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Abstract 

Title 

Heart failure: re-evaluating causes and definitions and the value of routine cardiac 

magnetic resonance (CMR) imaging. 

Objective 

To differentiate the demographics and imaging characteristics of a heart failure 

population using a comprehensive echocardiographic protocol and routine CMR 

imaging, and to assess the clinical value of routine CMR in this population.  

Methods 

A novel comprehensive diagnostic pathway for heart failure was prospectively applied to 

319 new patients attending the Darlington and Bishop Auckland heart failure clinic 

between May 2013 and July 2014.  All had a full clinical assessment and an initial basic 

clinical transthoracic echo performed.  Those patients given a diagnosis of heart failure 

went on to have routine CMR imaging as well as a more detailed echo scan incorporating 

a variety of systolic and diastolic measurements.   

Retrospectively, a cohort of 116 patients with left ventricular systolic impairment, that 

had both CMR and invasive coronary angiography, were analysed to determine the 

ability of late gadolinium enhancement (LGE) CMR to predict prognostic coronary artery 

disease. 

Main results 

1. Heart failure with reduced ejection fraction (HFREF) accounted for the cause of heart 

failure in 73% of cases whereas heart failure with preserved ejection fraction (HFPEF) 

accounted for only 14% of cases.   

2. Incorporating CMR into the routine assessment of newly diagnosed heart failure 

patients changed the diagnosis in 22% of cases (14% of cases for those who had an 

echo performed on the same day).   

3. CMR left ventricular ejection fraction (LVEF) averages 3.9% units higher than 

Simpson’s Biplane LVEF with echo.  

4. Regional wall motion score (RWMS) equations were inferior to a Simpson’s Biplane 

assessment of LVEF by echo and cannot be advocated for routine clinical use.  
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5. The presence of subendocardial LGE on CMR demonstrated infarcts in 42% of those 

with HFREF, 20% of those with HFPEF, and 40% of those with heart failure with no major 

structural disease (HFNMSD).  

6. The absence of subendocardial LGE excluded prognostic coronary disease in 100% 

of cases. 

7. LGE in a non subendocardial distribution was prevalent in both the HFREF and 

HFPEF community with a greater average burden in the HFPEF group. 

8. E/e’ and left atrial volume index (LAVI) were the most helpful echo measures for a 

positive diagnosis of HFPEF and could be measured in over 90% of cases. 

9. Systolic dysfunction out with reduced ejection fraction is present in 76% of the HFPEF 

cohort.   

Conclusion  

Heart failure with preserved ejection fraction (HFPEF) is not the epidemic previous 

literature would have us believe.  It is over-diagnosed in current practice due to lax 

definitions and inappropriately low left ventricular ejection fraction (LVEF) cut-offs.  

CMR has a substantial impact on the diagnostic profile of the heart failure population.  It 

revokes the diagnosis of HFREF to a greater extent than is accounted for by the temporal 

improvement in LVEF, even when taking into account method specific LVEF thresholds.  

CMR with LGE has additive value for identifying infarcts in a sizeable number of patients 

for whom there is no suspicion of ischaemic heart disease (IHD), and raising the novel 

concept that ischaemia may account for symptoms in many of those with HFNMSD.  It 

also demonstrates an impressive ability to exclude prognostic coronary disease.  

Additionally, LGE in a non subendocardial distribution establishes aetiology including 

myocarditis and sarcoidosis that would not be detected with echo alone.   

The diagnosis of heart failure with preserved ejection fraction is not standardised and all 

current protocols are deficient.  The cause and mechanism of this condition remains 

unclear and this study helped clarify the contribution of systolic versus diastolic 

dysfunction versus simply the presence of atrial fibrillation.  Key diagnostic parameters 

were identified for routine clinical use and CMR LGE imaging demonstrating a greater 

average burden of non subendocardial LGE may support the postulated fibrotic 

infiltrative mechanism of pathology in this group. 
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Introduction 

Heart failure has been studied in western civilisation ever since the works of Hippocrates 

in ancient Greece and continues to be readily studied worldwide.  It is a common 

diagnosis affecting more than 1% of people in the UK, and one which has a profound 

impact on National Health Service (NHS) resources.  It remains in the top 10 diagnoses 

for use of hospital bed days in the NHS.  Mortality rates are high with 9.4% of patients 

dying during their admission and over 30% dying within a year of discharge (1, 2).   

The differing strategies to identify and classify heart failure through the ages demonstrate 

the changes in our understanding of heart failure.  This ranges from a purely clinical 

description to abnormal haemodynamics; structural cardiac pathology; biochemical 

abnormalities; and genetic identification (3).  All of the various diagnostic approaches 

provide useful insights into the syndrome of heart failure but each has its own set of 

limitations.  In the recent past, the emphasis has been to identify simplified, specific 

measures (that can be easily obtained and reproduced) to act as the overriding 

component in a diagnosis of heart failure.   The introduction of routine transthoracic 

echocardiography and measurement of left ventricular ejection fraction (LVEF) is a prime 

example of this.  However, such strategies are an oversimplification of the problem.   

Although reduced left ventricular ejection fraction (LVEF) has been embraced as the key 

feature to support a diagnosis of heart failure, over 40% of patients diagnosed with heart 

failure clinically have normal or near normal ejection fractions (4).  Indeed elevated 

plasma brain natriuretic peptide (BNP) or N-terminal pro-hormone of brain natriuretic 

peptide (NT-pro BNP) that are secreted in response to cardiac stretch and strain 

regularly add weight to the suggestion of cardiac dysfunction in such cases (5-7).  This 

means that a substantial number of patients labelled with heart failure either have a 

cause other than reduced ejection fraction for their symptoms or the echo scan is unable 

to detect the reduced ejection fraction in a number of cases.   

Heart failure with preserved ejection fraction (HFPEF) has been officially recognised over 

the last decade and is generally thought to be due to diastolic dysfunction of the left 

ventricle demonstrated by elevated filling pressures, abnormal relaxation and increased 

chamber stiffness.  Formal diagnostic parameters for HFPEF have been suggested by 

way of various echocardiographic measures in association with symptoms and signs but 

these are complex and a confirmed diagnostic strategy for HFPEF continues to be 

debated (8-10).  There also continues to be debate surrounding the interplay of HFPEF 

and heart failure with reduced ejection fraction (HFREF), and whether or not HFPEF 

represents a distinct entity from that of HFREF (11, 12).  Mortality rates in HFPEF are 

debated and as of yet, there are no evidence based treatments for HFPEF.  However, 
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this is unsurprising for a disease where the name eludes to the lack of a problem 

(preserved ejection fraction) for its diagnosis rather than establishing a tangible 

disturbance of cardiac function, and should help to discredit the theory that reduced 

ejection fraction is of paramount significance when determining cardiac dysfunction. 

There is also a sizeable group of patients that present to heart failure services with 

symptoms suggestive of heart failure but no major structural heart disease on routine 

imaging.  Currently they tend to be reassured and discharged from clinical care, but 

recent work suggests that this group should be a cause for concern with high rates of 

early mortality (13).  Often these patients have elevated BNP levels (14).  Generally they 

are elderly with multiple co-morbidities and cannot be readily compartmentalised.  They 

form a group that has been poorly studied before and a unifying diagnosis for their 

symptoms and elevated biomarker remains elusive.   

The advent of echocardiography was a major step forward in the understanding of heart 

failure and allowed an assessment of heart structure and function through the use of 

ultrasound.  It is an ever-expanding and complex field that can offer a wealth of 

information about cardiac structure and function.  The daily practical reality is that scans 

are limited by time constraints and tend to be used primarily to identify serious valve 

disease, measure the left ventricle size and ejection fraction as a measure of left 

ventricular systolic performance, and perform limited measures of left ventricular diastolic 

function.  It also has shortcomings in that various patient factors often result in sub-

optimal image quality and poor endocardial definition limits reliable chamber volumes 

and ejection fractions (15-17).  Echo is also unable to provide tissue characterisation to 

differentiate ischaemic from non-ischaemic cardiomyopathy.   

Cardiac Magnetic Resonance (CMR) is the gold standard method for measuring left and 

right ventricular volumes and myocardial mass and is particularly validated in systolic 

dysfunction (18).   Additional information about myocardial ischaemia, infarction, 

inflammation and infiltration can be achieved by incorporating the use of gadolinium 

contrast agent and observing the pattern of myocardial uptake (19).  Velocity encoded 

mapping can determine blood flow velocities through valves and other structures (20-

23), and tissue phase mapping or tagging can be used to quantify myocardial movement 

during the cardiac cycle.   

Currently the use of CMR is generally restricted to specialist centres and performed on 

a case-by-case basis with a specific question in mind.  The clinical impact of routine CMR 

has only been studied in well-defined subgroups.  Focused studies suggest that routine 

CMR has a significant impact on clinical management post myocardial infarction (24), in 

cases of left bundle branch block (25) or, in a HFREF population to determine the 
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likelihood of significant coronary artery disease (19, 26-29). Whilst a heart failure clinic 

CMR service is achievable (30), there is a paucity of observational data, or CMR 

demographics, for a generic group of heart failure patients that incorporates those with 

HFPEF and heart failure without major structural heart disease. 

Incorporating routine CMR alongside comprehensive echocardiography into the initial 

screening of patients with heart failure could provide clinically important information to 

complement echocardiography findings.  Epidemiological information provided by CMR 

may support or refute the current presumed spectrum of pathology in the heart failure 

population.  CMR could alter diagnosis by reclassifying LVEF and left ventricular (LV) 

size in an individual.  It could differentiate the underlying cause of heart failure by way of 

late enhancement, particularly in the HFREF population.  This would also apply to those 

with heart failure with preserved ejection fraction or no major structural disease, although 

simply the presence or absence of late enhancement in these groups would be of 

interest.  CMR should help to clarify some already accepted measures of diastolic 

dysfunction to aid diagnosis in unclear groups.  Alternatively, CMR may demonstrate 

novel imaging findings that help to describe heart failure by way of new defining criteria.  

Heart failure is a heterogeneous disorder and much more difficult to characterise than 

symptoms, isolated echo parameters (such as LVEF), or biomarkers alone would initially 

lead us to believe.  It is time for a paradigm shift in our approach to the diagnosis of heart 

failure to one that incorporates a multifaceted assessment of cardiac anatomy and 

function in daily practice.  Simply defining the composition of a new heart failure clinic 

population incorporating CMR would be of interest.  Thereafter subgroup analysis will be 

informative, with perhaps the most novel insight from the HFPEF and non-

compartmentalised groups that have been little investigated before.  
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Research question  

What are the demographics and imaging characteristics of a heart failure population 

using a comprehensive echocardiography protocol and routine CMR imaging?  Does 

routine CMR allow better understanding and differentiation of the heart failure 

population?  

Hypothesis  

An enhanced clinical pathway providing detailed assessment and database collection of 

demographics and imaging characteristics of patients presenting with heart failure will 

provide better understanding of the causes and definition of heart failure.  Incorporating 

routine CMR imaging will result in a better understanding of the spectrum of pathology 

in the heart failure population, with a novel insight into those patients currently described 

as heart failure with a preserved ejection fraction (HFPEF) or heart failure with no major 

structural heart disease in particular.  This will help to differentiate the underlying 

aetiology of heart failure and compartmentalise heart failure into subgroups that may 

differ from those currently used. 
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Rationale for the research: A résumé of the literature  

Chapter 1 

Heart Failure Epidemiology 

Heart failure is a common diagnosis affecting more than 1% of people in the UK, and 

one which has a profound impact on NHS resources.  It remains in the top 10 diagnoses 

for use of hospital bed days in the NHS with a mean length of stay of 11 days.  Mortality 

rates are high with 9.4% of patients dying during their admission, 14.9% dying either in 

hospital or in the month following discharge, and over 30% dying within a year of 

discharge (1, 2).  Heart failure is predominantly a disease of old age with the mean age 

of 77 years at the time of first hospital admission.  In an ever aging British population, 

with increasingly sophisticated and successful percutaneous and medical interventions, 

allowing people to survive longer with significant coronary artery disease, the impact of 

this condition on society is set to increase. 

Heart Failure: Difficulties defining and diagnosing a multifaceted disease  

Heart failure is heavily researched worldwide, and has been studied in western 

civilisation ever since the works of Hippocrates in ancient Greece.  However, because of 

the heterogeneous nature of this disorder the definition of heart failure remains vague.   

The clinical presentation of this condition is varied, ranging from acute pulmonary 

congestion to chronic peripheral oedema.  The underlying causes are also varied, and 

the same clinical presentation can result from a diverse range of structural and 

physiological changes, some of which occur in isolation and some of which occur in 

synchrony.  Determining which of these changes is most relevant to precipitating a 

clinical picture of heart failure is sometimes simple but at other times can be a major 

challenge.  Thereafter, compartmentalising these changes into discrete readily 

identifiable conditions is fraught with difficulty, and indeed may even be impossible. 

Expert synopsis of the differing strategies to identify and classify heart failure through 

the ages demonstrates the changes in our understanding and interpretation of heart 

failure ranging from a purely clinical description to abnormal haemodynamics; structural 

cardiac pathology; biochemical abnormalities; and genetic identification (3). 

In current practice, a diagnosis of heart failure generally combines a clinical interpretation 

of the patient’s history and examination, in association with natriuretic biomarkers, an 

electrocardiogram, chest X-ray and trans-thoracic echocardiogram (TTE).  However, 

differentiation is hampered by varying diagnostic parameters, confounding non-cardiac 
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pathology, the presence of multiple cardiac abnormalities, and limitations of routine 

imaging.   

The European Society of Cardiology (ESC) 2012 definition is wide reaching and defines 

heart failure “clinically, as a syndrome in which patients have typical symptoms (e.g. 

breathlessness, ankle swelling, and fatigue) and signs (e.g. elevated jugular venous 

pressure, pulmonary crackles, and displaced apex beat) resulting from an abnormality 

of cardiac structure or function” (31).  The specific abnormality of cardiac structure or 

function is not characterised and the method to identify this abnormality does not form 

part of the definition.  Indeed, they highlight that in view of the difficulty grading the 

evidence for diagnostic tests all diagnostic investigations represent an evidence level of 

“C”, meaning that the evidence reflects only consensus of opinion of the experts and/or 

small studies, retrospective studies, or registries.  

Heart Failure by this definition could thus incorporate a broad spectrum of abnormalities 

ranging from intrinsic left ventricular dysfunction to right ventricular dysfunction, primary 

valve disease, pericardial disease, various congenital heart diseases, and a variety of 

cardiac conduction abnormalities. 

Whilst accepting the same broad range of causes of heart failure above, most clinicians 

tend to concentrate on impairment of ventricular function as the focus of the definition.  

Those with specific valvular or conduction abnormality are labelled primarily as such and 

a diagnosis of heart failure per se may not be given.  This may even apply if a ventricle 

is frankly failing in the context of the severe valve disease.  Equally, it is not uncommon 

for an individual to be labelled as having heart failure following imaging that suggests a 

degree of left ventricular impairment but in the absence of any clinical symptoms or signs 

of heart failure (32). 

It should always be borne in mind that such diversity in diagnostic frameworks, and 

clinical interpretation of these diagnostic frameworks, has implications for the meaning 

and reproducibility of statistics collected and categorized under the heading of “heart 

failure”.   

Defining heart failure by left ventricular ejection fraction (LVEF)  

Measuring LVEF 

LVEF is the percentage of the LV diastolic volume that is ejected through the aortic valve 

and into the circulation during LV contraction or systole.  It is calculated using the 

equation below, with percent (%) for units. 

LVEF = (LVEDV-LVESV)/LVEDV  
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LVEF = (LV end-diastolic volume – LV end-systolic volume) /LV end-diastolic volume  

Until recently LVEF was determined by echo using a single M-Mode cross-section 

through the base of the heart and extrapolating the fractional shortening into an ejection 

fraction.  However, this extrapolation of a single cross-sectional measurement into a 3D 

structure made this technique highly inaccurate.  Over the last 5-10 years a method 

called Simpson’s Biplane Method of Disks has been labelled as the gold standard for 2 

dimensional (2D) echo assessment of LVEF (33, 34).  This requires an apical four- and 

two-chamber view from which the endocardial border is outlined in end-diastole and end-

systole.  However, accurate measurements are frequently hampered by poor 

endocardial definition (detailed below).  3 dimensional (3D) echo improves the precision 

of these measurements (35-37)   but is rarely used for routine clinical scans.  Cardiac 

computerised tomography (CT) assessment of LVEF may be more accurate than 2D or 

3D transthoracic echo and invasive cine ventriculography (38).  In this regard, CMR is 

generally accepted as the gold standard modality for measurement of LV volumes and 

LVEF when using the multi slice disk summation method (15, 39).  This is because of 

the ability of CMR to image the LV in multiple planes and provide clear endocardial 

definition with excellent inter and intra observer variability. 

Causes of reduced LVEF and varying underlying aetiology 

LVEF is reduced when the ejected stroke volume is reduced relative to the LV end-

diastolic volume.  This is most commonly due to impaired contractility, be that by either 

a global reduction in contractility of the LV, or due to regional wall motion abnormalities 

(RWMAs).  The leading cause of RWMAs is coronary artery disease.  A global reduction 

in contractility is generally seen in a dilated cardiomyopathy for which there are many 

causes including idiopathic, hypertension, alcohol related, infective, various genetic 

disorders, tachycardia induced, hormone related and vitamin and mineral deficiencies to 

name a few.  LBBB tends to cause a dyssynchrony of septal LV wall motion but often 

occurs in dilated ventricles where there is also a global disruption to contractile function 

and so probably spans both groups.  Often in patients with contractile dysfunction the LV 

attempts to maintain stroke volume by dilating and increasing the end-diastolic volume.  

The heart ejects a smaller fraction of a larger volume.  Generally, the more severe the 

systolic dysfunction the lower the ejection fraction and the larger the end-diastolic and 

end-systolic volumes.  

Whilst dilated ventricles often have reduced ejection fractions, this reduction in ejection 

fraction may still result in a better cardiac output than a smaller ventricle with the same 

ejection fraction.  It is an increasingly recognised phenomenon that small hypertrophied 

ventricles may provide sub-optimal stroke volumes and cardiac outputs, particularly on 
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exertion, despite a reassuringly normal LVEF.  As discussed above, a reduced ejection 

fraction does not help to define the underlying aetiology.  A reduced ejection fraction in 

a globally dilated and impaired ventricle often represents a totally different underlying 

aetiology and disease process from a reduced ejection fraction in a normal sized or mildly 

dilated ventricle with RWMAs.  This is not apparent by interpreting the ejection fraction 

alone.   

LVEF as trial entry criteria 

Despite the limitations of obtaining accurate ejection fractions by echo this measurement 

was felt to be a readily understandable quantitative representation of LV systolic function 

and became almost universally reported in echo studies.  When the prognostic 

importance of reduced LVEF was established, the term was embraced as the key 

imaging feature to support a diagnosis of heart failure (40, 41).  This was further enforced 

by clinical trials insisting upon a reduced ejection fraction as the main entry criterion at a 

time when randomised clinical trials were becoming established in cardiology (Figure 1) 

(42-66).     
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Figure 1. LVEF entry requirements in major cardiology trials 

Cardiology 
Trial 

Date  Treatment 
added 

LVEF 
entry 

criteria 

Trial outcome 

SOLVD-T 1991 Enalapril vs 
placebo for HF  

≤35% Mortality reduction 
(ARR 4.5%)  

ATLAS 1999 High vs low 
dose lisinopril 

for HF 

≤30% Reduced death or HF 
hospitalisation at high dose 

(RRR 12%) 

SAVE 1992 Captopril vs 
placebo post 

MI 

≤40% Mortality reduction 
(RRR 19%) 

TRACE 1995 Trandolapril vs 
placebo post 

MI 

≤35% Mortality reduction 
(RRR 22%) 

Val-HeFT 2001 Valsartan vs 
placebo in HF 
patients taking 

ace-i 

<40% Reduced HF hospitalisation 
(RRR 24%) 

CHARM-Added 2003 Candesartan 
added to ace-i 
+/- BB for HF 

≤40% Reduced HF hospitalisation 
(RRR 17%) 

VALIANT 2003 Valsartan vs 
captopril post 

MI 

≤35% Valsartan non-inferior with 
respect to mortality  

MDC 1993 Metoprolol vs 
placebo for 

DCM 

<40% Improved symptoms, cardiac 
function, and need for 

transplant. No effect on all 
cause mortality. 

CIBIS II 1999 Bisoprolol vs 
placebo for HF 

<35% Reduced mortality 
(ARR 5.5%) 

MERIT-HF 1999 Metoprolol vs 
placebo for HF 

≤40% Reduced mortality 
(ARR 3.8%) 

COPERNICUS 2002 Carvedilol vs 
placebo for HF 

<25% Reduced mortality 
(ARR 7.1%) 

COMET 2003 Carvedilol vs 
metoprolol for 

HF 

<35% Reduced mortality with 
carvedilol 

(ARR 5.7%) 

RALES 1999 Spironolactone 
vs placebo 

≤35% Reduced mortality 
(ARR 11.4%) 

EPHESUS 2003 Eplerenone vs 
placebo post 

MI 

≤40% Reduced mortality 
(RRR 15%) 

EMPHASIS-HF 2011 Eplerenone vs 
placebo for HF 

≤30% 
≤35%  if 

QRS 
>130ms 

Reduced mortality 
(ARR 3%) 

DIG 1997 Digoxin vs 
placebo for HF 

≤45% Reduced HF hospitalisations 
(ARR 7.9%) 

SHIFT 2010 Ivabradine vs 
placebo for HF 

≤35%   Cardiovascular death or HF 
hospitalization 



26 
 

(ARR 4.2%) 

CORONA 2007 Rosuvastatin 
vs placebo for 
HF due to IHD 

≤40% or 
HF 

admission 

No difference in combined 
endpoint 

PARADIGM-HF 2014 LCZ696 vs 
enalapril for 

HF 

≤35-40%   Reduced mortality 
(ARR 2.8%) 

MADIT II 2002 ICD vs 
conventional 

treatment post 
MI > 40 days 

≤30% Reduced mortality 
(ARR 5.6%) 

COMPANION 2004 CRT-D vs CRT 
for HF and 

QRS >120ms 

≤35% Reduced mortality and 
hospital admission for HF 

(RRR in death of 24% with a 
CRT-P, 36% with CRT-D) 

CARE-HF 2005 CRT vs OMT 
for HF and 

QRS >120ms 

≤35% Reduced mortality  
(ARR 9.7%) 

SCD-HeFT 2005 ICD vs 
amiodarone or 
placebo for HF 

≤35% Reduced mortality with ICD 
(ARR 6.9%) 

MADIT-CRT 2009 CRT-D vs ICD 
for HF and 

QRS >130ms 

≤30% Reduced HF Hospitalisation 
(ARR 8.9%) 

RAFT 2010 CRT-D vs ICD 
for HF and 

QRS >120ms 
or paced 

≤30% Reduced mortality 
(ARR 6%) 

RRR, Relative risk reduction; ARR, Absolute risk reduction; HF, Heart failure; MI, Myocardial infarction; 

DCM, Dilated cardiomyopathy; OMT, Optimal medical therapy; CRT-D, cardiac resynchronisation therapy 

with defibrillator; ICD, Internal cardiac defibrillator.    



27 
 

What is a reduced LVEF? 

These trials did not always agree the same LVEF entry criteria, and whilst those that 

showed treatment benefits tended to have an LVEF <40%, the exact LVEF cut-off varied.  

As such, the boundaries for a clinically relevant diagnosis of “reduced ejection fraction” 

became inconsistent in the medical community.   

What is a normal LVEF? 

Surprisingly, robust data to answer this question only became available in 2014 when 

the NORRE study, specifically designed to develop normal reference ranges for 2D echo 

measures, published its findings from measurements on 734 healthy volunteers (Figure 

2) (67).  This demonstrated a mean Simpson’s Biplane LVEF of 63.9% (2SD range of 

56.5 to 71.7%).  Before this, much of the data supporting the normal Simpson’s Biplane 

LVEF cut-off came from a cross-sectional study of a population where ischaemic heart 

disease, hypertension and alcohol excess was prevalent as opposed to healthy 

volunteers, and found a lower mean LVEF of 47.3% (SD 6.5) (32).  Boundaries for normal 

LVEF were set by the British Society of Echocardiography at ≥55% based upon 

international guidelines that referenced only two studies for their conclusions (34, 68).  

The first of these studies was conducted in 1983 and observed only 52 normal volunteers 

(69).  The second included 206 healthy individuals (a mixture of New York citizens and 

American Indians) but the method of LVEF calculation was not clear (70).  The BSE 

guidelines end with a caveat that “where there are differences between published values, 

or there is a lack of clear evidence, recommended values have been developed on the 

basis of consensus opinion”.  Indeed, even the most recent (2012) ESC heart failure 

guidelines established the normal LVEF as ≥ 50 % according to a raising of hands and 

a general consensus of opinion from the guideline steering committee, rather than 

substantive evidence (as confessed by Professor Alan Fraser at the British 

Cardiovascular Society conference, Manchester 2014).  

Importantly, the NORRE study also demonstrates how mean normal LVEF varies 

significantly with both gender and age so that a single cut-off cannot be universally 

employed.  Consistent with these NORRE study findings, physiological studies have 

shown that in early aging a reduction in LV longitudinal function, alongside improvement 

in LV radial movement brings about an improved LVEF, before a deterioration again in 

very old age when radial function diminishes (71).   
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Figure 2. Age and gender specific normal ranges for echo Biplane LVEF, adapted 

from the NORRE study.  

Age Gender Biplane LVEF% normal range 

(mean ± 2 SD) 

20-40 years  

(n=262) 

Male 53.5-72.3% 

Female 53.9-73.1% 

40-60 years  

(n=341) 

Male 53.2-72.4% 

Female 55.1-74.3% 

>60 years  

(n=131) 

Male 54.4-75.6% 

Female 55.1-75.1% 

 

Heart Failure with Preserved Ejection Fraction (HFPEF) 

The limitations of left ventricular ejection fraction as a way to define heart failure were 

then highlighted by the realisation that over 40% of patients diagnosed with heart failure 

clinically have normal or near normal ejection fractions on echo (4).  This group was 

coined as having Heart failure with preserved ejection fraction (HFPEF).   

HFPEF has been established as a diagnosis for over a decade yet the definition varies 

depending upon the differing accepted thresholds for a reduced ejection fraction.  There 

is a subset that has an entirely normal LVEF and the label Heart Failure with Normal 

Ejection Fraction (HFNEF) is sometimes used to describe the group.  However, many 

people will have a mildly reduced LVEF that is insufficient to establish the diagnosis of 

HFREF according to previous important prognostic trials yet seems too low to justify a 

label of normal ejection fraction.  This was the scenario in the CHARM-preserved trial, 

when LVEF >40% was the entry criteria, and led to the coining of the phrase HFPEF 

(72).  In these cases the contribution of reduced LVEF to the patients’ symptoms is 

difficult to ascertain and this population may well represent a diverse range of pathology.   

There continues to be debate surrounding the interplay of HFPEF and HFREF, and 

whether or not they form a continuum of the same condition or represent distinct entities 

(11, 12, 71, 73).   

Some studies suggest that mortality rates in HFPEF are comparable with HFREF (74).  

Others disagree, demonstrating lower rates of mortality in the HFPEF group compared 

to the HFREF group (75, 76). Additionally, whereas mortality rates in HFREF have 
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improved over the last two decades, mortality rates for those with HFPEF have remained 

static (77).  

Many believe HFPEF is due to diastolic dysfunction of the left ventricle demonstrated by 

elevated filling pressures, abnormal relaxation and increased chamber stiffness.  Others 

feel it is due to subtly reduced LVEF or other aspects of systolic function that are not 

routinely measured.   

LVEF is only a partial representation of LV systolic function.  Longitudinal systolic 

function (the shortening of the left ventricle from base to apex during systole) can often 

be reduced without any effect on ejection fraction but can result in a clinical 

consequence.  However, longitudinal function is rarely measured or described in echo 

reports.  It is proposed that these markers of longitudinal LV function, specifically S’, may 

be more valid markers of LV systolic function than LVEF (71).  These parameters have 

a more linear relationship with the normal aging ventricle, and they are more sensitive at 

detecting subtle ischaemia than LVEF because they reflect the function of the 

subendocardial layer of myocardial fibres which are most susceptible to ischaemia.  They 

are also more reproducible than LVEF by 2D echo. 

Whilst the debate goes on about the contribution of systolic versus diastolic dysfunction 

in HFPEF, one explanation for the differing opinion may be that the variable diagnostic 

boundaries mean some definitions of HFPEF incorporate more people with subtly 

reduced LVEF than other definitions.  Differences in the physiological response of the 

LV to vasodilators certainly give some credence to the suggestion that these are two 

distinct heart failure phenotypes when LVEF <50% defines HFREF (78).  In this setting 

those with HFPEF experience greater blood pressure reduction but with significantly less 

enhancement in cardiac output, and greater likelihood of stroke volume drop with 

vasodilators, which would be in keeping with disease specific differences in ventricular-

arterial properties.   

Prevalence: The epidemic that is or is not HFPEF 

Whilst the percentage of people classified as HFPEF may vary depending on the 

diagnostic criteria for a reduced ejection fraction, even when more encompassing 

definitions for HFREF are employed (LVEF <50%), studies have reported a substantial 

proportion (around 50%) of people diagnosed with heart failure and preserved ejection 

fraction (75).  Monitoring trends in prevalence using the same definition also shows how 

the prevalence of HFPEF has increased over the last two decades, in contrast to 

reducing rates of HFREF, meaning that this now forms the majority of acute heart failure 

presentations (77).  High rates of heart failure with preserved ejection fraction can be 
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determined not only by clinical  features alone, but also elevated BNP or NT-pro BNP 

that add weight to the suggestion of cardiac dysfunction in some series (6, 7, 79).   

However, many believe that HFPEF is hugely over diagnosed.  Certainly, it is difficult to 

justify that someone has heart failure with a definition that predominantly relies on the 

absence of pathology, and it is possible that the numbers of people with HFPEF have 

been widely overestimated as a result of lax definitions.  Limitations of a purely clinical 

diagnosis are widely recognised.  Symptoms of exertional breathlessness are common: 

a third of people over 70 years old and living independently are affected (80).   When a 

similarly aged group of people in the Netherlands who presented to primary care with 

breathlessness were assessed clinically, with BNP or NT pro BNP, and 

echocardiography where indicated, a diagnosis of heart failure according to ESC 

guidelines was established in only 15.7% (2.9% HFREF, 12% HFPEF, and 0.9% isolated 

right heart failure) (81).  It was suggested that the others had symptoms due to a variety 

of age related deconditioning and sarcopenia (muscle wasting), obesity, airways 

disease, and anxiety or depression.  When a Scottish cohort of 109 patients with normal 

LVEF were reviewed for suspected heart failure, 40 were obese/morbidly obese, 54 had 

a reduction in FEV1, and 31 had history of IHD that could also explain their symptoms.  

Only 7 lacked a recognised explanation for their symptoms other than HFPEF (82).   

When strict definitions for HFPEF were applied retrospectively to a cohort of 5883 

patients admitted with heart failure (including a clinical diagnosis of heart failure, LVEF 

≥50%, alternative cardiac cause or over-riding co-morbidity excluded, a non-dilated 

ventricle, LV hypertrophy or dilated left atrium, and impaired diastolic function or raised 

BNP) Patel and colleagues found that only 0.8% of patients met the diagnostic criteria 

for HFPEF (83).   

Time after time epidemiological studies show that the typical characteristics of a HFPEF 

population include being female, old age, hypertension, diabetes mellitus, atrial 

fibrillation, obesity and chronic kidney disease. Some individuals suggest a 

pathophysiological mechanism for diastolic dysfunction as a direct result of these co-

morbidities, whereby they induce a systemic pro-inflammatory state that results in 

stiffening of the cardiomyocytes, interstitial fibrosis, and thus high diastolic LV stiffness 

(84).  This shifts the emphasis from the commonly held belief that LV afterload excess is 

the predominant cause and would go some way to understanding the high prevalence of 

these other conditions in the HFPEF community.  Others are sceptical of this 

pathophysiological model and suggest these multiple associations reflect how HFPEF is 

a single diagnosis given to a heterogeneous group with other co-morbidities that alone 

could explain the symptoms.  A counter argument to this comes from a comparison of 
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mortality rates in patients from HFPEF trials to an age and co-morbidity matched 

population without HFPEF. This showed significantly higher rates of mortality in the 

HFPEF group, suggesting that HFPEF is an independent entity (85).  

The recently published Darlington Retrospective Outpatient Study (DROPSY) also 

suggested high rates of mortality in those diagnosed with HFPEF. The authors 

investigated the long-term outcomes of patients presenting to local heart failure clinics 

between 2002 and 2007 (13).  They established three groups of patients according to 

routinely utilised parameters of cardiac dysfunction. The groups comprised left 

ventricular systolic dysfunction, heart failure with preserved ejection fraction and non-

heart failure. Heart failure with preserved ejection fraction was defined as LVEF >40% 

by Simpson’s rule, or “normal” function on “eye balling”, hospitalisation for heart failure 

in the last 6 months or NYHA class II-IV with signs of heart failure and two of the three 

(chest X-ray, ECG or echo) abnormal; echo abnormalities including LVH, LA 

enlargement or E/A <0.5.  Mortality rates over the study period were highest in the group 

with LV systolic dysfunction at 60%. Those with HFPEF had lower mortality rates at 50% 

but these were still higher than the 41% in non-heart failure group (Figure 3).  

Figure 3.  Long-term outcomes of patients presenting to local heart failure clinics 

2002-2007 according to the DROPSY study (13). 

 

Taken with permission from R Singh’s thesis (13).  LVSD, group with left ventricular systolic dysfunction; 

HFPEF, group with heart failure with preserved ejection fraction; Non HF, group with no evidence of heart 

failure; CVS, death from cardiovascular causes. 

Current imaging assessment of diastology by echo has limitations for the diagnosis of 

HFPEF.  Seemingly abnormal echo measures may be normal for aging.  Despite 
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reductions in arterial load with medical therapy, it has been shown that LV systolic and 

diastolic stiffness increase over time in humans, particularly in women, and in a passive 

manner as opposed to actively enhanced systolic function that which would occur with 

hypertension (86).  These changes may also be more prominent with increasing body 

mass index (BMI).  The overall prevalence of some form of LV diastolic dysfunction in a 

random sample of a general population in various European countries ranged from 

22.4% to 27.3% according to echo measures (87, 88).  There have also been challenges 

to the diagnosis of diastolic heart failure based on commonly used echo criteria that 

includes E/A ratios, isovolumic relaxation time (IVRT) and deceleration time (DCT) after 

finding very poor concordance between measures, with a 16-fold difference in the 

prevalence of diastolic dysfunction in patients with suspected HFPEF (89). 

The echo E/e’ ratio relates the peak velocity of early diastolic transmitral flow to the peak 

velocity of early diastolic mitral annular motion.  This measure represents end-diastolic 

filling pressure but has limitations in that the value increases normally with age, and is 

not valid in mitral valve disease, annular calcification or septal or lateral wall infarcts.  

When E/e’ is elevated above 15 there is a consensus that this is diagnostic of elevated 

diastolic filling pressures and can be used to define HFPEF (8-10, 90).  However, the 

underlying pathophysiological cause of the raised LV diastolic filling pressure is not 

demonstrated by the E/e’ measure and a value >15 occurs frequently in HFREF.  Also, 

when this value is between 8 and 15 a variety of parameters are employed to help to 

confirm the diagnosis and these are not universally defined.  

With increasing recognition of the limitations of diagnosing HFPEF by a purely clinical or 

imaging based approach, the role for biomarkers has gained much support over the last 

10 years.  Their potential impact was been demonstrated most recently by the results of 

the TOPCAT trial subgroup analysis.  TOPCAT was a trial of spironolactone for HFPEF.  

Published in 2014, it showed no overall benefit of spironolactone for the composite 

endpoint of death from cardiovascular causes, aborted cardiac arrest, or hospitalisation 

for the management of heart failure.  However, subgroup analysis seemed to show 

distinctive differences between the American/South American versus the Russian cohort 

so that spironolactone was beneficial in the American/South American population but not 

in the Russian population (91).  The rationale proposed for this difference was that BNP 

may be crucial to identify true HFPEF and that clinical judgement alone is not sufficiently 

accurate.  BNP tended to be used alongside clinical judgement for inclusion in the 

American/South American population whereas clinical judgement alone tended to be 

sufficient for inclusion in the Russian subgroup, and it is postulated that a significant 

number of the Russian cohort did not actually have HFPEF.  Other studies have shown 
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the disconnection between the perceived severity of congestive heart failure by an 

emergency department physician, and severity as determined by BNP level (92). 

Defining heart failure with biomarkers 

The advent of biomarkers, particularly brain natriuretic peptide (BNP) or N-terminal 

prohormone of brain natriuretic peptide (NT-pro BNP) changed the way of thinking about 

heart failure. Here was a test that had the potential to identify heart failure at an early 

stage when current imaging modalities of heart function would be reported as normal, or 

similarly identify those with overt clinical heart failure but a preserved ejection fraction on 

echo. 

Myocardial wall stress results in the release of BNP and NT pro BNP which in turn induce 

vasodilation, natriuresis and diuresis with a view to reducing the afterload for the heart 

when in heart failure. The plasma circulating levels can be measured as part of a 

diagnostic work-up for heart failure.  Many agree BNP is a useful tool to exclude heart 

failure, exemplified in a study that showed how a normal level will exclude this diagnosis 

with a sensitivity of between 84-93% (93).  A BNP guided treatment strategy to 

encourage up titration of ace inhibitors and beta-blockers can also be used to reduce 

heart failure related mortality or hospital admissions when compared to standard 

management in a HFREF (94).  

Also, the superior prognostic influence of elevated BNP in comparison with LVEF was 

convincingly demonstrated recently.  A group from the Netherlands and Sweden 

observed 615 patients with heart failure for 18 months.  Although BNP levels were lower 

in patients with HFPEF than HFREF, for a given BNP level, the prognosis in patients with 

HFPEF was as poor as those with HFREF.  Where BNP was found to be a strong 

predictor of outcome, LVEF was not (95).  Ever accumulating evidence of the prognostic 

power of the natriuretic peptides (96) has led to some experts advocating the sole use 

of biomarkers to diagnose heart failure, or at the very least to select a population with 

high cardiovascular morbidity and mortality where one should target intervention (97).  

Indeed, many studies have since used an elevated BNP level as part of the diagnostic 

pathway for diastolic impairment and trial entry criteria (60, 98, 99).   

However, an elevated BNP to confirm a diagnosis of heart failure has some limitations. 

Average specificity has been reported as only 73-74% (93), recognising that the 

specificity increases the higher the level of BNP (100).  There is variation in what is 

defined as a normal level depending upon the clinical presentation; current 

recommendations would use a cut-off of 100pg/ml in the emergency setting and 35pg/ml 

in the outpatient setting (31).  Interpretation is confounded by the fact that BNP and NT 

pro-BNP levels increase with age and lower body mass and numerous studies have 
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reported how BNP and NT pro-BNP perform poorly to detect asymptomatic or 

symptomatic systolic or diastolic dysfunction in an elderly population (5, 101-104).  BNP 

levels also increase with renal failure, and reduce with obesity (105).  The presence of 

atrial fibrillation impairs the diagnostic performance of natriuretic peptides in patients with 

dyspnoea (106) according to a gold standard physician’s diagnosis of HFPEF by 

reducing the specificity.  This may be particularly important in a HFPEF population, 

where atrial fibrillation is commonplace. Alternatively, it could be argued that atrial 

fibrillation is a form of diastolic dysfunction, as exemplified by the fact that it is included 

in many diagnostic frameworks for HFPEF, and that a raised BNP in the setting of 

symptoms of heart failure with atrial fibrillation should be diagnosed as HFPEF in all 

circumstances.   

Whilst the number of deaths or hospitalisations due to heart failure increases with higher 

levels of NT pro BNP in a HFPEF population (5), (indeed in a more predictive manner 

than echo parameters) (5-7), it remains unclear as to whether this represents more 

pronounced diastolic dysfunction, a generally sicker individual with co-morbidities, or 

indeed systolic dysfunction but with an ejection fraction that is not low enough to meet 

trial entry criteria.  Higher NT pro BNP levels are associated with lower ejection fraction 

and larger ventricular dimensions (5) but BNP level also seems to be useful in the 

diagnosis of diastolic dysfunction (79, 107), and indeed may be representative of the 

degree of diastolic dysfunction (108-110), (taking into account the limitations with older 

age groups noted above), although this has been disputed by other studies (87).   

Some regional heart failure clinics utilising biomarkers have found a substantial number 

of patients with symptoms of heart failure, elevated BNP but no major structural heart 

disease on routine imaging (14).  Generally these patients are elderly with multiple co-

morbidities and cannot be readily compartmentalised.  They form a group that has been 

poorly studied before and a unifying diagnosis for their symptoms and elevated 

biomarker remains elusive.  This begs the question, does the elevated BNP represent 

undiscovered structural heart disease, or is it simply a marker of adverse prognosis in a 

co-morbid individual with no specific cardiovascular abnormality?   

Those that believe BNP and NT pro BNP biomarkers are the key to a diagnosis of heart 

failure (be that HFREF or HFPEF), looked at their cohort of outpatient heart failure 

patients.  They found that BNP was significantly higher in the HFREF group compared 

to a control population, but no difference existed between the controls and those thought 

to have HFPEF.  However, perception of breathlessness and the six min walks were 

similar between the HFREF and HFPEF groups.  They concluded that patients being 

treated for a clinical diagnosis of HFPEF have a perception of their symptoms that is out 
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of proportion to their evidence of cardiac pathology (111), and indeed may not have 

HFPEF. An alternative explanation could be that BNP is not as sensitive at detecting 

HFPEF as it is HFREF.  Obesity may lower levels of BNP giving falsely reassuring levels, 

particularly in the HFPEF group (112).  Perhaps more conceivable is the proposition that 

HFPEF is sometimes a disease of exercise not rest, and as such resting biomarkers may 

not be elevated to the same extent; it introduces the concept of differing phenotypes of 

a HFPEF population, differentiated by biomarker levels and alternatively differentiated 

by exercise related physiological changes (96).   

Of note for the future, biomarker guided management and prognostication may be of 

limited value.  The novel dual angiotensin and neprilysin inhibitor (ARNi) LCZ696 agent 

to treat heart failure increases the levels of the natriuretic peptides through its actions.  

Neprilysisn breaksdown endogenous vasoactive peptides, including natriuretic peptides.  

Inhibition of neprilysin increases the levels of these substances, with the aim of offsetting 

the neurohormonal overactivation that contributes to the vasoconstriction, sodium 

retention, and cellular remodelling seen in heart failure.  It has been shown to reduce the 

rates of death from any cause when compared with enalapril (NNT=35) at 27 months in 

a HFREF population (60) but has the effect of increasing natriuretic peptide levels 

through its actions.  A similar trial is now underway for a HFPEF cohort in the PARAGON-

HF study (99).   

Exercise Assessment 

With this increasing recognition that HFPEF may be a disease that presents only on 

exertion in some cases, some teams have tried to observe the various haemodynamic 

responses to exercise in this group of patients.  Borlaug and colleagues have shown how 

euvolemic patients with normal BNP, normal coronary arteries, and normal cardiac filling 

pressures at rest have markedly abnormal hemodynamic responses during exercise in 

over half of 55 patients with exertional dyspnoea, to suggest HFPEF (113).  These 

haemodynamic parameters included pulmonary capillary wedge pressure (PCWP) and 

pulmonary artery systolic pressure (PASP) and were measured invasively.  Others have 

demonstrated various parameters of systolic and diastolic left ventricular dysfunction 

during exercise in a HFPEF population with proven cardiopulmonary limitation, including 

mitral annular tissue Doppler parameters, colour flow propagation velocities, speckle 

tracking and longitudinal and radial strain in particular (114-116).  The publication of 

normal ranges for left ventricular strain help to encourage the application of this imaging 

technique more widely (117).  Recently, specialist centres have also convincingly 

demonstrated that left atrial dysfunction (by way of strain imaging) is associated with 

reduced exercise capacity in patients with preserved ejection fraction (118).  
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Comprehensive diastolic imaging protocols that include exercise assessments are 

beginning to be established for the diagnosis of HFPEF (119). 

Other prognostic markers in heart failure 

Recently it has also been appreciated that right-sided heart and inferior vena cava 

measurements are perhaps more predictive of outcome than left-sided heart 

measurements, including LVEF, or biomarkers (BNP) (120, 121). The rationale for the 

superior prognostic importance of right-sided heart measurements remains to be 

established and has been only minimally studied thus far and it is still to be established 

whether abnormal right heart measurements reflect left heart disease or intrinsic 

pulmonary arterial pathology. 
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Chapter 2 

Diagnostic algorithms for HFPEF 

Formal diagnostic parameters for HFPEF have been suggested by way of various 

echocardiographic measures in association with symptoms and signs, plus or minus 

support from elevated biomarkers, but there are no widely agreed criteria for the 

diagnosis of HFPEF.   

Large trials investigating medical treatment in a HFPEF cohort have used varying 

inclusion parameters for the diagnosis (Figure 4).  The first large study (CHARM-

Preserved) enrolled 3025 patients with preserved ejection fraction.  This was defined as 

LVEF >40% and NYHA II-IV but no formal measures of diastolic dysfunction (72).  DIG-

PEF a few years later redefined HFPEF as current or past symptoms of heart failure with 

the higher LVEF of ≥ 45%, but once again with no imaging evidence to confirm cardiac 

dysfunction (122).  PEP-CHF was the first large study to use echo derived measures of 

cardiac dysfunction to confirm a diagnosis of HFPEF for study purposes as shown below.  

The investigators agreed that at least three out of nine clinical and at least two out of four 

additional echocardiographic criteria were required for a diagnosis.  Atrial fibrillation 

could be substituted for an echocardiographic criteria recognising that many diastolic 

measurements above would be unreliable and that atrial fibrillation alone could be 

considered equivalent to evidence of impaired LV filling by Doppler (123).  These entry 

measures were a mixture of systolic and diastolic dysfunction, or raised diastolic 

pressures, but excluded those with a LVEF < 40% (equivalent to a RWMSI <1.4).  Whilst 

those with moderate to severely reduced LVEF were excluded, such a varied inclusion 

criteria would have undoubtedly resulted in a broad mix of pathologies with a variety of 

underlying aetiologies.  In 2008 the I-PRESERVE trial categorised HFPEF as those with 

heart failure symptoms and left ventricular ejection fraction of at least 45% with some 

form of corroborative evidence of symptomatic heart failure by way of hospital admission 

or pulmonary oedema on X-ray, and structural cardiac abnormality by way of left 

ventricular hypertrophy or left atrial enlargement on echo.  LBBB as corroborative 

evidence was used for the first time in this study (124). 

The two most recently published trials used different entry criteria again.  The ALDO-

DHF trial insisted upon an LVEF ≥ 50%.  It was the first study to require evidence of 

diastolic dysfunction according to recognised diagnostic pathways (or else atrial 

fibrillation), supporting evidence of impaired exercise capacity by way of a reduced peak 

VO2 ≤ 25ml/kg/min on cardiopulmonary exercise testing, and exclusion of significant 

airways disease by spirometry (125).  TOPCAT, to evaluate the effects of spironolactone 

in patients with HFPEF, insisted upon symptoms of heart failure, LVEF ≥ 45%, and for 
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the presence of a raised BNP or NT-pro BNP in many cases.  The inclusion of biomarkers 

was novel for such a trial and the controversy surrounding the meaning of the trial 

outcome may be explained, in part, by differences between the countries from which the 

participants were recruited, or else the use of a biomarker to aid recruitment (91). 

PARAGON-HF is currently recruiting.  The study aims to look at the effects of the new 

LCZ696 angiotensin receptor neprilysin inhibitor in patients with HFPEF (99).  Similarly 

to TOPCAT it uses BNP or NT-pro BNP as a possible (but not essential) entry criteria.  

These latest trials reflect some scientific opinion that biomarkers may be more accurate 

for diagnosing heart failure than symptoms, clinician opinion, or resting structural 

changes on echocardiography but to date, no trial has insisted upon an elevated 

biomarker to ensure inclusion. 
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Figure 4: The diagnostic criteria for Heart Failure with Preserved Ejection Fraction 

(HFPEF) used in recent landmark trials. 

 

NYHA, New York Heart Association; HF, Heart failure; PND, Paroxysmal nocturnal dyspnoea; JVP, Jugular 

venous pressure; MI, Myocardial infarction; LVEF, Left ventricular ejection fraction; LV, Left ventricle; LA, 

Left atrium; LVH, Left ventricular hypertrophy; LVWMSI, Left ventricular wall motion score index; IVRT, 

Isovolumic relaxation time; LBBB, left bundle branch block; VO2, Oxygen consumption; BNP, Brain 

natriuretic peptide; AF, Atrial fibrillation; HCM, Hypertrophic cardiomyopathy; VC, Vital capacity; FEV1, 

Forced expiratory volume in 1 second; EGFR, Estimated glomerular filtration rate; IHD, Ischaemic heart 

disease. 

Study Diagnostic criteria for Heart Failure with HFPEF: Compulsory versus contributory 

 Clinical  Echocardiographic Other  Exclusion criteria 

CHARM-

Preserved (72) 

2003 

NYHA II-IV; 

Prior hospitalisation for a 

cardiac condition; 

HF symptoms & signs as 

judged by investigator. 

LVEF > 40%   

DIG-PEF (122) 

2006 

Current/past symptoms/signs 

of HF or radiographic 

pulmonary congestion 

Normal Sinus Rhythm 

LVEF > 45%  Atrial Fibrillation/flutter 

Cor Pulmonale 

 

PEP-CHF (123) 

2006 

≥70yrs 

3 out of 9 below: 

Exertional breathlessness; 

Orthopnoea or PND; 

Ankle swelling; 

Improved with diuretics; 

Increased JVP; 

Previous pulmonary oedema; 

Prior MI; 

Cardiothoracic ratio >0.55; 

Previous radiological 

pulmonary oedema 

2 out of 4 below: 

Some impairment of systolic 

function: 

LV WMSI 1.4–1.6 or 

LVEF fraction 40-50% 

LA enlargement 

LA >25 mm/m2 or >40 mm 

LVH 

Posterior or septal wall ≥12 mm 

Evidence of impaired LV 

filling by ≥ 1 of list below: 

Atrial Fibrillation 

E/A ratio <0.5 

Deceleration time >280 ms 

IVRT >105 ms 

 Significant valve disease 

RWMSI <1.4 

LVEF <40% 

 

I-PRESERVE 

(124) 

2008 

≥60yrs old 

NYHA II-IV (and hospitalised 

for HF in last 6 months) or 

NYHA III-IV 

LVEF ≥ 45% 

1 of echo or other 

corroborative evidence 

LVH 

LA enlargement 

CxR - pulmonary 

congestion 

ECG – LVH or LBBB 

Significant valve disease; 

HCM; 

Restrictive 

cardiomyopathy; 

Pericardial disease; 

Isolated right heart failure; 

ALDO-DHF 

(125) 

2013 

>50 yrs old 

Current HF symptoms (NYHA 

II-III) 

 

LVEF ≥50% 

≥ Grade I Diastolic 

dysfunction or atrial 

fibrillation 

Peak VO2 ≤ 25ml/kg/min LVEF ≤40% 

Significant coronary 

disease or angina 

VC or FEV1 < 80% 

predicted  

EGFR<30ml/min/1.73m2 

TOPCAT (91) 

2014 

≥50yrs old 

Symptomatic HF 

 

≥45% HF hospitalization within 

prior year OR elevated 

BNP ≥100pg/mL or NT-

proBNP ≥360 pg/mL) 

within last 60 days 

Uncontrolled 

Hypertension, 

Infiltrative 

cardiomyopathy, 

HCM 

PARAGON-HF 

(99) 

Recruiting 

≥55 years old 

Symptoms of HF requiring 

diuretic   for ≥ 30 days 

Current HF symptoms (NYHA 

II-IV) 

LVEF ≥ 45% 

Structural heart disease  

(Left atrial enlargement or 

LVH) 

 

A HF hospitalisation 

within the last 9 months 

OR Elevated NT-proBNP 

(>300pg/ml, or >900pg/ml 

if AF at baseline) 

Prior documented 

LVEF<45% 

Prior IHD event that culd 

have reduced LVEF < 45% 
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Various sets of guidelines and consensus statements have been published over the last 

decade suggesting a diagnostic framework for the diagnosis of HFPEF/HFNEF and 

diastolic dysfunction (8, 9, 31, 68, 126-129).   

In 2007 the Heart Failure and Echocardiography Associations of the European Society 

of Cardiology is reproduced in Figure 5.  It advocated that the diagnosis of HFNEF 

requires the following conditions to be satisfied: (i) signs or symptoms of heart failure; (ii) 

normal or mildly abnormal systolic LV function; (iii) evidence of diastolic LV dysfunction 

(9). Normal or mildly abnormal LV systolic function implies both an LVEF >50% and an 

LV end-diastolic volume index (LVEDVI) <97mL/m2, noting that no upper limit for an 

abnormal LVEF is defined.  In this framework diagnostic evidence of diastolic LV 

dysfunction by way of elevated diastolic pressures can be obtained invasively (LV end-

diastolic pressure >16 mmHg or mean pulmonary capillary wedge pressure >12 mmHg) 

or non-invasively by tissue Doppler (TD) (E/e’). An E/e’ >15 is diagnostic HFPEF by this 

strategy.  When E/e’ is between 8 and 15, additional non-invasive investigations are 

required for diagnostic evidence of diastolic LV dysfunction. These can consist of blood 

flow Doppler of mitral valve or pulmonary veins, echo measures of LV mass index or left 

atrial volume index, electrocardiographic evidence of atrial fibrillation, or plasma levels 

of natriuretic peptides. If plasma levels of natriuretic peptides are elevated, evidence of 

diastolic LV dysfunction is still required from additional non-invasive investigations such 

as tissue Doppler, blood flow Doppler of mitral valve or pulmonary veins, echo measures 

of LV mass index or left atrial volume index, or electrocardiographic evidence of atrial 

fibrillation (9).   
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Figure 5: HFNEF diagnostic flowchart according to the 2007 European Heart 

Failure and Echocardiography Associations of the European Society of 

Cardiology. 

 

Image reproduced from the 2007 European Heart Failure and Echocardiography Associations, ESC 

guidelines (9).  HFNEF, Heart failure with normal ejection fraction; LVEDVI, left ventricular end-diastolic 

volume index; mPCW, mean pulmonary capillary wedge pressure; LVEDP, left ventricular end-diastolic 

pressure; t, time constant of left ventricular relaxation; b, constant of left ventricular chamber stiffness; TD, 

tissue Doppler; E, early mitral valve flow velocity; e’, early TD lengthening velocity; NT-proBNP, N-terminal-

pro brain natriuretic peptide; BNP, brain natriuretic peptide; E/A, ratio of early (E) to late (A) mitral valve flow 

velocity; DT, deceleration time; LVMI, left ventricular mass index; LAVI, left atrial volume index; Ard, duration 

of reverse pulmonary vein atrial systole flow; Ad, duration of mitral valve atrial wave flow. 

 

In 2009, the joint American Society of Echocardiography (ASE) and European 

Association of Echocardiography (EAE) defined discrete pathways for the diagnosis of 

raised filling pressures and diastolic dysfunction, with the guidance that 

researchers/clinicians “on the basis of a clearly formulated question, should define the 

needs: to examine changes in relaxation, stiffness, and/or filling pressures” (8).  Both 



42 
 

diagnostic algorithms are shown below (Figure 6 and Figure 7).  The scheme to estimate 

LV filling pressures is very similar to the 2007 European model to diagnose HFNEF, 

albeit with a slightly lower cut-off for LA volume, use of valsalva E/A measurements, 

pulmonary artery systolic pressure estimations and  (IVRT/(TE-Te’)) in the 2009 protocol.  

There is also an absence of biomarker influence given that this is a purely 

echocardiographic scheme.  The scheme to grade diastolic dysfunction uses a direct 

measure of impaired LV relaxation (reduced e’) as the primary influence followed by 

estimates of LVEDP using E/e’ thereafter.   

These 2009 guidelines allow the user to determine whether to take a diagnostic approach 

according to raised filling pressures versus diastolic relaxation or stiffness abnormalities 

depending upon the specific question.  The 2007 European Heart Failure and 

Echocardiography associations (9) ask the specific question “does this person with 

normal ejection fraction have heart failure?” and uses elevated LVEDP (by way of the 

surrogate echocardiographic measure E/e’) as the crucial echo abnormality, thus 

promoting the need for evidence of haemodynamic changes to diagnose HFNEF.  

Measures of diastolic relaxation or stiffness abnormalities are only required to support 

indeterminate cases.  

However, in both guidelines echocardiographic measurements are taken with the patient 

at rest.  This may have limitations in light of increasing evidence that normal resting E/e’ 

measurements may become pathological and of prognostic significance during exercise 

(130).  
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Figure 6. Estimation of LV filling pressures in patients with normal ejection 

fractions according to the joint American Society of Echocardiography (ASE) and 

European Association of Echocardiography (EAE), 2009. 

Image reproduced from the Recommendations for the Evaluation of Left Ventricular Diastolic Function by 

Echocardiography the joint American Society of Echocardiography (ASE) and European Association of Echocardiography 

(EAE) (131). Av., Average; LA, Left atrium; PAS, Pulmonary artery systolic pressure; IVRT, Isovolumic relaxation time; 

LAP, Left atrial pressure. 
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Figure 7.  Scheme for diagnosing and grading diastolic dysfunction according to 

the joint American Society of Echocardiography (ASE) and European Association 

of Echocardiography (EAE), 2009. 

Image reproduced from the Recommendations for the Evaluation of Left Ventricular Diastolic Function by 

Echocardiography the joint American Society of Echocardiography (ASE) and European Association of Echocardiography 

(EAE) (131). Av., Average; LA, left atrium; Val., Valsalva; DT, deceleration time. 

 

Shuai and colleagues derived a simpler model of abnormal resting echo parameters that 

would accurately diagnose HFPEF (10).  A strategy that consisted of either:  

(i) lateral E/e’ ≥ 12; or  

(ii) lateral E/e’ ≥ 8 but <12, with either LAVI ≥ 34 mL/m2 or Ard–Ad > 30 ms,  

provided good diagnostic accuracy for identifying HFPEF, with a sensitivity of 77% and 

specificity of 81%. These observations were subsequently confirmed in a small validation 

cohort of 98 subjects.  The comparative gold standard diagnosis of HFPEF was by way 

of a history of hypertension, typical heart failure symptoms or signs evaluated by two 

cardiologists, and LVEF > 50%, without any invasive measurement to confirm elevated 

LV filling pressures.  This strategy compared favourably with the 2007 European 

consensus statement pathway which produced a sensitivity of 72% and specificity of 

87%.  Interestingly the joint ASE and EAE strategy fared poorly with a sensitivity of only 
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47%, although maintained a good specificity of 87%.  The authors also described a low 

diagnostic accuracy of E/A <0.5 and DT > 280ms for detecting HFPEF most likely due 

to the U-shaped relation with LV diastolic function, making it difficult to discriminate 

patients with pseudonormalisation from normal patients. 

Emery and colleagues performed a retrospective analysis of 1229 echocardiograms to 

discern which echocardiographic parameters were most helpful to diagnose diastolic 

dysfunction (132).  Measurements were correlated against the 2007 European 

guidelines whereby an E/e’ > 15 is confirmatory of diastolic dysfunction, and an E/e’ < 8 

is normal.  A LAVI ≥ 40ml/m² provided the greatest sensitivity and specificity of 76% and 

77% respectively.  Similar to the findings of Shaui et al, the combination of E/A < 0.5 with 

an E wave deceleration time > 280 ms in patients over the age of 50 years was not a 

sensitive marker of HFPEF, with only 0.5% of the group fulfilling these three criteria.  In 

contrast to Shaui et al, pulmonary venous inflow measurements also added little to the 

overall diastolic functional assessment.  It should be remembered however that the 

echocardiograms included for analysis were broad in their indication and the referral 

reason may not have been heart failure.  As such, the population may not be 

representative of a group with a clinical diagnosis of suspected HFPEF.  LVMI criteria 

according to the 2007 European guidelines were of little use, being highly specific but 

poorly sensitive.  However when the cut-off was changed to the upper limit of the normal 

(> 116 and > 96 g/m2 for males and females, respectively) instead of the lower limits of 

severe this yielded a much greater sensitivity, but with little change in specificity.  The 

application of LVMI and LA volume as a combined marker to differentiate HFPEF from 

those with asymptomatic LVH or normal controls has been justified previously but this 

was a small study recruiting predominantly obese African-American women and cannot 

be extrapolated to the wider population (133). 

In a study of 122 patients with high burden of ischaemic and hypertensive heart disease 

yet preserved ejection fraction (LVEF > 50%), Dokainish and colleagues demonstrated 

that E/e’ had a strong correlation with LVEDP by invasive measures, and that E/e’> 12 

had a 75% sensitivity and 78% specificity for LVEDP ≥ 20mmHg (134).  The secondary 

most useful measurements identified were LAVI, E alone, and estimated pulmonary 

artery pressure (PAP).  When these measures were collated into (E + LAVI)/2 and (PAP 

+ LAVI)/2 they were shown to have similar diagnostic accuracy to E/e’ for the estimation 

of LVEDP.  (E + LAVI)/2 also provided incremental accuracy to E/e’ when E/e’ was in the 

grey zone (10, 127, 128, 130, 132).  In addition, E alone <60cm/sec ruled out, and 

>90cm/sec ruled in elevated LVEDP with high negative and positive predictive values 

respectively.     
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The European Society of Cardiology Guidelines for the diagnosis and treatment of acute 

and chronic heart failure 2012 (31) combine the 2007 European and 2009 joint ASE and 

EAE recommendations to guide the clinician’s decision making process about the 

presence or absence of diastolic dysfunction (Figure 8).  No specific diagnostic strategy 

is endorsed.  Instead, a table of common echocardiographic measures of LV diastolic 

dysfunction is displayed along with the caveat that “no single echocardiographic 

parameter is sufficiently accurate and reproducible to be used in isolation to make a 

diagnosis of LV diastolic dysfunction”. They suggest a comprehensive 

echocardiographic examination including the evaluation of both structural (LV 

hypertrophy, LA dilation) and functional abnormalities, and conclude that the presence 

of at least two abnormal measurements and/or AF increases the likelihood of the 

diagnosis of diastolic dysfunction.  These guidelines also define HFREF 

echocardiographically as an LVEF <50% or LVEDV ≥97ml/m2.  This cut-off value for 

LVEF was agreed by a show of hands from the guideline committee rather than being 

based upon any specific trials or evidence as highlighted by Dr Alan Fraser at the British 

Cardiovascular Society annual conference 2014. 
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Figure 8: Common echocardiographic measures of left ventricular diastolic 

dysfunction in patients with heart failure according to the ESC heart failure 

guidelines 2012. 

Measurement Abnormality Clinical implication 

e’ Decreased (<8cm/s 
septal, <10cm/s lateral, or 
<9cm/s average) 

Delayed LV relaxation 

E/e’ ratio High (>15) 

Low (<8) 

Intermediate (8-15) 

High LV filling pressures 

Normal LV filling pressures 

Indeterminate LV filling pressures 
(additional measures needed) 

Mitral inflow E/A Restrictive (>2) 

Impaired relaxation (<1) 

Normal (1-2) 

Delayed LV relaxation 

Normal LV filling pressures 

Inconclusive 

Mitral inflow E/A 
during valsalva 

Change of the 
pseudonormal to the 
impaired relaxation pattern 
(with a decrease in E/A 
ratio ≥0.5) 

High LV filling pressures 
unmasked through valsalva 

A pulmonary-A 
mitral duration 

>30ms High LV filling pressures 

   

   

Adapted from the European Society of Cardiology Guidelines for the diagnosis and treatment of acute and 

chronic heart failure 2012 (31). 

A subsequent large European multi-centre epidemiological study of 734 healthy subjects 

(mean age 45.8 ± 13.3 years) published in 2014 was the first piece of work to provide a 

comprehensive assessment of 2D transthoracic echo measurements to produce normal 

references ranges (67).  These data demonstrate that the mean normal LVEF by 

Simpson’s Biplane assessment is 63.9%, (56.5% to 71.7% to include 2 standard 

deviations). 

This lower (2SD) cut-off of 56.5% for a normal LVEF closely mirrors the British Society 

of Echocardiography (BSE) guidelines (68).  These stipulate that an LVEF <55% equates 

to mild LV impairment, and that a LVEF ≥ 55% can be considered normal.  These BSE 

guidelines provide the references ranges for all echocardiographers in the UK and a 

diagnosis of “mild LV impairment” will be documented when the echocardiographer feels 
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the LVEF is below 55% by eyeballing or RWMS, when an accurate Simpson’s 

measurement could not be obtained. 

Most recently in 2013 the British Society of Echocardiography published a protocol for 

the diagnosis and grading of diastolic dysfunction (Figure 9) (129).  Similarly to the 

ASE/EAE 2009 guidelines, this is purely echo based and as such does not include 

biomarkers in the pathway. 

 
Figure 9. Diagnosis and grading of diastolic dysfunction according to the British 

Society of Echocardiography 

Reproduced  from the British Society of Echocardiography (BSE) protocol for the diagnosis and grading of 

diastolic dysfunction (129). 

The BSE utilises the most commonly measured and understood markers of diastolic 

function in the initial step of assessment (E/A ratio and DT).  Thereafter, the next most 

readily obtainable measurement (e’) contributes to separating apart normal from diastolic 

dysfunction in controversial cases due to the U-shaped curve pattern of changes with 

the E/A measurement.  The diagnosis is then consolidated by supportive information 

from other diastolic parameters.  This protocol is very user friendly and incorporates 

features of both haemodynamic changes in LV/LA diastolic pressures through the use of 
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the E/A ratio, alongside structural changes to suggest LV stiffness or impaired relaxation 

by way of the DT and e’ measures.  In controversial cases once again a combined 

approach of haemodynamic and structural measures are called upon to aid decision 

making.  

Limitations of the E/A measurement are highlighted, including age and athletic status.  

Clinical scenarios that limit the application of this pathway are also given including left 

ventricular hypertrophy (LVH), tachycardia, atrial fibrillation, systolic dysfunction, mitral 

valve disease and constrictive pericarditis, and these should all be observed when using 

any of the diastolic diagnostic pathways described thus far.    

In summary, the current official strategies for diagnosing HFNEF and diastolic 

dysfunction by echocardiographic parameters are as documented in the 2007 European, 

2009 joint ASE and EAE, 2012 ESC, and 2013 BSE guidelines above.  The 2007 

European guidelines are the only ones that provide a specific pathway to diagnose heart 

failure due to diastolic dysfunction as opposed to diastolic dysfunction alone and as such 

in-corporate the use of biomarkers where the others do not.  Small clinical studies have 

tried to validate and improve upon these guidelines.  They highlight the limitations of 

incorporating E/A and Deceleration time (DT) measurements due to difficulty 

discriminating between pseudonormalisation and normal LV filling patterns.  E/e’ seems 

to stand up to validation but the consensus as to the cut-off for accurate prediction of 

elevated LVEDP > 20mmHg is not clear and probably lies between ≥ 12 to ≥ 15.  

However E/e’ < 8 seems to be universally accepted as reflecting a normal LVEDP.   

When the E/e’ is in the grey zone there is gathering evidence that the most helpful 

measurements to diagnose diastolic dysfunction and HFPEF are elevated LAVI, e’, Ard–

Ad, PAP, and LVMI.  Out of all of these, elevated LAVI is probably the most consistently 

helpful, and indeed the only marker of chronic diastolic LV function rather than being 

affected by the volume status of the patient.  However, the cut-off values for each of 

these measurements varies between studies.  Most likely a LAVI ≥ 34ml/m2 or ≥ 40ml/m2,  

Ard–Ad > 30 ms, and LVMI at the upper limit of the normal range (> 116 and > 96 g/m2 

for males and females, respectively) would be most discriminative as to whether diastolic 

dysfunction exists.   

The diagnosis of HFPEF remains challenging and resting echocardiographic 

measurements have significant limitations.  Currently no universal diagnostic pathway 

has been agreed and convincingly validated.  Ruling out HFPEF in individuals with 

symptoms or signs of heart failure should also be subject to a formalised screening 

strategy that includes normal ECG (including no atrial fibrillation), normal BNP and 

normal echocardiogram that includes normal chamber volumes, myocardial mass and 
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Doppler parameters according to current echocardiography accepted criteria.  3D echo 

and speckle tracking imaging may provide superior methods of assessment but are still 

sensitive to the patient’s volume status.  Exercise derived values of diastology may prove 

to be necessary and there is on-going research into the utility of novel biomarkers of 

myocardial fibroinflammation which would reflect chronic myocardial remodelling (135). 

This analysis will continue to use the 2007 European diagnostic framework as the 

discriminator for the presence or absence of HFPEF with the exception of the cut-off 

LVEF, below which a diagnosis of HFREF would be given.  In this regard, and in keeping 

with the new epidemiological evidence (67) and daily British echocardiographers 

practice, I will use a LVEF <55% to represent HFREF and ≥ 55% will be necessary to 

pursue a diagnosis of HFPEF.  The LV chamber volume cut-off criteria will remain the 

same at 97ml/m2, as dictated by the 2007 European guidelines, and re-enforced by the 

ESC 2012 guidelines.   

This 2007 framework makes more physiological sense for a diagnosis of heart failure as 

it requires criteria to suggest haemodynamic changes within the heart rather than just 

structural changes.  It is probably least likely to result in false positive diagnoses of 

HFPEF due to the fact that it uses the higher values of E/e’, LAVI, and LVMI.   

I have opted not to use the pulmonary artery systolic pressures (PAS) > 30mmHg 

adopted by the ASE/EAE 2009 guidelines to support a diagnosis of HFPEF.  PASP may 

be elevated as a result of pulmonary disease or pulmonary artery hypertension rather 

than left-sided cardiac dysfunction and so may result in a falsely positive diagnosis for 

HFPEF.  Neither will I incorporate the ϒ (IVRT/(TE-Te’)) or Valsalva manoeuvre into my 

diagnostic pathway due to inexperience of use within the echo department.  Also, 

cardiopulmonary exercise testing is not available.   

I will be able to compare the prevalence of the different diagnostic groups with previously 

reported data and examine how this more robust diagnostic framework would affect the 

distribution of the different groups.  In those deemed to have HFREF by this pathway I 

will establish if other markers of systolic dysfunction are also abnormal and whether 

these other markers correlate with the degree of LV impairment or BNP level.  In those 

deemed to have HFPEF or HFNMSD by this diagnostic pathway I will establish what 

echo and CMR abnormalities of systolic and diastolic function can be identified, and I will 

look at the grade of diastolic dysfunction according to BSE or ASE/EAE pathways.  The 

numbers of patients in the HFNMSD diagnostic bracket may be large due to the tight 

diagnostic constraints on the normal and definitely abnormal groups.  This will be an 

interesting group to differentiate in its own right. 
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Chapter 3 

Echocardiography versus Cardiac Magnetic Resonance 

The role of Echocardiography in heart failure 

The advent of echocardiography was a major step forward in the understanding of heart 

failure and allowed an assessment of heart structure and function through the use of 

ultrasound.  It remains the main imaging modality for investigation of people with 

suspected heart failure in today’s practice.  It is widely available, non-invasive and can 

identify chamber volumes, measures of ventricular systolic and diastolic performance, 

and valve structure and function when image quality is good.  

Unfortunately, the limits of echocardiography by way of sub-optimal image quality are 

frequently apparent.  As a cardiology registrar, with 4 years of echocardiography 

experience, I am still filled with a sense of excitement when I am able to obtain a 

complete scan with clear images and measurements that I can be confident about.  All 

too often patient related factors mean that it is difficult for the individual to lie in the correct 

position for scanning or lie still for long enough to obtain good images.  Chest wall 

deformities and obesity or lung disease undoubtedly impair image quality and then 

sometimes the clearest images completely disappear as the acoustic window vanishes 

with inspiration or expiration.  Even when you believe you have obtained clear images at 

the time of scanning, trying to perform measurements on the work station is hampered 

by the clearly defined LV wall disappearing as the cine loop is stopped.  Poor endocardial 

definition limits reliable chamber volumes and ejection fractions, and off axis images can 

underestimate flow velocities.  Echo is also unable to provide tissue characterisation and 

as such cannot differentiate ischaemic from non-ischaemic cardiomyopathy.   

In daily practice with limited scanning time, the most embraced use of this modality is to 

identify serious valve disease and measure the left ventricle (LV) size and ejection 

fraction (EF) as a measure of left ventricular systolic performance.   

Some measurements of diastolic dysfunction and elevated end-diastolic filling pressures 

are routinely performed in an echo study however in a number of cases the results are 

not clear cut enough to establish a firm diagnosis of HFPEF.  In these circumstances 

more complex 2D echo measurements should be performed to help clarify the diagnosis.  

These measures include blood flow Doppler of the pulmonary veins, LV mass index or 

left atrial volume index, but they are often difficult to obtain. 
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The evolving role of Cardiac Magnetic Resonance imaging in heart failure 

Cardiac Magnetic Resonance (CMR) is a highly accurate, non-invasive method for more 

detailed assessment of the heart.  It is the gold standard for measuring left and right 

ventricular volumes, myocardial mass and particularly validated in systolic dysfunction 

(18).  Some pericardial diseases and most congenital defects are also readily identifiable.  

Additional information about myocardial infarction, inflammation and infiltration can be 

achieved by incorporating the use of gadolinium contrast agent and assessing the 

pattern of uptake into the myocardium (19).  However, it is not without limitations and 

patients who have difficulty holding their breath or lying flat, claustrophobia, 

ferromagnetic contraindications, or very irregular heart rhythms are generally not suitable 

for scanning.  

Cardiac chamber size and systolic function 

2D echo Simpson’s Biplane LVEF versus CMR LVEF 

CMR is the gold standard method of measuring LV volume and LVEF.  However, 2D 

echo continues to be used for the routine assessment of systolic function in most centres 

and it is important to remember that previous trial inclusion criteria have used 2D echo 

LVEF measures and as such CMR measures may not be valid when practising the 

evidence based medicine according to such trials. 

The most widely accepted and validated method of demonstrating LV systolic function 

with 2D echo is via LVEF by way of the Simpson’s Biplane methods of disks.  This is 

achieved by planimetry of the LV endocardial borders in end-diastole and end-systole in 

both a 4 chamber and 2 chamber view to obtain LV end-diastolic and end-systolic 

volumes from a series of disks created by the imaging software, and thereafter LVEF by 

way of the equation LVEF= (LVEDV-LVESV)/LVEDV.  This measurement is generally 

done on a single cycle, and should be averaged in irregular rhythms.  It can be done by 

visually guided line drawing of the endocardial edge, or semi-automatic feature tracking 

imaging (16, 136, 137). 

LVEF by CMR uses multiple slices through the LV from a short stack, and images are 

obtained from a composite of a number of cardiac cycles.  One time frame deemed to 

be smallest and largest volume for all slices and endocardial borders are traced at these 

end-systolic and end-diastolic phases.  The inclusion or exclusion of papillary muscles 

tends to be operator and centre depended and trabeculations are generally excluded 

from the analysis.  It is sometimes difficult to fully differentiate the most basal slice of the 

LV from the LA but the slice is generally considered to be within LV if blood volume is 

surrounded by >50% ventricular myocardium.  Cross-referencing packages also help in 

this regard.   
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It is not uncommon for LVEF by 2D echo versus CMR to differ in clinical practice.  In my 

experience it is not uncommon that an echo report of moderate or severe LV impairment 

converts to normal or only mildly impaired LV function following CMR.  The reverse can 

also be true though.   

Whether the differences between 2D echo and CMR LVEF are due to true differences in 

function over time (e.g. medical therapy improving LVEF prior to the CMR being 

performed) is not clear.  However, a small audit within the cardiology department at 

Darlington Memorial Hospital would suggest the difference is due to more than true 

temporal discrepancies.  The audit compared the consistency of LVEF measurements 

using 2D echo (via an automated method, traditional Simpson’s Biplane method and 

physiologist “eyeballing” LVEF) with CMR LVEF in 15 patients (5 with LV impairment) 

who had both scans performed on the same day (138).  Image quality with echo was 

satisfactory in only 56% of cases compared with 100% of CMR studies and the audit 

demonstrated that all echo methods gave statistically different results to the CMR, whilst 

being fairly well correlated with other echo techniques.  CMR tended to give higher LVEF 

results than the echo measures.  This very small local audit demonstrates significant 

differences on same day scanning, discounting the theory about differences due to real 

temporal changes in LVEF. Thus, other causes to be considered include either frequent 

inaccuracies in one method making it unreliable, or intrinsic differences in the methods 

of measurement leading to different normal and abnormal reference ranges with the two 

modalities.  Whilst some published literature suggests similarly that 2D echo LVEF tends 

to universally underestimate CMR LVEF (16, 37, 139), others show statistically similar 

mean LVEF between the two methods but with wide variation in the level of agreement, 

making the techniques clinically non-interchangeable (15).  Overall the literature on this 

topic is surprisingly scarce and patient numbers small.  Whilst 3D echo has more robust 

comparison data of LV volumes and LVEF with CMR it is rarely used in routine clinical 

practice (37, 140). 

A normal CMR LVEF is judged to be above 56-60%, whereas a 2D echo LVEF by the 

Simpson’s Biplane method is 54-55%, (sex and age dependent) (67) (141, 142) and so 

would suggest that CMR would tend to give, albeit small, a higher LVEF than 2D echo in 

the same patient on the same day.  If the same cut-off to define normal LVEF is being 

used for both imaging modalities then there will invariably be discrepancies in the 

diagnoses for a number of patients.   

Echo volumes tend to be universally smaller than volumes calculated by CMR, which 

may reflect the different recognition of the trabeculated endocardial borders with the two 

methods (139).  The different methods of identifying end diastole between echo and 
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CMR may also have a role to play and this may be particularly relevant in those with 

dyssynchronous left ventricles.  The averaging of a number cycles for CMR 

measurements versus a measurement from a single cycle with echo could also result in 

differences between the two measurements, particularly in irregular rhythms such as 

atrial fibrillation. 

In day to day practice the 2D echo Simpson’s Biplane method of disks method is 

frequently hampered by poor endocardial definition and off axis imaging preventing its 

application in a large number of cases (15).  Regional wall motion scoring index may be 

more applicable (137) but the reality is that most commonly a method of visual estimation 

of LV systolic function is employed despite highly subjective, and often inaccurate results 

(16, 34).  

The recent audit of echo practice of 39 trained physiologists and cardiologists in the north 

east of England demonstrated that a qualitative assessment of LV function was used 

frequently in 38 responders.  It highlighted substantial variation in individuals’ and 

centres’ interpretation of LV function when applying a qualitative assessment, visual 

ejection fraction, or wall motion scoring (17).   

Other methods of assessing systolic function 

Other methods of quantifying LV systolic function by 2D echo include M-Mode % 

fractional shortening, regional wall motion scoring, subaortic velocity time integral 

measurements and myocardial performance indices, LV dp/dt (change in 

pressure/change in time of mitral regurgitation signal), M-mode mitral annular systolic 

excursion (MAPSE), tissue Doppler measures of mitral annular motion (S’ waves), and 

strain imaging, most commonly global longitudinal strain.   

Global longitudinal strain measures the deformation of myocardium between two points 

in multiple areas of the LV.  Positive strain represents relaxation or lengthening of a fibre 

and negative values represent active contraction.  A mean normal value of -19.7 was 

comprehensively established from a meta-analysis of 2,597 subjects from 24 studies 

recently (117) and there is strong evidence of the prognostic value of GLS, which 

appears to have superior prognostic value to EF for predicting major adverse cardiac 

events, and correlates better than LVEF with peak VO2 in both a HFREF and HFPEF 

populations  (143-145).  It may be a helpful measure to identify heart failure in someone 

presenting with dyspnoea but preserved LVEF (146).  

Diastolic function  

Echocardiography is superior to CMR for diastolic measurements of blood flow and 

tissue movement due to real time Doppler imaging with excellent time and spatial 
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resolution when focused on a specific point.  The numbers of diastolic measures that can 

be obtained using echo are vast.  Most have been described within the HFPEF diagnostic 

framework chapter above and include E/A ratio, E/e’ ratio, deceleration time (DCT), 

isolvolumic relaxation time (IVRT), left atrial size, pulmonary vein Dopplers and Ard–Ad, 

LV mass and colour flow propagation velocity.   

All of these have standardised protocols for acquisition and analysis, as well as widely 

accepted caveats to their use.  These are freely available in text books and national and 

international guidelines and so have not been covered in detail.   

The ability of CMR to perform measures of diastolic function by way of mitral flow 

velocities, mitral annular motion and pulmonary vein flow have been demonstrated in 

small studies (20-23) but echo remains the superior imaging modality for these (when 

the image quality is acceptable) and so these CMR measures tend not to be used in daily 

practice.   

CMR might add to the echo assessment of diastolic function by way of more accurate 

measurements of atria and ventricular sizes and mass, right heart function, myocardial 

grid tagging, and tissue characterisation with gadolinium contrast enhancement, but 

these have not yet been adequately investigated or validated in diagnostic framework for 

HFPEF. 

Only one study has compared evidence of fibrosis on CMR with echo derived E/e’ 

Doppler markers of diastolic dysfunction (147) and described a correlation between the 

degree of fibrosis seen with late enhancement and degree of diastolic dysfunction.  

However the study comprised only 91 subjects and the population was not clearly 

defined, and contained patients with congenital heart disease.  Similar studies using a 

general heart failure population and the distinct groups of HFREF and HFPEF patients 

are needed.   

Late gadolinium enhancement (LGE) - A CMR specific tool 

CMR has the added benefit over echo that it can incorporate the use of a gadolinium 

contrast agent, which is taken up into scarred areas of the myocardium, to provide 

information about the cellular matrix of the myocardium.  The pattern of uptake reflects 

the underlying cause of myocardial scarring, and clearly differentiates between 

ischaemic and non ischaemic pathology in most cases.  This is discussed further in the 

next chapter with regards to the use of CMR as a gatekeeper to angiography in a heart 

failure population.  
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The diagnostic utility of LGE in those with LV systolic dysfunction has been convincingly 

demonstrated (19).  The transmural extent of LGE also predicts viability on 

revascularisation in ischaemic LV systolic dysfunction (148, 149).  The presence and 

extent of delayed contrast enhancement has also been found to be a prognostic indicator 

in ischaemic and non ischaemic LV systolic dysfunction as well as those with preserved 

ejection fraction (150-153).  It also helps to predict mortality following cardiac 

resynchronisation therapy (154).  Although the prevalence, diagnostic and prognostic 

utility of LGE in pre-defined groups above has been demonstrated, the prevalence and 

extent of delayed enhancement in a generic newly diagnosed heart failure population 

has not apparently been published and would be of interest.   

For the future, there will also be the introduction of T1 mapping in CMR which provides 

a quantitative assessment of the cellular matrix of the myocardium using the relaxation 

properties of hydrogen protons.   Although very promising, currently this software tends 

to be restricted to research applications. 

Routine use 

Currently the use of CMR is generally restricted to specialist centres and performed on 

a case-by-case basis with a specific question in mind.  The clinical impact of routine CMR 

has been studied in well-defined subgroup analyses but there is a complete lack of CMR 

demographics for a generic group of heart failure patients, which incorporates HFPEF 

and heart failure without major structural heart disease. 

Focused studies suggest that routine CMR should have a significant impact on clinical 

management.  For instance a study in 100 patients with acute myocardial infarction and 

ejection fraction <40% demonstrated that routine CMR influenced management in 24% 

of cases (24).  Another study showed how CMR provides additional clinically relevant 

information compared with transthoracic echo in over 50% of patients by way of a 

retrospective review of 54 patients with left bundle branch block (LBBB) (25).   

In 2000, the National Heart and Lung Institute Unit in London performed a same day 

CMR on 64 people attending a heart function clinic and concluded that CMR can provide 

a rapid, reproducible and patient acceptable assessment of cardiac function in heart 

failure (30).  However, this study is now out-dated and used CMR to look at only cardiac 

volume, mass and function without the use of contrast agents.  It was performed in only 

a small group of patients in a tertiary centre setting and groups were not defined 

according to presence or absence of systolic dysfunction.  

A Canadian study is currently recruiting patients to examine the impact of routine CMR 

on the aetiological diagnosis in patients with a non-ischaemic heart failure (155).  This 
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will compare the frequency of definitive diagnosis in a cohort receiving routine CMR 

versus a standard workup that is generally without CMR imaging.  However all those 

patients that are deemed likely to have ischaemic cardiomyopathy due to history of 

coronary artery disease will be excluded and as such does not examine the impact of 

routine CMR in this group or indeed all comers to the heart failure services. 

Incorporating routine CMR into the initial screening of patients with heart failure could 

provide clinically important information that could not be obtained with echocardiography.  

Indeed requests for the validation and cost analysis of routine CMR in this setting are 

being expressed (156).  Epidemiological information provided by CMR may support or 

refute the current presumed spectrum of pathology in the heart failure population.  From 

a population and individual perspective, CMR could alter diagnosis and reclassify the 

presence or absence of systolic dysfunction, and better differentiate the cause of 

cardiomyopathy compared with echo.     
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Chapter 4 

Ischaemic Heart Disease in Heart Failure 

The national heart failure audit in England and Wales 2013 demonstrated that almost 

half of all heart failure admissions had a history of ischaemic heart disease.  When 

subdividing according to the presence of LV systolic dysfunction, 51% those with LV 

systolic dysfunction had history of ischaemic heart disease, as opposed to 40% of those 

without LV systolic dysfunction (2).   The ESC guidelines for acute and chronic heart 

failure suggest that two thirds of cases of LV systolic dysfunction are caused by 

ischaemic heart disease (31).  The rationale for this is well established in that infarcted 

myocardium becomes thinned and non-contractile, and that ischaemic but non infarcted 

myocardium may hibernate and become hypokinetic. 

The rational for ischaemia as a cause of diastolic dysfunction is less well established, 

but some models do exist to provide a plausible pathophysiological model whereby 

ischaemia causes diastolic as well as subtle systolic function that may result in HFPEF 

(157, 158).  Ischaemia results in impaired calcium ion sequestration into the 

sarcoplasmic reticulum during the energy dependent phase of myocyte relaxation.  

Localised infarcts causing fibrosis interspersed with relative areas of hypertrophy will 

also affect the passive relaxation properties.  However, because CAD and HFPEF have 

similar risk factors it is entirely possible that CAD merely coexists with HFPEF with 

greater frequency than a non HFPEF population.  Prevalence data comes from inferred 

CAD in HFPEF populations by way of clinical history and ECG findings and suggests 

varied prevalence rates of 20 to 75%, and generally around 40% (77, 159-161).  

However, the only known study that undertook stress testing found no evidence of 

significant ischaemia in the 20 patients enrolled (162).  There have been no studies 

looking at infarct prevalence by CMR in this group.  Some prognostic data is available 

from the Coronary Artery Surgery Study (CASS) registry for the HFPEF population, and 

shows that the 6-year survival rate for patients who had three vessel disease was 68% 

compared with 83% in those with one or two vessel disease and 92% for those without 

CAD (163).  A recent retrospective observational study of the prognostic impact of CAD 

and revascularisation in a HFPEF cohort showed a high prevalence of CAD, approaching 

70% (164).  However this was a pre-selected sample of individuals that all underwent X-

ray angiogram for clinical reasons and thus will have been subject to referral bias.  More 

interesting was that, despite similar rates of angina and heart failure symptoms, and 

matched baseline echocardiographic LV function, those with CAD went on to have a 

greater deterioration in LVEF as well as increased mortality compared to those without 

CAD.  Thereafter, complete revascularisation was associated with a lesser reduction in 
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LVEF and lower mortality than patients who were not completely revascularised.  

Whether this survival gain and maintenance of LVEF relates specifically to a HFPEF 

population as opposed to screening general population with similar characteristics but 

without heart failure cannot be elucidated. 

Cardiac Magnetic Resonance to detect significant coronary artery disease 

A gatekeeper to angiography  

This topic needs to be divided into those patients with angina and those without.  

In patients with angina or suspected coronary heart disease, Greenwood et al 

established that stress perfusion CMR has a high diagnostic accuracy, and has 

superiority over single-photon emission computed tomography (SPECT) (165).  Klem et 

al also demonstrated the high sensitivity and specificity of stress perfusion CMR in 

combination with late gadolinium enhancement in this group.  However, the sensitivity 

was low if using late gadolinium enhancement alone (166).   

When patients have systolic heart failure but no symptoms of angina studies have 

suggested that late gadolinium enhancement alone is a sensitive and specific marker of 

significant coronary artery disease (19, 26-28).  However a recent investigation in 

HFREF patients with ischaemic heart disease but without angina questioned this by 

demonstrating that two thirds of abnormal regional wall motion was not associated with 

scar.  Unfortunately this study did not confirm that this was due to ischaemia (167).  The 

most recent and largest trial of CMR as a gatekeeper for angiography in heart failure 

patients with reduced ejection fraction and without a history of ischaemic heart disease 

or angina used late gadolinium enhancement alongside magnetic resonance imaging of 

the coronary arteries (MRCA) and reported a diagnostic accuracy of 96% compared with 

invasive angiography (29).  However, no mention was made about the extent that MRCA 

added to the accuracy of late gadolinium enhancement alone.  This is important because 

in general CMR in a clinical setting of newly diagnosed heart failure patients would rarely 

employ routine MRCA.  Also the patient selection excluded those with atrial fibrillation 

and so does not represent a generic district general heart failure population. 

No studies have looked at the relationship between the presence and extent of late 

gadolinium enhancement of the myocardium with angiographic evidence of coronary 

disease in a HFPEF population.   

Defining prognostic coronary disease in general 

The ESC guidelines on the management of stable coronary artery disease from 2013 

provide a summary of the indications for revascularisation of patients with stable 
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coronary artery disease in a variety of clinical scenarios (168).  They highlight the 

complexity and nuances of the trial data within this area.  “Prognostic coronary disease” 

is an expression used not infrequently within the cardiology community but the specifics 

of this term are not clear cut, as demonstrated by the fact that the foremost 

recommendation by the ESC is that “A Heart Team approach to revascularisation is 

recommended in patients with unprotected left main, 2-3 vessel disease, diabetes or 

comorbidities.” 

Developments in medical, interventional and surgical techniques over the last 10-20 

years mean that most of the trials in this field are reduced to historic value.  Many of the 

trials that compared revascularisation with optimal medical therapy occurred at a time 

when optimal medical therapy did not include beta-blockers, ace inhibitors, statins, or 

other drugs with proven survival benefit that are used in standard practice today.  Many 

of these trials were also analysed using an intention to treat model with high cross over 

rates from the medical to revascularisation arm and interpretation of the results could be 

debated.  Also, these previous angiogram-only criteria to justify revascularisation have 

been superseded by the need to prove functional significance of a coronary artery 

stenosis either by way of severe angina symptoms, or documented ischaemia on non-

invasive or invasive fractional flow reserve (FFR) testing.  

The ESC provides a number of recommendations for revascularisation of stable coronary 

artery disease patients on optimal medical therapy to improve prognosis (Figure 10) 

(168).  The definition of prognostic LMS disease as >50% stenosis mirrors the ESC 

guidelines on myocardial revascularisation from 2010 (169), yet the accompanying 2013 

guideline text refers to LMS CAD as “stenosis 50% or greater”.  The ACCF/AHA 

guidelines for the diagnosis and management of patients with stable ischaemic heart 

disease from 2012, which refer to the same evidence, specify a definition of prognostic 

LMS as ≥ 50% (170).  Whilst the difference appears subtle, in practice the distinction 

between these definitions could be significant.  Many coronary stenosis classifications 

use set boundaries and exactly 50% stenosis would be one of these boundaries, with 

70% or 75% stenosis being the next grading level.  Inclusion versus exclusion of the 50% 

stenosis in this scenario would result in two very different cohorts.   
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Figure 10. Current ESC recommendations for revascularisation of stable coronary 

artery disease. 

Indication  Class & level 

of evidence 

LMS > 50% stenosis (with ischaemia or FFR <0.8 if stenosis 50-90%) I, A 

Any proximal LAD >50% stenosis (with ischaemia or FFR < 0.8 if 

stenosis 50-90%) 

I, A 

2-3 vessel disease with impaired LV function  (if asymptomatic the 

decision should be decided by the extent of ischaemia on stress testing) 

I, B 

Single vessel >50% diameter stenosis (with ischaemia or FFR < 0.8 if 

stenosis 50-90%) 

I, C 

Proven large area of ischaemia (>10% of LV) as assessed by non-

invasive imaging (SPECT, MRI, Stress echo)  

I, B 

Dyspnoea/cardiac failure with > 10% ischaemia/viability supplied by a 

stenosis >50% 

IIb, B 

Adapted from the 2013 ESC guidelines on the management of stable coronary artery disease (168). LMS, 

Left main stem; LAD, Left anterior descending coronary artery; FFR, Fractional flow reserve; LV, Left 

ventricle. 

This confusion is manifest in the wider trial data.  Some recent LMS intervention trials 

have used a definition of >50% for inclusion (171, 172), and some editorials and clinical 

decision sources specify that >50% is required for a definition of LMS disease (173, 174).  

Yet other pivotal, both historical and recent, intervention trials use entry criteria of ≥50% 

stenosis.  These include the Veterans Administration Cooperative, Coronary Artery 

Surgery Study (CASS), and SYNTAX group (175-181). Although interestingly, the 

subgroup analysis from the Veterans Administration Cooperative data would suggest a 

significant survival gain with CABG for LMS >75% stenosis but only a non-significant 

trend towards survival benefit in the 50-75% stenosis groups (bearing in mind the 

limitations of a small cohort compared at less than two years follow-up to eliminate cross-

over confounding) (182). 

It is difficult to know if the ESC guidelines have mis-defined LMS disease in error, or as 

a deliberate reflection of nuances in opinion or trial data.  Certainly the addition of the 

FFR study data would not justify the guidelines’ stance (183) and there is sufficient 

evidence to suggest that the lower cut-off definition of ≥ 50% should be applied.  The 

data should be re-evaluated in light of the studies that assess the functional significance 

of the LMS disease by FFR and suggest that revascularisation can be safely deferred if 
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the FFR is >0.8.  Yet when functional information is not available, LMS disease ≥ 50% 

remains a Class 1 indication for revascularisation. 

A definition for 2-3 vessel disease is not provided in the ESC guidelines and this may be 

because the specifics of these terms are assumed.  More likely, they were not fully 

disclosed in some of the earliest trials and also that the definition varied from one study 

to another with some using a definition of 70% stenosis (176, 179) and others using a 

definition of 75% (184, 185).  Certainly angiographer opinion as to what constitutes two 

or three vessel disease remains inconsistent (186).  When functional information is not 

available, the ACCF/AHA guidelines affirm that CABG to improve survival is beneficial in 

patients with significant (≥70%) stenosis in 3 major coronary arteries (with or without 

involvement of the proximal LAD) or in the proximal LAD artery and one other major 

coronary artery with class I, level B evidence (170).  CABG to improve survival is also 

deemed reasonable for ≥70% stenoses in two major coronary arteries (without proximal 

LAD involvement) in the presence of significant ischaemia or viable myocardium in that 

territory (level IIa class B evidence).  What constitutes a major or main epicardial artery 

is also debatable although the consensus is probably the main LAD or large secondary 

branch (generally the 1st diagonal), the main LCx or large secondary branch (generally 

the first obtuse marginal) or the main right coronary artery alone (175, 187). 

In practice, those people with convincing angina despite optimal medical therapy may be 

revascularised according to the visual assessment of a stenosis at angiogram, without 

functional testing.  If the reason for revascularisation is heart failure without angina then 

functional testing would generally be obtained to identify ischaemia or viability.  However, 

many clinicians would prefer an angiogram assessment prior to functional tests in this 

group.  If there is only minor disease at angiography functional testing would not be 

pursued.  Alternatively, knowing about severe stenoses on angiogram will allow 

functional testing to be performed with a higher degree of caution, acknowledging an 

individual at higher risk of complications.  The angiogram features thought to be of 

prognostic value for revascularisation in heart failure are debatable and out-dated but 

the appraisal below reflects on previous trials in this area to create a clinically workable 

definition. 

Prognostic coronary disease in a heart failure (HFREF) population 

The guidance for prognostic revascularisation discussed above also applies to a heart 

failure population.  However, LV dysfunction, with reduced ejection fraction, portends a 

worse prognosis in ischaemic cardiomyopathy (176) and represents a group whereby 

revascularisation can offer greater survival gains for similar, or even lesser, degrees of 

coronary disease than matched cohorts with preserved LV function. 
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Whilst overall, the Veterans Administration Cooperative Study confirmed a significant 

improvement in survival with CABG for LMS ≥50%, subgroup analysis would later show 

that this was limited to those with abnormal LV function (182). 

The original CASS randomised trial of CABG versus medical therapy showed a 

distinction between normal and impaired LV function with a survival benefit of CABG for 

three-vessel disease (stenosis ≥ 70%) only when LV dysfunction was present (LVEF 

35% to 49%) (188).  Subsequent observational studies from the CASS registry have 

confirmed this (189), but also shown survival benefit in only those individuals with LV 

impairment for left main stem equivalent disease (combined stenoses of ≥70% in the 

proximal LAD and proximal LCx coronary artery) (190).  

The contemporary STITCH trial investigated survival differences between CABG and 

optimal medical therapy in those with LVEF ≤35% and less severe forms of coronary 

disease (191).  Inclusion coronary disease was that deemed to be “amenable to 

revascularisation by their treating clinicians”.  The exception was those with LMS disease 

≥ 50% for whom it was deemed unethical to receive medical treatment alone.  Over a 

third of the population had no symptoms of angina.  Most patients had two vessel (31%) 

or three vessel (60%) coronary disease, and 68% had severe proximal LAD stenosis.  

The trial results both refute and support the added benefit of CABG depending upon 

whether one takes an “intention to treat” versus an “as treated” approach to analysis, but 

some argue a prognostic benefit of CABG in “STICH like” patients with two vessel 

disease, including an LAD stenosis.   

In an attempt to promote a standardised definition of ischaemic cardiomyopathy for use 

in clinical research one group looked at survival rates of those with LVEF ≤40% to create 

a prognostically powerful clinical definition according to the degree of coronary artery 

disease (184).  More extensive disease was associated with shorter survival, and all 

traditional definitions of ischaemic cardiomyopathy had reduced survival rates compared 

with a non-ischaemic cardiomyopathy except in those patients with single vessel disease 

(non LMS/proximal LAD) disease ≥75% stenosis.  Those with ≥75% stenosis of two 

epicardial vessels (regardless of LMS or proximal LAD involvement) had survival rates 

similar to three vessel disease, and certainly reduced compared with zero or one vessel 

disease.  In addition, those with ≥75% isolated proximal LAD disease had significantly 

reduced survival rates compared with non-ischaemic cardiomyopathy.  The authors 

concluded that these additional groups should be incorporated into the definition of 

ischaemic cardiomyopathy on prognostic grounds.  Interestingly the definition for LMS 

disease was set at ≥ 75% stenosis and those with 50-74% stenosis were not studied.   
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Significant coronary artery disease as defined by LGE trials in heart failure 

A number of studies have observed the predictive value of late enhancement with 

gadolinium on CMR to detect significant coronary artery disease in the setting of systolic 

heart failure.  In all studies the presence of any subendocardial LGE was used as the 

marker of significant coronary disease however “significant coronary disease” was 

defined differently for all.  The earliest study used >50% stenosis in ≥1 coronary artery 

in the context of a previously documented myocardial infarction to differentiate ischaemic 

cardiomyopathy from dilated cardiomyopathy (19).  Later, Soriano et al defined 

ischaemic LVSD by the requirement of ≥70% stenosis of a major epicardial vessel (26).  

Another group described ischaemic heart failure as LVEF <40% associated with ≥75% 

stenosis of one or more major proximal epicardial vessels or “LMS disease” which was 

not defined (27).   

One unifying feature of all these definitions is that one stenotic epicardial artery is 

sufficient to justify a diagnosis of ischaemic cardiomyopathy.  Whilst this is entirely 

plausible at a physiological level, the data above suggest that the prognostic impact of 

single vessel disease is minimal, even in heart failure. The exceptions are proximal LAD 

disease or when significant ischaemia can be proven.  As such, the implications for LGE 

to alter management of these patients would be simply by way of the addition of an 

antiplatelet or lipid lowering therapy for IHD, rather than consideration of 

revascularisation for prognostic purposes.  

Most recently, Assomull and colleagues explored the predictive value of the combined 

presence of LGE with proximal magnetic resonance coronary angiography to detect the 

basis of cardiac dysfunction in new presentations of heart failure (29).  Significant 

coronary disease at X-ray angiogram was defined as LMS >50% stenosis or >75% 

stenosis in either the proximal LAD or ≥ 2 epicardial vessels.  The gold standard 

consensus panel definition of ischaemic heart failure without infarction on CMR was 

slightly different “severe proximal 3 vessel or left main stem disease”.  What constituted 

severe was not defined and the rational for the difference in definitions isn’t fully 

explained.  Single vessel disease not in the proximal LAD was not considered to be a 

cause of LVSD.  This definition is much more in keeping with a prognostic pattern of 

coronary disease, and so of superior clinical value in a heart failure population.    
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A workable definition of significant coronary artery disease  

Revascularisation in heart failure could be justified for prognostic reasons for all the ESC 

indications for stable CAD as described above but on the basis of ACCF/AHA and the 

other evidence reviewed the following list is a more accurate reflection of prognostic 

disease in a heart failure population based upon the visual interpretation of angiographic 

findings alone:   

 LMS disease (≥ 50% alone) (170) 

 LMS equivalent disease (proximal LAD ≥ 70% and proximal LCx ≥ 70%) (190) 

 Three vessel disease (≥ 70% stenosis in each main epicardial vessel) (178, 180) 

 Two vessel disease excluding LAD stenosis if ≥75% stenosis (184) 

 Single vessel disease only if proximal LAD ≥75% stenosis (184) 

 Two vessel disease (≥70% stenosis, and without proximal LAD involvement) in 

the presence of significant ischaemia or viable myocardium in that territory (170) 

A simplification of these indications to incorporate all of the above scenarios yet allow 

practical application within a trial setting is described below: 

 LMS ≥ 50% stenosis 

 Proximal LAD ≥ 75% stenosis 

 Two or three vessel disease with ≥ 70% stenosis of a main epicardial vessel 

(defined as main LAD or large secondary branch, main LCx or large secondary 

branch or main right coronary artery excluding branches) 

This definition will be used when assessing for prognostic disease during this analysis.  
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Chapter 5 

Heart Failure nationally compared with Darlington Hospital 

The National Heart Failure Audit monitors the care and treatment of patients in England 

and Wales with acute heart failure.  It summarises individual trust and hospital data 

alongside national averages and is a good marker of individual and collective 

performance at one point in time but also over a trend of a number of years.  The latest 

data collated from April 2013-April 2014 is summarised in Figure 11 below and 

demonstrates Darlington hospital in the national picture (192). 

Figure 11. National versus local heart failure population statistics. 

Point of interest Darlington 

figures 

National Average 

(England and 

Wales) 

Lowest 

value 

(England) 

Highest 

value 

(England) 

Heart failure 

admissions 

240 n/s 15 697 

(LGI) 

Received echo (%) 97% 91% 57% 100% 

Cardiology inpatient 

ward (%) 

49% 49-51% 

(1st vs readmission) 

0% 100% 

Input from Consultant 

Cardiologist (%) 

64% 60-63% 

(1st vs readmission) 

0% 100% 

Input from specialist 

(%) 

100% 78-80% 

(1st vs readmission) 

2% 100% 

ACE on discharge (%) 62% 73% 33% 100% 

ACE/ARB on discharge 

(%) 

75% 85% 33% 100% 

Beta blocker on 

discharge (%) 

85% 85% 0% 100% 

MRA on discharge (%) 43% 51% 20% 100% 

Received discharge 

planning (%) 

79% n/s 7% 100% 

Referral to HF nurse 

follow-up (%) 

82% 58% 0% 100% 

Referral to HF nurse 

follow-up (LVSD only) 

(%) 

81% 69% 0% 100% 

Referral to cardiology 

follow-up (%) 

44% 54% 11% 97% 

Referral to cardiac 

rehab (%) 

5% 10% 0% 100% 

*LGI, Leeds General Infirmary; n/s, not specified; ACE, Angiotensin converting enzyme inhibitor; ARB, 

Angiotensin receptor blocker; MRA, Mineralocorticoid receptor antagonist; HF, Heart failure; LVSD, Left 

ventricular systolic dysfunction. 
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The Durham and Darlington Locality and heart failure services 

The County Durham and Darlington NHS Foundation Trust is the largest trust in the 

region in terms of patient population size.  It employs a dedicated team of cardiology 

specialists over a number of sites and at Darlington Memorial Hospital there is a 

predominance of Consultants that specialise in heart failure or imaging.  This includes 

an Honorary Professor of Cardiovascular Medicine with expertise in heart failure and 

clinical research, two Consultant cardiologists with expertise in CMR who run an on-site 

CMR clinical service, and a Consultant cardiologist with expertise in complex 

echocardiography and previous research in diastolic dysfunction.  They are supported 

by a dedicated team of cardiac physiologists and echocardiographers, many of whom 

have conducted their own research within the trust and with links to Durham University.  

There has been a dedicated post for a trust cardiology research fellow for a number of 

years, resulting in MD and PhD research.  Two dedicated cardiac research nurses help 

to co-ordinate the local, national and international research activity within the unit.   There 

is a strong desire within the cardiology department to develop the heart failure and 

imaging activity in both clinical and research domains and recently the trust was granted 

funding for a dedicated clinical research centre to be based at Darlington Memorial 

Hospital.  

As a leader in the field for heart failure services, a dedicated heart failure clinic was set 

up at Darlington in 2002 and was probably the first GP specialist led diagnostic and 

management clinic.  This clinic is now well established and run by a GP with a specialist 

interest in heart failure and national profile in heart failure research, alongside a 

Consultant cardiologist with expertise in heart failure and clinical research, and heart 

failure nurse specialists.  It runs as a one-stop diagnostic heart failure clinic and reviews 

around 10 new patients with a presumed diagnosis of heart failure every week.  

Diagnosis and management is according to National and European guidelines and local 

protocols.  As such, it is perfectly suited to recruit patients with heart failure for research.  

Since December 2012, an enhanced clinical pathway has been instigated for the 

investigation of patients with heart failure or presumed heart failure.  It incorporates the 

routine measurement of: 

 BNP and other validated prognostic blood tests  

 Quality of life questionnaire 

 Detailed echocardiogram attempting to measure Simpson’s Biplane LVEF, other 

measures of longitudinal systolic function, LV strain, and all parameters of 

diastolic function  

 Cardiac magnetic resonance scan with gadolinium and myocardial tagging. 
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The hope is that this service will improve diagnostic certainty and better guide 

management for patients on an individual basis.  At the same time, this enhanced clinical 

pathway has the potential to provide a wealth of information that would improve our 

understanding of heart failure as a whole. 
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Hypothesis Development  

Heart failure is a heterogeneous disorder and much more difficult to characterise than 

symptoms, isolated echo parameters (such as LVEF), or biomarkers alone would initially 

lead us to believe.  It is time for a paradigm shift in our approach to the diagnosis of heart 

failure to one that incorporates a multifaceted assessment of cardiac anatomy and 

function in daily practice.   

Incorporating routine CMR, alongside comprehensive echocardiography, into the initial 

screening of patients with heart failure could provide clinically important information to 

complement basic echocardiographic findings.  Epidemiological information provided by 

CMR may support or refute the current presumed spectrum of pathology in the heart 

failure population.  CMR could alter diagnosis by reclassifying LVEF and LV size in an 

individual.  It could differentiate the underlying cause of heart failure by way of late 

enhancement, particularly in the HFREF population.  This would also apply to those with 

heart failure with preserved ejection fraction or no major structural disease, although 

simply the presence or absence of late enhancement in these groups would be of 

interest.  CMR could help to clarify some already accepted measures of diastolic 

dysfunction to aid diagnosis in unclear groups.  Alternatively, CMR may demonstrate 

novel imaging findings that help to describe heart failure by way of new defining criteria.   

There is sufficient suspicion that Simpson’s Biplane 2D echocardiographic measurement 

of LVEF is at odds with the CMR derived LVEF to warrant further comparison of this in 

our cohort.  If this proves to be the case, and in light of the difficulties obtaining a 

Simpson’s Biplane measurement with 2D echo, it would be worth exploring whether 

assessment of LVEF using a regional wall motion scoring index (RWMSI) is valid and 

reproducible. 

Comprehensive echocardiography with detailed systolic and diastolic assessments will 

be an important element in the diagnostic profiling of those without a preserved ejection 

fraction.  It will be interesting to see how the application of a comprehensive HFPEF 

diastolic framework affects the profile of the heart failure community compared with 

currently held beliefs and may help to better clarify the heart failure population’s true 

characteristics. 

The likelihood is that the population attending the outpatient heart failure clinic would 

consist of a group with systolic dysfunction by way of reduced ejection fraction, another 

group with preserved ejection fraction and evidence of formal diastolic dysfunction or 

subtle systolic dysfunction (e.g. longitudinal impairment), a third group with presumed 

heart failure (generally with elevated heart failure biomarker) but normal ejection fraction 
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and no major structural heart disease on routine imaging, and a group without heart 

failure.  This third group is by no means small as demonstrated by Rajender Singh’s 

Darlington Retrospective OutPatient Study (DROPSY), Durham University 2009 (13).  

Simply defining the composition of a new heart failure clinic population incorporating the 

routine use of CMR would be of interest.  Thereafter subgroup analysis with both CMR 

and detailed echo measurements will be informative, with perhaps the most novel insight 

from the HFPEF group and those thought to have heart failure but with no major 

structural disease that have been little investigated before.  

Coronary artery disease (CAD) is the underlying aetiology for heart failure with reduced 

ejection fraction (HFREF) in the majority of cases (193-195).  Establishing an ischaemic 

basis to the left ventricular (LV) dysfunction has important prognostic implications, with 

higher mortality rates than compared with idiopathic dilated cardiomyopathy (184, 185).  

Revascularisation improves survival in ischaemic cardiomyopathy in certain settings 

including prognostic coronary disease, particularly with demonstrable ischaemia (31, 

168, 170, 196), but there may also be a rationale for revascularisation in those without 

angina or ischaemia (182, 188-191).  

Invasive X-ray coronary angiography is frequently performed as an initial investigation to 

identify CAD in a heart failure population.  Whilst complication rates are low, they can be 

serious.  Guidelines recommend invasive X-ray angiography only in the presence of 

angina or evidence of ischaemia (31) but stress testing in LV dysfunction with potentially 

significant CAD is not without risk.  A non-invasive, non-stress assessment would be 

preferable.  CMR is increasingly used in this setting and incorporates gadolinium contrast 

to reveal infarcted myocardium by subendocardial or transmural late enhancement (19).  

CMR using late gadolinium enhancement imaging (LGE CMR) with proximal coronary 

artery imaging (MRCA) has been shown to accurately categorise the aetiology of heart 

failure as ascribed by a consensus panel, and in no case was significant left main stem 

(LMS), proximal left anterior descending (LAD) or 3 vessel disease missed (29).  

However, MRCA is not routinely practiced in many centres.  LGE CMR without MRCA is 

a sensitive and specific marker of single vessel CAD in heart failure for those with a 

previously diagnosed myocardial infarction (19).  The sensitivity of LGE CMR is lower for 

those without a history of myocardial infarction (80-95%) (26-28) and whilst these false 

negative rates may be acceptable for non-prognostic single vessel disease, they may 

not good enough for the routine exclusion of prognostic CAD.  The evidence for the 

predictive value of LGE CMR alone to detect prognostic CAD in a heart failure population 

is lacking, and understanding local performance is important.  
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Specific sub-questions to be addressed 

1) What is the diagnostic profile of a newly diagnosed heart failure population in the 

County Durham and Darlington NHS Foundation Trust? 

a. How would the group divisions differ using different LVEF thresholds to 

diagnose HFREF? 

2) What is the diagnostic profile of this newly diagnosed heart failure population when 

incorporating routine CMR and comprehensive 2D echocardiography according to a 

contemporary diagnostic framework? 

a. Does this differ from the diagnostic profile of the heart failure population using 

routine echocardiography alone? 

b. Do echo and CMR measurements of LVEF correlate?   

3) What are the most useful diastolic criteria to confirm a diagnosis of HFPEF?  

4) How many of those given a diagnosis of not having heart failure by a clinician would 

have met the HFREF or HFPEF diagnostic criteria? 

5) Is there systolic dysfunction other than reduced LVEF in those with HFPEF? 

6) Is there systolic or diastolic dysfunction in those diagnosed as HFNMSD? 

7) If current CMR and echo measurements of LVEF do not correlate can this be 

improved upon using a regional wall motion score index (RWMSI) equation?  

8) How does routine CMR affect the understanding about the underlying aetiology for 

the heart failure? 

a. Consider the frequency of ischaemic versus non-ischaemic aetiology pre 

versus post CMR. 

i. Can the presence and degree of subendocardial LGE reliably predict 

CAD on angiography in a retrospective cohort? 

b. Consider the presence and degree of non-subendocardial LGE in the heart 

failure cohort. 

  



72 
 

Methodology 

There were two phases to the study; retrospective and prospective.  Both were important 

to help answer the questions above.  The prospective arm allowed a real time 

assessment of the local heart failure population using up to date echo and CMR imaging 

techniques and analysis according to a pre-defined protocol.  The retrospective arm 

provided a larger cohort of patients from which to obtain a subset with specific features 

to investigate in more detail, when a prospective cohort would not be able to offer 

sufficient sample sizes.  Specifically the retrospective cohort would provide a sample of 

patients to investigate whether the presence and degree of subendocardial LGE reliably 

predict CAD on angiography and also allow the development a new RWMSI equation 

which could then be subsequently tested and validated on a different prospective group.   

Prospective cohort  

A prospective cross sectional observational study for all new referrals to the heart failure 

clinics in the County Durham and Darlington NHS Foundation Trust (principally 

Darlington Memorial and Bishop Auckland Hospitals) was undertaken.   

A protocol for selection, recruitment, consent, data storage, analysis and ethical 

considerations was undertaken.  This protocol was formally peer reviewed by various 

health professionals locally, including cardiology Consultants not involved in the study, 

cardiac research nurses, clinical cardiac specialist heart failure nurses, 

echocardiographers, and cardiac physiologists.  As a result of this meeting the design of 

the study was altered to delay the time of consent beyond the initial diagnostic clinic due 

to concerns that asking for consent immediately following the news of a serious diagnosis 

may not be appropriate.  There was also encouragement to delay the timing of CMR to 

around 6 weeks after diagnosis and treatment to allow better stabilisation of heart failure 

symptoms.  Following local peer review, a meeting with a heart failure patient 

representative and heart failure patient support group was undertaken with prototypes of 

the patient literature and forms.  From this meeting came useful suggestions for 

improvements to the patient information leaflet and consent form, including defining 

memory loss more clearly. 

Thereafter the research proposal was discussed by the ethics review panel at Durham 

University.  The panel felt the wide breadth of data gathering necessitated ethical 

approval for a large database and recommended seeking ethical approval from a NHS 

research ethics committee with expertise in databases.  Thereafter, specific questions 

that would utilise this data for University related research would go through the University 

ethical approval process.  As such the research proposal was submitted via the online 



73 
 

Integrated Research Application System (IRAS) to a database specific committee and 

subsequently considered and approved by the National Research Ethics Service (NRES) 

Committee South Central-Oxford C.  A few months later, amendments had to be made 

to the protocol in light of some difficulties with patient recruitment.  An IRAS amendment 

form was completed and approved by the Oxford REC and the local Research and 

Development unit.  Following guidance from Durham University, a substantial 

amendment was approved prior to submission of the final thesis to allow extended 

approval for the use of anonymised non-identifiable basic demographic data from the 

entire group of patients attending the heart failure clinic, including those without heart 

failure that were discharged from follow-up at the first clinic.   

Patient selection and recruitment 

Potential participants were generally GP/community referrals with elevated BNP and 

symptoms of heart failure or recent inpatients given a new diagnosis of heart failure, 

referred to the Bishop Auckland or Darlington Memorial Hospital weekly heart failure 

clinic.  The expectation was for a total of approximately 10 new referrals per week to the 

clinics based on a retrospective review of the previous 3 months of clinic attendances.   

A database of all attendees and the physician’s diagnosis for each was kept for all new 

referrals as part of the hospital Trust’s own data collection for audit purposes and consent 

was not be required for this.   

Each new patient attending the heart failure clinic has a set of observations performed, 

ECG, basic echo (if not previously done) and a quality of life questionnaire.  They are 

then reviewed by a clinician who takes a medical history and performs an examination 

according to a standard template.  At the end of this clinic a provisional diagnosis is made 

according to the standard diagnostic pathway (Figure 13), and treatment commenced. 

It was estimated that approximately 50% would be diagnosed as HFREF, HFPEF or 

possible HFREF/HFPEF and that this would equate to 250 individuals with a new 

diagnosis of heart failure over 12 months assuming 100% were agreeable to participate.  

These individuals would be diagnosed according to the predefined diagnostic pathway 

described below and inclusion and exclusion criteria were adhered to as shown in the 

Figure 12. 
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Figure 12. Inclusion and Exclusion criteria for prospective database entry. 

Inclusion Criteria Exclusion Criteria 

New diagnosis of heart failure or possible 

heart failure due to HFREF and HFPEF 

according to standardised template.  

Over 18 

Capacity to consent to the study 

Attending County Durham and Darlington 

NHS Foundation Trust heart failure clinic 

Diagnosis of heart failure due to another cause 

or non-heart failure according to standardised 

template. 

Under 18 

Lacking capacity to provide consent 

Patients previously seen in the heart failure 

clinic 
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Figure 13. Diagnostic protocol for new patients presenting to the heart failure clinic. 

HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; HFNMSD, Heart failure with no major structural disease; LVEF, Left 

ventricular ejection fraction.
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Those patients given a diagnosis of HFREF, HFPEF or HFNMSD went on to have an 

outpatient CMR scan and further detailed echo approximately 6 weeks after the clinic as 

standard practice barring any contra-indications.  Those given a diagnosis of Heart 

Failure due to another cause or Non Heart Failure did not undergo routine CMR or repeat 

echo, and instead further investigations was tailored to their specific requirements.  The 

numbers of individuals that went on to have these various investigations, and thus the 

cohorts available for analysis are described in the consort diagram (Figure 14) below.  

This will be referred to in its various components throughout the prospective results 

sections for clarification of the patient cohort being examined in each section.   

Figure 14. Consort diagram of prospective patient cohort. 
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Cardiac magnetic resonance acquisition and reporting 

The CMR scans were performed according to standard heart failure protocols and 

exclusion criteria.  CMR images were obtained using a 1.5 Tesla GE Signa Excite 

scanner.  Following scout images, ECG-gated, steady-state, free precession breath-hold 

sequences (typical echo time/repetition time 1.3/3.1 ms, flip angle 45o ) were performed 

to produce three long-axis cines and sequential short axis cines (8mm slices with 2mm 

gaps) from the atrioventricular ring to the apex of the heart.  Phase contrast velocity 

encoding sequences through the mitral and aortic valve, LV tagging sequences and late 

gadolinium enhancement (LGE) sequences were all obtained. The LGE images were 

acquired 10 minutes after intravenous gadolinium-DOTA (Dotarem 0.2 mmol/kg) into a 

peripheral vein using an inversion recovery gradient-echo sequence.  Inversion times 

were individualised to null normal myocardium (typically 180 to 260ms; pixel size 1.4 x 

1.3 mm) and identical views were obtained as for cine imaging except for the removal of 

basal short axis slices in the LV outflow tract.   

The scan was reported by a consultant cardiologist with level 3 accreditation in CMR, 

and images stored in a format that allowed further post-processing.  LVEF and LVEDVI 

were measured using the standard techniques but with the inclusion of papillary muscles 

in LV volumes (197).  The latter was automatically indexed to body surface area in the 

report. Regional wall function was described in a pictorial representation of the 17 

segment American Heart Association (AHA) model, and differentiating normokinesis, 

hypokinesis, akinesis and dyskinesis using differing colours.  

LGE was deemed to be present only when signal enhancement could be seen in two 

planes. It was described as subendocardial, epicardial, transmural or midwall and then 

reported according to the AHA 17 segment model in terms of the myocardial segments 

affected when subendocardial.  Subendocardial and transmural LGE was assumed to 

represent a myocardial infarction due to CAD.  The degree of wall thickness affected was 

graded using differing colours, generally according to a <50% versus >50% 

differentiation. 

Some individuals had CMR stress imaging sequences performed using a standardised 

adenosine stress protocol.  These were also reported according to the AHA 17 segment 

model and labelled and being normal or having a stress perfusion defect. 

Transthoracic Echo acquisition and reporting 

There was an endeavour to perform the detailed echocardiogram on the same day and 

in the same centre as the CMR for patient ease and also to allow valid temporal 

comparison between the two investigations.  The echo was performed and reported 
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according to a standardised protocol and according to the best practice described in 

Chapter 3.  The same GE Vivid 7 machine was used for all scans with images transferred 

to EchoPAC clinical workstation for post analysis and reporting.  Only the two 

echocardiographers trained in the specifics of the acquisition protocol would perform the 

scans.  Measurements included cardiac chamber sizes, LV wall thickness and mass, full 

LV systolic and diastolic function assessment, LV strain imaging by speckle tracking, 

pulmonary vein flow Dopplers, RV function with TAPSE, IVC assessment for size and 

collapsibility and estimated PASP.  These were all performed using best practice 

protocols described in the literature review section.  The strain imaging, not previously 

described, was performed according to best practice.  All apical LV images were 

optimised for best quality, trying to ensure that the endo and epicardial surfaces of all 

walls were visualised over three-five cardiac cycles.  The three-chamber view was used 

initially so that the aortic valve closure time could be confirmed visually.  Thereafter the 

two-chamber and four-chamber views were analysed.  Points were marked manually at 

the mitral valve annulus and LV apex before an automated tracker package marked the 

endocardium at points in between.  These were adjusted manually when necessary and 

the width of the tracker optimised.  At least 15 of the 17 segments had to be of acceptable 

quality according to the analysis package in order to use the final global strain 

measurement.   

Final documented results were as a result of measurements over an average of at least 

three heart beats in patients with sinus rhythm and over an average of five cardiac cycles 

in patients with atrial fibrillation.  

Inter-observer assessment of LVEF was not formally tested as part of this study but has 

been done so at a departmental level in both the echo and CMR departments in the past 

for internal validation purposes and no concerns highlighted.  As this was a pragmatic 

assessment of everyday practice, a formal assessment of inter and intra-observer 

variability in scan recording and reporting was not performed.  

Patient supervision and responsibility for care 

Each patient was under the clinical supervision of the heart failure team (a consultant 

cardiologist, nurse specialist and non-consultant medical staff) who was responsible for 

the patients’ care.  Medical management of heart failure was according to current clinical 

NICE/ESC standards in all patients and all imaging results were sent to the treating 

clinician in order to guide further management. 
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Consent 

Those patients given an initial diagnosis of HFREF, HFPEF or HFNMSD were eligible to 

consent to have their data kept on the research database according to the inclusion and 

exclusion criteria listed above.  The clinician in charge of the patient’s care would briefly 

explain the research to the individual at the end of their 1st clinic appointment, and 

provide a basic information leaflet to those eligible to be involved.  Most patients received 

the new diagnosis of heart failure or possible heart failure at this first clinic, and being a 

major diagnosis for most, it was felt to be inappropriate to talk of the research in any 

detail at this time.  As such this discussion was kept very brief.   

Most patients diagnosed with heart failure would have a follow-up appointment organised 

before or around 3 months, and formal written consent was sought at this return visit by 

a trained research nurse.  Approximately 2 weeks prior to the return clinic visit a detailed 

participant information sheet was sent to the patient’s home.  On the return visit a verbal 

discussion detailing the database research objectives and methods was undertaken by 

the research nurse, and any questions answered.  If agreeable, patients were consented 

using a standardised written consent form.  The research nurse obtained consent 

wherever possible but in those rare circumstances when a research nurse was not 

available this task was delegated to another competent individual with GCP training, as 

per the research team’s responsibilities log.   

Those individuals with heart failure that were discharged from follow-up, who did not wish 

to return to the hospital, or were too frail to return to the hospital, and who expressed 

willingness to participate in the database, could be visited at home by the research team, 

or have the consent form sent to their home to sign and return.  Those patients that died 

before formal consent could have been obtained had their data input to the database 

under the Research Governance Framework (RGF) permission.   

Participants consented to allow the research team to keep personal identifiable 

information and routine clinical data on a secure computer database indefinitely, with a 

view to analysis for heart failure research.  At the time of consent participants are also 

asked if they want a summary of study results.  This is documented and the results of 

this study will be distributed on completion.   

Consent was not obtained when patients did not have capacity to make this decision.  

Those whose first language is not English required an interpreter and in this 

circumstance a fully trained and accredited translator was present at the time of any 

discussions or investigations, and to translate any documentation including the patient 

information leaflet. 
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Patients were advised that they are free to refuse consent or withdraw consent from the 

study at any time and those who were uncertain about consenting were offered a further 

period of time to consider and discuss with family members and/or GP. 

Those given a diagnosis of Heart Failure due to another cause or Non Heart Failure were 

often immediately discharged and were not asked to consent for data collection nor sent 

a participant information sheet. 

Data Collection 

The following data were recorded for each consenting participant: 

• Name, unit number, and date of birth 

• Observations and examination findings of congestion 

• Symptom profile 

• Medical history 

• Results of quality of life questionnaire 

• Blood results 

• ECG results 

• Initial basic echo parameters 

• Subsequent echo and CMR measurements 

• Heart failure related treatments 

These data were taken directly from the written template in the hospital notes, clinic letter 

information, biochemical and imaging reports or directly from imaging raw data.  With 

regards to BNP, the laboratory’s coefficient of variation has been assessed at three 

levels and is as follows:  

Level 1  38.0 pg/ml  with coefficient of variation of 3.3% 

Level 2 450 pg/ml with coefficient of variation of 0.87% 

Level 3 1490 pg/ml with coefficient of variation of 1.56% 

Data storage, custody and control  

Data were stored onsite at Darlington Memorial Hospital.  The database is on a secure 

password-protected area of the Trust server and actually consists of two separate 
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databases.  The first is a list of participant names, unit numbers and date of birth 

alongside a study number.  Passwords to this database are only available to Professor 

J Murphy, Professor A Fuat, Dr J Crilley, the cardiology research fellow and research 

nurse or research secretary that would require access for data input.  These passwords 

require changing on a regular basis as per Trust policy.  The second database has the 

participant study number and initials but no other identifying personal information, and 

alongside this all the clinical data listed above.  Passwords for this semi-anonymised 

database are available to named individuals as determined by Professor Murphy and 

would generally include Trust or university clinicians, researchers or staff with expertise 

required to conduct research such as statisticians.   

The databases were constructed on a Microsoft Excel program following Excel training 

sessions at Durham University, online training and the advice and scrutinisation of the 

I.T learning and development officer at the Trust to maximise effective and valid data 

input.  Comprehensive formulas, data validation methods, drop down choices and 

protected cells make it as robust as possible and to avoid accidental erroneous data 

input or removal.   

The databases are copied for back-up purposes on a regular basis, and any previous 

copies erased at the same time.  The databases are kept in different places to reduce 

the likelihood of any data security breach but it remains possible to link the personal data 

from one database with the clinical data on the other, which is necessary when follow-

up data input needs correlating for the same person. 

Data were analysed on site at Darlington Memorial Hospital according to Caldicott 

guidelines and standards.  When needed to be taken off site for statistician analysis then 

only the anonymised data were used and transferred using a Trust-provided password-

protected memory stick. 

Data analysis and statistical packages 

Data were initially stored on Excel spreadsheets in a format conducive with easy transfer 

to an SPSS package, all the while trying to ensure that missing data and non-measurable 

data were coded appropriately and separately rather than leaving blank fields.  The 

introduction to SPSS provided by Durham University was helpful and thereafter wise 

words from Dr Douglas Wilson and the Information Technology team at Darlington 

hospital allowed comprehensive planning of the data collection from the outset in order 

to facilitate analysis later.  All data analysis was performed using SPSS with the 

exception of the Deming regression analyses and Bland-Altman plots which were not 

provided by the SPSS package.  These were performed on the reputable “Medcalc” 
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online application, with double checking of initial results to ensure accuracy.  The 

prospective observational data were generally descriptive with basic average and 

percentage calculations.  Comparison of demographics between different groups was 

then performed using the Student’s t, Mann-Whitney U or Fisher’s exact test depending 

upon whether the data were parametric, non-parametric or categorical.  The statistics 

behind the assessment and development of a new RWMSI equation, and LGE to predict 

prognostic coronary disease was more complex and the rationale for different statistical 

methods and approaches are explained in the relevant methodology sections below.  

University statistician Dr Douglas Wilson helped at all stages of the statistical 

methodology and interpretation.  His guidance was invaluable and meant that results 

were double checked for accuracy.       

Ethical considerations 

This research was subject to the local County Durham and Darlington NHS Foundation 

Trust Research and Development Department approval and thereafter National NHS 

Research Ethics Service (NRES) Committee South Central-Oxford C approval before 

Durham University SMPH ethics sub-committee approval.  This was a lengthy and 

repetitive process with a variety of set-backs to be overcome along the way.  It was 

particularly useful to canvas opinion via peer review and the patient group workshop, 

and the advice from the Trust’s Research and Development manager was invaluable for 

successful engagement in the local submission process and IRAS.  

A diagnosis of heart failure can be a major life event for an individual and as such it was 

deemed inappropriate to approach people for consent to participate in the study at the 

initial clinic visit.  This meant that people were approached on their return visit and had 

the limitation of excluding the subgroup of patients that did not receive a follow-up 

hospital appointment (most often due to frailty) or those who died before follow-up.  With 

the realisation that this would lead to a biased subset for analysis an amended protocol 

to allow a modified consent process was submitted to the Oxford REC and local 

Research and Development unit, and approved so that such individuals could be visited 

at home by the research team, or have the consent form sent to their home to sign and 

return.  Those patients that died before formal consent could be obtained would have 

their data inputted under the Research Governance Framework (RGF) permission. 

It became an ethical quandary to know whether to perform the CMR and echocardiogram 

on the same day.  The scans can be long and as such tiring for the patient to have both 

on the same day.  However it avoids a repeat visit for the patient and from a research 

perspective is preferred because of the close temporal relationship when comparing the 

different methods.  Because of this ethical quandary, opinion was canvassed from the 
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heart failure support group and the consensus was that same day scans was the 

preferred strategy.  However, if an individual would prefer to have the scans on separate 

days for any reason then this would be arranged.   

It was felt important to acknowledge patients contribution to the study by taking the time 

to produce a summary of any results for those that wanted it.  As such patients were 

asked if they wanted this at the time of consent.  Whilst many had no interest in receiving 

such information, the gesture was warmly received by a number of individuals who 

commented on how refreshing this approach was. 

  



84 
 

Retrospective cohort  

This relates to the cohort used to investigate the performance of current RWMSI 

equations and consider new equations if necessary (with a view to subsequent validation 

in a prospective cohort), and whether the presence and degree of subendocardial LGE 

reliably predicts CAD on angiography.  It is a different group from the prospective heart 

failure clinic cohort.  The consort diagram for these two retrospective analyses is shown 

in Figure 15 and will be referred to in its various components throughout the rest of the 

methodology and results section for clarification of the patient cohort being examined in 

each section.   

Figure 15. Consort diagram of retrospective analyses 
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Since the initiation of the CMR service at Darlington Memorial Hospital there have been 

a number of patients who have undergone both CMR and invasive X-ray coronary 

angiogram within a relatively short time span of each other.  The retrospective cohort 

essentially incorporates these individuals. 

The patient demographics of everyone that has ever had a X-ray angiogram and all those 

who have ever had a CMR are kept on separate databases, the newest being the CMR 

database which was set  up in 2006 when the service began.  Both databases are kept 

within the cardiology department for audit purposes. 

Combining these two databases allowed identification of those that had undergone both 

a CMR and X-ray angiogram and the dates when the investigations occurred.   A new 

database was created containing only these individuals.  The full reports from both 

investigations were then reviewed, and a dataset of information established. 

Invasive X-ray coronary angiography had been performed and reported on the same day 

by a consultant cardiologist.  The presence and degree of any coronary stenoses were 

labelled on a detailed pictorial display of the coronary arteries along with a written 

description.   

CMR scanning and reporting was performed in the same manner as described above for 

the prospective cohort. 

Database Construction 

This retrospective database was created in Microsoft Excel in a password protected 

environment within the NHS Trust server.  Individuals were given a study number and 

when patient identifiable information was no longer required it was removed from the 

database.  The data compiled included: 

 Date of CMR and X-ray angiogram 

 Age at the time of X-ray angiogram 

 Sex of patient 

 Time between investigations in days and which study came first 

 Indication for CMR and angiogram 

 CMR results 

 X-ray angiogram results 
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The indication for undertaking the CMR and X-ray angiogram were not always clear or 

standardised.  Establishing a standardised set of indications was helpful for consistent 

data entry, and included: 

 Heart failure 

 Viability 

 Ischaemia 

 Troponin positive chest pain 

 Constriction or restriction 

 Congenital Heart disease 

 Hypertrophic cardiomyopathy 

 Left ventricular hypertrophy 

 Cardiac tumour 

 Valve disease 

 Ventricular fibrillation/tachycardia 

In cases where the indication was unclear, a review of medical notes, blood and echo 

results was undertaken to decide upon the most likely referral reason. 

The data used from the CMR report included chamber measurements and ejection 

fraction (with indexing to body surface area when able).  A regional wall motion numerical 

score (RWMS) was substituted for the colour interpretation of the wall motion for each of 

the AHA 17 segments of the LV. The numerical score given depended upon the RWMS 

analysis being tested.  The pattern of late enhancement was established and if 

subendocardial, graded as either normal (not present) (“0”), or present <50% thickness 

(“0.5”), or >50% thickness (“1”) for all 17 segments.  The stress perfusion results were 

described as simply normal (“N”) or having a defect (“D”) for each of the 17 segments.  

When segments were not seen or reported the number “99” was used within the 

numerical datasets, and the letter “z” used within alphabetic datasets to represent 

missing data and allow a smoother transition into the SPSS package later.  Tests not 
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performed or abandoned were given different codes to differentiate them from other 

missing data. 

The results of the X-ray angiogram were documented; specifically maximum percentage 

stenosis of the LMS and proximal LAD, and then of the LAD territory, LCx territory and 

RCA territory.  Stenosis in a “territory” generally referred to that in the main coronary 

artery, however, if a large diagonal or OM had more profound disease than the main 

vessel this would be documented as the worst stenosis.  These were given numerical 

percentage values exactly as described on the angiogram report. Another column of data 

to document unusual features from the X-ray angiogram was also created to include 

information such as whether the patient had grafts, stents or valve disease.  This should 

have picked up all of those who had undergone previous revascularisations.  

Regional wall motion score index to predict CMR LVEF 

Regional wall motion scoring index is performed by assigning a score to each of the 

segments of the 16-segment American Heart Association (AHA) model for the 

assessment of regional LV function.  It is sometimes used in clinical echo practice 

because of the difficulties performing Simpson’s Biplane measures and it is simple to 

perform.  Appraisals of RWMSI have demonstrated good correlation with cardiac MRI 

LVEF but this has only been looked at over a wide range of ejection fractions and sub 

group analysis was limited by small group numbers.  It tends not to be employed in CMR 

reporting because the LV endocardium clarity means that LVEF can be easily calculated 

by the well practised method of endocardial tracing.  Various scoring systems have been 

used but the generally accepted method is to give a score of 1 to 4 depending upon the 

wall motion in each segment (198): 

1 = Normal wall motion 

2 = Hypokinetic 

3 = Akinetic 

4 = Dyskinetic 

The wall motion score index takes the sum of these scores and divides it by the number 

of segments observed.  The entire myocardium (except for the apical cap) is taken into 

account as opposed to the Simpson’s Biplane assessment which does not look at the 

function of the inferior and anterior walls.  One of the drawbacks to this scoring system 

is that it has an inverse relationship to the calculated LVEF, requiring a computerised 

equation to convert one to another, and making its application difficult in clinical practice.  

This is due to the fact that better contracting myocardium has a lower score than 
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dysfunctional myocardium in most scores. Some teams have validated a scoring system 

where more positive scores represent better contracting myocardium but the scores were 

sub-divided for different degrees of hypokinesis thus increasing their complexity (137, 

199).  One of these studies validated a 2D RWMSI against 3D echo LVEF (199), the 

other against CMR LVEF (137).  However the spread for level of agreement was not 

probably not clinically acceptable and it is also worth noting that previous correlation 

calculations may be skewed by the ceiling effect of the RWMSI (i.e. a positively scoring 

RWMSI described above could not exceed the score given to a normokinetic segment, 

e.g. 3x16/16=3) whereas Simpson’s Biplane or CMR LVEF is not restrained by the same 

ceiling cut-off.  

My experience is that this positively correlating calculation seems to be a reasonable 

representation in those with normal, mildly impaired or moderately impaired LV systolic 

function, but that it over-exaggerates the degree of LV impairment in those with severe 

LV systolic impairment, resulting in much lower ejection fractions using RWMSI 

compared with endocardial tracing using CMR. 

In current clinical work the previously validated equation, 

RWMSI LVEF = (Total RWMS/16) x 30, 

is often used alongside a simplified RWMS where normal wall motion = 2, hypokinesis = 

1, akinesis = 0 and dyskinesis = 0 or -1 (137).  The denominator of 16 is used rather than 

17 because in many centres only a 16 segment LV model is used, missing out the very 

apical segment.  My experience was that this calculation seemed to be a reasonable 

representation in those with normal, mildly impaired or moderately impaired LV systolic 

function, but that it may over-exaggerate the degree of LV impairment in those with 

severe LV systolic impairment.  This would result in much lower ejection fractions using 

RWMSI compared with endocardial tracing using CMR. 

One aim, using the retrospective database of information, was to test the hypothesis that 

the RWMSI equation above provides an accurate reflection of CMR LVEF and heart 

failure severity group across all the degrees of LV impairment.  If not, it would be 

important to consider and define alternative equations and investigate whether these 

could provide a better representation of CMR measures.  

The initial dataset included 362 names.  Those with missing CMR or angiogram data, or 

those with very focused studies where the data above were not collected, and those with 

repeat datasets due to a different hospital number were all excluded from the database.  

A subsequent seven individual datasets were removed because of missing RWMS data.  
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The RWMSI equation described above will have a ceiling effect whereby the maximum 

possible LVEF is 60% (RWMSI LVEF = (32/16) x 30).  Discrepancies with those with 

CMR endocardial LVEF > 60% are therefore evident.  In order to minimise these 

discrepancies I opted to remove all those patients with an indication of hypertrophic 

cardiomyopathy from the database as such individuals have a supra-normal LVEF 

almost universally.  This resulted in the removal of six datasets, leaving 273 patients for 

analysis (see flowchart, Figure 16 below). The study was considered by the NHS Health 

Research Authority (HRA) screening tool and individual patient consent was not 

required. 

Figure 16. Patient selection for RWMSI equation development: adapted from 

consort diagram (Figure 15). 
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The indication for CMR was varied, incorporating all the subgroups described above.  

The RWMSI LVEF was calculated for every individual according to a 16 segment model, 

excluding the very apical segment in all, and using the equation above.  The simplified 

RWMS whereby normal = 2, hypokinetic =1 and, akinetic and dyskinetic = 0 was 

employed.  Deming regression analysis was performed as well as Bland Altman 

agreement plots of RWMSI LVEF versus CMR LVEF.  This was initially performed in the 

entire study population of 273 individuals but the impact of the ceiling effect of the 

equation was notable visually on the charts with a dense clustering of RWMSI LVEF at 

the 60% level.  As such, the data were reanalysed only for those with a RWMSI LVEF 

>10% and ≤55% in an attempt to overcome concerns about a ceiling or floor effect that 

might skew the analysis.  This reduced the sample size to 160 subjects.  The data were 

also depicted by heart failure subgroup from the CMR LVEF according to the British 

Society of Echocardiography reference ranges (Normal LVEF ≥55%, mild impairment 45 

to 54%, moderately impaired 36 to 44%, and severe <35%). 

The Deming regression analysis was used in preference to standard regression analysis 

as this method would take into account the variation within both variables, acknowledging 

that even the gold standard CMR endocardial LVEF will have inherent variance (200).  

The Bland Altman plot is a means of assessing agreement between two methods of 

clinical measurement (201, 202), rather than simply the strength of a relationship (be that 

one which lies along the line of equality or not) as depicted by a correlation or regression 

analysis.  It was used as a means of assessing this equation in the previous validation 

study (137) and in that study the limits of agreement suggested that the RWMSI LVEF 

could be 9% higher or 14% lower the CMR endocardial LVEF.   

Separate Deming regression analyses were performed on the individual heart failure 

subgroups (normal, mild, moderate or severe LV impairment by BSE criteria) according 

to the CMR endocardial LVEF and the difficulties with this are examined in the results 

section below. 

Following this analysis, a better fit equation was calculated and novel RWMSI LVEF 

equations were constructed from the best-fit Deming regression lines for four different 

datasets, adjusted according to whether the RWMS allocated a score of 0 versus -1 to a 

dyskinetic segment, and thereafter either incorporating or removing all those with a 

RWMSI of 2 (Figure 16).  

Most previous RWMSI calculations have tended to allot a score of -1 to a dyskinetic 

segment and thus it was necessary to test this scoring method.  A RWMSI of 2 would 

mean that all the walls of the heart have normal contractility and it should logically follow 
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that any LVEF should be at least 55% (i.e. at the lowest end of the normal range) in all 

these cases.  In practice this may not always be the case but in this sample there were 

70 individuals that had a RWMSI of 2 and all but one had an CMR endocardial tracing 

LVEF of ≥ 55%, (outlier LVEF = 52%).  The range of LVEF in this group was varied, with 

a mean LVEF of 70%.  Theoretically incorporating all the data could produce a regression 

equation that would allow a RWMSI of 2 to result in a RWMSI LVEF of < 55%.  This 

seemed counterintuitive and one way to avoid this was to remove all those with a RWMSI 

=2 and accept that these should always represent an LVEF ≥55% but could not be 

defined with any more accuracy.  The decision then came whether to remove or keep 

the group with a RWMSI = 2 for the regression equation for the rest of the data since 

each method would bias the regression line differently. 

Given these different considerations, equations were derived for four different datasets: 

1. Dyskinetic segments = 0, and all RWMSI data used (including RWMSI = 2) 

2. Dyskinetic segments = 0, and only RWMSI < 2 data used 

3. Dyskinetic segments = -1, and all RWMSI data used (including RWMSI = 2) 

4. Dyskinetic segments = -1, and only RWMSI < 2 data used 

 

The aim was to identify which dataset provided an optimal relationship between the 

RWMSI and the CMR endocardial LVEF, by way of the difference in the means and 

confidence intervals. 

The distribution of the RWMSI data was positively skewed by the large numbers with a 

RWMSI of 2.  However, even with this group removed, the data were not normally 

distributed and it was possible that linear equations would not be representative of the 

relationship between RWMSI LVEF and CMR endocardial LVEF.  Attempts to transform 

the data into a more normal distribution using logarithmic and trigonometric methods 

were undertaken and the most successful method was taken forward to perform another 

Deming regression analysis and a further equation identified. 

In addition, the equations established above were simplified to be more clinically useful.  

The final selection of equations are listed and explained in the results section.   

The performance of all the equations were compared on the same cohort of subjects, for 

the full data set and then for each heart failure subgroup (normal, mildly impaired, 

moderately impaired, and severely impaired according to CMR LVEF) for data that 
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included  RWMSI = 2, and then those where RWMSI = 2 were excluded.  This was done 

by comparing the mean RWMSI LVEF (with confidence intervals) of each equation with 

CMR endocardial LVEF values.  Subsequent paired analysis of heart failure group 

allocations by the different equations versus CMR LVEF was performed.  The LVEF 

determined a heart failure grouping according to BSE criteria (1=severe (LVEF ≤ 35%), 

2=moderate (LVEF 36-44%), 3=mild (LVEF 45-54%), 4=normal (LVEF ≥ 55%).  The 

notion was that performance according to heart failure group allocations may allow a 

more clinically relevant interpretation of the equations’ performance.  It also provides an 

alternative method of comparison to support any conclusions, acknowledging that using 

the same set of data for hypothesis generation and then hypothesis testing has 

significant limitations.  Indeed, despite multi-method hypothesis testing any findings 

would need to be validated with a future cohort of different patients. 

Wilcoxon (matched pairs) signed rank analysis of the heart failure groups created by the 

different equations versus CMR LVEF was attempted but was unhelpful.  The ranking 

system, that is inherent in this statistical method, produced dramatic differences in the 

level of significance of the equations depending upon whether the middle or outside heart 

failure subgroups groups were analysed.  The lowest and highest group could not have 

data that were negatively or positively ranked respectively because they were at the 

lower and upper ends of the ranking system.  The two middle groups could have rankings 

in either direction.  Whether the group was an inner or outer heart failure group in the 

ranking system seemed to be the most relevant variable to the significance results of the 

test.  Instead, a test that considered simply whether the heart failure group allocation 

was correct or incorrect (irrelevant of positive or negative ranking) was performed using 

cross-tabulation and Kappa measure of agreement, and the different levels of agreement 

for the equations were compared.  Once again this was initially performed with the whole 

dataset but the high levels of agreement in the “normal” subgroup, with large “normal” 

subgroup numbers appeared to be skewing the picture for the other subgroups.  

Therefore, repeat analysis was done for only those 203 individuals with a RWMSI < 2, 

removing the group of people with the equation’s ceiling RWMSI LVEF and reducing the 

skewing effect.   

After review of the semi continuous and categorical agreement between the various 

RWMSI LVEF equations and CMR LVEF, the best fit equations, taking into account 

clinical usability were identified.  These were then prospectively tested using Bland 

Altman plots of echo RWMSI LVEF and CMR LVEF for studies performed on the same 

day in the prospective heart failure cohort.  Categorical analysis was also performed to 

assess the concordance of heart failure group allocation by the different methods.  The 
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results were then compared against the accuracy of those for the Simpson’s Biplane 

method of LVEF. 

LGE CMR to predict prognostic coronary artery disease 

The evidence for the predictive value of LGE CMR alone to detect prognostic CAD in a 

heart failure population is lacking, and understanding local performance is important.  

The aim in this analysis was to assess whether the absence of subendocardial LGE 

could reliably exclude prognostic CAD in a population with LV systolic dysfunction. 

The European Society of Cardiology (ESC) definition of HFREF (6) was applied to the 

retrospective dataset of 286 people, and those with LV ejection fraction (LVEF) <50% or 

LV end-diastolic volume index (LVEDVI) ≥ 97ml/m2 on CMR, or with a previous 

echocardiogram suggesting LV systolic impairment for which CMR had been requested 

to further differentiate the cardiomyopathy were selected.  This latter group were 

identified by looking through the previous echos of those with a heart failure or viability 

indication for CMR but with normal CMR LV parameters.  This resulted in a group of 143 

individuals. Of these, those with a history of previous revascularisation (23 people), and 

those who did not receive gadolinium at the time of CMR (4 people) were excluded.  A 

final total of 116 patients were included for analysis (Figure 17).  The study was 

considered by the NHS Health Research Authority (HRA) screening tool and individual 

patient consent was not required. 
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Figure 17. Patient selection for retrospective analysis of CMR LGE with invasive 

angiography: adapted from consort diagram (Figure 15). 
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A definition of prognostic coronary disease was established as described in the literature 

review section:   

 LMS ≥ 50% stenosis 

 Proximal LAD ≥ 75% stenosis 

 Two or three vessel disease with ≥ 70% stenosis of a main epicardial vessel 

(defined as main LAD or large secondary branch, main LCx or large secondary 

branch or main right coronary artery excluding branches) 

The definition of prognostic CAD was applied to the X-ray angiogram reports so that two 

groups were established: those with prognostic CAD and those without.  These 

angiogram reports had been finalised by a single Consultant performing the study on the 

day of the study and formal inter and intra-observer variability was not tested.  The 

presence or absence of subendocardial LGE was determined from the CMR report and 

two groups were established: those with subendocardial LGE and those without.  A 

subendocardial LGE Total Score was calculated for each scan with a view to evaluating 

whether the total amount of LGE could help predict the likelihood of prognostic CAD in 

positive CMR scans.  A value of 1 was given for one AHA segment with 50 to100% 

transmural enhancement, and 0.5 for one AHA segment with <50% transmural 

enhancement.  A maximum Score of 17 would represent transmural LGE in every AHA 

segment.  The basic demographics of the study population and comparison of 

demographics between the prognostic CAD positive versus CAD negative groups was 

performed.  Continuous variables were expressed as mean ± standard deviation unless 

otherwise specified.  To analyse the accuracy of LGE CMR to detect prognostic CAD we 

assessed sensitivity, specificity, positive and negative predictive value and diagnostic 

accuracy, with 95% confidence intervals.  The rates of false positives and false negatives 

were calculated and case analysis of each group undertaken.  
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Results 

Rather than breaking this into prospective and retrospective analyses, the results are 

displayed in an order consistent with the “Specific sub-questions to be addressed” 

section above.  In some cases the combination of prospective and retrospective results 

are complementary and thus will be displayed together and labelled as such. 

Q1. What is the diagnostic profile of a newly diagnosed heart failure population in 

the County Durham and Darlington NHS Foundation Trust? 

How would the group divisions differ using different LVEF thresholds to diagnose 

HFREF? 

The newly created, comprehensive diagnostic pathway using current best evidence for 

the diagnosis of heart failure with reduced ejection fraction (HFREF) and heart failure 

with preserved ejection fraction (HFPEF) (Figure 13) was applied prospectively to all 319 

new patients attending our heart failure clinic between May 2013 and July 2014.  In order 

to get a generalised overview of a generic population presenting to the heart failure clinic 

all 319 people were initially included.  Many of these did not undergo CMR or repeat 

echo assessment but to include only these in the initial overview would have presented 

a biased population.  Instead the data for this subset will come later.  In this overview 

only clinician history, examination findings, ECG, basic initial echo, and BNP alone were 

used to define the groups.  Figure 18 below shows the adapted prospective consort 

diagram to demonstrate the group being analysed (highlighted in red). 

Figure 18. Adapted prospective consort diagram (Figure 14) 
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Whilst it was recommended that referral to the clinic incorporated an elevated BNP, GPs 

also had open access to transthoracic echo and many wanted an opinion based on 

clinical suspicion alone. As such the referral mechanisms were varied.  In total, 58% had 

a BNP performed prior to clinic attendance.  54% of those referred had a BNP > 35 pg/ml 

and 47% of those referred had a BNP > 100 pg/ml prior to clinic attendance.  BNP was 

also measured in clinic and data analysis later uses these measurements. 

Of the 319 new patients, 245 were deemed to have heart failure clinically (combined 

HFREF, HFPEF, HFNMSD, HF alt cause and Right HF groups).  Of these 245 individuals 

73% met our diagnostic criteria for HFREF, and only 14% met the diagnostic criteria for 

HFPEF (20% if those with no major structural disease were included within the HFPEF 

heading) (Figure 19).  This is a very different balance of HFREF to HFPEF when 

compared with other nationally published data and almost certainly represents 

discrepancies in LVEF diagnostic thresholds to define HFREF.  Indeed Figures 22 and 

23 below demonstrate how differing LVEF cut-offs affect the prevalence and ratios of 

HFREF to HFPEF in this heart failure community. 

Figure 19. Schematic overview of diagnoses in the prospective cohort attending 

the heart failure clinic. 

HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

HFNMSD, Heart failure with no major structural disease; HF Alt cause, Heart failure due to an alternative 

cause; Not HF, Not heart failure. 

 

The characteristics of the population attending the heart failure clinic are described in 

Figure 20 below.  Only those fourteen individuals that refused to consent for the 
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collection of their data were excluded from this analysis.  Thereafter the significance of 

differences between the demographics of the HFREF and HFPEF populations are 

explored in Figure 21. 

 
Figure 20. Demographics of the population attending the heart failure clinic (and 

subdivided according to heart failure grouping). 

 All patients 
attending HF clinic 

HFREF 
(LVEF<55%) 

HFPEF  Not HF  

Number 319 (305) 
 

(14 refused consent 
for data to be used) 

180 (169) 
(11 refused 
consent for 

data to be 
used) 

35 (33) 
(2 refused 

consent for 
data to be 

used) 

71 

     

% DMH clinic 57% 58% 80% 42% 

% Female 47% 38% 57% 58% 

Mean BNP (pg/ml) 340 434 298 151 

BNP>35 (pg/ml) 92%    

BNP>100 (pg/ml) 76%    

% Previous MI 25% 31% 21% 15% 

% Previous HF admission 15% 24% 6% 1.4% 

% Permanent AF   35% 34% 62% 21% 

% Dyspnoea present 85% 89% 91% 67% 

% Oedema present 62% 58% 91% 44% 

% Loop diuretic use 52% 54% 53% 32% 

% Thiazide diuretic use 12% 10% 12% 14% 

 

Figure 21 below compares the demographics of the HFREF and HFPEF groups, as 

designated by the diagnostic flow chart in figure 13.  Similarly to other published 

literature, those with HFPEF were statistically more likely to be older, diabetic, 

hypertensive (systolic BP only) and to have permanent atrial fibrillation than those with 

HFREF.  In accordance with other published data, there was also a much higher 

preponderance of females in the HFPEF group, although this didn’t reach statistical 

significance (P=0.06).  Those with HFREF were statistically more likely to have bundle 

branch block and to have had a previous hospital admission with heart failure.  There 

was no significant difference in BNP level, body mass index, or prevalence of ischaemic 

heart disease or COPD.  Interestingly, despite the higher rates of previous hospital 

admission in the HFREF group, the subjective assessment of quality of life by way of the 

Minnesota score was identical between the groups. 
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Figure 21. Comparison of demographics between the HFREF and HFPEF groups. 

According to diagnostic flow chart (Figure 13) 

 Based on initial echo (LVEF<55% (≥"mild 
LVSD") or LVEDVI≥97ml/m2) 

  

 HFREF 
(LVEF<55%) 

HFPEF  HFREF vs 
HFPEF  

OR where 
significant 

Test used  

Number 180 35     

       

Mean BNP 
(pg/ml) 

434 298 P=0.06 NS  Student’s t   

Average age 73 81 P<0.001 *  Student’s t   

Mean BMI 29.5 31.1 P=0.14 NS  Student’s t  

%Female 38.3% 57.1% P=0.06 NS OR 2.1 
(95% CI 1.0 
to 4.5) 

Fisher's Exact Phi = 0.14 
(little/no 
association) 

%IHD 33.1% 23.5% P=0.32 NS  Fisher's Exact  

%Diabetes 25.7% 47.1% P=0.02* OR 2.6 (CI 

1.2 to 5.5) 
Fisher's Exact Phi =0.18 

(little/no 
association) 

%COPD 22.8% 32.4% P=0.27 NS  Fisher's Exact  

%Permanent 
AF 

33.9% 61.8% P=0.003 * OR 3.1 (CI 

1.5 to 6.6) 
Fisher's Exact Phi =0.21 

(little/no 
association) 

%BBB 34.1% 11.8% P=0.008* OR 0.26 
(CI 0.09 to 
0.77) 

Fisher's Exact Phi = -0.18 
(little/no 
association) 

%Previous 
HF 
admission 

23.5% 6.1% P=0.03 * OR 0.21(CI 

0.05 to 
0.92) 

Fisher's Exact Phi = -0.16 
(little/no 
association) 

Mean 
Minnesota 
score 

40.7 40.7 P=1.00 NS  Student’s t  

%HTN 67.1% 82.4% P=0.10 NS  Fisher's Exact  

Systolic BP 
(mmHg) 

133.0 144.0 P=0.01 *  Student’s t   

Diastolic BP 
(mmHg) 

77.0 77.0 P=0.96 NS  Student’s t  

Fisher’s Exact test performed on frequencies not percentages. *, Statistically significant; NS, Non significant; 

OR, Odds ratio; LVEF, Left ventricular ejection fraction; LVSD, Left ventricular systolic dysfunction; LVEDVI, 

Left ventricular end-diastolic volume index; HFREF, Heart failure with reduced ejection fraction; HFPEF, 

Heart failure with preserved ejection fraction; BNP, Brain natriuretic peptide; BMI, Body mass index; IHD, 

Ischaemic heart disease; COPD, chronic obstructive pulmonary disease; AF, Atrial fibrillation; BBB, Bundle 

branch block.  
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When different LVEF thresholds were employed the numbers and ratio of HFREF to 

HFPEF altered substantially (Figure 22 and Figure 23).  LVEF threshold of <40% 

produced a ratio of HFREF to HFPEF of 1.3:1 (1.2:1 if those with no major structural 

disease were included within the HFPEF heading) which is much more in keeping with 

current perceptions about an epidemic of HFPEF but reflects the fact that many of those 

currently diagnosed with HFPEF have a definite reduction in LVEF that could account 

for their presentation.  

 

 
Figure 23. Differing ratios of HFREF to HFPEF according to varying LVEF 

thresholds. 

LVEF threshold for 
a diagnosis of 

HFREF 

 

Ratio of HFREF to HFPEF 

Ratio of HFREF to HFPEF + 
HFNMSD 

LVEF <55% 5.1 : 1 3.7 : 1 

LVEF <50% 3.1 : 1 2.5 : 1 

LVEF <45% 1.9 : 1 1.6 : 1 

LVEF <40% 1.3 : 1 1.2 : 1 

LVEF, Left ventricular ejection fraction; HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart 

failure with preserved ejection fraction; HFNMSD, Heart failure with no major structural disease. 

          Figure 22. Breakdown of heart failure population according to a contemporary          

diagnostic framework and utilising different LVEF thresholds for HFREF. 

LVEF 
threshold 
for HFREF 

 Total HFREF HFPEF HFNMSD HF Alt 
cause 

RHF  HFPEF 
and 
HFNMSD 

 Ratio of 
HFREF 
to 
HFPEF 

LVEF 
<55% 

Number 245 180 35 14 13 3 49 5.1 : 1 

% of total 100% 73% 14% 5.7% 5.3% 1.2% 20%  

LVEF 
<50% 

Number 245 163 52 14 13 3 66 3.1 : 1 

% of total 100% 67% 21% 5.7% 5.3% 1.2% 27%  

LVEF 
<45% 

Number 245 141 74 14 13 3 88 1.9 : 1 

% of total 100% 58% 30% 5.7% 5.3% 1.2% 36%  

LVEF 
<40% 

Number 245 123 92 14 13 3 106 1.3 : 1 

% of total 100% 50% 38% 5.7% 5.3% 1.2% 43%  
 

LVEF, Left ventricular ejection fraction; HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with 

preserved ejection fraction; HFNMSD, Heart failure with no major structural disease; HF Alt cause, Heart failure due to an 

alternative cause; RHF, Right heart failure. 
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Q2. What is the diagnostic profile of this newly diagnosed heart failure population 

when incorporating routine CMR and comprehensive 2D echocardiography 

according to a contemporary diagnostic framework? 

 a. Does this differ from the diagnostic profile of the heart failure population 

using routine echocardiography alone? 

 b. Do echo and CMR measurements of LVEF correlate?   

 

Of the 319 people that attended the heart failure clinic between May 2013 and July 2014 

a total of 166 were given a diagnosis of heart failure by way of HFREF, HFPEF or 

HFNMSD according to the flowchart in Figure 13 and provided consent for their data to 

be used for further analysis.   

All of these 166 patients had an initial basic clinical echo performed.  Thereafter, 77 went 

on to have a second, more detailed, echo performed, and 101 went on to have a CMR 

performed.  In 66 of these 101 individuals a second echo was also performed.  Figure 

24 shows the adapted prospective consort diagram for clarification of the population 

being referred to for this analysis.  Thereafter, Figure 25 demonstrates how the 

diagnostic subgroups alter for this population of 166 individuals following further detailed 

echo and thereafter CMR examination. 

Figure 24. Prospective population being analysed (adapted from Figure 14) 
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Figure 25. Change in the distribution of diagnostic sub-groups following different 

investigations. 

Diagnostic 
Group 
according 
to HF flow 
chart 

Number in 
group 
according 
to 1st echo 

% of total 
according 
to 1st echo 

Number in 
group 
according 
to 2nd echo 

% of total 
according 
to 2nd echo 

Number 
in group 
after 
CMR +/-  
2nd echo 

% of total 
according 
to CMR +/- 
2nd echo 

HFREF 134 81% 57 74% 61 60% 

HFPEF 21 13% 14 18% 25 25% 

HFNMSD 2 1% 6 8% 15 15% 

HFNMSD 
(insuff 
measures) 

9 5% 0 0% 0 0% 

Total 166 100% 77 100% 101 100% 
CMR, cardiac magnetic resonance; HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart 

failure with preserved ejection fraction; HFNMSD, Heart failure with no major structural disease. 

The overall appearance is one where by more detailed imaging seems to revoke the 

diagnosis of HFREF, particularly following CMR.  Instead these individuals are re-

labelled as HFPEF or HFNMSD.  In order to delve into the detail of how the second echo 

and CMR affect diagnosis a more in depth analysis has been performed below looking 

at the subsets of people that have had these investigations. 

  



103 
 

Impact of the second echo 

The second echo comprised of a more comprehensive imaging protocol than the first 

echo, including an attempt to get a Simpson’s Biplane LVEF, biplane left atrial volumes 

and all the other markers of diastolic function depicted in the diagnostic flow diagram.  A 

total of 77 patients had a second echo performed and the breakdown of diagnoses and 

individual changes to diagnosis is depicted below in Figure 26 and Figure 27. 

Figure 26. Changes to diagnostic profile of the heart failure population following 

the second echo. 

Diagnostic Group Number according to 
1st echo 

Number according to 
2nd echo 

Net population 
change in 
diagnostic subgroup 
after CMR 

HFREF 60 57 -3 

HFPEF 11 14 +3 

HFNMSD 6  (4 insufficient 
measures) 

6  (0 insufficient 
measures) 

No change 

Total 77 77 NA 
HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

HFNMSD, Heart failure with no major structural disease. 

Figure 27. Schematic representation of individual changes to diagnoses following 

the second echo. 

 

Although the net movement across groups was that 3 patients moved from the HFREF 

to the HFPEF group there were actually 9 separate changes in diagnosis to create this 

net change. This accounts for 12% (9/77 x 100) of the total group observed.  The flow 

chart above demonstrates these individual changes and Figure 28 below explains the 

rational for each change.  The colours correspond to the arrows on the flow diagram for 

ease of interpretation. 

HFREF 

HFNMSD HFPEF 

2 2
1 0

3

1



104 
 

Figure 28. Rationale for changes in diagnostic group following second echo 

Study 
No 

Diagnosis after 
1st clinic review 
and 1st echo 

Diagnosis 
after 2nd 
echo 

Rational for why the diagnosis changed 

59 
HFREF 

HF and 
NMSD 

LVEF improved ≥55% and no BNP to diagnose 
HFPEF 

191 
HFREF 

HF and 
NMSD LVEF ≥55% and doesn't meet HFPEF parameters 

149 
HFREF HFPEF 

LVEF improved ≥55% and raised E/e’ and 
severe LA dilatation diagnose HFPEF 

197 HFREF HFPEF LVEF ≥55% and E/e’ 15 with LAVI >40 and AF 

62 
HFPEF 

HF and 
NMSD 

E/e’ reduced to <15 and no other secondary 
supporting features for HFPEF 

195 HFPEF HFREF LVEF reduced to <55% on 2nd echo 

78 HF NMSD 
(insufficient  
HFPEF measures) HFPEF 

E/e’ measures done and >15 as well as high 
BNP 

235 HF NMSD 
(insufficient  
HFPEF measures) HFPEF E/e’ performed and 14 with LAVI >40 and AF 

1 HF NMSD 
(insufficient  
HFPEF measures) HFPEF E/e’ measured and >15 and BNP elevated 

HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

HFNMSD, Heart failure with no major structural disease; LVEF, Left ventricular ejection fraction; BNP, Brain 

natriuretic peptide; LA, Left atrium; AF, Atrial fibrillation; E/e’, ratio of the mitral inflow E wave to the tissue 

Doppler e’ wave. 

Four individuals had the diagnosis of HFREF revoked following the second echo, and 

only one individual had this diagnosis instated.  Numbers are small and it is impossible 

to draw statistically significant conclusions.  Indeed the changes may all reflect valid 

differences in inter and intra-observer variability in measurements of LVEF.  However, 

one can postulate other reasons for these trends.  It may be that a formal Simpson’s 

Biplane LVEF tends to be higher than the more commonly used eyeball assessment of 

LVEF in the first echo.  However, it is worth noting that there is a temporal change 

between the first and second echo.  Many of the HFREF group will have been started on 

an ACE-inhibitor and beta blocker and perhaps the more likely reason for this difference 

is that the LVEF improved due to drug therapy started after the first echo. Unfortunately 

it was impossible to obtain the information about changes in drugs between initial and 

follow-up imaging as drug lists at the time of follow-up scans were not recorded.  Only 

one of the four individuals that had an increase in the LVEF between the two echo studies 

(study numbers 59, 191, 149 and 197 in Figure 28 above) had a specific numerical value 

given to the LVEF at the time of the first echo.  The others were simply an eyeball 

assessment of whether the LVEF appeared normal, mild, moderately or severely 
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impaired.  In this regard, two of the initial studies were graded as mildly impaired, one as 

moderately impaired and one as severely impaired. 

Three individuals had the diagnosis of HFNMSD converted to HFPEF as a result of full 

diastolic measures being performed on the second echo but only one to the contrary.  

Whilst some may argue that all those with clinical heart failure but preserved ejection 

fraction should be labelled as HFPEF (negating the need for a detailed echo), 6 of the 

21 with a normal LVEF following the second echo did not have sufficient abnormalities 

to support a diagnosis of heart failure according to this inclusive diagnostic framework.   
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Impact of the CMR 

Of the 101 individuals who had a CMR performed there were 22 separate changes in 

diagnosis following this investigation according to the diagnostic framework in Figure 13. 

This accounts for 22% (22/101 x 100) of the total group observed.  Figure 29 and Figure 

30 demonstrates these individual changes and Figure 31 explains the rational for each 

change.   

 

Figure 29. Impact of CMR on the diagnostic profile of the heart failure population. 

Diagnostic Group Number according to 
1st or 2nd echo (2nd 
echo takes 
preference) 

Number according to 
CMR 

Net population 
change in diagnostic 
subgroup after CMR 

HFREF 77 61 -16 

HFPEF 16 25 +9 

HFNMSD 8 15 +7 

Total 101 101 NA 
Comparison made with the second echo or 1st echo when 2nd echo wasn’t performed. HFREF, Heart failure 

with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; HFNMSD, Heart failure 

with no major structural disease. 

 

Figure 30. Schematic representation of individual changes to diagnoses 

following the CMR. 
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Figure 31. Rationale for changes in diagnostic group following CMR. 

Study 
No 

Diagnosis 
after 1st or 
2nd echo (2nd 
echo takes 
preference) 

Diagnosis 
after CMR 

Rationale for why the diagnosis changed 

10 
HFREF 

HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and echo diastolic 
parameters NMSD 

28 
HFREF 

HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and echo diastolic 
parameters NMSD 

188 
HFREF 

HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and does not meet HFPEF 
parameters 

212 
HFREF 

HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and does not meet HFPEF 
parameters 

255 
HFREF 

HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and does not meet HFPEF 
parameters 

289 
HFREF 

HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and does not meet HFPEF 
parameters 

311 HFREF HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and does not meet HFPEF 
parameters 

87 HFREF 
HFPEF 

LVEF ≥55% and LVEDVI<97 and BNP with AF meet 
HFPEF criteria 

119 
HFREF HFPEF 

LVEF ≥55% and LVEDVI<97 and BNP and E/e’ meet 
HFPEF criteria 

161 HFREF HFPEF LVEF ≥55% and E/e’ >15 meet HFPEF criteria 

172 
HFREF HFPEF 

LVEF ≥55% and E/e’ 14 with LAVI >40 meet HFPEF 
criteria 

189 HFREF HFPEF LVEF ≥55% and E/e’ >15 meet HFPEF criteria 

217 HFREF HFPEF LVEF≥55% and E/e’ >15 meet HFPEF criteria 

222 HFREF HFPEF LVEF≥55% and E/e’ >15 meet HFPEF criteria 

254 HFREF HFPEF LVEF≥55% and E/e’ >15 meet HFPEF criteria 

263 
HFREF HFPEF 

LVEF≥55% and BNP>200pg/ml with AF meet HFPEF 
criteria 

275 
HFREF HFPEF 

LVEF≥55% and BNP>200pg/ml with AF meet HFPEF 
criteria 

283 HFREF HFPEF LVEF≥55% and E/e’>8 with AF meet HFPEF criteria 

306 
HFREF HFPEF 

LVEF≥55% and E/e’>8 with AF and elevated BNP 
meet HFPEF criteria 

133 HFPEF HFREF LVEF<55% on CMR 

149 
HFPEF HFREF 

LVEF <55% on CMR (NB 1st echo suggested HFREF 
but 2nd echo  suggested HFPEF) 

197 
HFPEF HFREF 

LVEF <55% on CMR (NB 1st echo suggested HFREF 
but 2nd echo  suggested HFPEF) 

HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

HFNMSD, Heart failure with no major structural disease; LVEF, Left ventricular ejection fraction; LVEDVI, 

Left ventricular end-diastolic volume index; BNP, Brain natriuretic peptide; LA, Left atrium; LAVI, Left atrial 

volume index; AF, Atrial fibrillation; E/e’, ratio of the mitral inflow E wave to the tissue Doppler e’ wave. 
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In the group of 66 individuals that had both a second echo and CMR there were 9 

separate changes in diagnosis following CMR. This accounts for 14% (9/66 x 100) of the 

total group observed.  Figure 32 and Figure 33 below demonstrate these individual 

changes and Figure 34 below explains the rationale for each change.   

Figure 32. Impact of CMR to the diagnostic profile of the heart failure population 

(comparison with only those that had a second echo).  

Diagnostic Group Number according to 
2nd echo  

Number according to 
CMR 

Net population 
change in diagnostic 
subgroup after CMR 

HFREF 47 44 -3 

HFPEF 13 14 +1 

HFNMSD 6 8 +2 

Total 66 66 NA 
HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

HFNMSD, Heart failure with no major structural disease. 

 

Figure 33. Schematic representation of individual changes to diagnoses following 

the CMR (comparison with only those that had a second echo) 
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Figure 34. Rationale for changes in diagnostic group following CMR (comparison 

with only those that had a second echo) 

Study 
Number 

Diagnosis 
after 2nd 
echo 

Diagnosis 
after CMR 

Why CMR changed diagnosis 

28 
HFREF 

HF and 
NMSD 

LVEF ≥55% and LVEDVI<97 and echo diastolic 
parameters NMSD 

188 
HFREF 

HF and 
NMSD LVEF ≥55% and doesn't meet HFPEF parameters 

161 HFREF HFPEF LVEF ≥55% and E/e’ >15 meet HFPEF criteria 

172 
HFREF HFPEF 

LVEF ≥55% and E/e’ 14 with LAVI >40 meet HFPEF 
criteria 

222 HFREF HFPEF LVEF ≥55% and E/e’ >15 meet HFPEF criteria 

119 
HFREF HFPEF 

LVEF ≥55% and LVEDVI<97 and BNP and E/e’ meet 
HFPEF criteria 

133 HFPEF HFREF LVEF <55% on CMR 

149 
HFPEF HFREF 

LVEF <55% on CMR (NB 1st echo suggested HFREF but 
2nd echo  suggested HFPEF) 

197 
HFPEF HFREF 

LVEF <55% on CMR (NB 1st echo suggested HFREF but 
2nd echo  suggested HFPEF) 

HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

HFNMSD, Heart failure with no major structural disease; LVEF, Left ventricular ejection fraction; LVEDVI, 

Left ventricular end-diastolic volume index; BNP, Brain natriuretic peptide; LAVI, Left atrial volume index; 

E/e’, ratio of the mitral inflow E wave to the tissue Doppler e’ wave. 

The impact of the CMR to alter diagnosis was entirely related to discrepancies in the 

LVEF compared with echo and this finding was replicated (although on a smaller scale) 

even for those 63% where the echo and CMR were performed on the same day.  

However, whereas 86% of those 101 patients given an alternative diagnosis after CMR 

were due to an upgrade in the LVEF with CMR, this was only true of 66% of the 66 

patients that had a second echo.  Once again, this is probably due to the fact that most 

of the second echos were performed on the same day as the CMR, and certainly, as a 

group, had a much closer temporal relationship to the CMR than the first echo.  Similarly 

to the differences described between the first and second echo this probably reflects an 

improvement in LVEF after the initiation of drug therapy.  Once again, an alternative 

explanation is that a formal Simpson’s Biplane LVEF (performed more commonly on the 

second echo) tends to be higher than the more commonly used eyeball assessment of 

LVEF on the first echo.  

The next thing to consider is whether the CMR LVEF is universally higher than the 

Simpson’s Biplane echo LVEF due to measuring technique differences.  Thereafter are 

the differences in the diagnostic groups simply due to the echo cut of normal LVEF ≥55% 
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being incorrectly applied to the CMR data, when a higher LVEF cut-off for normal should 

be used instead? 

The first thing to appreciate is that a formal Simpson’s Biplane LVEF is only achievable 

in about three quarters of cases.  Of those 77 people that had a second echo, where the 

need to achieve a Simpson’s Biplane LVEF was emphasised and encouraged, in only 

57 (74%) was this possible. In 26% of cases suboptimal image quality due to poor 

endocardial definition, patient related factors or rhythm disturbances made accurate 

LVEF measurements impossible.  Conversely, CMR can provide this measurement 

almost universally.  Of those 101 people that had a CMR scan, a LVEF was able to be 

performed in 100/101 cases (99%).  The one case where LVEF could not be performed 

was due to the patient being unable to tolerate the scan due to claustrophobia and an 

early termination to the imaging.   

There were 48 people that had a CMR and second echo, both of which measured LVEF 

and a comparison of the results was performed (see adapted consort diagram Figure 

35). 

Figure 35. Adapted consort diagram (Figure 14) of group being analysed 
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Nearly all of these scans (46 out of 48) were performed on the same day as the CMR 

and all are referred to as such in the following analyses for ease of interpretation.  

Although a similar analysis was performed on the 59 people that had a CMR and first or 

second echo with measured LVEF it was felt that comparison with only the second echo 

data would be more robust to help exclude temporal related differences from the first 

echo.  This is demonstrated by the Deming regression analysis below (Figure 36) and 

subsequently by Bland Altman plots of absolute differences in the LVEF (units are a 

percentage) (Figure 37) as well as percentage differences in the LVEF for the two 

methods (Figure 38). 

 
Figure 36. Deming regression analysis of CMR LVEF versus TTE Biplane LVEF for 

scans performed on the same day. 

 

n = 48. CMR, Cardiac magnetic resonance; TTE, Transthoracic echocardiography; LVEF, Left ventricular 

ejection fraction. 

  



112 
 

The Deming regression analysis providing the mean regression parameter and its 95% 

confidence interval demonstrated that the two methods were highly comparable (Slope 

1.11, 95% CI 0.93 to 1.30, intercept -0.85, 95% CI -8.9 to 7.2) (please note that this 

Figure does not start at the origin).  However, the Bland-Altman plot (Figure 37) shows 

how the echo LVEF would be lower than the CMR LVEF with a mean difference of -3.9 

percentage units (95% CI -6.5 to -1.3) or alternatively by a mean percentage difference 

of -4.1% (95% CI -12.7 to 4.5). 

 

Figure 37. Bland-Altman methods comparison plot of CMR LVEF versus TTE 

Biplane LVEF for scans performed on the same day. 

 

 

N=48. CMR, Cardiac magnetic resonance; TTE, Transthoracic echocardiography. LVEF, Left ventricular 

ejection fraction. 
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Figure 38. Percentage difference Bland-Altman methods comparison plot of CMR 

LVEF versus TTE Biplane LVEF for scans performed on the same day. 

 

N=48. CMR, Cardiac magnetic resonance; TTE, Transthoracic echocardiography. LVEF, Left ventricular 

ejection fraction. 

This percentage difference Bland Altman plot (Figure 38) also suggests that echo LVEF 

underestimates CMR LVEF to a greater extent, the higher the LVEF.  The absolute unit 

difference Bland Altman plot 1.96 standard deviation limits of agreement show how the 

echo LVEF is between 13.7% units higher or 21.5% units lower than the MRI endocardial 

LVEF.  Whilst the numbers compared are small, this wide discrepancy in measured 

LVEF at the equivalent of two standard deviations suggests that the two methods are 

not adequately reproducible for use in clinical practice.  

In order to achieve a better appreciation for why the Simpson’s Biplane echo 

measurement differ to CMR LVEF, beyond the fact the measurement techniques seem 

to result in an average 3.9% units higher LVEF with CMR, other variables were 

investigated. This included the presence of AF, ectopy, bundle branch block, BMI, being 

a poor echo or CMR subject for imaging for other reasons, and temporal factors.  

Because the numbers for each variable were small a comparison for all 59 people that 

had a CMR and first or second echo with measured LVEF was performed with the 
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expectation that the higher numbers would be more robust for statistical analysis.  The 

incidence of these different variables in a group where the difference in LVEF was >10% 

between echo and CMR, versus a group where the LVEF differed by ≤10% was 

compared.  The adapted consort diagram in Figure 39 demonstrates the population 

being analysed for this and the results are shown below in Figure 40. 

 

Figure 39. Adapted consort diagram (Figure 14) of population being analysed for 

variations in CMR and TTE LVEF 
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Figure 40. Exploring variables that may contribute to >10% differences in CMR vs 

TTE LVEF. 

 LVEF 
Differs 
>10% 

LVEF differs 
≤10% 

P Value Odds 
Ratio 

Association 

Total number 16 43 NA NA  

  

V
ar

ia
b

le
 

AF 2 (12.5%) 19 (44.2%) P=0.03* 
(Fisher's 
Exact) 

OR 0.18 
(95%CI 
0.04 to 
0.89) 

Little or no assoc 
 

Ectopy 
present (if 
not in AF) 

7 (43.8%) 
 

6 (14.0%) 
 

P=0.03* 
(Fisher's 
Exact) 

OR 4.80 
(CI 1.2 to 
17.8) 

Weak positive 
assoc 
 

BBB 7 (43.8%) 10 (23.3%) P=0.12 
NS 
(Fisher's 
Exact) 

  

Mean BMI 25.6 29.5    

Poor echo 
subject 

0 (0%) 7 (16%)    

Poor CMR 
subject 

6 (37.5%) 
 

6 (14.0%) 
 

   

Mean No of 
days 
between 
scans 

19 8 P=0.02* 
(Mann-
Whitney 
U) 

  

Median No 
of days 
between 
scans 

0 0    

Scans done 
on same day 

9 (56.2%) 
 

37 (86.0%) 
 

P=0.03 * 
(Fisher's 
Exact) 

OR 0.21 
(CI 0.06 to 
0.77) 

Weak negative 
relationship 

 
LVEF, Left ventricular ejection fraction; OR, Odds ratio; CI, Confidence interval; BMI, Body mass index; IHD; 

AF, Atrial fibrillation; BBB, Bundle branch block; NS, Non significant; *, P value significant. 

This result shows once again that the temporal relationship to the scans is important in 

that there was a significantly fewer scans performed on the same day in the group where 

the LVEF differed by >10%, and that the mean number of days between scans was 

significantly higher in the group where the LVEF differed by >10%.   

 

The only other variables that showed a positive association with a difference in LVEF of 

> or ≤10% was the presence of ectopy or AF.  The group where the LVEF differed by 

>10% was more likely to have ectopy but less likely to have AF.  Both relationships are 

only weakly positive and these findings seem at odds with each other.  A plausible 
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explanation for why ectopy causes a worse association and AF causes a better 

association between echo and CMR LVEF is difficult to postulate.  If true, the only 

seemingly possible explanation is that echo measures in AF are averaged and so result 

in a better comparison with CMR, where as the ectopic beats may not have been 

recognised on the echo assessment and thus erroneous (non-representative) 

measurements performed.  

Based upon the analysis of CMR LVEF versus TTE Simpson’s Biplane LVEF performed 

on the same day there is an apparent fixed difference between the measurements, with 

a mean 3.9% increase from the TTE result to the CMR result.  This is also borne out by 

the differences in guideline normal ranges for TTE LVEF in the NORRE study (mean 

LVEF of 63.9% (2SD range of 56.5 to 71.7%)) (67) versus CMR LVEF (mean 69% for 

female over 35 years, mean 71% male over 35 years, 2SD range incorporating both 

male and female of 57% to 83%) (142).  Establishing whether the cases where a HFREF 

diagnosis was revoked by CMR LVEF can be explained by this mean discrepancy in 

LVEF due to imaging technique would be valuable and would mean different cut-offs for 

HFREF need to be established and recognised within the clinical community to avoid 

confusion.  If this is not the situation then the CMR scan has an added impact on the 

diagnosis, above and beyond what echo imaging can offer. 

There were 19 people who had the diagnosis of HFREF revoked by CMR (6 in the group 

that had a 2nd echo on the same day as the CMR for a better temporal comparison). 

Figure 41 below shows the results for the CMR LVEF in these cases.  

From this analysis one can see that three of these 19 patients had a diagnosis of HFREF 

revoked due to the CMR LVEF being interpreted with TTE reference ranges, and would 

have otherwise remained in the HFREF classification if the CMR reference ranges had 

been used.  However this still leaves the majority of the group (16 of these 19 patients) 

with a normal LVEF according to CMR reference ranges and represents a true impact 

that CMR imaging has on the diagnosis.  It is worth acknowledging that a true change in 

diagnosis occurred for 5 of the 6 patients that had the echo and CMR on the same day, 

in keeping with the suggestion that the difference in diagnosis is not simply due to a 

temporal difference in imaging. 
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Figure 41. Analysis of patients that had the diagnosis of HFREF revoked by CMR 

imaging. 

 

Impact of CMR for understanding the underlying aetiology of heart failure 

CMR uses late gadolinium contrast to demonstrate areas of fibrosis or infarction in the 

myocardium.  This is an attribute confined to CMR and is beyond the diagnostic 

capabilities of echo.  To investigate whether this component of the CMR investigation 

provided additional information to the understanding of the underlying aetiology of heart 

failure, the diagnosis suggested before the CMR (based upon clinical history, past 

medical history, risk factors for ischaemic heart disease examination, ECG and echo 

findings) was compared against the diagnosis given by CMR.  The population being 

studied here is again depicted in the adapted consort diagram below (Figure 42) for 

clarification. 

  

Study 
Number 

Sex Age CMR 
LVEF 

CMR & TTE 
same day? 

Is CMR LVEF below the CMR normal 
reference range?(142) 
Male ≥35yrs < 59% 
Female ≥ 35yrs < 57% 

28 F 72 61 Yes No 

188 M 57 72 Yes No 

161 F 83 60 Yes No 

172 M 67 63 Yes No 

222 F 80 58 Yes No 

119 F 47 55 Yes Yes 

10 F 82 57 No No 

212 M 74 59 No No 

255 F 60 62 No No 

289 M 64 61 No No 

311 M 67 57 No Yes 

87 F 84 61 No No 

189 M 73 69 No No 

217 F 77 58 No No 

254 M 85 66 No No 

263 M 81 66 No No 

275 F 75 59 No No 

283 M 69 56 No Yes 

306 M 81 63 No No 
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Figure 42. Adapted consort diagram (Figure 14) of population being analysed for 

the impact of CMR on the understanding the aetiology of heart failure 

 

The groups are divided according to heart failure grouping following CMR.  In those 61 

individuals with a diagnosis of HFREF, subendocardial LGE was present in 26 cases 

(42%) to suggest previous infarcts.  CMR had additive useful clinical value beyond the 

clinical and echo assessment by confirming or refuting infarcts in those suspected of 

having HFREF due to IHD, and thereafter suggesting viability or lack of viability in those 

where infarcts were present and this is shown on the HFREF flow chart below (Figure 

43). In the 26 cases suspected of having IHD, LGE confirmed infarcts in 18 cases, 

demonstrating viability in eight of these.  In the other eight cases without subendocardial 

LGE there was one case with RWMA features to suggest possible underlying IHD.  The 

remaining cases had no features to support IHD and no other features to provide a 

positive alternative diagnosis other than dilated cardiomyopathy (DCM), although LBBB 

was present in half to account for some of the LV impairment.  CMR also had additive 

value for those with HFREF but where there was no suspicion of IHD.  This was the case 

in 34 patients and in eight of these cases subendocardial LGE was present to suggest a 

previous infarct, six of whom had viability, and this group may benefit from angiography 

assessment.  21 of these 34 individuals had no evidence of an infarct and in these cases 

it is also noteworthy that there were no other significant changes or RWMA to suggest 
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IHD as a cause.  There were seven individuals within the entire HFREF population that 

demonstrated LGE in a non subendocardial distribution resulting in a differential 

diagnosis including myocarditis and sarcoidosis. 

 
Figure 43. Impact of CMR LGE imaging for understanding the underlying aetiology 

in the HFREF group. 

 

HFREF, Heart failure with reduced ejection fraction; IHD, Ischaemic heart disease; LGE, late gadolinium 

enhancement (subendocardial LGE representative of myocardial infarction). 

In those 25 individuals with a diagnosis of HFPEF,  subendocardial LGE was present in 

five cases (20%) to suggest previous infarcts.  CMR had additive value beyond the 

clinical and echo assessment by confirming or refuting infarcts in those suspected of 

having IHD, and thereafter suggesting viability or lack of viability as shown in the HFPEF 

flow chart (Figure 44).  In the seven cases of suspected IHD, LGE confirmed infarcts in 

two cases.  Despite there being no infarcts in the other five cases, three of these had 

RWMA that might prompt further assessment of ischaemia.  There were then 18 cases 

where IHD was not suspected and in three of these cases the CMR identified infarcts 

HFREF

61

IHD suspected

26

Subendocardial LGE

18

(8 of which had viability)

LGE present but non 
subendocardial

1

No LGE

7

IHD Not suspected

34 

Subendocardial LGE

8

(6 of which had viability)

LGE present but non 
subendocardial

5

No LGE

21

Data missing

1

Mixed subendocardial 
and epicardial LGE ? 

Cause
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and this group may benefit from angiography.  In the other 15 cases without 

subendocardial LGE there were no other features to prompt a search for underlying IHD 

but in one case the possibility of apical hypertrophic cardiomyopathy was raised where 

it hadn’t been following echo.  There were two individuals within the entire HFPEF 

population that demonstrated LGE in a non subendocardial distribution resulting in a 

differential diagnosis of healed myocarditis. 

Figure 44. Impact of CMR LGE imaging for understanding the underlying aetiology 

in the HFPEF group. 

HFPEF, Heart failure with preserved ejection fraction; IHD, Ischaemic heart disease; LGE, late gadolinium 

enhancement (subendocardial LGE representative of myocardial infarction). 

 

In those 15 individuals with a diagnosis of HFNMSD, subendocardial LGE was present 

in six cases (40%) to suggest previous infarcts (Figure 45).  This is a much higher 

proportion than the HFPEF group and raises the possibility of IHD, rather than heart 

failure, being the cause of symptoms in this population.  In the six cases of suspected 

IHD, LGE confirmed infarcts in five cases.  There were then nine cases where IHD was 

not suspected and CMR identified infarcts in one of this group.  In the other eight cases 

without subendocardial LGE, five had no significant abnormality at all on CMR.  The 

HFPEF

25

IHD suspected

7

Subendocardial LGE

2

(1 of which had viability)

No LGE

5

IHD Not suspected

18

Subendocardial LGE

3

(1 of which had viability)

No LGE

13

LGE present but non 
subendocardial

2
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other three had a variety of left ventricular hypertrophy, left atrial enlargement and minor 

regional wall abnormalities but nothing specific to confirm an underlying aetiology for the 

symptoms.  

Figure 45. Impact of CMR LGE imaging for understanding the underlying aetiology 

in the HFNMSD group. 

  

HFNMSD, Heart failure with no major structural disease; IHD, Ischaemic heart disease; LGE, late gadolinium 

enhancement (subendocardial LGE representative of myocardial infarction). 

  

HFNMSD

15

IHD suspected

6

Subendocardial LGE

5

(5 of which had viability)

No LGE

1

IHD Not suspected

9

Subendocardial LGE

1

(1 of which had viability)

No LGE

7

LGE present but non 
subendocardial

1
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Q3. What are the most useful diastolic criteria to confirm a diagnosis of HFPEF?  

The population being analysed for this is those 64 individuals that had a second echo 

where the images could be retrieved and full analysis was attempted (see adapted 

consort diagram, Figure 46).   

Figure 46.  Adapted consort diagram (Figure 14) of population being studied to 

assess the most useful diastolic criteria to confirm a diagnosis of HFPEF 

 

The ease with which the HFPEF echo parameters could be measured are depicted in 

Figure 47 below.  The measures marked with an asterisk (*) are the ones that require 

normal sinus rhythm and so the percentage achievement should be interpreted from this 

population when comparing the different techniques.  
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Figure 47. Identifying which HFPEF echo parameters can be readily obtained. 

Measure Total 
that had 
second 
echo 

Number 
in NSR 

Number 
where 
measure 
achieved 

% where 
measure 
achieved 

Number where 
measure 
achieved when 
in NSR 

% where 
measure 
achieved 
when in NSR 

LV Mass 64 41 51 80% 31 76% 

Biplane LA 
Volume 

64 41 59 92% 38 93% 

e’ any 64 41 62 97% 41 100% 

E/e’ any 64 41 62 97% 41 100% 

* E/A  64 41 40 63% 40 98% * 

DCT 64 41 64 100% 41 100% 

IVRT 64 41 50 78% 32 78% 

*PV Doppler  64 41 32 50% 29 71% * 

*S/D  64 41 32 50% 29 71% * 

*Ard-Ad   64 41 24 (and in 
no case 
was the 
value +ve) 

38% 24 59% * 

CF 
Propagation 
velocity 

64 41 55 86% 33 80% 

 *, measurements require normal sinus rhythm. NSR, Normal sinus rhythm; LV, Left ventricle; LA, left atrium; 

E/e’, ratio of the mitral inflow E wave to the tissue Doppler e’ wave; E/A, ratio of early to late diastolic mitral 

inflow waves; e’, early Tissue Doppler diastolic velocity of mitral annulus; DCT, Deceleration time; IVRT, 

Isovolumic relaxation time; PV, Pulmonary vein; S/D, Ratio of peak velocities of the S and D waves of 

pulmonary vein flow; Ard-Ad, atrial flow reversal time (subtraction of duration of the A wave on pulsed wave 

Doppler through the mitral valve from the duration of the Ar wave in the pulmonary vein inflow; CF, Colour 

flow. 

The e’, E/e’, and deceleration time (DCT) of the E wave could be measured in 100% of 

cases, closely followed by the E/A ratio in 98% of cases when an individual was in normal 

sinus rhythm, and thereafter left atrial volume in 93% of cases.  The other parameters 

were not so easy to obtain and the Ard-Ad measure utilising the reverse flow wave from 

the pulmonary vein Doppler trace along with the A wave Doppler from mitral valve 

forward flow was only possible in 59% of cases (discarding those in AF where the 

measurement would not have been possible).  Thereafter the results from these 24 cases 

showed no value where the result was positive and so either the measurement was being 

performed incorrectly (reflecting significant limitations in its use) or in no cases was it 

helpful to establish a diagnosis of HFPEF.   

Out of the 101 patients that went on to have a CMR, 25 individuals were finally labelled 

with a diagnosis of HFPEF (Figure 29).  All of these individuals would have had an LVEF 

≥55% and LVEDVI ≥97ml/m2 on the CMR.  Thereafter the measurements that positively 
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enforced the diagnosis of HFPEF are all listed in Figure 48 and on a case by case basis.  

Figure 49 then summarises these individual cases into groups of diagnostic parameters 

to better demonstrate which markers appear to be most useful. 

The findings would suggest that various combinations of E/e’, BNP, the presence of AF 

and left atrial volume index (LAVI) are the key components to diagnosing HFPEF. LV 

mass index was supportive in only one case.  The E/A ratio in combination with 

deceleration time (DCT) and the Ard-Ad measurements were never supportive of a 

diagnosis of HFPEF.  In light of the difficulty measuring left ventricular mass on echo 

(only possible in 76% of focused echo studies) and the fact that this appears to be of 

minimal value for the diagnosis of HFPEF it is reasonable to conclude that only E/e’ and 

LAVI need to be carried out in routine clinical echo exams for the identification of HFPEF.    

Other than to substantiate the LVEF and LV volume, in no cases did CMR positively 

contribute to the diagnosis of HFPEF where echo parameters couldn’t, specifically by 

way of measurement of LV mass or left atrial size. 
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Figure 48. Rationale for the diagnosis of HFPEF on a case by case basis. 

Study 
Number 

Diagnosis 
after CMR 

Rationale for diagnosis of HFPEF 

60 HFPEF E/e’ > 15 

161 HFPEF E/e’ > 15 

187 HFPEF E/e’ > 15 

189 HFPEF E/e’ > 15 

217 HFPEF E/e’ > 15 

54 HFPEF E/e’ > 15, also AF 

222 HFPEF E/e’ > 15 and LVMI  

1 HFPEF E/e’ > 15 and BNP > 200pg/ml  

78 HFPEF E/e’ > 15, also BNP >200pg/ml 

254 HFPEF E/e’ > 15, also BNP >200pg/ml 

119 HFPEF BNP > 200pg/ml and E/e’ > 8 

206 HFPEF BNP > 200pg/ml and E/e’ > 8 

272 HFPEF BNP > 200pg/ml and E/e’ > 8 

306 HFPEF BNP > 200pg/ml or E/e’ > 8 and AF  

198 HFPEF BNP > 200pg/ml or E/e’ > 8 and AF,  

204 HFPEF BNP > 200pg/ml or E/e’ > 8 and AF and severe LA dilation 

171 HFPEF BNP >200pg/ml or E/e’ > 8 with AF and LAVI >40 

263 HFPEF BNP > 200pg/ml and AF 

275 HFPEF BNP > 200pg/ml and AF 

87 HFPEF BNP > 200pg/ml and AF and severe LA dilation 

35 HFPEF E/e’ > 8 and AF 

41 HFPEF E/e’ > 8 and AF 

283 HFPEF E/e’ > 8 with AF 

61 HFPEF E/e’ > 8 and AF and LAVI > 40 

172 HFPEF E/e’ > 8 and LAVI > 40 
 

HFPEF, Heart failure with preserved ejection fraction; E/e’, ratio of the mitral inflow E wave to the tissue 

Doppler e’ wave; F, Atrial fibrillation; LVMI, Left ventricular mass index; BNP, Brain natriuretic peptide; LA, 

Left atrium; LAVI, Left atrial volume index. 
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Figure 49. Establishing which HFPEF diagnostic criteria appear to be utilised 

most. 

Rationale for diagnosis of HFPEF Number where 
this rationale was 
valid 

Percentage of 
total (n=25) 
cases where 
this rationale 
was valid 

Average E/e’ > 15 as sole rationale 10 40% 

Average E/e’ ≥ 8 with other supporting criteria 17 68% 

Supporting criteria for 
E/e’ ≥ 8 

BNP > 200pg/ml 10  40% 

AF 9  36% 

LAVI > 40 4  16% 

LVMI  1  4% 

BNP > 200 with other supporting criteria 13 52% 

Supporting criteria for 
BNP > 200pg/ml 

E/e’ ≥ 8 10  40% 

AF 7  28% 

LAVI > 40 3  12% 
HFPEF, Heart failure with preserved ejection fraction; E/e’, ratio of the mitral inflow E wave to the tissue 

Doppler e’ wave; F, Atrial fibrillation; LVMI, Left ventricular mass index; BNP, Brain natriuretic peptide; LA, 

Left atrium; LAVI, Left atrial volume index. 
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Q4. How many of those given a diagnosis of not having heart failure by a clinician 

would have met the HFREF or HFPEF diagnostic criteria? 

The “Not Heart Failure” group represented 71 patients of the total 319 that attended the 

heart failure clinic.  These are identified in the adapted consort diagram below (Figure 

50). 

Figure 50.  Adapted consort diagram (Figure 14) of those deemed not to have heart 

failure for analysis in this sub-section 

 

Of these, 16 did not have symptoms associated with heart failure and the referral reasons 

included new AF, angina, palpitations, abnormal echo but asymptomatic etc. 53 did have 

symptoms of HF with dyspnoea being the predominant symptom in 44 cases, oedema 

the predominant symptom in 9 cases and data missing in 2 cases.  The clinician’s opinion 

in all these cases was that the symptoms were not as a result of heart failure, but as a 

result of a variety of other causes listed in Figure 51 and Figure 52 below. 
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Figure 51. Postulated causes of dyspnoea in those deemed not to have heart 

failure by the clinic physician. 

Causes of symptoms according to clinician when dyspnoea 

was the predominant symptom 

Primary respiratory 15 

Isolated atrial fibrillation 5 

Rhythm disturbance other than atrial fibrillation 4 

Anxiety 4 

Obesity 5 

Non cardiac pleural effusion 2 

Pulmonary Embolism 1 

Valve disease 1 

Anaemia 1 

Old age/general frailty 1 

Ticagrelor 1 

Chronic fatigue syndrome 1 

Not specified 2 

Data missing 1 

Total 44 

 
Figure 52, Postulated causes of peripheral oedema in those deemed not to have 

heart failure by the clinic physician. 

Causes of symptoms according to clinician when oedema was 

the predominant symptom 

Lymphoedema 2 

Drug Induced (Calcium channel blocker) 3 

Infective/inflammatory leg pathology 1 

Venous insufficiency 2 

Not specified 1 

 

The demographics of the 71 patients deemed not to have heart failure showed the 

average (mean) age to be 74 years which lies between the mean age of the HFREF and 

HFPEF groups.  41 (58%) were female which is most similar to the demographics of the 

HFPEF group where 57.1% of the group were female,  and higher than the HFREF group 

where only 38.3% were female.  29 of the 71 (41%) were taking some form of loop or 

thiazide diuretic and at least 13 (18%) had atrial fibrillation or atrial flutter (4 datasets 

missing).  50 of the 71 patients completed the Minnesota questionnaire with a mean 
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score of 48, which is higher than the mean score of 40.7 for both the HFREF and HFPEF 

groups (as diagnosed following the first echo) reflecting a subjective feeling of a poorer 

quality of life.  However, the mean BNP was lower than that of the HFREF and HFPEF 

groups as depicted in Figure 53 below.  Out of the 53 with dyspnoea or oedema put 

down to non heart failure causes, 35 had a BNP >35pg/ml, 28 had a BNP >100pg/ml and 

9 had a BNP >200pg/ml.  The highest BNP was 890pg/ml for a patient deemed to not 

have any symptoms of heart failure, in NSR but with mild impairment of LVEF on echo.  

Figure 53. Comparison of BNP levels in the non heart failure groups according to 

the presence or absence of symptoms, and the HFREF and HFPEF groups. 

 

Group 

 

Mean BNP 
Level 

(pg/ml) 

 

Median BNP 

(pg/ml) 

 

% of group with 
BNP measured 

Entire non HF group 151 114 75% 

Those without symptoms 175 23 56% 

Those with symptoms 134 119 76% 

Dyspnoea predominant symptom 133 107 75% 

Oedema predominant symptom 139 134 100% 

HFREF group (based on initial echo 
LVEF<55%, or LVEDVI ≥97ml/m2) 

382   

HFPEF group (based on initial echo 
LVEF<55%, or LVEDVI ≥97ml/m2) 

298   

 

Of the 53 with dyspnoea or oedema 1 would meet the diagnostic criteria for HFREF due 

to a mildly reduced LVEF, and 13 would meet the diagnostic criteria for HFPEF (at least 

25%) according to the flow chart definitions (Figure 13), noting that 15 patients had 

insufficient data measured to exclude a diagnosis of HFPEF by my flow diagram because 

either an E/e’ or BNP had not been measured.  The rationale for meeting the HFPEF 

criteria in these cases is listed in Figure 54 below and tends to be related to a 

combination of E/e’ > 8, the presence of AF, a dilated left atrium and a raised BNP.  

Interestingly, only 4 patients had a BNP < 35pg/ml, normal ECG and entirely normal echo 

as defined by my flow chart. 
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Figure 54. Rationale for meeting HFPEF criteria in those deemed not to have heart 

failure. 

Study No of those with "Not HF" 
that would have met diagnostic 
criteria for HFPEF 

 
Rationale why HFPEF criteria were met 

11 E/e’ > 8, AF 

12 E/e’ > 8, AF, severe LA dilatation 

18 BNP >200 pg/ml and AF 

25 BNP >200 pg/ml and severe LA dilatation 

51 E/e’ > 8, AF and severe LA dilatation 

66 E/e’ >8 and BNP > 200 pg/ml 

128 E/e’ >15 

139 BNP > 200 pg/ml and AF and severe LA dilation 

142 E/e’ > 8, severe LA dilation and BNP >200pg/ml 

239 E/e’ >8 and AF 

258 E/e’ >15 also BNP > 200 pg/ml 

259 E/e’ > 8, AF and severe LA dilatation 

274 E/e’ > 8 and AF 

 

HFPEF, Heart failure with preserved ejection fraction; E/e’, ratio of the mitral inflow E wave to the tissue 

Doppler e’ wave; AF, Atrial fibrillation; BNP, Brain natriuretic peptide; LA, Left atrium; LAVI, Left atrial volume 

index. 
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Q5. Is there systolic dysfunction other than reduced LVEF in those with HFPEF? 

Similarly to the HFPEF parameters it is worth considering which markers of systolic 

dysfunction could be readily obtained with echo.  Once again the 64 people that had a 

second echo where the images could be retrieved and full analysis was attempted 

(Figure 46) are displayed (Figure 55).  The measures marked with an asterisk (*) are the 

ones that require normal sinus rhythm and so the percentage achievement should be 

interpreted from this population when comparing the different techniques.  

Figure 55. Identifying which measures of systolic function could be readily 

obtained with echo. 

Measure Total 
that 
had 
second 
echo 

Number 
in NSR 

Number 
where 
measure 
achieved 

% where 
measure 
achieved 

Number 
where 
measure 
achieved 
when in NSR 

% where 
measure 
achieved 
when in NSR 

LVEF 
(Simpson’s 
Biplane) 

64 41 48 75% 31 76% 

RWMS 64 41 60 94% 40 98% 

GLS 64 41 42 66% 28 68% 

S' any 64 41 63 98% 41 100% 

MAPSE 64 41 62 97% 40 98% 

*Tei using 
PW Doppler  

64 41 46 72% 40 98%  * 

CO using PW 
Doppler 

64 41 62 97% 39 95% 

 

*, measurements require normal sinus rhythm; NSR, Normal sinus rhythm; LVEF, Left ventricular ejection 

fraction; RWMS, Regional wall motion score; GLS, Global longitudinal strain; S’, tissue Doppler measure of 

mitral annular systolic motion; MAPSE, Mitral annular plane systolic excursion; Tei, myocardial performance 

index; PW, Pulsed wave; CO, Cardiac output. 

 

Subset analysis of 25 patients who maintained a diagnosis of HFPEF (LVEF ≥55%) 

following cardiac MRI (Figure 29) showed that 76% had other convincing markers of LV 

systolic dysfunction despite a normal LVEF.  Figure 56 shows the number of parameters 

supporting some form of LV systolic dysfunction and then qualifies these. 

Only six of the 25 patients diagnosed with HFPEF had no signs of LV systolic 

dysfunction.  The other 19 patients showed a varying number of parameters of systolic 

dysfunction ranging from seven to one, and this is in the context of a HFPEF group with 

a high cut-off LVEF <55% for the diagnosis of HFREF.  As opposed to the current 

common opinion that 50% of the heart failure community have HFPEF this demonstrates 
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that only 25/101 (25%) or 25+15=40/101 = 39% (when including those labelled as 

HFNMSD) have a normal LVEF when an appropriate LVEF is applied (i.e. <55%), and 

that in the majority of cases of HFPEF (76%) there are other convincing markers of LV 

systolic dysfunction despite a normal LVEF.  

When applying the 2013 British Society of Echocardiography (BSE) protocol for the 

diagnosis and grading of diastolic dysfunction (129) to this cohort of 25 patients with 

HFPEF, grade 2 diastolic dysfunction (11 of the 25 cases) was the most frequent finding.  

Thereafter one individual was graded as grade 1 dysfunction, one individual as grade 1-

2 dysfunction and two as normal in terms of diastolic dysfunction.  In the remaining ten 

cases, seven had data that were conflicting so that a grading could not be allocated and 

three had insufficient parameters measured.   

Of those with no evidence of systolic dysfunction, three had evidence of grade 2 diastolic 

dysfunction and in the other two cases; one had insufficient parameters measured to 

comment on and one had conflicting results making it difficult to reach a conclusion. 
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Figure 56. Prevalence and assessment of measures of LV systolic dysfunction in 

those individuals with HFPEF. 

Systolic 
dysfunction? 

No of 
parameters 
supporting 
LV Systolic 
dysfunction 

 
Rationale for systolic dysfunction 

Yes 10 LBBB, reduced RWMSI and CI by echo and CMR, reduced MAPSE, S' septal and 
lateral, GLS and abnormal Tei 

Yes 8 LBBB, reduced RWMSI by echo and CMR, reduced CI on echo, reduced GLS, S', 
abnormal Tei and evidence of previous infarct on LGE 

Yes 7 LBBB, reduced RWMSI on echo and CMR, reduced CI on echo, reduced GLS and 
S' with abnormal Tei 

Yes 6 Reduced RWMSI on echo and CMR, reduced S' septal and lateral, reduced CI on 
echo, and abnormal Tei 

Yes 6 Reduced CMR RWMSI, reduced CI echo and CMR, echo GLS, MAPSE and 
evidence of previous infarct on LGE,  

Yes 6 Reduced RWMSI on echo and CMR, MAPSE, CI on echo and CMR and abnormal 
Tei 

Yes 5 Reduced MAPSE, S', abnormal Tei, and reduced CI on echo and reduced RWMSI 
on CMR 

Yes 4 Reduced MAPSE, CI by echo and CMR and RBBB 

Yes 3 Reduced GLS, MAPSE and CI on CMR 

Yes 3 LBBB, reduced RWMSI by CMR and subendocardial LGE to suggest previous 
infarct  

Yes 3 Reduced RWMSI and CI by CMR and subendocardial LGE to suggest previous 
infarct 

Yes 2 Reduced RWMSI and CI by CMR with some subendocardial LGE 

Yes 2 Reduced CI and RWMSI on CMR 

Yes 1 CMR RWMSI reduced but this is subjective. All other systolic parameters are 
normal. The echo RWMSI from the same day was normal. 

Yes 2 Reduced RWMSI and CI by CMR  

Yes 1 Reduced RWMSI on CMR 

Yes 1 CMR RWMSI reduced but this is subjective and in AF 

Yes 1 Reduced RWMSI by CMR and although this is subjective there are no other echo 
parameters performed to contradict this 

Yes 1 Reduced RWMSI by CMR and although this is subjective there are no other echo 
parameters performed to contradict this 

Probably not 3 Borderline MAPSE, borderline reduced CI on echo and CMR but normal GLS, 
RWMSI, S' and Tei 

No 0  

No 0  

No 0  

No 0  

No 0  

LV, Left ventricle; LBBB, Left bundle branch block; RWMSI, Regional wall motion score index; CI, Cardiac 

index; GLS, Global longitudinal strain; S’, tissue Doppler measure of mitral annular systolic motion; MAPSE, 

Mitral annular plane systolic excursion; Tei, myocardial performance index; LGE, late gadolinium 

enhancement; RBBB, Right bundle branch block; CMR, Cardiac magnetic resonance. 
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By comparison, in those 15 individuals labelled as HFNMSD (Figure 29) (discussed in 

more detail in the following section) only one individual met the criteria for grade 2 

diastolic dysfunction.  In the other cases the grading was more in keeping with grade 1 

dysfunction with a noticeable prevalence of E/A<1 associated with a DCT >230 with 

reduced e’ but generally a left atrium that was normal in size and a normal or borderline 

E/e’ measure suggesting impaired ventricular relaxation but not to the extent of causing 

elevated LV diastolic pressures and left atrial dilatation at rest. 

Diastolic dysfunction is a common contributor to those with HFPEF, however so is 

systolic dysfunction.  The fact that so many individuals were unable to be classified by 

the BSE grading protocol due to conflicting results suggests significant limitations to 

applying this in daily practice. 
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Q6. Is there systolic or diastolic dysfunction in those diagnosed as HFNMSD? 

In the 101 individuals that went on to have a CMR (consort Figure 42), 15 were finally 

labelled as HFNMSD.  All had at least one echo and 8 had a second echo performed.  

The rationale behind this diagnosis was that all individuals had symptoms or signs of 

heart failure along with either an abnormal ECG, elevated BNP, or echo abnormalities 

suggestive but not diagnostic of HFREF or HFPEF.  In addition, a CMR and either a full 

echo protocol was performed and excluded HFREF and HFPEF, or a full echo HFPEF 

assessment could not or was not undertaken.  Figure 57 below qualifies this better and 

it is noteworthy that even in those where a diagnosis of HFPEF could not be fully 

excluded due to a lack of HFPEF measures, these measures were PV Doppler, LV mass 

or LAVI.  These were all likely to be irrelevant to the diagnosis if one considers the impact 

of these measures in the group diagnosed with HFPEF (discussed in the results section 

for question 3 earlier).  PV Doppler made no positive contribution to the diagnosis in any 

cases, and LV mass did so in only one case.  Whilst LAVI is an important measure and 

was not performed in 8 of these HFNMSD cases, the visual assessment of the left atrium 

was no greater than moderately dilated for any (as opposed to the severely dilated 

volume that a LAVI of >40ml/m2 would indicate).  

Nevertheless, a more detailed analysis for the presence of systolic or diastolic 

dysfunction in this group of 15 patients with symptoms or signs of heart failure is 

interesting. Only two individuals have no convincing evidence of an abnormality on echo 

or CMR.  In six individuals there is compelling imaging evidence to support both systolic 

dysfunction and diastolic dysfunction that is out with the criteria to diagnose HFREF or 

HFPEF.  A further three individuals have evidence of systolic dysfunction alone, and a 

further four have evidence of diastolic dysfunction alone.  Obviously some of the cases 

are more compelling than others and whilst some of the decision making is subjective 

there are definite cases where the collective imaging abnormalities are convincing.  The 

numbers of abnormal imaging parameters are quantified and qualified in Figure 58 and 

59 below to help guide the reader with the assimilation of this information and I draw 

attention to the fact that six of these individuals have late gadolinium enhancement in 

the subendocardium to suggest a previous infarct.   
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Figure 57. Qualifying the HFNMSD group. 

Rationale Number of people HFNMSD 
explained by this rationale 

% of total HFNMSD group 
explained by this rationale 

HFREF and HFPEF fully excluded 
by diagnostic pathway 

2 13% 

HFREF excluded but HFPEF 
could not be entirely excluded 
because various measurements 
not attempted: 

8 BNP  1 53% 

PV Doppler  7 

LV Mass  7 

LAVI  6 

HFREF excluded but HFPEF 
could not be entirely excluded 
because various measurements 
attempted but could not be 
measured: 

5 PV Doppler  5 33% 

LV Mass 4 

LAVI 2 

Total 15 100% 
HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

BNP, Brain natriuretic peptide; LV, Left ventricle; LAVI, Left atrial volume index; PV, Pulmonary vein. 

 
Figure 58. Quantification of abnormal systolic and diastolic parameters in 
HFNMSD group. 

 
Study 

No 

 
Systolic 

dysfunction? 

 
No of parameters 

supporting LV 
Systolic dysfunction 

Any 
evidence of 

diastolic 
dysfunction? 

No of parameters contributing 
to this (E/A and DCT count as 1) 

8 Yes 3 Yes 3 

28 Yes 7 Yes 5 

59 Yes 4 Yes 4 

188 Yes 6 Yes 1 

191 Yes 5 Yes 3 

289 Yes 2 Yes 1 

255 Yes 3 No 0 

136 Yes 2 No 0 

311 Yes 2 No 0 

9 Probably not 1 Yes 2 

135 Probably not 2 Yes 4 

62 No 0 Yes 4 

243 No 0 Yes 1 

212 Probably not 1 No 0 

10 Probably not 1 No 0 

DCT, Deceleration time; LV, Left ventricle.  
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Figure 59. Qualification of abnormal systolic and diastolic parameters in HFNMSD 

group. 

Study 
No 

 
Rationale for systolic dysfunction Rationale for diastolic dysfunction 

8 Abnormal CMR RWMSI, CMR CI, TTE CI Abnormal e’ septal and lateral and E/A 

28 LBBB, Reduced RWMSI by echo and CMR, 
reduced CMR CI, reduced S' and MAPSE and 

abnormal Tei, although normal GLS 

Abnormal e’ septal and lateral, E/A and 
DCT, IVRT, and CF propagation velocity 

59 Reduced RWMSI by echo and reduced CI by 
echo and CMR, with reduced S' 

Abnormal e’ septal and lateral, E/A and 
DCT, and CF propagation velocity 

188 Reduced S' lateral and septal walls, CI by echo 
and CMR, abnormal Tei and LGE to suggest 

infarct 

Abnormal e’ septal only 

191 Reduced RWMSI and CI by CMR with reduced 
S', an abnormal Tei and LGE to suggest 

previous infarct 

Abnormal e’ septal and lateral, and E/A 
and DCT 

289 CMR RWMSI reduced and LGE to suggest 
previous infarct 

Abnormal LAVI 

255 LBBB, CMR RWMSI reduced and LGE to 
suggest previous infarct 

 

136 CMR RWMSI reduced and LGE to suggest 
previous infarct 

 

311 CMR RWMSI reduced and LGE to suggest 
previous infarct 

 

9 Only echo CI abnormal, CMR CI normal Abnormal E/A and IVRT 

135 Borderline MAPSE and the reduced CI on echo 
are not upheld by CMR. Other parameters 

normal 

Abnormal e’ septal and lateral, LAVI, 
and E/A and DCT 

62  Abnormal e’ septal and lateral, IVRT and 
CF propagation velocity 

243  Abnormal LAVI 

212 Only CMR CI abnormal, no RWMS 
abnormalities and no echo parameters to back 

up the reduced CI 

 

10 Only CMR CI abnormal, no RWMS 
abnormalities and no echo parameters to back 

up the reduced CI, Although normal GLS 

 

 

CMR, Cardiac magnetic resonance; TTE, Transthoracic echo; CI, Cardiac index; RWMSI, Regional wall 

motion score index; LGE, late gadolinium enhancement; LBBB, Left bundle branch block; GLS, Global 

longitudinal strain; S’, tissue Doppler measure of mitral annular systolic motion; MAPSE, Mitral annular plane 

systolic excursion; Tei, myocardial performance index; E/A, ratio of early to late diastolic mitral inflow waves; 

e’, early tissue Doppler diastolic velocity of mitral annulus; DCT, Deceleration time; IVRT, Isovolumic 

relaxation time; CF, Colour flow. 
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Whilst these patients may have insufficient abnormalities to diagnose HFREF or HFPEF, 

all have clinical symptoms or signs that could be in keeping with heart failure and an 

average elevated Minnesota score of 43. Ten have significant ECG changes that could 

be consistent with ischaemic heart disease, or else LBBB or ectopy. Eight had a first 

echo which showed a reduced visual assessment of LV function and seven had a 

regional wall motion abnormality on CMR despite a normal LVEF.  Six have the 

suggestion of a previous infarct on late gadolinium CMR imaging and three went on to 

have an invasive angiogram, all of which demonstrated significant coronary artery 

disease requiring revascularisation.  Whilst angiograms or ischaemia stress testing were 

only performed in a very small number of these individuals the collective information 

above raises serious questions about whether these could represent a group with 

symptoms due to dynamic ischaemia that would benefit from some form of routine stress 

testing, or exercise/cardiopulmonary exercise testing with ECG monitoring to better 

assess them.   
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Q7. If current CMR and echo measurements of LVEF do not correlate can this be 

improved upon using a regional wall motion score index (RWMSI) equation? 

Regional wall motion score index to predict CMR LVEF 

Please refer to the methodology section under the same subheading to recount the 

methods of this data analysis. Consort diagram (Figure 16) describes the population 

being retrospectively studied in this section. 

Assessing the precision of the RWMSI equation used current practice 

Deming regression analysis (Figure 60) and Bland Altman agreement plots (Figure 61) 

of RWMSI LVEF versus CMR LVEF for the previously validated equation “RWMSI LVEF 

= (Total RWMS/16) x 30” were performed for the 160 individuals with a RWMSI LVEF 

>10% and ≤55%, and with data created using the simplified RWMS whereby normal = 

2, hypokinetic =1 and, akinetic and dyskinetic = 0, and using a 16 segment model.  The 

alternative way of writing this equation would be: 

 RWMSI LVEF = RWMSI (dyskinetic score=0) x 30 

In these plots CMR LVEF is represented by MRI LVEF instead.  This work formed the 

basis of a poster abstract in the European Society of Cardiology (ESC) Heart Failure 

Conference in Athens, May 2014. 
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Figure 60. Deming regression analysis of RWMSI LVEF vs CMR (MRI) LVEF for the 

equation "RWMSI LVEF = (Total RWMS/16) x 30" 

Key for Figures 60 and 61. 

    = Severe LVSD heart failure group 

    = Moderate LVSD heart failure group 

    = Mild LVSD heart failure group 

    = Normal LV function 

 

RWMSI, Regional wall motion score index; MRI, Cardiac magnetic resonance, otherwise referred to as CMR 

throughout the rest of the thesis; LVEF, Left ventricular ejection fraction. 
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The Deming regression analysis providing the mean regression parameter and its 95% 

confidence interval demonstrated that the two methods were highly comparable (Slope 

0.85, 95% CI 0.77 to 0.94, intercept -2.1, 95% CI -5.95 to 1.75).  However, the mean 

CMR/MRI LVEF = 42.4% (coefficient of variation 30.5%) compared with a mean RWMSI 

LVEF of 34% (coefficient of variation 32.4%), and the Bland-Altman plot confirms how 

the RWMSI LVEF would underestimate the CMR LVEF with a mean difference of 8.3% 

units. 

Figure 61. Bland-Altman plot of RWMSI LVEF vs CMR (MRI) LVEF for the equation 

"RWMSI LVEF = (Total RWMS/16) x 30" 

 

RWMSI, Regional wall motion score index; MRI, Cardiac magnetic resonance, otherwise referred to as CMR 

throughout the rest of the thesis; LVEF, Left ventricular ejection fraction. 

On both figures the differently coloured and differently shaped plots depict the different 

heart failure subgroups according to CMR endocardial LVEF measurement and provide 

a visual appreciation of the relationship between the two methods of LVEF calculation in 

each group.  Interestingly, from the Bland Altman plot in particular it appears that those 

with more severe LV impairment may have the LVEF underestimated to a lesser extent 
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than other groups by this RWMSI equation.  This observation would be the opposite of 

the initial clinical suspicion. 

The previous validation study for this equation, which applied a score of -1 for a 

dyskinetic segment as opposed to 0, suggested that the RWMSI LVEF could be 9% 

higher or 14% lower the averaged RWMSI LVEF and CMR endocardial LVEF (137).  

However the very nature of averaging the two methods LVEF means the authors did not 

consider the data in the setting of CMR being the gold standard measurement, as it has 

been deemed to be.  It is no surprise therefore that in this analysis the limits of agreement 

show how this RWMSI equation may produce an LVEF that is between 8% higher or 

24% lower than the MRI endocardial LVEF.  Such ranges of discrepancy between 

methods would be unacceptable for clinical purposes, resulting in heart failure group 

classifications that could be markedly different from one another using the two 

techniques. 

Assessment of the RWMSI LVEF performance within each individual heart failure 

subgroup was attempted using separate Deming regression analyses on the normal, 

mild, moderate and severe subdivisions.  In this setting Deming regression analysis did 

not support a consistent relationship between the RWMSI LVEF and CMR endocardial 

LVEF in any of the sub groups.  This is inconsistent with the overall analysis and perhaps 

the most likely explanation is based upon the statistical rules that the likelihood of finding 

a significant level of agreement depends on the range and spread of the sample being 

tested.  Whilst the large group analyses had sufficient range and spread of data to 

establish a statistically valid correlation, the narrower range and spread of the sample in 

subgroup analysis meant that valid continuous correlation analysis could not be 

achieved.  A major contributor to this was the nature of the RWMSI LVEF equation that 

meant that the LVEF figures produced would always be of a semi-continuous nature.  As 

such, this method of subgroup analysis was abandoned. 

Constructing new linear equations 

Whilst the mean LVEF difference of 8.3%, and wide limits of agreement means that this 

equation is unlikely to be clinically acceptable, the fact that there is good correlation 

between the two methods overall lends itself to the development of an equation that 

could improve the accuracy of the RWMSI LVEF simply by the addition of 8 to the original 

equation i.e: 

RWMSI LVEF = RWMSI (D=0) x 30 + 8, 

whereby D=0 represents the score given to dyskinetic segments for this equation.  
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Another four separate possible equations were constructed from the best-fit Deming 

regression lines between the RWMSI and CMR LVEF by adjusting the dataset according 

to whether the RWMS allocated a score of 0 versus -1 to a dyskinetic segment, and 

thereafter either incorporating or removing all those with a RWMSI = 2, see consort 

diagram (Figure 62). 

Transforming the data to obtain a more normal distribution 

The distribution of the entire dataset is positively skewed by the large numbers with a 

RWMSI =2.  Even with the group with a RWMSI = 2 removed from the population, the 

data were not normally distributed and it was possible that linear equations would not be 

representative of the relationship between RWMSI LVEF and CMR endocardial LVEF. 

Attempts to transform the data into a more normal distribution using logarithmic and 

trigonometric methods were undertaken.  The most successful method was an arcsine 

transformation of the RWMSI/2, although there remained a visible positive skew to the 

dataset even after this transformation. 

A further Deming regression analysis was applied to this transformed data and a further 

equation constructed.  The resulting equation was: 

arcsine(RWMSI (D=0)/2) x 46.5 + 12 

Simplified equations for clinical use 

Many of the equations established above would be difficult to remember for quick 

everyday use in clinical practice.  Rounded figures would be more amenable to daily 

application and so some of the more complex equations were simplified and adapted 

equations were created below with a view to comparing whether the subtle differences 

had a clinically relevant effect on their precision.  A final selection of eleven equations 

was then ready to be assessed for their precision compared with CMR LVEF.  These are 

fully listed and explained by the consort diagram below (Figure 62) and Figure 63.   
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Figure 62. Flow diagram of equation creation 

 

  

Equation adapted after Deming regression and Bland-Altman comparison suggested 

RWMSI LVEF underestimates CMR LVEF by 8.3% units 

RWMSI LVEF = RWMSI (D=0) x 30 + 8 

Previously validated equation:  

RWMSI LVEF = RWMSI (D=0) x 30 

Equations from other best-

fit Deming regression lines 

adjusting the dataset 

according to the score given 

to a dyskinetic segment and 

incorporating or removing 

data where the RWMSI = 2. 

 

Dyskinetic = 0. Only RWMSI < 2 used 

RWMSI (D=0) x 35.8 + 1.7 

Dyskinetic = 0. All RWMSI data used (includes RWMSI=2) 

RWMSI (D=0) x 34.5 + 2.8 

Dyskinetic = -1. Only RWMSI < 2 data used. 

RWMSI (D=-1) x 31.9 + 7.4 

Dyskinetic = -1. All RWMSI data used (includes RWMSI=2) 

RWMSI (D= -1) x 32.1 + 6.9 

Deming regression analysis 

after arcsine transformation 

of the data to achieve a 

more normal distribution. 

arcsine(RWMSI (D=0)/2) x 46.5 + 12 

Simplified versions for clinical use Simplified versions for clinical use 

RWMSI (D=-1) x 32 + 8 

RWMSI (D=-1) x 30 + 8 

RWMSI (D=0) x 35 

RWMSI (D=0) x 35 + 2 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 
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Figure 63. Table of equations labelled alphabetically for simplicity. 

RWMSI LVEF Equation Alphabetical representation  

RWMSI (D=0) x 30 
A 

RWMSI (D=0) x 30 + 8 
B 

RWMSI (D-0) x 35.8 + 1.7 
C 

RWMSI (D=0) x 34.5 + 2.8 
D 

RWMSI (D=-1) x 31.9 + 7.4 
E 

RWMSI (D=-1) x 32.1 + 6.9 
F 

RWMSI (D=-1) x 32 + 8 
G 

RWMSI (D=-1) x 30 + 8 
H 

RWMSI (D=0) x 35 
I 

RWMSI (D=0) x 35 + 2 
J 

Arcsin(RWMSI/2) (D=0) x 46.5 +12 
K 

 

Testing and comparing the precision of these new equations 

The performance of all the equations were compared on the same cohort of subjects, for 

the full data set (RWMSI = 2, and then those where RWMSI = 2 were excluded) and then 

subgroups (normal, mildly impaired, moderately impaired, and severely impaired 

according to CMR LVEF).  This was done by comparing the mean RWMSI LVEF (with 

confidence intervals) of each equation with CMR endocardial LVEF values.   The 

estimated standard error given in this exploratory analysis was calculated using standard 

methods of analysis.  Bootstrapping was explored but since it made only a minor bias to 

the dispersion it was not incorporated in the analysis.  The bootstrapping method 

assumes the population is the sample and so resamples with replacement 1000 times in 

this example. In general, this technique is used for relatively small samples, e.g. n<40. 

It became apparent that every equation (excluding the original equation used in current 

practice) results in a higher LVEF in the severe group than that produced by the CMR.  

This was a useful observation.  The severe group is the one most likely to be affected by 

the alterations in the dyskinesis score (because the more normal the contraction of the 

heart the less likely it is to have dyskinetic segments).  Thus if there is an equation that 

scores dyskinesis as 0 and performs well in all the other subgroups, it is plausible that 

this may also perform equally as well in these groups if the dyskinesis score is changed 

to -1, but even better in the severe LV impairment group.  Visually one possibility is 
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equation J, or “RWMSI (D=0) x 35 + 2” due to the consistent reliable representation of 

the CMR LVEF across all the other subgroups.  This is also a relatively simple formula 

that could be readily used in clinical practice.  This equation was adapted using a 

dyskinesis score of -1 to create a final equation to be tested “RWMSI (D=-1) x 35 + 2” 

(equation L).  The graphs below (Figure 64-69) provide a visual comparison of 

effectiveness of the various equations as discussed in this synopsis with the newly 

adapted equation L shown in red at the end of each graph. 

 

Figure 64. Equation comparison of mean LVEF for all data 

 
  



147 
 

Figure 65. Equation comparison for all data, excluding those with RWMSI =2. 

 
 
Figure 66.  Equation comparison for those with normal systolic function. 
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Figure 67. Equation comparison for those with mild LV impairment. 

 
 
Figure 68. Equation comparison for moderate LV impairment. 
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Figure 69. Equation comparison for those with severe LV impairment. 

 
 

Paired analysis of heart failure group allocations by the different equations versus CMR 

LVEF was performed using cross-tabulation and Kappa measure of agreement.  The 

LVEF determined a heart failure grouping according to BSE criteria (1=severe (LVEF ≤ 

35%), 2=moderate (LVEF 36-44%), 3=mild (LVEF 45-54%), 4=normal (LVEF ≥ 55%).  

This was initially performed with the whole dataset but the high levels of agreement in 

the “normal” subgroup, with large “normal” subgroup numbers appeared to be skewing 

the picture for the other subgroups.  Therefore, repeat analysis was done for only those 

203 individuals with a RWMSI < 2, removing the group of people with the equation’s 

ceiling RWMSI LVEF and reducing the skewing effect (Figure 70).   
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Figure 70. Comparison of CMR LVEF vs equation LVEF using Kappa measure of 

agreement. 

 Kappa measure of agreement 

with CMR LVEF HF Group 

Asymp Std 

Errora 

Approx Tb 

Equation A 0.369 0.043 9.367 

Equation B 0.527 0.044 12.887 

Equation C 0.494 0.044 11.945 

Equation D 0.494 0.044 11.945 

Equation E 0.503 0.044 12.184 

Equation F 0.503 0.044 12.184 

Equation G 0.491 0.044 11.972 

Equation H 0.494 0.044 12.063 

Equation I 0.470 0.043 11.480 

Equation J 0.492 0.044 11.947 

Equation K 0.481 0.044 11.808 

Equation L 0.454 0.044 11.009 

a, not assuming the null hypothesis; b, using the aymptotic standard error assuming the null hypothesis.  

With the RWMSI = 2 group removed from analysis only three equations had a Kappa 

level of >0.5 to suggest a good level of agreement.  Two of these were the equations 

derived from the Deming regression curves when a dyskinesis score of -1 was applied, 

and were relatively complex from the perspective of daily clinical application.  Indeed the 

level of agreement is probably not sufficient to justify abiding the complexities of these 

equations for clinical use.  The other was Equation B, which was the original equation 

adapted after the Bland Altman assessment suggested 8% should be added to the 

answers, and using a dyskinesis score of 0.  This had the highest Kappa level of 

agreement and was actually a more simple equation for clinical application.  The visual 
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interpretation of the effectiveness of this equation (Equation B) is shown in the colour bar 

chart (Figure 71), and demonstrates the distribution of the heart failure groups according 

to CMR LVEF within each RWMSI LVEF grouping.  

Figure 71. Pictorial bar chart display of the equation with the best Kappa 

agreement with CMR LVEF. 

 
 
(1=severe (LVEF ≤ 35%), 2=moderate (LVEF 36-44%), 3=mild (LVEF 45-54%), 4=normal (LVEF ≥ 55%). 

The equations’ performances by the heart failure group allocation, as well as the 

individual value of LVEF, are both clinically relevant.  From the Kappa information it 

appears that Equation B (RWMSI (D=0) x 30 + 8) is the most useful.  Although one may 

initially assume this is due to the large numbers with a normal LVEF skewing the data to 

enhance the performance of an equation that favours a higher LVEF, actually Equation 

B fared better than the other equations in the mild and moderately impaired heart failure 

groups.  However, the visual interpretation of the mean LVEF with confidence intervals 

shows how Equation B overestimates the LVEF in those with severe LV impairment more 

than a number of other equations.  The most recently constructed equation (equation L), 

incorporating a dyskinesis score of -1 definitely improved the LVEF representation in the 

severe group as had been postulated.   Unfortunately, employing this dyskinesis score 

of -1 also had an effect in the other groups so that it reduced the LVEF sufficiently (and 
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particularly when it was close to the boundary between mild and moderate LV 

dysfunction) so that enough people were incorrectly classified in a worse heart failure 

group to reduce the Kappa level to <0.5, and meaning that it was less effective in the 

heart failure group analyses. 

Each equation has its own pros and cons when spanned across the entire LVEF range.  

Perhaps a linear equation is not the most appropriate method of converting a RWMSI 

into LVEF.  Perhaps the fact that the LVEFs produced by the RWMSI are only semi-

continuous (due to the 16 segment division) means they lack accuracy for the categorical 

group analysis, particularly in the middle range groups (mild and moderate LV 

impairment) which only span 9 or 10% units, and boundaries easily traversed.   It should 

also be remembered that the same set of data has been used for hypothesis generation 

and hypothesis in this analysis with the inherent limitations this brings.  As such 

prospective validation was attempted with the three equations that were most 

representative of CMR endocardial LVEF. 

Prospective validation of the RWMSI equations to predict CMR LVEF 

Equations for prospective validation 

The three equations taken forward and the rationale for their inclusion are listed below 

in Figure 72.  

Figure 72. Equations for prospective validation 

Equation Rationale for taking forward to prospective analysis 

B RWMSI (D=0) x 30 + 8 Best Kappa agreement  

H RWMSI (D= -1) x 30 + 8 An equation with D= -1 with better Kappa 

agreement in the heart failure group analysis than 

equation L.  Better representation of the HF group 

and LVEF at the lower end of the LVEF spectrum. 

L RWMSI (D=-1) x 35 + 2 Best representation of the severe heart failure group 

LVEF and similar representation of LVEF in the 

normal, mild and moderate groups compared with 

other equations 
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All those that underwent echo and CMR on the same day that had valid consent for the 

use of the data, and that had a CMR LVEF performed and an echo RWMSI performed 

using at least 15 of the 16 regional segments were included for analysis.  This resulted 

in a total of 59 datasets.  The CMR LVEF was then compared with these three equation 

calculated LVEFs by way of Bland Altman plots.  These were then compared against the 

Simpson’s Biplane echo LVEF Bland Altman plot displayed earlier in the section labelled 

“Do echo and CMR measurements of LVEF correlate?”  This was a marginally different 

cohort, comprising the 48 individuals that had a second echo as well as a CMR (46 of 

which were performed on the same day) and had Simpson’s Biplane LVEF performed. 

Thereafter, categorical assessment of concordance with CMR heart failure group 

allocation, based on the BSE criteria (1=severe (LVEF ≤ 35%), 2=moderate (LVEF 36-

44%), 3=mild (LVEF 45-54%), 4=normal (LVEF ≥ 55%), was performed for each 

equation and then also compared with a similar analysis for the cohort of 48 individuals 

using Simpson’s Biplane echo LVEF method. 

Would any of the RWMSI equations be an improvement on the echo Simpson’s Biplane 

representation of CMR LVEF?  Figures 73-75 are Bland-Altman plots comparing the 

three prospective equations with CMR LVEF.  Figure 76 is a Bland-Altman plot 

comparing transthoracic echo Simpson Biplane LVEF with CMR LVEF.  
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Figure 73. Bland-Altman plot comparing equation B with CMR LVEF. 

 

 
Figure 74. Bland-Altman plot comparing equation H with CMR LVEF. 
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Figure 75. Bland-Altman plot comparing equation L with CMR LVEF. 

 

Figure 76. Bland-Altman plot comparing TTE Biplane LVEF with CMR LVEF. 
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The Bland Altman plots are plotted with CMR LVEF on the X-axis as this is deemed to 

be the gold standard. This is different from the method where the two methods being 

tested are averaged but this should only happen when the gold standard is not known.  

They demonstrate the mean difference between the two methods tested with associated 

confidence intervals and also the 1.96 standard deviations around this mean.   The 

associated table (Figure 77) summarise these numerical values adjacent to each other 

to ease comparison.  The results demonstrate that the TTE Simpson’s Biplane LVEF is 

on average of -3.9% units below that of the CMR LVEF and the regression line 

demonstrates that this is proportional to the LVEF so that the underestimate is more 

pronounced the higher the LVEF, and indeed may tend to overestimate the LVEF and 

very low LVEFs. 

In comparison, all RWMSI equations produce an LVEF that is on average higher than 

the CMR LVEF, minimally with equation H at +0.8% units, and maximally with equation 

L at +1.5% units.  Equation B and H both have down sloping regression lines similar to 

the Simpson’s Biplane analysis so that they overestimate the CMR LVEF at lower LVEFs 

and underestimate it at higher LVEFs.  However, this is less pronounced with Equation 

H (-0.1554 versus -0.1747) which may reflect the use of a dyskinesis score of -1 which 

makes it more reliable for those with lower LVEFs.  Equation L has a much flatter 

regression line so that the 1.5% units overestimate of CMR LVEF is more consistent 

across the range of LVEFs but the payoff is a wide standard deviation so that the CMR 

LVEF can be 25.3% units above or 22.3% units below Equation L LVEF to incorporate 

two standard deviations of data.  Indeed all the equations have a standard deviation 

range greater than that for the TTE Simpson’s Biplane LVEF. 
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Figure 77. Table explaining the results of the Bland-Altman plots for equations B, 

H and L and TTE Biplane LVEF. 

SD, Standard deviation. 

 
The categorical assessment of the percentage of cases that are concordant with CMR 

LVEF heart failure grouping also favours the TTE Simpson’s Biplane LVEF method, 

demonstrating the highest concordance at 65% (Figure 78). 

 

Equation / 
Method  

Mean 
difference 
in results 
(Method– 
CMR 
LVEF)  

95% 
Confidence 
Interval 

SD 
Range 

Regression 
line pattern 

Interpretation of the plot 

Equation B 
(n=59) 

+1.2 -19.4 to +21.7 41.1 Downsloping Equation B tends to 
overestimate the CMR LVEF 
at lower LVEFs and 
underestimate the CMR 
LVEF at higher LVEFs. 

Equation H 
(n=59) 

+0.8 -20.2 to +21.9 
 

42.1 Downsloping Equation H tends to 
overestimate the CMR LVEF 
at lower LVEFs and 
underestimate the CMR 
LVEF at higher LVEFs. The 
slope of the regression line 
is less than Equation B 
probably due to the use of 
D=-1 in Equation H which 
makes it more reliable for 
those with lower LVEFs. 

Equation L 
(n=59) 

+1.5 -22.3 to +25.3 
 

47.6 Horizontal Equation L produces an 
LVEF that is on average 
1.5% units higher than CMR 
and this is consistent across 
the range of LV 
function/LVEF but with the 
widest  2SD range. 

TTE 
Simpson’s 
LVEF  
(n=48) 

-3.9 -21.5 to +13.7 
 

35.2 Downsloping  TTE produces an LVEF that 
is on average -3.9% units 
below that of CMR. The 
regression line 
demonstrates that this is 
proportional to the LVEF so 
that the TTE underestimate 
is more pronounced the 
higher the LVEF, and indeed 
may tend to overestimate 
the LVEF at very low LVEFs. 
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Figure 78. Comparison of equation and TTE Biplane LVEF performance with CMR 

LVEF according to concordance with heart failure grouping. 

 
Method of LVEF 

Number of cases 
concordant with 

CMR heart failure 
grouping 

(normal, mild, 
moderate or severe) 

 

 
Total number of 

cases 

 
Percentage 

concordance with 
CMR heart failure 

grouping 

Equation B 33 59 56% 

Equation H 34 59 58% 

Equation L 36 59 61% 

TTE Simpson’s 31 48 65% 

 

Whilst TTE Simpson’s Biplane LVEF may underestimate CMR LVEF by 3-4% this 

phenomenon is now increasingly recognised amongst cardiologists.  With this in mind, 

the fact that the standard deviation range is much smaller and categorical heart failure 

groupings superior than any of the RWMSI equation results, it is reasonable to conclude 

that the Simpson’s Biplane LVEF should be used in preference to all of the RWMSI 

equations for an echo assessment of LVEF.  If this is not possible due to poor endocardial 

definition etc then Equation L (RWMSI (D=-1) x 35 + 2) should be used as the preferred 

RWMSI equation due to its superior performance in the categorical assessment of the 

heart failure groups and it’s consistent similar representation of CMR LVEF across the 

range of LVEFs.  However, it should be borne in mind that this equation has a wide 

standard deviation associated with it.  
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Q8. How does routine CMR affect the understanding about the underlying 

aetiology for the heart failure? 

a) What is the frequency of ischaemic versus non-ischaemic aetiology pre versus 

post CMR? 

b) Can the presence and degree of subendocardial LGE reliably predict CAD on 

angiography in a retrospective cohort? 

c) What is the prevalence and degree of non-subendocardial LGE in the heart 

failure cohort? 

 

As previously described in the section exploring the impact of CMR to understand the 

underlying aetiology, the presence of subendocardial LGE reflects infarcts in 42% of the 

HFREF subgroup, 20% of the HFPEF subgroup and 40% of the HFNMSD subgroup.  

However, in the majority of the prospective cohort invasive coronary was not performed 

to corroborate or refute these CMR findings, or to establish whether significant coronary 

artery disease can be present despite the absence of subendocardial LGE. 

The degree of LGE was not explored in the above analysis and the expectation would 

be that there would be more in those where the LVEF is reduced (i.e. the HFREF cohort) 

to account for the significant LV impairment.  This comparison is explored in Figures 79 

below, using the cohort of 101 patients that had a CMR and consented to their data being 

used (consort Figure 42), and demonstrates that the average LGE score of those with 

LGE is highest in the group with HFREF, followed by the HFPEF and HFNMSD 

respectively.  Student’s t tests were performed to observe if there was a significant 

difference in the LGE score between the HFREF versus HFPEF groups and thereafter 

the HFPEF versus HFNMSD groups in only those cases where LGE was present (Figure 

80-81).  The difference between the HFREF and HFPEF and thereafter the HFPEF and 

HFNMSD group was not statistically significant.  
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Figure 79. HFREF vs HFPEF and HFNMSD: the presence, location and amount of 

LGE. 

Diagnosis Number 
in 
Group 

Presence of LGE (any 
distribution) 

LGE present  
(predominantly 
subendocardial ) 

LGE present 
(predominantly 
non-
subendocardial) 

Total 
Number 

Average 
LGE score 
of all 
data 

Average 
LGE score 
of those 
with LGE 

Total 
Number 

Average 
LGE 
Score  

Total 
Number 

Average 
LGE 
Score  

HFREF 61 33 2.615 4.833 25 5.800 8 1.813 

HFPEF 25 7 0.600 2.143 4 2.250 3 2.000 

HFNMSD 15 7 0.923 1.714 6 1.917 1 0.500 

Total 101 47 1.884 3.968 35 4.729 12 1.750 
HFREF, Heart failure with reduced ejection fraction; HFPEF, Heart failure with preserved ejection fraction; 

HFNMSD, Heart failure with no major structural disease; LGE, Late gadolinium enhancement. 

 

Figure 80. Comparison of LGE score between HFREF and HFPEF groups (when 

LGE present). 

 
Diagnosis N Mean Std. Deviation Std. Error 

Mean 

LGE Score 

HFREF 33 4.8 3.9 0.69 

HFPEF 7 2.1 2.0 0.76 

Student’s t test (independent variables, 2-sided), P =0.092 NS 

 

Figure 81. Comparison of LGE score between HFPEF and HFNMSD (when LGE 

present) 

 
Diagnosis N Mean Std. Deviation Std. Error 

Mean 

LGE Score 
HFPEF 7 2.1 2.0 0.76 

HFNMSD 7 1.7 1.6 0.61 

Student’s t test (independent variables, 2-sided), P =0.671 NS 
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Further similar analysis was performed for the subgroups of subendocardial LGE and 

non subendocardial LGE but there was no statistical difference in the LGE score.  It is 

noteworthy however that although there is more subendocardial LGE in the HFREF 

group compared with the HFPEF group the opposite is true of non subendocardial LGE 

which would be in keeping with a fibrotic infiltrative mechanism of pathology in the 

HFPEF group.  

LGE CMR to predict prognostic coronary artery disease 

The aim in this analysis was to assess whether the absence of subendocardial LGE 

could reliably exclude prognostic CAD in a population with LV systolic dysfunction.  In 

order to get a large enough dataset, it was performed on the retrospective cohort of 116 

people who had undergone both CMR and invasive angiography and who had an LV 

ejection fraction (LVEF) <50% or LV end-diastolic volume index (LVEDVI) ≥ 97ml/m2 on 

CMR, or with a previous echocardiogram suggesting LV systolic impairment for which 

CMR had been requested to further differentiate the cardiomyopathy.  The consort 

diagram referring to this group can be revisited in Figure 17. 

A definition of prognostic coronary disease at angiography was:   

 LMS ≥ 50% stenosis 

 Proximal LAD ≥ 75% stenosis 

 Two or three vessel disease with ≥ 70% stenosis of a main epicardial vessel 

(defined as main LAD or large secondary branch, main LCx or large secondary 

branch or main right coronary artery excluding branches) 

This was applied to the X-ray angiogram reports so that two groups were established: 

those with prognostic CAD and those without.  The presence or absence of 

subendocardial LGE was determined from the CMR report and two groups were 

established: those with subendocardial LGE and those without.  A subendocardial LGE 

Total Score was calculated for each scan with a view to evaluating whether the total 

amount of LGE could help predict the likelihood of prognostic CAD in positive CMR 

scans.  A value of 1 was given for one AHA segment with 50 to100% transmural 

enhancement, and 0.5 for one AHA segment with <50% transmural enhancement.  A 

maximum score of 17 would represent transmural LGE in every AHA segment.   

The baseline characteristics are shown in Figure 82.  Mean age was 64 years and 78% 

were male.  Mean LVEF was 40% and LVEDVI 114ml/m2.  The indication for CMR was 

varied, with the majority (79%) investigated for heart failure or myocardial viability.  
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History of previous myocardial infarction was generally unknown but those with previous 

revascularisation were excluded.   
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Figure 82. Baseline Characteristics of the retrospective cohort, differentiated by 

the presence or absence of prognostic coronary artery disease. 

 

Characteristic Entire Group Prognostic 
CAD present 

Prognostic 
CAD absent 

Number of patients (%) 116 (100%) 55 (47%) 61 (53%) 

Age (SD) 64 (± 9) 67 (± 8) 61 (± 10) 

Male Sex (%) 90 (78%) 47 (86%) 43 (71%) 

Median time between investigations (days)  42 41 44 

CMR performed before X-ray angiogram 
(%) 

48 (41%) 17 (31%) 31 (51%) 

Indication for CMR (%)    

            Heart Failure/Viability assessment 92 (79%) 43 (78%) 49 (80%) 

            Suspected ischaemia 14 (12%) 11 (20%) 3 (4.9%) 

            VF/VT 3 (2.6%) 1 (1.8%) 2 (3.3%) 

            Troponin positive chest pain 4 (3.4%) 0 4 (6.6%) 

            Valve disease assessment 2 (1.7%) 0 2 (3.3%) 

            LVH  1 (0.9%) 0 1 (1.6%) 

CMR LVEF (%) (SD) 40% (12) 41% (11) 39% (14) 

CMR LVEDVI (ml/m2) (SD) 114 (31) 116 (33) 112 (30) 

Subendocardial LGE present (%) 89 (77%) 55 (100%) 34 (56%) 

LGE Total Score (mean of all scans) (SD) 4.1 (3.5) 6 (2.7) 2.4 (3.2) 

 
LGE Total Score (mean of scans with LGE 
present) (SD) 

5.3 (3.0) 6.0 (2.7) 4.3 (3.2) 

 

CAD, Coronary artery disease; CMR, Cardiac magnetic resonance; VF/VT, ventricular fibrillation/ventricular 

tachycardia; LVH, Left ventricular hypertrophy; LVEF, Left ventricular ejection fraction; LVEDVI, Left 

ventricular end-diastolic volume indexed to body surface area; LGE, Late gadolinium enhancement; SD, 

standard deviation.  The maximum LGE Total Score = 17 if all segments are transmurally infarcted. 
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Median time between CMR and angiogram was 42 days and in 41% of cases the LGE 

CMR was performed before the X-ray angiogram.  The diagnostic performance of LGE 

CMR to predict prognostic CAD is demonstrated in Figure 83 and 84.  The prevalence 

of prognostic CAD was high at 47% (95% CI 38 to 57%).  The presence of ≥1 segment 

of subendocardial LGE detected prognostic CAD with a sensitivity of 100% (95% CI, 92 

to 100%).  This meant there were no false negative results in this cohort with a high 

prevalence of prognostic CAD.  For any particular negative test the probability of a false 

negative result is 0 to 16%.  Specificity was low at 44% (95% CI 32 to 57%) with a false 

positive rate of 38% (95% CI 28 to 49%) but this reflects the large number of people with 

single vessel disease sufficient to cause an infarct, yet insufficient to justify prognostic 

CAD.   

Figure 83. Diagnostic performance of LGE CMR to predict prognostic CAD. 

 X-ray angiogram Total 

Prognostic CAD 
present 

Prognostic CAD 
absent 

CMR Subendocardial 
LGE present 

55   (TP) 34   (FP) 89 

Subendocardial 
LGE absent 

0   (FN) 27   (TN) 27 

Total 55 61 116 

CAD, Coronary artery disease; CMR, Cardiac magnetic resonance; LGE, Late gadolinium enhancement; 

TP, True positive; FP, False positive; FN, False negative; TN, True negative. 

Figure 84. Diagnostic parameters of LGE CMR to predict prognostic CAD. 

 Performance of LGE CMR  (95% Confidence Interval) 

Prevalence of prognostic CAD 47% (38 to 57%) 

Sensitivity 100% (92 to 100%) 

Specificity 44% (32 to 57%) 

Positive Predictive Value 62% (51 to 72%) 

Negative Predictive Value 100% (84 to 100%) 

Probability of False Negative 0% (0 to 16%) 

LGE CMR, Cardiac magnetic resonance with late gadolinium enhancement sequences; CAD, Coronary 

artery disease. 
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The sub-analysis of those with false positive LGE CMR investigations is demonstrated 

in Figure 85.  Over half of these 34 cases (18 patients, 53%) had single vessel CAD 

severe enough to explain the infarct shown on LGE CMR (14 with ≥ 90% stenosis and 4 

with less severe disease but the combination of the clinical history and CAD providing 

justification for an infarct).  Out of the remaining 16 cases, three had LGE in a distribution 

in keeping with an infarct and seven had LGE in a non-infarct or multiple territory 

distribution, or only a single AHA segment.  All of these patients had normal coronaries 

or only minor CAD.  The predominant differential diagnosis for this group includes true 

myocardial infarction with recanalization of an occluded artery, coronary spasm, 

microvascular disease or emboli featuring as likely culprits, or alternatively, infiltrative 

diseases such as cardiac sarcoid.  There were six cases where the presence of 

subendocardial LGE was dubious and probably not real in light of the X-ray angiogram 

findings and clinical presentation.  

The mean LGE Score for those with LGE and with prognostic CAD (6.0, SD 2.7) was 

compared with the mean LGE Score for those with LGE but without prognostic CAD (4.3, 

SD 3.2) using the Mann-Whitney U Test.  This demonstrated a significant difference 

between the LGE Scores (p=0.007) suggesting that those with smaller LGE scores may 

be less likely to have prognostic CAD.  Indeed the 16 cases with LGE but normal or only 

minor CAD had a mean LGE Score of only 1.9 (SD 1.4).   

In the remaining group of 27 patients with true negative results, i.e. non-prognostic 

coronary disease and no subendocardial LGE, LGE in a midwall or epicardial pattern 

was seen in 56% of patients (15 patients).  Proposed aetiology for the cause of 

cardiomyopathy in this groups included idiopathic dilated cardiomyopathy, myocarditis, 

cardiac sarcoid, ARVC with LV involvement and vasculitis.  In one of these cases there 

was 100% occlusion of a coronary artery at X-ray angiography but no evidence of an 

infarct on LGE CMR.  In this case of mid RCA occlusion, the LGE CMR was performed 

four months before the X-ray angiogram.  In the interim period the patient developed 

exertional chest pain followed by an episode that would be in keeping with a myocardial 

infarction clinically, and could explain the discrepancy between the imaging studies.   

The absence of subendocardial LGE reliably excluded prognostic CAD in a population 

with LV systolic dysfunction with no false negative results.  This is a reassuring 

demonstration of how CMR scanning using gadolinium late enhancement protocols, 

without proximal coronary artery imaging, can be used as a screening tool to exclude 

prognostic CAD and avoid unnecessary invasive X-ray angiography in patients with LV 

systolic dysfunction. 
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The high false positive rate of 38% for LGE CMR can be explained by significant single 

vessel CAD in over half of the cases.  Thereafter, in some of the remaining false positive 

cases a myocardial infarction may be the cause of the LGE but without demonstrable 

CAD on X-ray angiography.  The total LGE Score may aid as a helpful indicator of 

whether prognostic or indeed any significant CAD will be present on X-ray angiography 

but requires further investigation.  
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Figure 85. Case analysis of False Positive Results. 

Assessment of False Positive Cases  Numbers  

(% of FP group) 

Imaging and clinical details  

AHA 17 segment model: Black = subendocardial LGE. Half-filled segments < 50% transmural.    x 
= not described. Grey differentiation according to different coronary territories: 

     LAD territory,      RCA territory,       LCx territory 

Outer numbers represent maximum % stenosis of main vessel supplying that territory 

X-ray angiogram CAD ± clinical history 
suggest MI in area of LGE 

Single main vessel CAD ≥ 90% 
stenosis 
 
 
 
CAD in coronary territory (but 
<90% stenosis of main relevant 
vessel) ± clinical history 
suggestive of MI 

 

 

14 (41%) 

 

All cases had LGE predominantly in the territory supplied by the diseased single vessel 

 

 

4 (12%) 

a)   b)    c)  d)   

a) History of chest pain suggestive of MI 3 months earlier.  
b) Suggestion of a stenosed OM3 vessel at X-ray angio in left dominant system. 
c) Delayed presentation with chest pain and ECG consistent with inferior STEMI. Anomalous 

RCA origin with moderate diffuse mid RCA disease on angiogram.  
d) 50% LAD stenosis. Prosthetic MVR in situ with mitral regurgitation. 
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Convincing LGE predominantly in 
coronary artery distribution to suggest 
an infarct. CAD not in keeping with this. 

 

 

 

 

3 (9%) 

      e)    f)      g)    

e) Troponin positive chest pain. Convincing LGE in LCx. Normal coronaries. 
f) Convincing LGE in posterolateral wall and associated RWMA. Normal coronaries. In AF. 
g) Dilated cardiomyopathy. LBBB. RWMA in area of LGE. Mildly atheromatous proximal LCx 

with slow flow and distal LCx disease with very small OM. 

 

 

Convincing subendocardial LGE in non-
infarct distribution, multiple territories, 
or only a single AHA segment 

 

 

 

 7 (20%) 

 
h)   i)    j)    k)  
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 l) m) n)   

h) Extensive convincing LGE in multiple territories with normal angiogram. 
i) Convincing subendocardial LGE in all coronary territories. Normal coronaries. 
j) Troponin positive chest pain. Inferior wall RWMA. LGE affecting RCA territory in particular 

but also isolated patch in LAD and LCx territory. Normal coronaries.  
k) LBBB and dilated cardiomyopathy with chest pains. Wall thinning in area of LGE. 
l) Dilated cardiomyopathy. LGE not associated with RWMA. Normal coronaries. 
m) Dilated cardiomyopathy with atrial fibrillation. RWMA in area of LGE. 
n) Troponin positive chest pain. Subendocardial LGE in anterior and inferior walls. 

Dubious subendocardial  LGE 6 (18%)  

 

FP, False positive; CAD, Coronary artery disease; CMR, Cardiac magnetic resonance; LGE, Late gadolinium enhancement; MI, Myocardial Infarction; AHA, American Heart 

Association; LAD, Left anterior descending artery; LCx, Left circumflex vessel; RCA, Right coronary artery; OM, Obtuse marginal vessel; RWMA, Regional wall motion abnormality; 

AF, Atrial fibrillation; LBBB, Left bundle branch block; STEMI, ST segment elevation myocardial infarction; ECG, Electrocardiograph; MVR, Mitral valve replacement
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Discussion 

Main findings and conclusions 

The aim of this study was to differentiate the demographics and imaging characteristics 

of a heart failure population using a comprehensive transthoracic echo protocol and 

routine cardiac magnetic resonance (CMR) imaging, and to assess the clinical value of 

routine CMR in this population.  

This study shows that heart failure with preserved ejection fraction (HFPEF) is not the 

epidemic previous literature would have us believe.  It is over-diagnosed in current 

practice due to lax definitions and inappropriately low left ventricular ejection fraction 

(LVEF) cut-offs.  

The ratio of heart failure with reduced ejection fraction (HFREF) to HFPEF alters 

substantially when different LVEF thresholds are employed.  In light of validated normal 

ranges, this study insisted that a LVEF threshold of <55% would be diagnostic of HFREF.  

In doing so it demonstrated that HFREF occurred in 73% of heart failure cases whereas 

HFPEF accounted for only 14% of cases.   This is vastly removed from current 

perceptions about a 50:50 split and whilst recognising that HFPEF is not uncommon, it 

is not be the epidemic it was previously portrayed as.   

CMR has a substantial impact on the diagnostic profile of the heart failure population.  In 

this study, incorporating CMR into the routine assessment of newly diagnosed heart 

failure patients changed diagnoses in 22% of cases (14% of cases for those who had an 

echo performed on the same day).  Firstly, this study demonstrates that CMR LVEF 

averages 3.9% units higher than Simpson’s Biplane LVEF with echo and diagnoses of 

HFREF will be inadvertently revoked if modality specific normal ranges are not taken into 

account.  However, even if one were to use the method specific LVEF cut-offs to 

diagnose HFREF (i.e. <55% for echo and <57% for CMR) there is still a discernible 

impact of routine CMR on the diagnostic profile of the heart failure community.  In general 

CMR revokes the diagnosis of HFREF, and does so to a greater extent than is accounted 

for by the temporal improvement in LVEF whilst waiting for the CMR scan.   

Six of the 66 individuals who had an echo and CMR on the same day had their diagnosis 

of HFREF revoked by a CMR.  In 5 of these 6 cases this change in diagnosis would have 

been upheld when applying imaging modality specific LVEF normal ranges.  This 

represents the true impact of CMR on the diagnostic profile of a heart failure community 

out with discrepancies due to temporal changes and modality specific normal ranges.  

The presence of ectopy may contribute to different results between the different imaging 
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modalities but again does not fully explain the discrepancy and thus intrinsic, non-

definable, investigation specific factors also seem to be at play.  It seems from this 

analysis that the CMR scan does indeed have an added impact on the diagnosis, above 

and beyond what echo imaging can offer.  Whether this justifies the routine use of CMR 

in the setting a heart failure clinic can be debated, but a full economic assessment would 

be warranted as part of this process, and is out with the scope of this thesis. 

Attempts to identify a superior comparator by way of regional wall motion scoring index 

(RWMSI) LVEF in this analysis was fruitless, the conclusion being that a Simpson’s 

Biplane assessment of LVEF is superior to any of the RWMSI equations tested.   This 

said, where Simpson’s Biplane LVEF is not possible due to poor endocardial definition, 

then the Equation “RWMSI (D=-1) x 35 + 2” should be used as the preferred RWMSI 

equation, bearing in mind a wide standard deviation associated with it. 

CMR with LGE has the additive clinical value of confirming or refuting infarcts, and 

thereafter determining viability.  This is an attribute confined to CMR and is beyond the 

diagnostic capabilities of echo.  The presence of subendocardial LGE in this study 

suggest infarcts in 42% of those with HFREF, 20% of those with HFPEF, and 40% of 

those with heart failure with no major structural disease (HFNMSD).  It identifies infarcts 

in a sizeable number of patients for whom there was no suspicion of ischaemic heart 

disease (IHD) and raises the novel concept that ischaemia may account for symptoms 

in many of those with HFNMSD.  It also demonstrates an impressive ability to exclude 

prognostic coronary disease whereby the absence of subendocardial LGE excluded 

prognostic coronary disease in 100% of cases.  In HFPEF and HFNMSD patients, the 

identification of infarcts might reasonably be expected to change further management 

and treatment.  Whilst at present this would not be not be the case in the HFREF 

population, it does provide diagnostic information as to the underlying cause of the LV 

impairment.   

LGE in a non-subendocardial distribution was prevalent in both the HFREF and HFPEF 

community but with a greater average burden in the HFPEF group and may support the 

postulated fibrotic infiltrative mechanism of pathology in this group.  Additionally, LGE in 

a non-subendocardial distribution established aetiology including myocarditis and 

sarcoidosis that were not detected with echo alone.  Furthermore, CMR visualises the 

endocardial borders and cardiac apex with better clarity than transthoracic echo, and in 

this study resulted in a diagnosis of apical hypertrophic cardiomyopathy that would have 

otherwise gone undetected.   

A number of characteristics differ significantly between the HFREF and HFPEF groups, 

supporting the theory that the diseases represent distinct pathological entities.  Similar 
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to other published literature, those with HFPEF were older, and more often diabetic, 

hypertensive and with permanent atrial fibrillation.  There was also a trend towards more 

females in the HFPEF community.  Those with HFREF were more likely to have LBBB 

and were also more likely to have had a previous hospital admission with heart failure 

than those with HFPEF.  Interestingly however, identical Minnesota scores suggest that 

both groups have a similar subjective experience of their symptoms and impact on their 

quality of life.  Similar BNP levels between the groups also give credence to this HFPEF 

community having symptoms as a result of cardiac disease. 

Experts that believe that symptoms in a HFPEF community are due to non-cardiac 

causes (e.g. COPD and obesity) may have been misled by older studies with lax defining 

HFPEF criteria.  A key feature of this study was that there were strict defining criteria for 

HFPEF.  This included a requirement for echo evidence of elevated LV diastolic 

pressures or elevated biomarkers +/- diastolic dysfunction, as opposed to simply the 

absence of a reduced ejection fraction.  Those with non-cardiac causes for their 

symptoms should have been better weaned out, leaving a purer HFPEF community.  

This is reflected in the fact that rates of COPD and raised BMI are similar between the 

HFREF and HFPEF groups and that the mean BNP was lower for the group deemed not 

to have heart failure than that of the HFREF and HFPEF groups.  Interestingly, the mean 

Minnesota questionnaire score was higher in the group deemed not to have heart failure 

(48 versus 40.7 for both the HFREF and HFPEF groups), reflecting a subjective feeling 

of a poorer quality of life in this subset of people.   

Whilst some may argue that all those with clinical heart failure but preserved ejection 

fraction should be labelled as HFPEF (negating the need for a detailed echo), 6 of the 

21 deemed to have heart failure clinically, but with a normal LVEF following the second 

echo, did not have sufficient abnormalities to support a diagnosis of heart failure 

according to this inclusive diagnostic framework and the difference in HFPEF population 

demographics between this cohort and others’ series adds weight to justifying a set of 

positive diagnostic criteria.   

The diagnosis of HFPEF is not standardised and all current protocols are deficient.  

Exploration and analysis of such measures in the prospective cohort demonstrated that 

E/e’ and left atrial volume index (LAVI) were the most helpful echo measures to aid 

decision making about a diagnosis of HFPEF in that both could be measured in well over 

90% of cases, are applicable in those with atrial fibrillation (a common finding in the 

HFPEF community), are not age dependent, and are not subject to the 

pseudonormalisation phenomenon that affects other parameters.  Pulmonary vein 

Dopplers have been increasingly advocated as a useful tool for the diagnosis of HFPEF 
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but in this cohort they were achievable in less than three quarters of echo scans and 

thereafter, the well reported Ard-Ad was of no diagnostic value in any cases.  Left 

ventricular mass was also unhelpful in that it could only be obtained in 76% of cases and 

positively contributed to the diagnosis in only one situation. The E/A ratio in combination 

with deceleration time (DCT) were never supportive of a diagnosis of HFPEF.  Overall 

E/e’, BNP, the presence of atrial fibrillation and left atrial volume index were the key 

components to the diagnosis of HFPEF.   

The cause and mechanism of HFPEF remains unclear and this study helped clarify the 

contribution of systolic versus diastolic dysfunction versus simply the presence of atrial 

fibrillation.  The prevalence of systolic dysfunction in this HFPEF cohort with an LVEF 

≥55% was 76% (19 of 25 cases), with most cases having 3-10 simultaneous measures 

supporting systolic dysfunction.  Diastolic dysfunction is also a common finding in those 

with HFPEF, and in general the grade of this dysfunction is worse than that in the 

HFNMSD cohort.  However, there appears to be significant limitations to current diastolic 

grading protocols whereby many cannot be classified due to conflicting results, limiting 

the applicability of such protocols in daily practice. 

Three quarters of those deemed “not heart failure” by the clinician after the initial 

consultation had symptoms of dyspnoea or peripheral oedema.  Of these, one patient 

had mildly reduced LVEF and at least 25% would have met the diagnostic criteria for 

HFPEF with only 4 patients having a BNP < 35pg/ml, normal ECG and entirely normal 

echo.  Such findings suggest that clinicians are not as good at correctly excluding heart 

failure by clinical assessment as they think and perhaps there should be more reliance 

on imaging for diagnostic exclusion.  Equally, in the 101 individuals that went on to have 

a CMR, 15 were finally labelled as HFNMSD also supporting the fact that clinical 

diagnosis of heart failure has limitations when compared with resting imaging.  In this 

latter group of “false positives” however, there is the potential that this imaging strategy 

is sub-diagnostic for HFPEF due to a lack of an exercise assessment of cardiac function 

and haemodynamic parameters.  The other real possibility is that angina as opposed to 

heart failure could explain their symptomatology in a number or all of these cases. 

Perhaps heart failure should be identified by the presence of markers that demonstrate 

a failing heart such as clinical signs (of pulmonary oedema or pedal oedema) raised 

biomarkers, and elevated left ventricular end diastolic pressure or pulmonary venous 

pressures at rest or on exercise.  Thereafter the cause should be classified by the cardiac 

abnormality or abnormalities and thence suspected underlying aetiology.  The absence 

of an abnormality should not be a defining feature, so that HFPEF would no longer be a 

valid diagnosis.  Identifying the absence of a pathology in a failing heart is ultimately not 
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useful for explanations or management strategies which require inclusive criteria.  Such 

a strategy enables the physician to become indifferent in their appreciation for the 

alternative causes of the heart failure, and fosters a lackadaisical attitude to identifying 

and exploring them in more detail.    

Instead I propose a diagnostic framework that describes the causes of heart failure as: 

1) Heart Failure due to LV systolic dysfunction with reduced ejection fraction (due 

to ischaemic heart disease, “dilated cardiomyopathy”, etc) 

2) Heart Failure due to LV systolic dysfunction with preserved ejection fraction 

3) Heart Failure due to primary LV diastolic dysfunction 

4) Heart Failure due to valvular disease (isolated or mixed) 

5) Heart Failure due to another specified structural disease (e.g. specified 

congenital heart disease) 

6) Heart failure with no major structural disease 

Limitations of the results and study design 

Much of the analysis was performed on data collected prospectively with the robustness 

that this brings.   

Despite comprehensive planning there were circumstances where data were not 

measured, collected or recorded as robustly as initially proposed but these were 

generally identified early because of continuous appraisal of the data and as such these 

problems were rectified early.  A specific example includes BNP levels not being taken 

on the clinic blood test and so a new blood form was created for each patient with BNP 

requested, along with a comment to include a separate bottle for the test.  In most 

situations there did not appear to be a specific factor that could result in biased data. 

The initial echo was often performed prior to patients attending the heart failure clinic 

and as such the majority of these patients had an eyeball visual assessment of the LVEF 

according to normal, mild, moderate or severe groupings rather than a Simpsons Biplane 

assessment.  This limits comparison between the first echo and subsequent imaging to 

some extent, although a qualitative grading of mild, moderate or severe impairment does 

represent a narrow numerical range of LVEF for comparison. 

It was impossible to obtain the information about changes in drugs between initial and 

follow-up imaging as drug lists at the time of CMR or follow-up echo were not recorded.  

Subsequent clinic attendance varied from weeks to months after the repeat imaging and 

drug titration regimes were not clearly defined in follow-up letters to allow for accurate 

assessment of drug changes.  Whilst it would be interesting to assess if improvements 
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in LVEF correlated with heart failure drug titration, small numbers are likely to have 

prohibited formal statistical credence.    

Inter-observer assessment of LVEF was not formally tested as part of this study but has 

been done so at a departmental level in both the echo and CMR departments in the past 

for internal validation purposes and no concerns highlighted.  As this was a pragmatic 

assessment of everyday practice, a formal assessment of inter and intra-observer 

variability in scan recording and reporting was not performed but the potential limitations 

of not doing so are acknowledged.  This similarly applies to the angiogram analysis, 

which was performed by a single Consultant, (although the Consultant reporting would 

differ with differing scans).   

The cohort of patients attending the heart failure clinic consisted of a high proportion of 

frail elderly, particularly in the HFPEF cohort.  This introduced bias into the consent 

process whereby the more frail the individual, the less likely they were to attend again 

and be available for consent.  Those with dementia or lacking capacity couldn’t be 

included and even when there wasn’t a formal diagnosis of such, general frailty meant 

that many of the elderly individuals simply didn’t want the extra bother of considering 

what the research involved.  With this in mind, the analysis for the overall demographic 

profile of the heart failure community was done on the entire population, hopefully 

avoiding such biases.  Thereafter, the specific imaging analyses were performed only for 

those where consent was given or data approved for use by the modified research 

application.   

An exercise assessment would have provided a better objective assessment of an 

individual’s exercise capacity as well as allow a more relevant imaging assessment of 

cardiac function at those times when many patients are most symptomatic.  However 

this was not performed for a variety of reasons.  Firstly, many patients were simply too 

frail to complete a basic six minute walk.  This was tried with the first ten patients but 

concerns for patient safety meant that this was discontinued.  Concerns were perhaps 

exaggerated because the only space available to perform such tests was in the middle 

of the busy patient clinic or cardiac investigations unit with numerous distractions and 

with risk of collisions.  The lack of adequate space in the hospital environment was 

frustrating.  With regards to exercise during imaging, time limitations, patient frailty, lack 

of operator experience and lack of exercise bike or pedals on imaging beds meant that 

this was impossible.   

The fact that the CMR was not performed on the day of the heart failure clinic, but instead 

around six weeks after diagnosis allowed stabilisation of symptoms but introduced a 

temporal discrepancy between the first echo and CMR.  This was overcome in those that 
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went on to have a second echo on the same day as the CMR but numbers were more 

limited. 

Not all those diagnosed with heart failure went on to have a CMR. Only 101 of the 166 

patients did so. The reasons for not proceeding with a CMR were varied ranging from 

claustrophobia, general frailty, contraindications e.g. pacemaker, end stage renal failure 

or other reasons that meant the physician felt that the scan would not be tolerated, but 

may result in a select group proceeding with the CMR investigation. 

Those thought not to have heart failure but with pedal oedema or raised BNP etc were 

discharged without CMR. The initial suggested protocol had indicated that such people 

be scanned but when this was put into practice the clinician was so confident to exclude 

the diagnosis of heart failure that they felt it unnecessary to obtain a CMR scan. However, 

this is a very interesting group of patients where clinician impression may be surpassed 

by imaging results, and CMR scanning in this cohort would have been interesting and 

informative. 

Regarding the creation of an optimal RWMSI equation to accurately reflect the CMR 

LVEF, many of the limitations have been discussed in the relevant results section above.  

Firstly, the RWMSI equation was formulated from CMR images as opposed to echo 

images.  It was only later in the prospective cohort where echo images were used to 

create the RWMSI LVEF.  Whilst it was a false pretence to substitute CMR for echo 

imaging for the equation creation, theoretically there shouldn’t be a difference in the 

depiction of regional wall function between the two modalities, but this cannot be 

completely excluded.  Concerns about a ceiling or floor effect that might skew the 

analysis meant that the data were reanalysed on a subset excluding those that might be 

affected but this reduced the sample size to 160 subjects.  Semi quantitative data versus 

quantitative data posed statistical analysis difficulties as previously discussed and as 

such some statistical methods had to be abandoned.  

With regards to the analysis of whether subendocardial LGE could exclude prognostic 

CAD in a population with LV systolic dysfunction, this cohort was retrospectively 

collected and analysed and the results should be interpreted with this in mind.  Although 

the CMR and X-ray angiogram scans were reported independently of each other there 

was no formal blinding process.  The cohort all had imaging evidence of reduced LVEF 

or LV dilatation and identification of the cause of heart failure or a viability assessment 

was the predominant reason for CMR referral.  As such, the group characteristics are 

likely to reflect that of a newly diagnosed heart failure population with LV systolic 

dysfunction with the exception of any bias that led to X-ray angiography being requested 

universally in this study group.  In this regard, the high prevalence of prognostic CAD is 
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not reproduced by other groups that observed all newly diagnosed heart failure patients, 

and so does suggests that some bias for X-ray angiogram referral may be at play.  These 

high prevalence rates of prognostic CAD will result in better negative predictive values 

than populations with lower rates of prognostic CAD and this should be borne in mind 

when extrapolating the results.  There remains the theoretical concern that significant 

coronary disease might cause a hibernating myocardium but without fibrosis or LGE.  

Alternatively non-ischaemic causes of cardiomyopathy can result in fibrosis and LGE in 

a subendocardial distribution that might raise concerns about the presence of significant 

CAD where there is none.  Both of these scenarios have been demonstrated in trials to 

date and might result in unacceptable levels of false positive or false negative results, 

although in practice these scenarios seem to be rare.  

There is no standard definition for significant CAD amongst the LGE CMR studies.  The 

definition for prognostic CAD in this study is based on current guidelines and respected 

trial data.  It did not incorporate single vessel disease and used lower cut-offs for two or 

three vessel disease than other trials with prognostic like definitions (≥70% stenosis of > 

1 main epicardial coronary artery as opposed to ≥75% stenosis).  Each definition brings 

a different clinical implication to the sensitivity results. Defining ischaemic 

cardiomyopathy using single vessel disease may be less reliable and prone to bystander 

disease than multi-vessel disease.  Additionally, the argument to identify single vessel 

disease to make changes to medical management by way of antiplatelet and lipid 

lowering therapy is contentious in a heart failure population.  Although indications for 

revascularisation in heart failure are also debatable, defining significant CAD using a 

prognostic approach would be more relevant to future management.  Whilst 

acknowledging that the visual grading of vessel stenosis on X-ray angiography does not 

incorporate a functional assessment of the stenosis, isolated X-ray angiography 

continues to be employed to grade CAD in daily clinical practice, justifying it as the 

comparator, especially in a screening tool setting.   

Previous groups that have shown moderate ability of LGE CMR to detect CAD used 

diagnostic thresholds for significant CAD that were less severe than our study and 

included non-prognostic single vessel disease.  It is entirely plausible that such lesser 

degrees of CAD may not have had a functional impact on cardiac function accounting 

for the lower sensitivity of LGE.  Those with 100% sensitivity have been in cohorts with 

confirmed myocardial infarctions or have included CMR proximal coronary artery imaging 

in the protocol.  This is the first known study to compare LGE CMR without proximal 

coronary artery imaging with prognostic CAD. 
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Applicability of the results: translation into clinical practice 

This is a single centre study and incorporates the inherent limitations and potential for 

bias that this brings.  The population is localised to the county Durham and Darlington 

area with the patient specific characteristics influenced by this locality.  Despite this, the 

locality is large with a diverse population from a variety of socioeconomic backgrounds 

and probably representative of general heart failure populations across the United 

Kingdom.  The physicians identifying and managing the patient cohort are all part of the 

same team and subject to similar policies, procedures, and way of working that may differ 

in other institutions.  This also applies to the other members of the clinical and imaging 

team.  Despite this, there is more than one physician involved in the diagnosis and 

management of the patients and they do so according to national policy and guidelines, 

as well as the standardised study diagnostic protocol based upon international 

consensus and best evidence.  The echocardiographers have all undergone nationally 

approved and accredited training and examination and continue to be members of the 

British Society of Echocardiography requiring continued reaccreditation and national 

meeting attendance.  CMR image acquisition takes place on a GE scanner whereas 

many other centres may use a Phillips or Siemens machines however, image acquisition 

is similar across the range of CMR machines.  Reporting of the CMR scans was 

performed by two Consultants both of whom participate in regular regional CMR 

meetings for continued professional development and ensuring that reporting habits are 

consistent with regional colleagues.   

The questions posed are extremely clinically relevant and apply to day to day diagnosis 

and management of patients with heart failure or symptoms suggestive of heart failure.  

The findings are particularly relevant to a UK population which is steadily increasing in 

average age, with the need for a better understanding of HFPEF in particular.  The results 

are also particularly relevant to UK cardiology practice which has a steadily increasing 

CMR workload with demands from commissioners to demonstrate clinical effectiveness 

and cost benefit. 

Reflections on the questions considered, Were the aims and objectives met and 

question answered?  

The main rationale for this study was to identify whether incorporating routine CMR, 

alongside comprehensive echocardiography, into the initial screening of patients with 

heart failure could provide clinically important information to complement basic 

echocardiography findings.  In this regard essentially all of the specific sub-questions for 

this study have been investigated and answered. 
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It has demonstrated epidemiological information to refute the current presumed 

spectrum of pathology in the heart failure population and explored the reasons behind 

different prevalence data.  It has demonstrated how a comprehensive HFPEF diastolic 

framework can be applied, how its’ application affects the profile of the heart failure 

community and established which parameters are the most useful to confirm a diagnosis 

of HFPEF.  It has established how many of those given a diagnosis of not having heart 

failure by a clinician would have met the HFREF or HFPEF diagnostic criteria and 

identified the prevalence of systolic dysfunction other than reduced LVEF in those with 

HFPEF.  It has shown how CMR can alter diagnosis by reclassifying LVEF in individuals 

and delved into the comparability of CMR and echo LVEF measures why they may differ. 

It has also demonstrated how CMR aids the differentiation of the underlying cause of 

heart failure by way of late enhancement, particularly in the HFREF population.  It has 

demonstrated the predictive value of LGE CMR to detect prognostic CAD in a local 

cohort.  It has clarified that the assessment of LVEF using a regional wall motion scoring 

index (RWMSI) should not be readily performed.  All of the findings have some degree 

of limitation which has been explored in the individual sections above. The study did not 

look at whether CMR could clarify some already accepted measures of diastolic 

dysfunction to aid diagnosis in unclear groups, nor demonstrate novel imaging findings 

that help to describe heart failure by way of new defining criteria.  In this regard it became 

apparent that this was too ambitious a goal that would require new CMR techniques 

never applied by the CMR radiographers and as such it was abandoned.  However, 

recognising these limitation and exceptions, in the main the aims and objectives of this 

study have been achieved. 

Future considerations 

A revision in the current diagnostic framework for heart failure should be considered as 

described above with a focus on positive identification of pathology rather than the 

absence of pathology as is currently advocated with the HFPEF diagnosis.  Thereafter 

the cause should be classified by the cardiac abnormality or abnormalities and thence 

suspected underlying aetiology.  The threshold for a diagnosis of HFREF needs to be 

formally agreed by regulatory bodies but I would advocate a cut-off of 55%. 

All echo scans for a heart failure indication should incorporate reliable and reproducible 

indexed left atrial volumes, E/e’ measures, an appreciation for left ventricular hypertrophy 

and other markers of systolic function, (in particular MAPSE, S’ and global longitudinal 

strain) when LVEF is deemed to be normal. Cardiac Magnetic Resonance provides 

useful additional information to transthoracic echo and there is rationale for this imaging 

modality to be used in all patients presenting with heart failure to better assess LVEF, 
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identify or exclude significant underlying coronary artery disease, and identify or clarify 

underlying aeitiology such as myocarditis, dilated cardiomyopathy, hypertrophic 

cardiomyopathy, or sarcoidosis etc.     

This study has raised important questions for future consideration.  The suggestion that 

coronary artery disease and cardiac ischaemia may be contributing to the presentation 

and symptomatology of the HFNMSD group in particular is worthy of further investigation.  

In addition, incorporating a formalised exercise assessment of patients presenting as 

HFPEF or HFNMSD and assessing left ventricular systolic and diastolic function and 

haemodynamics during such exercise is of interest.  The current assessment of resting 

parameters alone has readily postulated limitations in a group where exercise limitation 

is often the main presentation.  The influence of the left atrium by way of size but also 

function is increasingly postulated and better assessment of left atrial haemodynamics 

including left atrial strain may be important and should be investigated in more detail.  

There is the potential for CMR T1 mapping in heart failure community in the future and 

might better explore the postulated fibroinfiltrative mechanism of LV dysfunction in the 

HFPEF group in particular.  A prospective comparison of subendocardial late gadolinium 

enhancement with invasive coronary angiography (and without the use of proximal CMR 

coronary angiography) is now necessary to comprehensively advocate the use of 

contrast CMR to exclude prognostic coronary disease in a heart failure population.   
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