorentz in-

variant. The third method of quantisation meets both of the previous methods

halfway. BRST quantisation is manifestly Lorentz invariant and it is relatively easy

to identify the physical states, but there are also unphysical ones that must be

eliminated.

1The hat is dropped on this notation for a matter of convenience.
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C.3 BRST quantisation

Revisiting the Polyakov action in Eq. (3.2.5), it has already been mentioned that

besides the global and local gauge symmetries it is also invariant under another

symmetry which is characterised by conformal transformations, i.e.

δhαβ = Dα ξβ + Dβ ξα + 2ω hαβ (C.3.1a)

δXµ = ξα∂αXµ , (C.3.1b)

with ξα and ω being bosonic parameters. In BRST quantisation there are a number

of steps that one must follow, as listed below:

1. Firstly, it is necessary to introduce fermionic ghost fields cα, β and cω that

correspond to each of the bosonic parameters respectively.

2. Secondly, one introduces gauge fixing terms FA(ΦI), two for the bosonic pa-

rameters ξα, β and one for the bosonic parameter ω. The gauge fixing terms

are Fαβ = hαβ − δαβ, where δαβ is the two-dimensional Euclidean metric.

3. Thirdly, one includes an anti-ghost field bαβ and an auxiliary field Bαβ for

each of the gauge fixing terms Fαβ.

4. The fourth step requires a modification of the Polyakov action, adding two

terms: the gauge-fixing action S 2 and the ghost action S 3 which are given by

S 2 =

∫
dτ dσ

√
h [−iBαβ(hαβ − δαβ)] (C.3.2a)

S 3 =

∫
dτ dσ bαβ (Dαcβ + Dβcα + 2cωhαβ) . (C.3.2b)

5. Finally, the last step is the quantisation itself. This is realised through the

definition of the partition function

Z =

∫
DXµDhαβDBαβDbαβDcαDcω e−(S P+S 2+S 3) , (C.3.3)
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which describes a bosonic string propagating in a twenty-six-dimensional

background spacetime.

The overall action S P + S 2 + S 3 in the partition function has a global symmetry,

known as BRST. This symmetry is defined by the following set of transformations:

δBhαβ = −iκ (Dα ξβ + Dβ ξα + 2ω hαβ), δBXµ = −iκ (cα∂αXµ)

δBcα = −iκ (cβ∂βcα), δBcω = −iκ (cα∂αcω)

δBbαβ = κ Bαβ, δBBαβ = 0 ; (C.3.4)

where κ is an arbitrary global parameter with the same statistics as the ghost fields

cα. The partition function is linear in both the ghost field cω and the auxiliary field

Bαβ, hence both fields can be integrated out. Integrating out the ghost fields intro-

duces a Dirac δ-function which removes the trace of the anti-ghost field bαβ. Inte-

grating out the auxiliary fields introduces another Dirac δ-function which causes

the dynamical metric hαβ to be flat, i.e. hαβ = δαβ. Taking these into account and

realising that the worldsheet now becomes Euclidean, i.e. Dα 7→ ∂α, the partition

function simplifies to

Z =

∫
DXµDbαβDcα e−S ′ ; (C.3.5)

S ′ =

∫
dτdσ

[
1

4πα′
∂αXµ∂αXµ + bαβ(∂αcβ + ∂βcα)

]
. (C.3.6)

Due to the worldsheet being Euclidean there is the benefit of Xµ(τ, σ) 7→ Xµ(z, z̄)

and hence the partition function can be mapped to the complex plane

Z =

∫
DXDbDc e−S ′′ ; (C.3.7)

S ′′ =
1

2πα′

∫
dz dz̄ (∂zXµ∂z̄Xµ) +

1
2π

∫
dz dz̄ (bzz ∂z̄cz + bzz ∂zcz̄) . (C.3.8)

The mapping to the complex plane gauge fixes the BRST transformations of Eq. (C.3.4)

so that the action in Eq. (C.3.8) remains invariant. The gauge fixed transforma-
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tions are given by

δBcz = −iκ (cz ∂zcz), δBcz̄ = −iκ (cz̄ ∂z̄cz̄)

δBbzz = −iκ TS−E, δBbzz = −iκ T̄S−E

δBXµ = −iκ (cz ∂zXµ + cz̄ ∂z̄Xµ) , (C.3.9)

where TS−E is the stress-energy tensor of the theory. It is given by the sum of both

the matter and ghost contributions from the action in Eq. (C.3.8):

TS−E = T M + T gh ;

T M = −
1
α′

(∂zX)2 and T gh = −2 : bzz ∂zcz : + : cz∂zbzz : . (C.3.10)

For the derivation of the mass spectrum of the BRST theory, there is a different

procedure to be followed than the other two quantisation methods. This stems

from the fact that the BRST theory is basically split into two parts, one part that

includes the matter fields and another part that includes the ghost fields. The

vacuum of the theory, |0〉T is the tensor product of the matter vacuum and the

ghost vacuum. However, the ghost vacuum is split into two states, | ↑〉 and | ↓〉 that

satisfy

b0 | ↑〉 = | ↓〉 , c0 | ↑〉 = 0

b0 | ↓〉 = 0 , c0 | ↓〉 = | ↑〉

bn, cn | ↑〉 = 0 , bn, cn | ↓〉 = 0 ∀ n ≥ 1 . (C.3.11a)

It is evident that due to the zero modes, the vacuum state of ghost fields is doubly

degenerate. However, only one of the two states is necessary for the formation of

the BRST vacuum state which is defined as |0〉T = |0〉 ⊗ | ↓〉 [126]. The physical

states are obtained by acting on the vacuum with the BRST charge operator QB:

QB =
∑

m

(LX
−m − δm, 0)cm −

∑
m,n

(m − n) : c−m · c−n · bm+n : , (C.3.12)
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QB |0〉T = [(LX
0 − 1) |0〉] [c0| ↓〉] +

∑
m>0

[LX
m |0〉] [c−m | ↓〉] , (C.3.13)

with LX
m being the Virasoro operators obtained from the matter fields. If the QB

annihilates the vacuum then (LX
0 − 1) |0〉 = LX

m |0〉 = 0. This condition results in the

existence of tachyons in the theory. The full mass spectrum of the BRST theory

can be found in Ref. [107] but it should be noted that it is in agreement with the

mass spectrum obtained from the previous two methods of quantisation.
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Theta-function notation and

partition function conventions

The basic η function is defined as

η(τ) ≡ q1/24
∞∏

n=1

(1 − qn) =

∞∑
n=−∞

(−1)n q3(n−1/6)2/2 , (D.0.1)

and the ϑ functions are defined as

ϑ1(τ) ≡ −i
∞∑

n=−∞

(−1)nq(n+1/2)2/2

ϑ2(τ) ≡ 2q1/8
∞∏

n=1

(1 + qn)2(1 − qn) =

∞∑
n=−∞

q(n+1/2)2/2

ϑ3(τ) ≡
∞∏

n=1

(1 + qn−1/2)2(1 − qn) =

∞∑
n=−∞

qn2/2

ϑ4(τ) ≡
∞∏

n=1

(1 − qn−1/2)2(1 − qn) =

∞∑
n=−∞

(−1)nqn2/2 . (D.0.2)

Here q ≡ exp(2πiτ), with τ1,2 denoting Re τ and Im τ respectively. These functions

satisfy the identities

ϑ3
4 = ϑ2

4 + ϑ4
4 (D.0.3a)

ϑ2ϑ3ϑ4 = 2η3 . (D.0.3b)
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Note that ϑ1(q) has a vanishing q-expansion and is modular invariant; the coeffi-

cient of its infinite-product representation vanishes and is thus omitted. Nonethe-

less, this function needs to be taken into consideration because within string parti-

tion functions it can often play a role when determining the chirality of fermionic

states, as discussed below.

In order to simplify and unify the notation, and also in order to be able to han-

dle more complicated systems, it is more efficient to introduce several generalisa-

tions of these functions. First, the more general theta-function of two arguments

is defined as follows:

ϑ(z, τ) ≡
∞∑

n=−∞

ξn qn2/2

= q−1/24 η(τ)
∞∏

m=1

(1 + ξqm−1/2) (1 + ξ−1qm−1/2) , (D.0.4)

where ξ ≡ e2π i z. Similarly, the ϑ-functions with characteristics are defined as

ϑ
[

a
b

]
(z, τ) ≡

∞∑
n=−∞

e2π i (n+a)(z+b) q(n+a)2/2

= e2π i ab ξa qa2/2 ϑ(z + aτ + b, τ) ; (D.0.5)

of course these latter functions have a certain redundancy, depending only on z+b

rather than z and b separately. For a, b ∈ {0, 1/2}, a common “shorthand” for these

functions is given by

ϑ00 ≡ ϑ
[
0
0

]
= ϑ3 ϑ10 ≡ ϑ

[
1/2
0

]
= ϑ2

ϑ01 ≡ ϑ
[

0
1/2

]
= ϑ4 ϑ11 ≡ ϑ

[
1/2
1/2

]
= −ϑ1 . (D.0.6)

Note that there are no restrictions on the (z, τ) arguments. Hence the expressions

in Eq. (D.0.6) implicitly define two-argument Jacobi functions ϑi(z, τ) for i, . . . , 4.
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In general, the functions in Eq.(D.0.5) have modular transformations

ϑ
[

a
b

]
(z,−τ−1) =

√
−i τ e2π i abei πτz2ϑ

[
−b
a

]
(−zτ, τ) ,

ϑ
[

a
b

]
(z, τ + 1) = e−i π(a2+a)ϑ

[
a

a + b + 1/2

]
(z, τ) . (D.0.7)

Moreover, in the τ2 � 1 (or |q| � 1) limit, these functions have the leading be-

haviours

η(τ) ∼ q1/24 + . . .

ϑ00(0|τ) ∼ 1 + 2q1/2 + . . .

ϑ01(0|τ) ∼ 1 − 2q1/2 + . . .

ϑ10(0|τ) ∼ 2q1/8 + . . .

ϑ11(0|τ) = 0 . (D.0.8)

Worldsheet bosons and fermions give rise to partition-function contributions which

can be expressed in terms of these functions. For those worldsheet bosons which

are spacetime coordinates (which is always the case for the string constructions

presented in this work), the partition-function contributions also depend on the

spacetime compactification metric. In general, a single complex extra dimension

has a metric which is conventionally parametrized as

Gi j =
T2

U2

 1 U1

U1 |U |2

 ; Bi j =

 0 −T1

T1 0

 , (D.0.9)

where T ≡ T1 + iT2 and U ≡ U1 + iU2. In this study, the compactification metrics

used are all diagonal, i.e. metrics with T1 = U1 = 0. For U1 = 0, the corresponding

Poisson resummed partition function for the compactified complex boson is given

by

ZB

[
0
0

]
(τ) =M2 T2

τ2|η(τ)|4
∑
,`

exp
{
−
π

τ2

T2

U2
|`1 + 1τ|

2 −
π

τ2
T2U2|`2 + 2τ|

2
}
. (D.0.10)
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From this, it is straightforward to identify R1 =

√
T2U−12 and R2 =

√
T2U2. Con-

versely, T2 = R1R2 is a volume modulus while U2 = R2R−11 is a complex-structure

modulus. By contrast, the contribution to the total partition function from a sin-

gle complex fermion with worldsheet boundary conditions v ≡ αV i and u ≡ βVi is

given by

Zv
u = Tr

[
qĤve−2π i uN̂v

]
= q

1
2 (v2− 1

12 )
∞∏

n=1

(1 + e2π i (vτ−u)qn− 1
2 )(1 + e−2π i (vτ−u)qn− 1

2 )

= e2π i uv 1
η(τ)

ϑ
[

v
−u

]
(0, τ) . (D.0.11)
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Breaking of supersymmetry by

discrete torsion

In Chapter 6, it is stated that the choice of structure constants ki j that define a the-

ory is of great importance. Indeed, in the free fermionic formulation, a “wrong”

choice of structure constants can result in the breaking of spacetime SUSY. This

occurs when some combination of boundary condition phases not overlapping the

gravitinos depend on these structure constants, and the end result is that the grav-

itinos are projected from the physical spectrum of the theory. The breaking of

SUSY via this option is called discrete torsion.

To see this, the first thing to note is that in 4D anyN = 1 model in the fermionic

formulation can be written without loss of generality in terms of the following

vectors:

V0 = −
1
2
[
1 (111)3 | (1)22

]
V1 = −

1
2
[
1 (100)3 | (0)22

]
Vi≥2 = . . . (E.0.1)

This basis is always possible because the V0 vector must always be present for

modular invariance, and because there must be gravitinos in the supersymmetric

model. The sector in which these appear can be taken to define the V1 sector.

In addition, there is the assumption that the right-movers have only 0 and − 1
2
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boundary conditions. Therefore, since the lowest possible vacuum energy on the

right-moving side is − 1
2 , a tachyon can appear only if there are no right-moving NS

excitations.

The V0,1 projections on the gravitinos are determined by

V0 · N +
1
4

(1 − Γ) = k01 +
1
2
− V0 · V1 mod (1)

V1 · N +
1
4

(1 − Γ) = k11 +
1
2
− V1 · V1 mod (1) , (E.0.2)

where Γ = ΓV1 = ΓV0 are the chirality projections when the vectors overlap with

the R states; for the gravitinos they are necessarily degenerate. By inspection, the

massless gravitinos have no excitations, thus V0 · N = V1 · N = 0. These equations

are compatible if and only if k01 + k11 = 0 mod (1), which must be true since k10 +

k01 = k11 + k10 = 0 by the relations in Eq. (4.1.7). However, an incompatibility for

these states can occur if there is an additional vector (or combination of vectors)

that does not overlap with V1. This is because if there was an overlap, then any

projection would simply fix the definition of chirality in a subset of the spinors.

To be more explicit, this additional vector VX is defined as

VX · N = kX1 mod (1) . (E.0.3)

This leads to a general conclusion: If kX1 = 1
2 then the gravitinos are projected out

and spacetime SUSY is broken. By contrast, if there is a combination of vectors that

did not overlap with V1, then it would be the corresponding linear combination of

ki1 that would have to sum to 1
2 in order to achieve spacetime SUSY breaking.

Moreover, a VX completely overlapping with V1 could also be incompatible, but

this is again equivalent to a new vector VX → VX + V0 that has no overlap with

V1. Given this, one can then prove the following: tachyons can be present in the

resulting non-supersymmetric model only if there are sectors including VX that have

negative vacuum energy.

Proof: To see this, it is assumed that there exists a would-be tachyonic sector αV in

the theory. Normally, this would be just the NS-NS sector; however, it could also
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involve a linear combination of other Vi sectors. In the supersymmetric theory,

these states are absent as they are projected out by the V1 sector which is the

supersymmetric generator in the theory. Hence tachyons are absent if and only if

∑
i ∈V1 =R

1
4

(
1 − Γi

)
, αik1i +

1
2
− V1 · αV ∀ Γ mod (1) . (E.0.4)

Note that kX1 ≡ k1X appears in this equation only if αX , 0. Thus, in sectors

without VX, the generalised GSO projections of the gravitinos are independent of

the projections of the tachyons. Since the supersymmetric theory is tachyon-free,

it follows that the theories with discrete torsion which have the “wrong” choice of

kX1 also have no tachyons in these sectors, and are thus also tachyon-free.

It remains to consider sectors that do contain VX, such as VX + α̂V. The overlap

of VX with V1 is zero, so the left side of Eq. (E.0.4) is the same as it is for the sector

α̂V. Likewise the right side of this equation is k1X + α̂ik1i + 1
2 − V1 · α̂V, which differs

only by k1X from the version without VX. Therefore, since there are no tachyons

in any α̂V sector without VX, the “wrong” choice kX1 = 1
2 may be consistent with

tachyons in any sector that does contain VX, provided there is negative vacuum

energy (on both left and right moving sides). �

In general, it is not difficult to exploit these observations in order to generate

non-supersymmetric string models whose tree-level spectra are tachyon-free. A

particularly large collection of such models is presented and analysed in Refs. [30,

43].
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