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Monte Carlo Simulations for BSM Physics
and Precision Higgs Physics at the LHC

Silvan Kuttimalai
1st September 2016

Abstract

Monte Carlo event generators are indispensable tools for the interpretation of data taken

at particle collider experiments like the Large Hadron Collider (LHC), the most powerful

particle collider to date. In this thesis, the general purpose Monte Carlo event generator

Sherpa is used to implement a new simulation framework for models that go beyond the

Standard Model of particle physics. This is achieved by means of an newly designed interface

to a universal format for generic models and by extending existing functionalities in such a

way as to handle a generic class of coupling structures that appear in many extensions of

the Standard Model. Furthermore, an improved modeling of the dominant LHC Higgs pro-

duction mechanism in the Standard Model is described and the effects of the improvements

are quantified. The improved simulation that is implemented in Sherpa supplements the

description of Higgs production at the LHC in terms of an effective Higgs-gluon interaction

with finite top quark mass effects that restore a reliable description of the kinematics in

events with large momentum transfers. Using this improved description of Higgs production

at the LHC, this work demonstrates how the transverse momentum spectrum of the Higgs

boson can be used to constrain models that modify the Higgs-gluon coupling. In addition,

state-of-the-art Monte Carlo event generation techniques are used in order to assess the

sensitivity of analysis strategies in the search for invisibly decaying Higgs bosons. In this

analysis, it was found that previously neglected loop-induced contributions have a significant

impact and it is demonstrated how multi-jet merging techniques can be used to obtain a

reliable description of these contributions. Furthermore, the work presented in the last

chapter of this thesis shows how jet substructure techniques can be used in order to search

for rare Higgs decays into light resonances that decay further into hadrons. This analysis

closes with a demonstration on how such an analysis can be used to constrain extensions of

the Standard Model that feature multiple Higgs bosons.
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1 Motivation and Outline of this Thesis

Collider experiments provide an environment in which elementary particles can be studied

while exchanging large amounts of energy and momentum. For this purpose, beams of

particles are accelerated into the highly relativistic regime and then brought to collision.

The large amounts of energy available in these collisions allow for the creation of heavy

intermediate states that can thus be studied in a controlled environment along with the

general high-energy dynamics of particle interactions. The most powerful collider to date is

the CERN Large Hadron Collider (LHC) [8–12], where proton-proton collisions are studied

using the two general purpose particle detectors ATLAS [13] and CMS [14].

A key item on the LHC physics agenda is the search for the Higgs boson, the last particle

in the Standard Model of particle physics (SM) for which no direct experimental evidence

was available prior to the commencement of the LHC programme. Within the Standard

Model, the Higgs boson plays an important role as it is the remnant of a hypothesised

mechanism that breaks a fundamental symmetry of the theory [15–20]. It is responsible

for the generation of particle masses in the Standard Model and the underlying mechanism

implies a close relationship between a particle’s mass and its coupling to the Higgs boson.

The discovery of a Higgs-like particle [21, 22] during the Run-I data taking period of

2011 and 2012 thus marked a major achievement and the already precise determination of

its mass mh = 125.1GeV with an uncertainty of only a few hundred MeV [23] has turned

the Standard Model into a fully predictive theory. While the Higgs boson’s spin and parity

properties as well as its couplings to heavy particles have been found to be compatible with

Standard Model expectations [24–26], many of its other properties are still to be determined

in order to confirm that the newly discovered particle is fully compatible with a Standard

Model Higgs boson. The Higgs boson’s couplings to first and second generation fermions

need to be constrained in order to confirm the rather peculiar hierarchical structure of

Yukawa couplings that is predicted by the Standard Model. Furthermore, the Higgs boson’s

self couplings need to be determined and its couplings to heavy gauge bosons need to be

measured to higher precision in order to rule out alternative electroweak symmetry breaking

mechanisms, which could, for example, involve multiple Higgs fields.

Motivation to even consider alternatives to the Standard Model despite its immense success

at describing a wide range of phenomena across vast ranges of energies is provided by

1



1 Motivation and Outline of this Thesis

both experimental observations and theoretical considerations. For example, observational

astrophysical evidence for the existence of Dark Matter in the universe has accumulated [27–

29]. The existence of Dark Matter is inferred from a number of observations that can currently

not be explained without postulating the abundance of a gravitationally interacting non-

luminous (and therefore “invisible” or “dark”) form of matter, for which the Standard Model

provides no candidate.

On the theoretical side, it is clear that the Standard Model cannot be valid up to arbitrarily

high energies, as gravitational effects are expected to become sizeable at the Planck scale

MPl ≈ 1028 eV. These effects are not accounted for by the Standard Model and the consistent

inclusion of gravity in a relativistic quantum field theory like the Standard Model is still

an unsolved problem. At the same time, almost any imaginable extension of the Standard

Model at such a large energy scale would introduce a pathologically strong dependence of

qualitative features of the theory on free parameters. As a consequence, these parameters

would need to be finely tuned in order to be compatible with observation. This is perceived

widely as an unnatural and therefore undesirable feature of the theory. It is commonly

referred to as the fine-tuning problem or the hierarchy problem, as it arises due to the large

separation of the electroweak scale from the Planck scale [30–33].

Searches for new physics or beyond the Standard Model (BSM) physics are therefore another

essential part of the LHC programme. So far, no indisputable evidence for new physics has

been observed and the parameter spaces of many proposed extensions of the Standard Model

were tightly constrained by LHC measurements of Run-I1.

With the increased centre-of-mass energy now available in proton-proton collisions of

Run-II, the sensitivity to physics at even higher energy scales is increased and the precision

of measurements will improve as more data will be collected. This increase in experimental

precision and reach in model space has to be met on the theoretical side with better pre-

dictions for a wider range of models. Monte Carlo event generators are numerical computer

programs that are used in order to obtain theory predictions for the LHC and thus provide

an essential interface between theory and experiment. These generators and their use in

the context of Higgs physics and BSM physics at the LHC are the main subject of the work

presented in this thesis.

Chapter 2 gives a brief review of modern Monte Carlo event generation techniques with

a focus on the Sherpa [36] event generator, which was used throughout this work. The

work presented in chapter 3 aimed at addressing some of the challenges outlined above by

adapting the Sherpa event generator framework in such a way as to facilitate event generation

for a wide range of generic BSM models. Chapter 4 is concerned with improvements on

the theoretical modelling of important Higgs production mechanisms within Sherpa. In

1See, for example, reference [34] for a summary of constraints on Supersymmetry [35] derived by ATLAS
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chapter 5, advanced Monte Carlo techniques are used in order to assess the phenomenological

relevance of so-called loop-induced scattering reactions at the LHC in the context of Higgs

physics and searches for Dark Matter. A new analysis strategy for measurements of rare

Higgs decays is presented in chapter 6 and its prospects for Run-II are analysed using Monte

Carlo tools.
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2 Calculational Techniques in Monte

Carlo Event Generation

Monte Carlo Event Generators

In order to improve upon our understanding of the physics that governs particle interactions,

one ultimately needs to compare measurements to theoretical model predictions. Given

a sufficiently good understanding of the detectors in a collider experiment, one can infer

the final state of a scattering reaction from the detector measurement and perform such a

comparison. Monte Carlo event generators play a key role in obtaining the corresponding

theory predictions and thus provide an essential interface between theory and experiment.

The outcome or final state in a collider experiment is is defined by its particle content and

the momenta of the final state particles pi . In terms of these quantities, one can form a wide

range of observables that probe different aspects of a theory. In general, an observable O is a

function of the final state f and its momenta

O(f ;p1 . . .pnf ) . (2.1)

The exact outcome, i.e. the final f state with its momenta p1, . . . ,nnf , cannot be predicted for

any one specific particle collision, even if the exact initial conditions are known. Therefore,

no meaningful prediction for (2.1) can be derived from theory. Within the framework of

relativistic quantum field theory, only the differential probability for some final state to be

produced during a collision can be predicted. This probability is directly proportional to the

differential cross section

dσ (f ;p1, . . . ,pnf )

d3p1 . . .dpnf
, (2.2)

which can be derived from theory. Provided a theory prediction for the differential cross
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2 Calculational Techniques in Monte Carlo Event Generation

section, one can make meaningful predictions for the expectation value of some observable

〈O〉 = L×
∑
f

∫ dσ (f ;p1, . . . ,pnf )

d3p1 . . .d
3pnf

O(f ;p1, . . . ,pnf )d3p1 . . .d
3pnf . (2.3)

In order to probe the probability distributions predicted by a theory as accurately as possible,

colliders are designed to repeatedly collide particles under near identical initial conditions

as many times as possible. The integrated luminosity L in (2.3) is a measure for the number

of collisions to be expected over the run time of the experiment under consideration. The

higher the integrated luminosity is, the better the discriminating power of an experiment

will be when contemplating different possible theory hypotheses.

The complexity of the phase space integral in (2.3) for any realistic number of final state

particles nf renders the calculation of theory predictions extremely challenging. Monte Carlo
integration techniques are used in event generators in order to cope with the dimensionality

of the phase space. In the very simplest form of a Monte Carlo approach, the integral in (2.3)

is evaluated numerically by randomly generating a large number M of phase space points

(pj1, . . . ,p
j
nf ) j ∈ {1, . . . ,M} , (2.4)

uniformly distributed in the integration region and by exploiting the relation

〈O〉 = lim
M→∞

L× V
M

∑
f

M∑
j=1

dσ (f ;p1, . . . ,pnf )

d3p1 . . .d
3pnf

∣∣∣∣∣∣∣
pi=p

j
i

O(f ;pj1, . . . ,p
j
nf ) (2.5)

= lim
M→∞

L× V
M

∑
f

M∑
j=1

w
f
j O(f ;pj1, . . . ,p

j
nf ) , (2.6)

where V is the volume of the integration region. The efficiency of a Monte Carlo integration

can be significantly improved upon by generating momenta that are not distributed uniformly

but in accordance with the structure of the integrand [37]. Since the analytic structure of the

integrand is often unknown, adaptive algorithms [38], which make use of the knowledge

about the structure gained throughout the integration procedure, are often employed.

In contrast to what (2.6) suggests, a fully differential Monte Carlo event event generator

does typically not calculate one specific observable. Instead, it stores the weights wfi along

with the final states and their momenta wfi as events. These can be thought of as simulated

outcomes of a scattering process. Having stored the momenta and weights wfi for a generated

set of events, one can calculate any observable by simply calculating the observable for each

event O(f ;p1, . . . ,pnf ) and performing the summation in (2.6). This is a major advantage over

an analytic evaluation of (2.3), which is typically only valid for one specific observable.
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Fixed-Order Expansion of Matrix Elements

Fixed-Order Expansion of Matrix Elements

Differential cross sections for elementary particle scattering reactions can be calculated by

deriving the corresponding scattering matrix elementM from the underlying theory. In

terms of the matrix element, the differential cross section is given by

dσ̂ =
1

4
√

(kakb)2 −mamb
|M(ka, kb;p1, . . . ,pnf )|2(2π)4δ4(p0)

n∏
i=1

d3pi
(2π)32Ei

. (2.7)

The calculation of exact matrix elements for phenomenologically relevant theories and

scattering processes are well beyond available calculational techniques and one typically has

to resort to approximations. A very successful approach to this problem is the expansion of

M as a power series in the coupling constants. For small values of the coupling constants, a

truncation of the series at some finite order can be justified. For a theory that contains only

one coupling parameter g, one has

M = gA1(ka, kb;p1, . . . ,pn) + g2A2(ka, kb;p1, . . . ,pn) + g3A3(ka, kb;p1, . . . ,pn) + . . . . (2.8)

A formalism due to Stueckelberg and Feynman formulates straightforwardly applicable re-

cipes for the construction, organisation, and graphic visualisation of all terms that contribute

to the coefficient functions Ai at any order i. In this formalism, each term is represented by a

Feynman diagram. A Feynman diagram is made up of lines that are connected to each other

by vertices. Each field in the Lagrangian corresponds to a species of lines and each vertex

that is allowed to appear in a diagram corresponds to a coupling term in the Lagrangian. In

this formalism, the task of finding all terms that contribute to a scattering amplitude boils

down to drawing all possible Feynman diagrams allowed by the vertices of the theory and

translating each of them into a mathematical expression. Since each vertex contributes a

corresponding coupling constant factor, the diagrams that contribute to the leading term in

(2.8) usually have a tree-like structure with no closed loops. This is illustrated in figure 2.1a

for the production of a Higgs boson H in association with a Z boson through the annihilation

of two quarks, qq̄. As will be discussed in the following sections, the cross section for this

process can only be calculated inclusively, as the cross section for the production of some

specific final state and nothing else is typically ill-defined. In consequence, a calculation

based on the tree-level diagram in figure 2.1a must be interpreted as the leading order

contribution to the inclusive process qq̄→ ZH +X, where X denoted “anything”. In order

to calculate this process at the next-to-leading (NLO) order in the strong coupling constant

one must therefore include QCD emission diagrams that include an extra parton in the

final state, as shown in figure 2.1b. At the same order in the relevant coupling constant,
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2 Calculational Techniques in Monte Carlo Event Generation

q

q̄

Z

H

(a) Tree-level diagram.

q

q̄

Z

H

g

(b) Real-emission diagram.

q

q̄

Z

H

(c) One-loop diagram.

Figure 2.1: Feynman diagrams for the partonic process qq̄→ ZH .

one-loop diagrams as shown in figure 2.1c contribute. These NLO corrections are referred to

as real emission corrections and virtual corrections, respectively. It is worth noting that the real

emission corrections are tree-level contributions, despite them contributing to the inclusive

cross section only at NLO.

Nowadays, the calculation of matrix elements at tree-level is in full generality automat-

ised through numerical programs. Such programs are commonly referred to as matrix
element generators. Two matrix element generators, Amegic++ [39] and Comix [40], are

fully integrated in the Sherpa Monte Carlo and allow for the automatic calculation of fully

differential cross sections at the tree-level. Other widely used matrix element generators

include MadGraph [41], O’Mega [42], and CalcHEP [43].

Due to the significant complexity of one-loop calculations, numerous numerical programs

developed specifically for the evaluation of virtual contributions exist. Among them are

OpenLoops [44], BlackHat [45], GoSam [46, 47], and MadLoop [48]. The results presented in

this thesis were obtained using OpenLoops in combination with Collier [49, 50], a numerical

tool which employs the methods of [51–53] for the evaluation of scalar and tensor integrals.

Factorisation of the Hadronic Cross Section

The methods for calculating differential cross sections outlined in the previous section

are directly applicable only if the external particles involved in the scattering process are

of elementary nature. If, however, the scattering reaction involves composite strongly

interacting particles such as protons, the matrix elements cannot be perturbatively expanded

as in (2.8) anymore. The internal structure of protons is governed by energy scales below its

mass of about a GeV and thus lie in a non-perturbative regime, where an expansion in αs,

the relevant coupling parameter, does not converge. These low energy effects can, however,

be factorised in such a way as to allow for the calculation of scattering cross sections in

terms a convolution of partonic cross sections with non-perturbative structure functions.

The structure functions capture the low-energy features of the composite hadron an can be

measured. The partonic scattering cross sections can be calculated perturbatively in terms of

elementary partons, as outlined in the previous section. For hadron-hadron collisions as they

8



Soft and Collinear Factorisation of QCD Matrix Elements

are studied at they LHC, the factorised expression for the cross section for a certain final

state F takes the form

dσ =
∫ 1

0

∫ 1

0

∑
i,j

fi(x1,µ
2
F)fj (x2,µ

2
F)dσ̂ij→F (µF ,x1,x2)dx1 dx2 , (2.9)

where the indices i and j label gluons and all massless quarks in the factorisation scheme. The

partonic cross sections dσ̂ij→F are then calculated for the partonic scattering reactions ij→F
according to (2.7). The value of the structure function fi(x,µ

2
f ) can hence be interpreted as

the probability of finding a parton i carrying longitudinal momentum fraction x inside the

proton. The structure functions are therefore commonly referred to as parton distribution
functions (PDFs). The factorisation of low-energy physics into the PDFs comes at the cost

of introducing a factorisation scale µf . As indicated in equation (2.9), both the structure

functions and the partonic scattering cross section depend on this dimensionful parameter

and on the calculational scheme used to achieve the factorisation. This dependency, however,

cancels in the full result. A residual dependence arises in typical calculations only because

of the truncation of the partonic cross section some finite order.

It is worth noting that a factorisation in the form of (2.9) has been proven only for certain

processes [54]. In fact, it is known that factorisation is violated for non-inclusive observables

at higher orders in perturbation theory, see e.g. [55]. Equation (2.9) is nonetheless typically

used in Monte Carlo event generators, assuming that factorisation violating effects are

sufficiently small as to justify this practice.

Soft and Collinear Factorisation of QCD Matrix Elements

A well known feature of QCD matrix elements is their behaviour in the limit in which the

momenta of two partons become collinear or one final state gluon becomes soft [56–59].

The leading behaviour of QCD Matrix elements in these regimes arises diagrammatically

from splittings of external parton lines as illustrated in figure 2.2, where gluon that is

connected to the rest of the diagram splits into a pair of quarks. In terms of the “mother”

parton’s momentum pa and the two “daughter” partons’ momenta pb,pc, the collinear limit

is commonly parametrised in terms of the energy fraction z = Eb/Ea of the splitting and the

virtuality t of the mother parton, for which we have in the collinear limit:

θ→ 0⇒ t = p2
a → 0 . (2.10)

In this small angle limit, the differential cross section dσ1 factorises into process independent

splitting kernels P̂ab and the differential cross section dσ0 for the process in which the partons

9
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c

a

b

θ

Figure 2.2: Splitting of an external gluon into a pair of quarks. The rest of the diagram, to
which the gluon is connected, is not shown.

labelled b and c are replaced by their mother parton a

dσ1
t�Q2

−−−−−→ dσ0
αs
2π

dt
t

dzP̂ab(z) . (2.11)

The reference scaleQ denotes the smallest kinematic invariant that characterises the partonic

cross section dσ0. Equation (2.11) is differential only in z, t, and the partonic kinematics of

dσ0. An additional azimuthal angle as well as the the spins and polarisations of external

partons are understood to be averaged over. The explicit form of the unregularised Altarelli-
Parisi splitting kernels P̂ab can be found in standard textbooks, e.g. in references [58, 59].

While equation (2.11) is particularly simple because it only involves the kinematics of on

pair of partons, there are corrections to this relation for partonic configurations in which an

emitted gluon’s energy E becomes small without being emitted collinearly with respect to

any other parton. Such a gluon is emitted coherently off the collective ensemble of partons.

In this limit, the factorised form of the cross section reads

dσ1
E2�Q2

−−−−−−−→ dσ0
αs
2π

dΩ
2π

dE
E

∑
i,j

CijWij , (2.12)

where the summation includes all pairs i, j of strongly interacting external particles in the

process corresponding to dσ0. In equation (2.12), Ω denotes the solid angle of the gluon’s

momentum. The colour factor Cij depends on the colour charges of partons i and j, while

Wij depends on their momenta and the momentum of the soft gluon q:

Wij =
E2pipj

(piq)(pjq)
. (2.13)

The factorised form of (2.12) correlates emissions off all possible pairs of partons i, j. This is

in contrast to the collinear case, where only the kinematics and colour charge of the collinear

pair of partons enter in the factorised form of (2.11).
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Jet Cross Sections

An important implication of equations (2.11) and (2.12) is that partonic cross sections with

QCD partons in the final state can potentially diverge in the soft and collinear limit, i.e.

when t→ 0 or E→ 0. These partonic cross sections are therefore ill-defined. Experimentally,

it is not even possible to measure such a cross section. In the soft limit, one would have to

distinguish a final state with a gluon carrying zero energy from a final state in which this

gluon is not present. Similarly, one cannot distinguish a pair of exactly collinear partons from

a single parton carrying the combined quantum numbers of the pair. Sensible observables

must therefore meet a criterion that is commonly referred to as infrared safety. In the limit in

which a collinear or soft splitting occurs, an observable O must obey

O(fn+1;p1, . . . ,pn+1) −→O(fn;p1, . . . ,pn) (2.14)

in order to be infrared safe. In (2.14), fn is understood to be the final state one obtains from

fn+1 by removing the arbitrarily soft gluon or the collinear splitting.

Among the most widely studied infrared safe observables are so-called event shape vari-

ables [60] and jet cross sections. In order to render cross sections for processes with QCD

partons in the final state and the corresponding observables finite, jet cross section defin-

itions introduce some resolution criterion that classifies emissions as either resolvable or

unresolvable. For this purpose, jet algorithms are used. They successively combine (or

cluster) unresolvable emissions into composite jets until no unresolvable emissions remain.

By means of a jet algorithm, partonic configurations can thus be mapped onto jets, in terms

of which one can define infrared safe observables. When calculating the n-jet cross section

according to some jet algorithm, the phase space integrals of the terms in equations (2.11)

and (2.12) over t and E, respectively, are then cut off at some lower bound that is related to

the resolution criterion. As a remnant of the divergent structure of the matrix elements, a

logarithmic dependence on the cutoff Q0 typically arises. In e+-e− collisions, for example,
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the n-jet fractions for the kT -jet algorithm are given by [61, 62]:

σn
σ2

=
[(αs

π

)[
A

(n)
12 log2

µ2
Q

Q2
0

+A(n)
11 log1

µ2
Q

Q2
0

+ . . .
]

+
(αs
π

)2 [
A

(n)
24 log4

µ2
Q

Q2
0

+A(n)
23 log3

µ2
Q

Q2
0

+ . . .
]

+
(αs
π

)3 [
A

(n)
36 log6

µ2
Q

Q2
0

+A(n)
35 log5

µ2
Q

Q2
0

+ . . .
]

+ . . .
]

(2.15)

For small resolution scales Q0, the logarithms in equation (2.15) can become large and the

presence of these large logarithms spoils the convergence of a power series in αs. If eventually

αS log2(µ2
Q/Q

2
0) ≈ 1, the truncation of (2.15) at any fixed order will fail to give a reasonable

approximation. In this regime, fixed order matrix elements need to be supplemented by

resummation techniques, which aim at summing up the largest logarithmic terms in (2.15) to

all orders in αs. In Monte Carlo event generators, this is typically achieved through parton
shower algorithms, which will be subject of the next section.

Parton Showers

The PDFs appearing in equation (2.9) can presently not be calculated perturbatively. Instead,

they are instead measured in experiments. Their scale dependence with respect to µf can,

however, be calculated perturbatively. Requiring (2.9) to be independent of µf at the desired

order in αs, one obtains the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [56,

63–65], which govern the scale dependence of the PDFs:

t
∂
∂t

(
fa(x, t)
∆a(t0, t)

)
=

1
∆a(t0, t)

∑
b

∫
dz
z

αs(t)
2π

P̂bafb(x/z, t) (2.16)

As is evident from equation (2.16), the PDF evolution is determined by the Altarelli-Parisi

splitting kernels, which characterise QCD matrix elements in the collinear limit (see equation

(2.11). In terms of these kernels, the Sudakov form factor is given by

∆a(t0, t) = exp

−∑
b

∫ t

t0

dt′

t′

∫ 1−ε(t0,t′)

ε(t0,t′)
dz
αs(t′)

2π
P̂ab(z)

 . (2.17)
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With this definition, one can cast equation (2.16) in integral form

fa(x, t) = ∆a(t0, t)fi(x, t0) +
∑
b

∫ t

t0

dt′

t′
∆a(t0, t)
∆a(t0, t′)

∫ 1

0

dz
z

αs(t′)
2π

P̂bafb(x/z, t
′) (2.18)

= ∆a(t0, t)fi(x, t0) +
∑
b

∫ t

t0

dt′

t′
∆a(t

′ , t)
∫ 1

0

dz
z

αs(t′)
2π

P̂bafb(x/z, t
′) . (2.19)

The above evolution equations can be interpreted probabilistically as follows [58]. As

mentioned above, the structure functions can be thought of as parametrising the proton in

terms of a probabilistic ensemble of partons. The probability of finding a specific parton

a with momentum fraction x is given by fa(x, t), where t denotes the squared momentum

scale at which one probes the proton. At any t, they can be assigned the differential splitting

probability of αs
2π dt/t

∫
dzP̂ab(z), in accordance with (2.11). The Sudakov form factor ∆(t0, t)

then gives the probability for a parton in the ensemble not to split when evolving from t0 to t.

Equation (2.19) therefore gives the distribution of partons at t in terms of the distribution at

t0 by “counting” the number of partons at x that did not branch between t0 and t (first term

on the right-hand side) and adding the partons from all other x that did branch in such a way

as to produce a parton that carries momentum fraction x (last term on the right-hand side).

The cutoff ε(t0, t′) imposed on the energy fraction z in the definition of the Sudakov form

factor in (2.17) effectively defines a minimum energy for a resolvable splitting at virtuality t′ .

It is therefore typically closely related to the corresponding cutoff imposed on the virtuality,

t0, but ultimately a matter of choice.

The probabilistic treatment outlined above, which recovers the DGLAP evolution equa-

tions, is implemented in modern parton shower algorithms. In the initial state, the PDFs are

evaluated at the typical scale of the partonic scattering µ2
Q first, and then evolved downwards

towards some cutoff t0 < µ2
Q. This backwards evolution requires only minor modifications [66]

to the treatment outlined above, where a forward evolution was assumed. The additional

final state particles produced through branchings during the evolution are treated in a

similar manner. With every new branching giving rise to more final state particles that can

further split, a parton cascade develops. Since the splitting kernels of parton showers are

derived from the appropriate matrix elements in the soft and collinear region, the leading

and next-to-leading logarithmic terms in expression (2.15) for the jet rates are correctly
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recovered. They are of the form

LL αnS log2n

µ2
Q

Q2
0

 , (2.20)

NLL αnS log2n−1

µ2
Q

Q2
0

 (2.21)

A parton shower can therefore resum the potentially large logarithms in (2.15) to all orders.

Multi-Jet Merging

While a parton shower algorithm appropriately describes QCD corrections due to multiple

soft and collinear emissions, the underlying approximation of QCD matrix elements through

splitting kernels P̂ab fails outside that specific kinematic region. For hard, wide-angle

emissions, a hierarchy of scales that induces large logarithms as in (2.15) is typically absent,

such that the calculation of these cross sections in terms of fixed-order matrix elements is

more accurate. In that sense, the parton shower approach is complimentary to calculating

QCD emission corrections at fixed order in αs. It is therefore desirable to combine the two

methods in such a way as to retain the accuracy of either approach in the kinematic regions

in which it performs best. Multi-jet merging techniques are designed to achieve this. The

discussion here will be focused on the CKKW algorithm, which is the method implemented

in the Sherpa event generator. It was proposed in the context of e+-e− collisions in [67] and

generalised to hadronic collisions in [68, 69]. Variants of this approach include the CKKW-L
[70] and the MLM [71, 72] merging schemes. A comparative study of these methods can be

found in [73, 74].

Common to most multi-jet merging techniques is the general idea of separating the phase

space into two domains, one of which is dominated by soft and collinear radiation, the

complimentary region being dominated by hard and wide-angle emissions. Starting with

some core process of interest with final state multiplicity n, any extra QCD emission is

assigned a dimensionful scale Qn+1 that characterises its hardness. In the CKKW approach,

a kT -type measure [61, 62, 75, 76] is used in order to quantify the hardness of an emission.

If the hardness of an emission is below a certain threshold Qn+1 < Qcut, it is generated as

usual by the parton shower. If instead Qn+1 > Qcut, the differential cross section of the

corresponding final state is calculated using fixed-order matrix elements. In order to restore

the logarithmic accuracy of the parton shower in the matrix element region, the differential

cross section is supplemented with appropriate Sudakov factors. This does not affect the

accuracy of the matrix elements at fixed order in αs, and fixed-order matrix element accuracy

14



Multi-Jet Merging

is therefore guaranteed above Qcut. In order to avoid double-counting of configurations

that arise through the shower and through matrix element emissions above Qcut, a truncated
shower has to be employed that vetoes any further emission above Qcut [69]. Schematically,

events are thus generated according to the following expression for the cross section:

σ =
∫

dφnBn(Φn)
[
∆n(t0,µ

2
Q) +

∫
t∈[t0,µ2

Q]

dΦ1Kn(Φ1)∆n(t,µ2
Q)Θ(Qcut −Qn+1)

]

+
∫

dΦn+1Bn+1(φn+1)∆n(t,µ2
Q)Θ(Qn+1 −Qcut)

(2.22)

The first line of equation (2.22) represents the core 2 → n process calculated with fixed-

order matrix elements (the Born-level process Bn) supplemented by a parton shower that is

restricted to emissions below Qcut. Correspondingly, it is written in terms of the one-particle

emission phase space of the shower

dφ1 = dtdzdφJ(t, z,φ) , (2.23)

with the appropriate Jacobian J(t, z,φ). In order to keep the notation legible and focused on

the relevant aspects, summations over all possible flavour combinations of splittings will be

omitted throughout. In this somewhat symbolic notation, the Sudakov form factor can be

written as

∆n(t0, t) = exp[−
∫

t∈[t0,t]

dφ1Kn(φ1)] , (2.24)

where Kn denotes the sum of all splitting kernels applicable to the Born flavour configuration

Kn(φ1) =
αs
2π

∑
i

Paibi (z) . (2.25)

The Heaviside theta function on the first line of equation (2.22) implements the phase space

restriction to emissions below Qcut. Emissions above Qcut are then generated according to

the term on the last line of equation (2.22). Expanding this term in αs and retaining only

the leading term in αs, one recovers the full fixed order result, as desired. For fully inclusive

15



2 Calculational Techniques in Monte Carlo Event Generation

observables, it is useful to rewrite equation (2.22) as follows:

σ =
∫

dφnBn(φn)
[
∆n(t0,µ

2
Q) +

∫
t∈[t0,µ2

Q]

dφnKn(φ1)∆n(tn+1,µ
2
Q)

]

+
∫

dΦn+1

[
Bn+1(Φn+1)−Bn(Φn)Kn(Φn+1)

]
∆(t,µ2

Q)Θ(Qn+1 −Qcut) .

(2.26)

The first line in (2.26) represents the result one would obtain using a normal parton shower

in combination wit matrix elements for the core process. Due to the unitary nature of the

parton shower, the terms in the square bracket of this term integrate to one, reproducing the

fixed leading order result for the inclusive cross section. The second line, however, gives a

higher-order correction that arises from the additional matrix elements which are used for

emissions above Qcut. Full consistency would require to include the corresponding virtual

corrections as well. In order to keep the impact of this correction to inclusive quantities

under control, Qcut cannot be chosen arbitrarily small. It should instead be chosen in such a

way as to restrict the corrections to a hard phase space regime in which they are justified.

While the merging method outlined above leads to an improved description of one emission

aboveQcut, it can be straightforwardly iterated in order to include fixed order matrix elements

of yet higher jet multiplicities. This is achieved by iteratively applying the master equation

(2.22) to the term involving Bn+1 in (2.22). This preserves all properties of the algorithm and

effectively implements fixed-order matrix element corrections to higher jet multiplicities.

In practice, the number of jets one can describe at fixed order accuracy using this method

is nonetheless limited by the availability of computing power for the evaluation of high

multiplicity matrix elements.

NLO-Subtraction

In the previous sections, it was implicitly assumed that fixed-order cross sections were

calculated at leading order (LO). A rapid development of calculational techniques in the

recent past has lead to the full automatisation of calculations at the next-to-leading order

(NLO) in αs, despite a considerable increase in complexity when going from LO to NLO. When

calculating some process at NLO, one generically has to include real-emission corrections

R that are due to final state configurations in which an additional emission is not resolved.

Without applying a finite resolution criterion, an observable is ill-defined, as discussed

previously. Additionally, virtual corrections V that are due to one-loop diagrams contribute

at NLO. As shown in figure 2.1, real-emission corrections reside in a higher dimensional

phase space than the Born contribution and the virtual corrections due to the additional
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QCD parton in the final state. One therefore has to calculate two integrals of different phase

space dimensionality in order to obtain an NLO cross section:

σ =
∫

dφB
[
B(φB) +V (φB)

]
+
∫

dφRR(φR) . (2.27)

In the soft and collinear region, the real-emission matrix elements in R are divergent, as

discussed previously. However, according to the Kinoshita-Lee-Nauenberg theorem [77, 78],

any divergence in R will eventually be cancelled by a divergence in the virtual corrections

V , thus rendering the overall result finite. Evaluating the two divergent integrals in (2.27)

separately using Monte Carlo techniques is, however, not possible. A commonly employed

strategy to overcome this problem is to introduce subtraction terms that match the infrared

behaviour of the real emission matrix elements. Those terms are then subtracted from the

integrand in the real emission phase space dφR, thus cancelling the divergences. Adding the

integrated subtraction terms back in the integral over the born phase space then also cancels

the divergences in the loop corrections. Schematically, events are thus generated according to

σ =
∫

dφB
[
B(φB) +V (φB) + I (φB)

]
+
∫

dφR
[
R(φR)−D(φR)

]
, (2.28)

where D denotes the sum of all differential subtraction terms necessary to cancel the diver-

gences in the real emission terms R. Integrating these terms over the one-particle emission

phase space gives the integrated subtraction terms I , which cancel the infrared divergences

in V . In the overall sum, any contribution from the subtraction terms D and I cancel each

other, such that (2.28) reproduces the exact NLO-accurate cross section. Since the infrared

behaviour of the matrix elements is universal, one can fully automate the generation and

calculation of subtraction terms. Subtraction schemes that employ this technique include

the antenna subtraction method [79–81], the FKS scheme [82, 83] and the Catani-Seymour

dipole subtraction technique [84], which is implemented in Sherpa [85] and which will be

described in what follows.

In order to mimic the behaviour of matrix elements in both the collinear and the soft limit,

the subtraction terms in the Catani-Seymour formalism replicate the dipole-like structure of

(2.12):

D(φR) =
∑
i,j

∑
k<{i,j}

Dkij (φR) . (2.29)

A dipole Dkij is designed to approximate the limit in which pipj → 0 and it depends on an

additional spectator QCD-parton k. For the case where all partons labelled i, j,k are final
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2 Calculational Techniques in Monte Carlo Event Generation

state particles, we have

Dkij = − 1
2pipj

M∗(p1, . . . , p̃(ij), . . . , p̃k , . . . ,pn)
TiTj

T 2
(ij)

Vij,kM(p1, . . . , p̃(ij), . . . , p̃k , . . . ,pn) , (2.30)

whereM denotes the matrix elements for the partonic configuration that arises from repla-

cing partons i and j with a mother parton labelled (ij) that carries their combined quantum

numbers. Ti and Tj are matrices in colour space, but their colour indices and the correspond-

ing indices ofM are suppressed in (2.30). The momenta p̃(ij) and p̃k are determined through

a specific momentum mapping that allows all partons to be on shell simultaneously while

ensuring p̃(ij) + p̃k = pi +pj +pk . The specific form of this mapping, explicit expressions for the

colour matrices and factors in (2.30), and a treatment of cases in which initial state partons

are involved can be found in reference [84]. Since the factorised form of equation (2.30)

allows one to construct subtraction terms in terms of only born-level matrix elements and

process-independent building blocks, it is customary to write, in a symbolic notation [84],∫
dφRD(φR) =

∑
i

∫
dσB ⊗dVi . (2.31)

The employed kinematic mapping allows for a factorisation of the phase space in such a

way as to facilitate the explicit analytic evaluation of the process-independent part dVi in

dimensional regularisation. In turn, this allows one to write the integrated subtraction term

as ∫
dφBI (φB) =

∑
i

∫
dσB ⊗dVi (2.32)

The resulting poles in the regulator can be cancelled explicitly against the poles in the virtual

corrections V , thus rendering all integrals in (2.28) separately finite.

NLO-Parton shower matching

Combining a parton shower algorithm with fixed-order cross sections is particularly simple

at leading order. When calculating cross sections at NLO, special care must be taken in order

to avoid a “double-counting” of emissions when adding a parton shower. In a naive approach,

such double-counting can arise when QCD emissions are generated by the parton shower at

leading logarithmic accuracy, despite already being included at full leading order accuracy

in the real emission corrections of the fixed-order cross section. The parton shower thus

needs to be consistently matched to the NLO fixed-order cross section. The most commonly
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employed matching methods include the MC@NLO technique [86] and POWHEG [87, 88].

The MC@NLO technique will be described in what follows, since it it the method employed

throughout the work that will be presented in this thesis. For the same reason, the focus will

be on the special case in which NLO subtraction dipoles are used as parton shower evolution

kernels. Note that such a dipole shower, as the name suggests, does not evolve external QCD

partons individually, but rather in pairs forming a colour-dipole [85]. Using this type of

evolution, one can take into account the correlations between emissions in the soft limit, as

implied by the dipole-like structure of equation (2.12).

The MC@NLO matching procedure is most conveniently formulated in terms of the

differential NLO-weighted Born cross section

B̄(φn) = Bn(φn) +Vn(φn) + In(φn)−
∫

dφ1D(φn+1)θ(t −µ2
Q) (2.33)

and the hard remainder function

Hn(φn+1) = Rn(φn+1)−D(φn+1)θ(µ2
Q − t) . (2.34)

The argument t the in the theta-functions in (2.34) and (2.33) is defined for each dipole term

in D separately according to its kinematic mapping and phase space factorisation, written in

the form of (2.23). The MC@NLO Sudakov form factor

∆An (t0, t) = exp

−∫ t

t0

dφ1
Dn(φn,φ1)
Bn(φn)

 (2.35)

implicitly depends on φn, as opposed to the standard parton shower Sudakov form factor. In

terms of the above expressions, MC@NLO events are generated according to

σ =
∫

dφnB̄n(φn)
[
∆An (t0,µ

2
Q) +

∫ µ2
Q

t0

dφ1
Dn(φn,φ1)
Bn(φn)

∆An (t,µ2
Q)

]
+
∫

dφn+1H(φn+1) .

(2.36)

The term proportional to the fixed a fixed-order part B̄n is written as a sum of contributions

with no resolvable parton shower emission and at least one resolvable parton shower emission

on the first line. The second line represents events a fixed-order hard emission term, written

inclusively. Events that correspond to this term and the events that correspond to the first

line in (2.36) after the first step in the parton shower can be treated by a normal parton

shower, as in the case of a leading order calculation. On can show that events generated

according to this prescription do not suffer from any double counting [86]. The advantage
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2 Calculational Techniques in Monte Carlo Event Generation

of an NLO-matched simulation over an LO multi-jet merged calculation is that one-jet

observables are described with leading order precision throughout the entire phase space.

Furthermore, inclusive observables are described with NLO precision and with no spurious

dependence on an unphysical merging scale.

Multi-Jet Merging at NLO

The merging algorithm described previously at leading order has been extended in such a

way as to make use of NLO matrix elements [89, 90]. In this scheme, an MC@NLO-matched

calculation of the core process is supplemented with MC@NLO-matched calculations of

processes with additional jets in the final state. In contrast to leading order merging, NLO

accuracy for the core process and for jet observables above the merging scale Qcut are thereby

guaranteed. The construction of the corresponding algorithm schematically follows the

leading order technique, with the additional complication that an inclusive observable

sensitive to n-jet configurations above Qcut will receive contributions from n-parton matrix

elements (including their virtual corrections) and n+1-parton matrix elements. The resulting

expressions can be found in [89] and will not be repeated here. It is worth noting, however,

that this merging technique has been fully automated within the Sherpa event generator.

With this automatised implementation, a merged calculation can be performed for any

process for which fixed-order NLO matrix elements and sufficient computing power are

available.

Hadronisation Models, Hadron Decays, and Underlying

Event

One important aspect of QCD is colour confinement. Colour confinement follows from

the fact that QCD becomes strongly coupled at small energies. This in turn implies that

colour-charged objects and in particular QCD partons cannot propagate on long timescales.

Instead, they hadronise into composite hadrons with no net colour charge. In collider

experiments, these hadrons are observed instead of the fundamental QCD partons. Since

hadronisation is a consequence of QCD becoming strongly coupled, it cannot be treated

perturbatively. In Mote Carlo event generators, the perturbative QCD evolution performed

by the parton shower is therefore stopped at a low cutoff scale near ΛQCD ≈ 200MeV where

QCD becomes non-perturbative. The subsequent hadronisation process is then simulated

using phenomenological models which are motivated by certain aspects of QCD. Among the

most widely used models are the Lund string model [91–93] and the cluster hadronisation
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model [94–96]. It is the latter that is implemented in Sherpa [97]. After the hadronisation

step, any unstable hadrons are treated by an iterative hadron decay simulation. For this

purpose, experimental input on the relevant branching ratios is used.

Hadronic activity that goes beyond parton shower effects, hadronisation and hadron decays

in hadronic collisions is attributed to the underlying event in Monte Carlo event generators.

Phenomenologically, the underlying event manifests itself in the presence of additional jets

which are uncorrelated with the actual hard scattering process being studied. The additional

soft jets have only little impact on experimentally reconstructable jet observables but rather

affect global event observables like the overall sum of particle transverse energy or the overall

charged particle multiplicity. Experimentally, underlying event effects at the LHC have been

measured both by ATLAS [98–101] and by CMS [102–106]. In Sherpa and other Monte Carlo

generators, these effects are modelled by multiple parton-parton interactions within the

same hadron-hadron collision [107].
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As mentioned in chapter 1, one of the primary purposes of the LHC experiments is to search

for physics beyond the Standard Model. BSM searches are motivated by conceptual issues of

the Standard Model and already existing experimental evidence for phenomena that cannot

be explained by the Standard Model. A vast variety of general theoretical concepts for the

extension of the Standard model as well as concrete BSM models are being considered both

by the experimental and the theoretical community. Additionally, the description of generic

BSM physics in terms of non-renormalisable effective theories has recently gained attention.

In any case, Monte Carlo generators are an indispensable tool for the purpose of predicting

collider signatures of BSM models, for optimising search strategies, and for setting exclusion

bounds on BSM model parameters.

The variety of models that are being studied using LHC data has therefore triggered the

development of automatised computational tools that facilitate the implementation of BSM

models in Monte Carlo event generators. Rather than deriving and implementing Feynman

rules for each model by hand, the use of computational tools that automate this process has

become standard. Examples of such tools include LanHEP [108–112], Sarah [113–116], and

FeynRules [117–122]. Starting from a model description in terms of a Lagrangian, these

programs can provide Monte Carlos and matrix element generators with all the information

that is required in order to compute differential scattering cross sections from the input

parameters of the model.

In the past, the Sherpa Monte Carlo was used for BSM calculations in the context of

various models, most of which were implemented by hand [123–127]. A dedicated interface

allowed for the use of model input provided through FeynRules while still imposing severe

restrictions on the type of interactions that were allowed to appear in the theory. The aim

of the work presented in this section is to lift these restrictions and to adopt a universal

and Monte Carlo generator independent format for the model input rather that to rely on a

dedicated interface to only one of the available tools that are available for the calculation of

Feynman rules.
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3.1 The Universal FeynRules Output Format

Initially, the communication between FeynRules and Sherpa was achieved through a dedic-

ated interface. With the development of the Universal FeynRules Output (UFO), a universal

format that is intended to be usable by any matrix element generator became available [128].

A model written out in this format is unambiguously defined in terms of its particle content,

its Feynman Rules, and its free parameters. The format is designed to be fully generic in the

sense that it can accommodate any quantum field theory that is defined in terms of a gauge

and Lorentz invariant Lagrangian with local interactions of quantum fields with spin 1/2,

1, 3/2, and 2. Part of the UFO convention is also a file format for the specification of free

parameters which complies largely with the SLHA standards [129–131].

In the UFO format, models are distributed as Python modules. A model can hence be

accessed though a Python interpreter by importing the respective module. No dedicated

parsing routines are therefore required in order to access the format. Another advantage

of the format is its extensibility, which is facilitated by the design of the Python language.

Attributes can be added to any object in a UFO model without making any changes to the

structure of the format itself.

The use of the standardised UFO format for models along with its input format for free

parameters is clearly advantageous because it greatly facilitates the validation procedures

across different matrix element generators. In also renders the continuous maintenance

of dedicated interfaces between Feynman rule generators an matrix element generators

redundant. Correspondingly, it has been adopted by various matrix element generators, such

as GoSam [46, 47], Herwig [132, 133], and MadGraph [134]. Furthermore, the format is now

supported by the Feynman rule calculators LanHEP and Sarah.

3.2 Tree-Level Matrix Elements in Comix

Previous versions of Sherpa relied on Amegic [39] as a matrix element generator for BSM

physics. In terms of computational efficiency for high-multiplicity final states, the techniques

employed by Comix [40] are, however, superior to the diagrammatic approach that is imple-

mented in Amegic. The efficiency of the algorithm implemented in Comix relies on an an

extension of the Berends-Giele recursion relations of references [135, 136] to full scattering

amplitudes [137].

The algorithm is formulated in terms of so-called off-shell currents. An off-shell current

is characterised by the quantum numbers of the particle or field it represents and hence

carries colour and Lorentz indices accordingly. For the sake of notational convenience, those

indices will often be omitted in what follows. In order to formulate a recursion relation
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for off-shell currents, consider a scattering process with N + 1 external particles. Let ωi
denote the quantum numbers of the i-th external particle with i ∈ {0, . . . ,N }. Let furthermore

Ω = {ωi}Ni=1 and let Pl(Ω) be the set of partitions of Ω into l subsets. The off-shell current

Jω0
(Ω) is then recursively defined via

Jω0
(Ω) = Pω0

∑
l

∑
{Ω1,...,Ωl }
∈Pl (Ω)

∑
β1,...,βl

S({Ω1, . . . ,Ωl})V (ω0,β1 . . .βl)Jβ1
(Ω1) . . .Jβl (Ωl) , (3.1)

where V (ω0,β1 . . .βl) is the sum of all vertices in the Lagrangian of the model that couples

fields with the quantum numbers ω0,β1 . . .βl . Pω0
is the momentum space propagator of

the field corresponding to ω0 in the usual Feynman diagram formalism. The recursion

is initiated by the external currents Jωi ({ωi}), which are defined to be the external wave

function factors for the particle of type ωi in the standard momentum space Feynman rules

of the theory. As the diagrammatic representation of this recursion in figure 3.1 illustrates,

the current Jω0
(Ω) represents the sum of all Feynman diagrams with external particles Ω

and one uncontracted propagator of type ω0. Removing this propagator and contracting

the remaining object with the external wave function for ω0, one therefore obtains the full

amplitude as

M = Jω0
({ω0})P −1

ω0
Jω0

(Ω) . (3.2)

The factor S({Ω1, . . . ,Ωl}) ∈ {−1,+1} in 3.1 is a symmetry factor that is necessary if fermi-

ons are among the external particles. In a recursive approach, the determination of this

factor is nontrivial if the theory contains Majorana fermions. The techniques proposed in

reference [138] are implemented in Comix for this purpose.

With the Lorentz and colour indices suppressed, equation (3.1) is somewhat symbolic.

Making the Lorentz indices αi and the colour indices ai explicit by writing Jβi (Ωi) = J αiaii ,

we have

V (ω0,β1 . . .βl)Jβ1
(Ω1) . . .Jβl (Ωl) =

∑
j

cjfj (a0, a1, . . . , al)Γ
α0α1...αl
j J α1a1

1 . . .J αlall , (3.3)

where a summation over the Lorentz indices αi is implicit. In equation (3.3), the coupling

constant, the colour structure, and the Lorentz structure of the j-th vertex in the sum are

denoted by cj , fj , and Γj , respectively. Along with the external wave functions Jωi ({ωi}) and

the propagators Pωi these are the essential building blocks necessary to compute an arbitrary

amplitude in this formalism.
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Jω0
(Ω) =

∑
{Ω1,Ω2}
∈P2(Ω)

∑
β1,β2

V (ω0,β1,β2)

Jβ1

Jβ2

Pω0

+
∑

{Ω1,Ω2,Ω3}
∈P3(Ω)

∑
β1,β2,β3

V (ω0,β1,β2,β3)

Jβ1

Jβ2

Jβ3

Pω0

+ . . . +
∑

{Ω1,...,Ωm}
∈Pm(Ω)

∑
β1,...,βm

V (ω0,β1, . . . ,βm)

Jβ1

Jβ2

Jβm

Pω0

Figure 3.1: Diagrammatic illustration of the recursion relation (3.1). The summation over l in
(3.1) is replaced by explicit example terms for l = 2,3, . . . ,m. In this diagrammatic
form it becomes intuitively clear that (3.1) is equivalent to a sum of all possible
Feynman diagrams with external particles {ω0} ∪Ω. In this sum, each diagram
can be uniquely associated with one of the terms in the pictorial representation
of (3.1) above.

3.3 Automatic Generation of Coupling Structures

As detailed in section 3.2, the basic building blocks required for the calculation of an

amplitude in Comix are the external wave functions, propagators, Lorentz structures, colour

structures, and of course the coupling constants. The number of relevant propagators and

external wave functions in the UFO format is limited to those of spin-0, spin-1/2, spin-

1, spin-3/2, and spin-2 fields. They can be implemented once and for all such that no

automation is required. As of this writing, the corresponding expressions for spin 0, 1/2, and

1 are implemented in full generality in Comix. Spin-2 propagators are available as well but

the corresponding external wave functions are not. It is left for future work to implement

and validate spin-3/2 fields and the external wave functions for spin-2 particles.

Even when considering only fields of certain spin, there is no exhaustive list of Lorentz

structures one could implement in order to capture all possible BSM couplings if one

allows for non-renormalisable interactions. Effective theories which introduce such non-

renormalisable interactions are being intensively studied at the LHC and an automated

approach at implementing their Lorentz structures is therefore well motivated. In the UFO

format, Lorentz structures are written symbolically in terms of the set of basic structures

listed in table 3.1. Using these elementary structures, one can construct arbitrary Lorentz-

26



3.3 Automatic Generation of Coupling Structures

Name Symbol

Dirac Matrices [γµ]ab
Fifth Dirac Matrix [γ5]ab
Charge Conjugation Matrix [C]ab
Kronecker Delta [δ]ab
Chiral Projectors

[
1±γ5

2

]
ab

Minkowski Metric ηµν

Momentum of i-th Particle p
µ
i

Pauli Matrices [σµν]ab
Antisymmetric Epsilon Tensor εµνρθ

Table 3.1: Elementary Lorentz structures in UFO.

invariant products of fields with spin 0, 1/2, 3/2, and 2. In table 3.1, different types of indices

were used for vector indices (Greek letters) and for spinor indices (a and b), as it is customary

in physics. For the purpose of numerically evaluating expressions of the form (3.3), the

nature of the indices is, however, completely irrelevant. Correspondingly, generic indices αi
will be used in the following. In this notation, the task of implementing a Lorentz structure

into a generator that implements equation (3.1) reduces to generating computer code that,

given the complex valued components of “incoming” currents J αii , evaluates expressions of

the form

J α0 = Γ α0α1...αlJ α1
1 . . .J αll , (3.4)

which represents an “outgoing” current with one uncontracted index α0. This can be achieved

as follows:

1. Assuming for now that a concrete representation of the Lorentz structure Γ α0α1...αl

in terms of complex numbers is given, one can obtain the functional form of the

outgoing current’s components in terms of the incoming currents by performing the

multiplications and contractions of indices in (3.4) with symbolic expressions for the

components of the incoming currents J αii . The resulting expressions can then be

written into source code.

2. For this purpose, the Lorentz structure itself, Γ α0α1...αl , has to be calculated as a sum of

products of fundamental Lorentz structures ζi as they appear in table 3.1. In a simple

case where the number of external particles of the vertex under consideration is l = 3,
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one can for example have

Γ α0α1α3 = ζα0α1α̃
1 ζα̃α3

2 = [γα0 ]α1α̃

1−γ5

2


α̃α3

. (3.5)

Lorentz structures can of course be considerably more complex with sums of products

of more than two elementary structures. Especially if the number of external particles

at some vertex is large, the Lorentz structure can become intricate. At the same time,

the form of their implementation is critical when considering performance. When

taking expressions (3.4) along with (3.5) at face value, the number of multiplications

involved can be extremely large. In a tree-level calculation, they constitute the critical

bottle-neck of most implementations. Given a specific representation of the elementary

structures in table 3.1 to be used, the contraction of repeated indices in (3.5) can

however be performed explicitly in order to obtain a concrete representation of the

tensor with uncontracted indices as required by the structure of the vertex.

For the purpose of addressing the above issues, a Python class has been developed that

is capable of representing tensors as objects with an arbitrary number of indices. By sup-

plementing this class with appropriate multiplication, addition and subtraction operators,

one can explicitly evaluate the concrete representation of a Lorentz structure in the form of

(3.5). Since the tensor class is designed to be completely agnostic to the type of values that

the components of a tensor represent, it can also perform a multiplication with the symbolic

external currents in (3.4) as long as an appropriate multiplication operator for the symbolic

expressions themselves is provided.

In practice, concrete instances of this class representing the elementary structures in

table 3.1 are first created. Their components are complex numbers that only depend on

the representation of the matrices that are being used. Using these building blocks, an

instance representing a composite Lorentz structure Γ α0α1...αl can be created by means of

sums of products of the form (3.5). Instances of the tensor class that represent the incoming

currents in (3.4) are then created as well. They hold symbolic expressions representing

the a priori unknown values of the respective components. The product of the external

incoming currents and the Lorentz structure then gives the desired result (3.4) in terms of

symbolic expressions, which can then be written into source code files, compiled and used

for evaluation at runtime.

The order of tensor multiplications of course does not matter. The product objects rep-

resenting the incoming currents in (3.4) can be evaluated first, yielding an object with l

uncontracted indices. This object can then be multiplied with the Lorentz structure such that

only one uncontracted index remains. Alternatively, the Lorentz structure can be successively

multiplied with incoming currents, reducing the number of uncontracted indices one by one.
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Name Symbol

Kronecker Delta δk̃i
Fundamental Representation matrices [T a]k̃i
Structure Constants f abc

Symmetric Tensor dabc

Antisymmetric Tensor εk̃l̃m̃, εijk
Sextett Representation Matrices [T a6 ]β̃α
Sextett Clebsch-Gordon Coefficient (K6)k̃,l̃α
Anti-Sextett Clebsch-Gordon Coefficient (K̃6)α̃ij

Table 3.2: Elementary Colour structures in UFO.

3.4 Optimisation of Lorentz Calculators for Massless

Spinors

The products of external currents representing massless fermions often vanish for certain

combinations of chiralities. For a vector-coupling to two fermionic currents of opposite

chirality, for example, we have

[J R]i[γ
µ]ij [JL]j = 0 . (3.6)

Furthermore, the chirality of an outgoing current can be determined from the chiralities of

incoming currents for many interactions. In the Weyl representation used in Comix [139], a

chiral spinor current has two vanishing components, which in do not need to be calculated if

the chirality of the spinor is known in advance. Both of these circumstances can be exploited

in order to optimise Lorentz calculator routines. For this purpose, fermionic currents are

flagged according to their chirality. A Lorentz calculator routine can then check the chirality

configuration of the incoming currents and immediately return zero if the product of the

corresponding currents vanishes or it can skip the calculation of certain components of the

outgoing currents if they are numerically zero anyways. This feature is implemented in the

automatically generated Lorentz structures in a fully automated fashion. For this purpose,

dedicated Lorentz calculators for all possible combinations of chiralities are written out

and then called as appropriate at runtime. The dedicated Lorentz calculators are generated

by setting components of incoming currents to zero according to their chirality. For the

calculation of a partonic process of the form qq̄→ qq̄qq̄, the performance gain achieved by

employing the optimised Lorentz calculators is of the order of 40 %.
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3.5 Colour Structures

The approach at generating Lorentz calculators presented in section 3.3 is sufficiently general

to be applicable to the automatic generation of routines for colour structures as well. In

UFO, they are given in terms of sums and products of the elementary structures listed in

table 3.2. The problem of generating routines for colour structures therefore reduces to

exactly the same problem as calculating the Lorentz structures of the form (3.5). At this

point, this is however not being used in Sherpa because a fairly comprehensive set of colour

structures is already implemented in Sherpa in a highly optimised fashion. This set covers

the entire MSSM but does not allow for the calculation of cross sections in models containing

arbitrary higher dimensional operators of strongly interacting particles. The incorporation

of automatically generated and optimised colour calculators is, however, planned for the

near future.

3.6 Other Aspects of the Interface

Since a UFO model comes in the form of a Python module, it is most conveniently processed

through a Python interpreter. Correspondingly, the process of making a UFO model available

for event generation in Sherpa proceeds through a Python executable. This executable

imports the UFO model, extracts the information on the particle content, free parameters,

and their relation to the particle properties and couplings. A C++ model implementing the

corresponding relations is then written out along with the Feynman rules that specify the

interactions in the model. Subsequently, the Lorentz routines are generated and written

out. The source code is then compiled and linked into a dynamic library to be loaded

automatically at runtime if the respective model is requested. Model parameters can be

specified in a syntax that is fully compliant with the UFO standard either in the run card or

in an external file.

With the BSM model available to Sherpa, fixed-order differential cross sections can be

calculated. Due to limited computing resources, it is in practice sometimes not feasible to

calculate the differential cross sections of interest at the level of stable final state particles. In

many BSM models, this is due to the appearance of multiple heavy intermediate resonances

that decay through long decay chains, emitting large numbers of particles and thereby leading

to high-multiplicity final states. In a narrow-width-approximation [140] this problem is

avoided by factorising the differential cross section into matrix elements for the production of

unstable resonances and matrix elements for their decay, thus discarding any non-factorising

contributions. Non-factorising contributions typically become small if the total width

of the resonance is small compared to its mass and if the decay daughter particles are
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Figure 3.2: Deviation between results from Amegic and Comix for the 86 e+e−→ 6f processes
listed in reference [144], using the parameters given ibidem. The red curve
represents a normal distribution and should be considered the reference.

much lighter than the decaying resonance, thus rendering the narrow-width-approximation

appropriate. In this approach, events can be simulated by generating fixed-order events

for the production of intermediate resonances according to the corresponding on-shell

production matrix elements. The decay chains of unstable resonances are then simulated

in accordance with decay matrix elements step by step. An algorithm implementing the

simulation of decay chains in this manner is implemented in Sherpa [1]. Spin correlations

between the production and the decay of resonances can be recovered by means of the

algorithm proposed in reference [141]. The building blocks for the decay algorithm with

spin correlations are the same as for usual matrix elements. It can thus be employed in a

fully automatised way for any BSM model that is supported by the UFO interface.

All other modules of Sherpa that are necessary for the simulation of events at the hadron

level are seamlessly integrated with UFO models as well. This includes the parton shower,

leading order merging techniques, the hadronisation model, and the underlying event

simulation. Since these steps of the simulation implicitly assume the Standard-Model, the

particle content of the SM along with SM QCD interactions must be present in the BSM

model for the additional simulation steps to be applicable. In the context of multi-jet merging

in BSM models, it is often necessary to amend the merging of matrix elements and parton

showers with the requirement that no new resonances be present at higher multiplicity. This

can be achieved in Sherpa using a diagram filter, corresponding to the diagram-removal

method described in references [142, 143].
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Model number of max. rel. deviation
processes tested Comix↔MadGraph5

Standard Model 60 2.3 · 10−10

Higgs Effective Field Theory 13 4.3 · 10−13

MSSM 401 1.0 · 10−10

Minimal Universal Extra Dimensions 51 2.8 · 10−12

Anomalous Quartic Gauge Couplings 16 5.9 · 10−12

Table 3.3: Maximal relative deviations between squared tree-level matrix elements computed
with Comix and MadGraph5. For each model, the largest observed deviation
among all processes and all 1000 random phase-space points is quoted.

3.7 Validation

The incorporation of the features discussed above required a considerable adaption of

existing code in Comix. A re-validation of Standard Model calculations is hence necessary.

For this purpose, 86 leading order cross sections for the e+e−-collider processes listed in

reference [144] were calculated with a Monte Carlo uncertainty of less than 5 ‰ both with

Comix and with Amegic. All tested processes feature six particle final states. Figure 3.2 shows

the distribution of relative deviations of cross sections computed with the two generators.

It can be seen that the deviations between the two generators are compatible with purely

statistical fluctuations within the Monte Carlo uncertainties. This confirms the correct

implementation of the Standard Model in the extended version of Comix and it validates the

recursive phase-space generator of Comix [40].

In order to thoroughly test both the interface to the UFO format and the automatically

generated Lorentz structures, a comparison of squared matrix elements evaluated at random

phase space points was performed additionally. As a numerical reference program, Mad-

Graph5 was used. In addition to the Standard Model, effective theories that feature more

complicated Lorentz structures were considered. The Higgs Effective Field Theory Model is

based on the Standard Model and includes couplings of a scalar and a hypothetical pseudo-

scalar Higgs boson to gluons via a top-quark loop (see chapter 4 and references [145–147]

for more details). This theory involves up to five-point vertices. Additionally, a model for

anomalous quartic gauge couplings [148–150] was used for the tests. This model implements

the interaction terms (A7) - (A10) of reference [151]. They extend the gauge sector of the

Standard model with vertices connecting up to eight external particles. Processes with

four and six external particles were tested, thus validating automatically generated Lorentz

structures of effective six-particle vertices. In order to ensure a correct treatment of Majorana

fermions, the Minimal Supersymmetric Standard Model was invoked. In this model, the
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Figure 3.3: Example decay chain for a pair of squarks.

comprehensive set of processes considered in [123] was tested. To further extend the range

of tested models, the processes listed in reference [118] for the Minimal Universal Extra

Dimensions Model [152] were tested as well. The test of the Standard Model processes listed

in [118] was supplemented with additional 2→ 2, 2→ 3, and 2→ 4 processes.

For each process in the various models, 1000 random phase space points were generated

for the evaluation of squared matrix elements both with Comix and with MadGraph5. Table

3.3 lists, for each model, the maximum of relative deviations between the two squared matrix

elements that were observed among all tested processes and all phase space points. Excellent

agreement between Comix and MadGraph5 is found throughout. In order to validate the

spin correlated decay chain simulations of Sherpa in the context of BSM models, the pair

production and subsequent decay of squark pairs in the MSSM was analysed in more detail.

In the MSSM, a pair of up-type squarks can decay along the chain depicted in figure 3.3,

leading a collider signature of the form

pp→ ũũ→ dχ0
1 µ

+ νµ ū e
+ e−χ0

1 . (3.7)

Figure 3.4 shows two-particle invariant mass distributions in this final state that are sensitive

to spin correlations in the decay chain. For generating the technical validation results shown

here, the SPSP1a benchmark model parameter point [153] was used. Results for three types

of simulation are shown:

Full ME The full pp→ dχ0
1 µ

+ νµ ū e
+ e−χ0

1 reaction is generated as a hard

process with a restriction to the resonant diagrams shown in figure

3.3. This automatically includes all spin correlations and is thus to

be considered the reference.

Correlated decays The pp → ũũ process is generated as a hard scattering reaction

with a subsequent factorised simulation of the decay chain shown

in figure 3.3 and with spin correlations taken into account

Uncorrelated decays As above, but with spin-correlations disabled.

As demonstrated in the lower panels of figure 3.4, the simulation using the spin-correlated

factorised decay treatment is, within the statistical uncertainties, in excellent agreement with
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Figure 3.4: Spin-correlation effects in the decay cascade following squark pair production in
the MSSM. The three simulation setups are described in the main text. The ratio
plots display the relative differences in terms of the statistical uncertainty.

the full ME simulation. This comparison completes the validation of the fixed-order matrix

element aspects of event generation with UFO BSM models in Sherpa.

3.8 Conclusions

In this work, a new method for the fully automatised implementation of generic new-physics

models into the event generator Sherpa based on the Universal FeynRules Output format was

described. This Monte Carlo generator independent BSM model output format is supported

by multiple Feynman rule generators and is being adopted by an increasing number of matrix

element generators. As part of the new UFO support, a new automatic generator for Lorentz

calculators was introduced. It allows to implement arbitrary Lorentz structures and is, in its

functionality, equivalent to the Aloha package [154]. The matrix-element generator Comix

was adapted accordingly, such that arbitrary higher-point Lorentz functions can be used for

amplitude generation.

The new and extended version of Comix described here, together with the newly con-

structed decay module of Sherpa, allows to compute the production and decay of BSM

particles, with spin correlations in the decay taken into account. The simulations can be

embedded in the larger event generation framework of Sherpa to also include QCD radiative

corrections by means of the parton shower and multi-jet merging. Non-perturbative effects

can be accounted for through cluster hadronisation, hadron decays, and underlying event

simulation. Overall, a complete framework to address many new-physics simulations in a

fully automated way was presented. Currently, the implementation is restricted to spin-0,

spin-1/2 and spin-1 particles, and to the colour structures of the MSSM. The addition of

higher-spin states and a fully automatised treatment of arbitrary colour structures is foreseen

for the near future and currently under active development.

The fixed-order aspects of event generation were thoroughly validated in this work. The
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validation tests based on squared matrix elements have been fully automated and are now

being used for continuous validation within Sherpa. The list of processes and models in the

tests gets extended as new models are being considered by the authors.
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4 Heavy Quark Mass Effects in Gluon

Fusion Higgs Production

As all other particles in the standard model, the proton constituent quarks and gluons couple

directly to the Higgs via tree-level couplings that are proportional to their respective masses.

Therefore, all of these couplings are small compared to the ones of heavy gauge bosons or the

top quark. This applies to the gluon as well as the light quark flavours u, d, c, s, and the b. As

a consequence, the phenomenologically relevant Higgs production mechanisms at the LHC

proceed through intermediate heavy gauge bosons or intermediate top quarks [155]. By far

the most dominant production mode is due to heavy quark loops that couple to initial state

gluons as well as the Higgs, thereby mediating an interaction to the initial state partons. The

type of Feynman diagram that contributes at leading order to the gluon fusion mechanism

is depicted in figure 4.1. Because there are no tree-like diagrams for the partonic process

gg→H , it is referred to as being loop-induced.

The presence of closed massive quark loops already in the lowest-order diagrams of the

gluon fusion process renders even a leading order calculation cumbersome. At the same

time, higher order corrections to this process are particularly large. Commonly employed

approximations neglect the loop structure of the Higgs-gluon interactions entirely, thus

facilitating higher order calculations. Although this approximation has proven to yield

reasonably accurate results for very inclusive observables, it is known to fail in certain

kinematic regimes.

The aim of the work presented in this chapter is to improve upon the usual approximation

in such a way as to still capture higher order effects in an approximate fashion. This chapter

is also concerned with BSM physics effects that might alter the loop structure which mediates

g

g
Hq

Figure 4.1: Leading order diagram for the gluon fusion Higgs production process. Any
quark q in principle contributes with a diagram of this form, but the top quark
contribution is by far the largest, due its large Yukawa coupling yt .
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4 Heavy Quark Mass Effects in Gluon Fusion Higgs Production

the Higgs-gluon coupling and addresses the question whether one can exploit the event

kinematics in Higgs production at the LHC in order to establish whether or not such BSM

physics exists.

4.1 Higgs Effective Field Theory

The complexity of the gluon fusion process can be considerably reduced by by employing

a low-energy theorem [145–147]. This theorem is applicable in the limit where the centre-

of-mass energy is much lower than the mass of the heavy quarks in the loops, such that its

validity is restricted to the top quark contributions at the LHC. By means of the low-energy-

theorem, these contributions can be obtained from an effective Lagrangian that describes the

interactions between gluons and the Higgs boson in terms of direct couplings [156, 157]

LHEFT =
αs

12π
GaµνG

µν
a ln

(
1 +

H
v

)
(4.1)

=
αs

12π
GaµνG

µν
a

(Hv
)
− 1

2

(
H
v

)2

+
1
3

(
H
v

)3

− . . .

 . (4.2)

In what follows, the approximate description in terms of the Lagrangian (4.2) will be referred

to as the Higgs effective field theory (HEFT) approximation. The first term in the expanded

expression (4.2) gives rise to the Feynman diagrams depicted in figure 4.2. Because the Higgs-

gluon-interactions as described by (4.2) are mediated by direct couplings, the complexity

of the process is effectively reduced to a level that is comparable to that of an ordinary

process which proceeds through tree-level diagrams at leading order. Many well established

calculational tools for the computation of higher-order corrections can hence be applied in a

straightforward manner with little or no modification in this framework.

The total gluon fusion Higgs production cross section in the HEFT approximation was

calculated at NLO in [158, 159]. The α3
S contributions give rise to corrections of relative

size around 100 %. Only the subsequently preformed NNLO calculations [160–162] showed

indications of a convergence of the perturbative expansion with an overlap of error bands

between the NLO and NNLO calculation but scale variation uncertainties still being of the or-

der of ±10%. With the N3LO calculation of references [163–165] , perturbative uncertainties

were eventually reduced to a level below ±5 %.

4.2 Validity of the HEFT Approximation

The total inclusive Higgs production cross section at the LHC is known to be well approx-

imated when calculated in the HEFT framework. The correction one obtains by calculating
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the cross section in the full Standard Model (heavy quark mass corrections, as they will

be referred to in what follows) remain moderate. Taking into account only the top quark

contributions, they amount to 5 % at leading order and remain at the percent-level when

going to NLO [166–168] and NNLO [169–174] in αs. The bottom quark loops, which are

entirely neglected in the HEFT, give rise to negative corrections to the total cross section

of the order of 5% [175], thus approximately compensating for the finite top quark mass

corrections. Contributions due to loops of charm quarks contribute a mere 0.5 % [175] to the

total cross section and will not be considered in what follows.

As mentioned previously, the effective Lagrangian (4.2) is derived from a low-energy

limit in which the centre-of-mass energy is assumed to be smaller than the top quark mass.

Despite the heavy quark mass effects being small for the inclusive cross section, the HEFT

approximation therefore completely fails to describe kinematic regimes in which the partonic

centre-of-mass energy exceeds mt . Collider signatures of such configurations include the

production of a Higgs boson at large transverse momentum [176–179] as well as events with

a large invariant mass of the Higgs decay products, commonly referred to as off-shell Higgs

production [180–182]. The tails of the invariant mass distribution and the Higgs transverse

momentum distribution are therefore poorly described in the HEFT. In the gg→Hg channel,

the heavy quark mass dependence of the matrix element in the limit of large Higgs transverse

momenta, pT �mH ,mq, is given by

M∝
m2
q

pT

A0 +A1 ln

 p2
T

m2
q

+A2 ln2

 p2
T

m2
q


 , (4.3)

with Ai independent of mq [179]. In the HEFT approximation, the corresponding relation

reads

M∝ pT , (4.4)

with no dependence on the heavy quark mass [179]. As is evident from equations (4.3)

and (4.4), the transverse momentum spectrum will be overestimated when using the HEFT

approximation for pT �mq.

By contrast, the effects of bottom quark loops in the transverse momentum distribution

are restricted to small values of pT [177, 178, 183]. This is due to the behaviour of the matrix

elements in the limit pT ,mH �mq, where the dependence on top heavy quark mass is given

by [176]

|M|2 ∝m4
q ln4

m2
q

p2
T

→ 0 . (4.5)
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H

H

H

Figure 4.2: Pictorial representation of the Feynman rules of the terms of the effective Lag-
rangian (4.2) that involve only one power of the Higgs field.

Relation (4.5) is valid for all partonic channels and implies that the tail of the transverse

momentum distribution is dominated by the top quark contributions. The effects of bottom

quark contributions are sizeable in the region of pT ≈mb , however [178, 183]. The leading

contribution involving bottom quarks is an interference term proportional to ytyb and it does

therefore not only involve the bottom quark. In what follows, any contribution involving

yb will nonetheless be referred to as a bottom quark contribution. Bottom quark effects

combined with those of a finite top quark mass will be referred to as heavy quark mass

effects.

4.3 Implementation of Heavy Quark Mass Corrections

Several fully differential Monte Carlo programs for inclusive Higgs boson production have

been developed that work in the infinite top mass limit at NNLO in QCD. Among them are

FEHiP [184], HNNLO [185, 186], as well as a dedicated implementation in Sherpa [187].

Fully differential NLO calculations for Higgs production in association with at least one jet

in the HEFT approximation have been presented in [188–191]. The corresponding results for

two and three jets were calculated in [192] and [193, 194], respectively.

As mentioned in section 4.2, finite heavy quark mass effects on the total inclusive cross

section have been studied at NNLO accuracy [169–174]. Differentially, these effects are only

known to NLO accuracy. They have been implemented in various fully differential Monte

Carlo programs [183, 195–197]. For Higgs production in association with one, two, or more

jets, the heavy quark mass effects are only known at leading order [176–178, 198]. Theoretical

uncertainties on the Higgs transverse momentum distribution are correspondingly large

since a nonzero Higgs pT in gluon fusion is necessarily induced by QCD jet emissions. NLO

calculations of these processes for finite top quark masses are presently not available due to

the missing two-loop virtual corrections.

However, finite top mass effects have been studied in an approximate fashion at NLO for

the one-jet final state in [199], where it was found that the effects on the Higgs differential

distributions approximately factorise from the NLO QCD corrections. To a good approx-
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imation, one can therefore recover finite top quark mass effects by reweighting the NLO

prediction obtained in the HEFT with leading order top mass correction factors according to

the prescription

〈
O
〉

NLO =
〈
O
〉HEFT

NLO ×
〈
O
〉

LO〈
O
〉HEFT

LO

. (4.6)

This observation is the key motivation for the implementation of finite top quark mass

corrections as it will be presented in what follows. Implementing the reweighting in equation

(4.6) in a differential and observable-independent way is however not trivial. Writing the

reweighting factor in terms of cross sections, we have〈
O
〉

LO〈
O
〉HEFT

LO

=

∫
dσLO/ dφB∫

dσLO
HEFT/ dφB

θ
(
|O(φB)|

)
dφB

≈
∫

dσLO/ dφB
dσLO

HEFT/ dφB
θ
(
|O(φB)|

)
dφB =

∫
B(φB)

BHEFT(φB)
θ
(
|O(φB)|

)
dφB . (4.7)

In going from the first to the second line of (4.7), it was assumed that (4.6) also holds

differentially. This allows one to incorporate the correction on on an event-by-event basis

for the terms with born kinematics. The real-emission terms, however, would have to be

reweighted by a non-local and observable-dependent factor:

〈
O
〉

NLO =
∫

(B+V + I )O(φB)dφB +
∫ [
R(φR)O(φR)−

∑
Dkij (φB,φ1)O(φB)

]
dφR

≈
[∫

(B+V + I )HEFTO(φB)dφB

+
∫ [
R(φR)O(φR)−

∑
Dkij (φB,φ1)O(φB)

]HEFT
dφR

]
×

〈
O
〉

LO〈
O
〉HEFT

LO

=
∫

(B+V + I )
B

BHEFTO(φB)dφB

+
∫ [
R(φR)O(φR)−

∑
Dkij (φB,φ1)O(φB)

]HEFT
dφR ×

〈
O
〉

LO〈
O
〉HEFT

LO

, (4.8)

where the notation of chapter 2 was used and some of the obvious phase arguments were

suppressed.

However, when taking into account the full heavy quark mass dependence, the real-

emission terms as well as their their subtraction terms still only depend on one-loop diagrams.

The corresponding matrix elements are available through the automatised loop provider

OpenLoops [44] and can be evalueated efficiently with Collier [49, 50]. Using these matrix

elements, real-emission terms can therefore also be reweighted in such a way as to correct the
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last line in (4.8) for finite top mass corrections without any further approximation according

to

〈
O
〉

NLO ≈
∫

(B+V + I )HEFT B

BHEFTO(φB)dφB

+
∫ [
R(φR)O(φR)−

∑
Dkij (φB,φ1)O(φB)

]
dφR . (4.9)

This approach comes with the additional benefit that the any contribution from a real

emission correction comes with the exact leading order heavy quark mass dependence. The

Higgs transverse momentum spectrum in an NLO calculation of inclusive Higgs production

is therefore leading order accurate in this approach and comes with the exact heavy quark

mass dependence. Only observables that receive contributions from the born-like terms

in the first line of (4.10) will be affected by the ad-hoc approximate treatment of virtual

corrections.

In principle, one could compute the terms B, I , R, and D (the tree-level terms in the HEFT

approximation) using the appropriate one-loop matrix elements from the start, such that no

reweighting would be necessary. The implementation of the corrections as an a posteriori

reweighting is, however, much simpler in the Sherpa framework. The real-emission terms

are hence calculated schematically according to∫ [
R(φR)O(φR)−

∑
Dkij (φB,φ1)O(φB)

]
dφR

=
∫  |MR|2

|MHEFT
R |2

R(φR)O(φR)−
∑ |MB|2

|MHEFT
B |2

Dkij (φB,φ1)O(φB)

dφR (4.10)

In this approach, each matrix element needs to be evaluated at least twice, once in the

HEFT approximation and once as an mt-exact one-loop matrix element. The computational

cost of the additional evaluation of the tree level matrix element is, however, negligible in

comparison with the evaluation of the one-loop matrix element, which is necessary in any

case.

It should be stressed at this point that the approximate NLO treatment of finite top quark

mass effects cannot be employed in order to incorporate bottom quark contributions. The

approximation (4.6) is based on the calculation of αS-corrections in an effective low-energy

approximation. An effective treatment of the bottom quark contributions is, however, not

applicable since the bottom mass is much smaller than the partonic centre-of-mass energy

necessary to produce a Higgs boson. In what follows, bottom quark contributions will

therefore be calculated at leading order. This applies to the interference terms proportional

to ytyb as well as the squared bottom contributions proportional to y2
b . The necessary
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decomposition of matrix elements into contributions proportional to y2
t and contributions

proportional to either ytyb or y2
b has been implemented in OpenLoops for this purpose. The

NLO corrections to the total inclusive cross sections for the ytyb contributions and the y2
b

contributions are only of the order of 1 % and 20 %, respectively, such that a leading order

treatment is in fact appropriate [200]. The y2
b contributions featuring the slightly larger NLO

K-factor are also significantly suppressed compared to the ytyb terms [200].

It is also worth noting that the implementation of parton shower matching and multijet

merging techniques in Sherpa is completely agnostic to the details of the fixed-order scat-

tering process being considered. Having implemented and validated the heavy quark mass

corrections at the level of fixed-order calculations, one can therefore directly apply these

methods.

4.4 Validation of the Implementation

In the approach outlined in section 4.3, the real emission and subtraction terms in (4.10)

are reweighted using matrix elements of different final state multiplicity. Any error in the

correct implementation of the reweighting procedure would spoil the cancellation of soft

and collinear divergences in the NLO subtraction. The mere convergence of the integral in

(4.10) therefore provides a stringent check of the implementation. The convergence of the

cross section calculation for inclusive Higgs production and Higgs production in association

with one jet at NLO was explicitly checked.

As previously mentioned, heavy quark mass effects have been implemented at NLO

in publicly available tools for the inclusive Higgs production process. The accuracy of the

approximate treatement of virtual corrections inherent to (4.9) can therefore be quantitatively

assessed through this process. For this purpose, the numerical program HNNLO version

2.0 was employed [183, 185, 201]. Finite heavy quark mass effects are implemented in this

program without any approximations at NLO accuracy. Figure 4.3a shows the total inclusive

NLO cross section for inlcusive Higgs production obtained with this program, both in the

HEFT approximation and with finite top mass effects taken into account. For comparison,

the corresponding results obtained with Sherpa in the approximation (4.9) are shown as

well. The relative difference between the approximate result and the exact treatment is below

0.5 % and completely negligible compared to the perturbative uncertainties estimated by the

conventional scale variations of factors of two up and down.

Figure 4.3b shows the Higgs transverse momentum distribution obtained from fixed order

calculations with HNNLO and Sherpa with finite top mass effects taken into account. The

pT distributions are obtained from an NLO calculation of the inclusive Higgs production

process and are therefore leading order accurate. Within the small statistical uncertainties,
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Figure 4.3: Validation of the fixed-order NLO calculation of inclusive Higgs production
through gluon fusion at the LHC with

√
s = 13TeV against HNNLO. Factorisation

and renormalisation scales are set to µF/R =mH .

an excellent agreement can be observed. Note that agreement within statistical Monte Carlo

uncertainties is to be expected as a consequence of the mt-exact treatment of real-emission

corrections inherent to the implementation presented here (see equation (4.10)). One can

of course obtain the transverse momentum spectrum shown in figure 4.3b by performing a

leading order calculation of Higgs production in association with a jet. Having calculated

the distribution in an NLO calculation of inclusive Higgs production, however, also validates

the implementation of heavy quark mass effects in the NLO subtraction procedure with its

interplay between real-emission and subtraction terms expressed in equation (4.10).

4.5 Finite Top Mass Effects

As is evident from the comparison of NLO cross sections in figure 4.3a, the total inclusive

Higgs production cross section is only mildly affected by finite top mass effects. This is also

the case for one-, two-, and three-jet inclusive cross sections which are shown, at leading order,

in table 4.1. The region of low Higgs transverse momenta, where the bulk of the cross section
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H H j H j2 H j3

HEFT 13.33 pb 7.69 pb 3.67 pb 1.68 pb
SM 14.22 pb 8.10 pb 3.74 pb 1.51 pb

Table 4.1: Leading order inclusive cross sections for Higgs boson boson production in as-
sociation with n = 0,1,2,3 jets at the LHC for

√
s = 13TeV based on the mt-exact

calculation (SM) and the HEFT approximation. Jets are reconstructed using the
anti-kT algorithm with R = 0.4 and a minumum transverse momentum of 30 GeV.
Factorisation and renormalisation scales were set to the Higgs mass in the calcula-
tion.

in inclusive Higgs production is located, can therefore be expected to exhibit only a moderate

dependence on the top quark mass. In regimes where a kinematic invariant significantly

exceeds mt , however, the HEFT approximation can be expected to break down. The pT
distributions in figure 4.4a confirm this picture. The Higgs boson transverse momentum

distributions for final states with one, two, and three jets calculated at fixed leading order

are shown. For this purpose, jets are reconstructed using the anti-kT algorithm [202] with

a radius parameter of R = 0.4 and a minimum jet transverse momentum of 30 GeV, except

for the 1-jet case, where only a small minimum pT -cut of 1 GeV was applied in order to be

able to show the distribution down to small values of pT . The distributions for all three jet

multiplicities exhibit a very similar pattern when comparing the full SM result to the HEFT

approximation. Below pT ≈mH , a flat excess of around 6 % that recovers the correction factor

to the total inclusive Higgs production cross section at leading order can be observed. The

deviations become very large when pT significantly exceeds mt , as expected. The similarity

of the top mass dependence of the pT spectrum for all jet final multiplicities confirms similar

observations for one- and two-jet configurations made by the authors of reference [203].

As stated previously, the implementation of heavy quark mass effects allows for the parton

shower matching and for performing multijet merged calculations at NLO. In a merged

calculation, the intra-jet dynamics of soft and collinear radiation is modelled by the parton

shower, whereas the kinematics of hard jets is described by the appropriate matrix elements

at leading order or at NLO. Currently, one-loop matrix elements for up to three jets in the

final state are available through OpenLoops and can be evluated reasonably quickly, allowing

for merged calculations that include NLO matrix elements for zero, one, and two jets in the

final state. Figure 4.4b shows the Higgs transverse momentum distribution obtained from

a merged calculation with NLO matrix elements for zero and one jet in the final state as

well as LO matrix elements for two jets in the final state taken into account with Qcut set to

30 GeV. Individual curves for events with one, two and three jets in the final state are shown

in the plot. From the ratio plot in figure 4.4b it is evident that in our approximation we
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Figure 4.4: The Higgs transverse momentum spectrum in gluon fusion. Individual curves
for the HEFT approximation (dashed) and the full SM result taking into account
the mass dependence in the top quark loops are shown. The lower panels show
the ratio of the SM results to the respective HEFT approximations.

recover the same suppression patterns as in the respective fixed leading order calculations

for all jet multiplicities. This is a nontrivial observation as an m-jet configuration receives

corrections from m-jet matrix elements as well as from m+ 1-jet matrix elements through the

real emission corrections R in (4.9). A factorisation in the form of equation (4.6) is therefore

recovered despite the non-facorised application of heavy quark mass effects in phase spaces

of different final state multiplicities.

This factorisation in a merged calculation can be further quantified in terms of the differ-

ential NLO K-factor

K(p⊥) =
dσNLO/ dpT
dσLO/ dpT

. (4.11)

The label “NLO” in (4.11) indicates that zero and one-jet matrix elements are included at

NLO in the calculation whereas “LO” indicates that only LO matrix elements were used for

those final states. Two-jet configurations are understood to be described at LO accuracy in

both setups. Figure 4.5 shows the differential NLO K-factor both in the HEFT approximation

and with finite top mass effects taken into account. As demonstrated in this figure, the ap-
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Figure 4.5: Differential NLO K-factor as defined in equation (4.11) in a fully inclusive sample
and in jet-inclusive sub-samples. Dashed curves show results in the HEFT ap-
proximation (labelled mt →∞ in this plot) and solid curves show results of a
calculation with finite top mass effects taken into account (labelled mt in this
plot).

proximate treatment of top mass effects at NLO preserves the qualitative features of the NLO

K-factor as a function of the Higgs transverse momentum. For transverse momenta above

roughly the Higgs mass, the differential K-factor is near identical in the HEFT approximation

and in the simulation that takes into account finite top mass effects. These effects therefore

factorise to a very good approximation from the αs corrections in this regime.

4.6 Bottom Quark Effects

As pointed out already in [177, 178], the inclusion of the bottom quark in the loops affects

the pT distribution only at small values of pT near mb. In figure 4.6 these findings are

reproduced by means of a fixed order calculation of the process pp→H + j. In the pT range

aroundmb, where the bottom effects are large, a fixed order prediction is, however, unreliable

due to the large hierarchy of scales between mH and the transverse momentum. This large

separation of scales induces Sudakov logarithms of the form ln(mH /pT ) that spoil any fixed

order expansion and require resummation. In a Monte Carlo simulation, this resummation

can be achieved by means of a parton shower algorithm.

It was argued by the authors of [183] that the resummation of these logarithms is complic-

ated by the presence of the bottom quark in loops that couple to the Higgs boson. The bottom

quark introduces mb as an additional scale above which the matrix elements for additional
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Figure 4.6: Bottom quark mass effects at fixed leading order. The minimum jet pT is set to
1 GeV in order to map out the low pT region as well.

QCD emissions do not factorize. Since a factorisation is essential for the applicability of

resummation techniques, it was proposed to use a separate resummation scale of the order

of mb for the contributions involving yb, thereby restricting the range of transverse momenta

where resummation is applied to the phase space where factorisation is guaranteed. Two

quantitative prescriptions have been proposed for the determination of a specific numer-

ical value for the resummation scale of the bottom contributions in [204, 205]. These two

methods yield numerical values of 9 GeV and 31 GeV [200] for the dominant top-bottom

interference terms. In addition to mb, these values will therefore be considered for numerical

studies. The pure top quark contributions proportional to y2
t will be treated as usual, with

the resummation scale set to mH .

While reference [183] was concerned with analytical resummation techniques, similar

approaches were studied in the context of NLO-matched parton shower Monte Carlos [200,

204, 205]. In a parton shower Monte Carlo, the resummation scale is the starting scale

of the parton shower µQ, which restricts the hardness of QCD radiation a parton shower

might produce. The results presented here will be restricted to the leading order as the

approximation used for the NLO calculation of the top quark contributions (4.9) is invalid

for the bottom quark terms. Using separate parton shower starting scales for the top and the

bottom contributions, respectively, requires to generate and shower them separately as well.

A corresponding separation of terms in the one-loop matrix elements was implemented in

OpenLoops for this purpose. By means of this separation into terms proportional to y2
t and

the remainder, one can generate an MC@NLO sample for the top quark contributions while

calculating the terms involving yb at leading order.
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Figure 4.7: The Higgs transverse momentum spectrum in gluon fusion. Individual curves for
the HEFT approximation (dashed) and the full SM result taking into account the
mass dependence in the top quark loops and neglecting (blue) and accounting
for (red) bottom mass effects.

Figure 4.7a shows the pT spectrum obtained this way. We show results with the parton

shower starting scale used for the bottom contributions, µbPS, set to mb, 9 GeV, and 30 GeV

as motivated above. The parton shower starting scale for the top quark contributions will

be µtPS = mH throughout. For small µbPS, the suppression in the low pT region below mb is

much more pronounced than in the fixed order result in figure 4.6. When lowering µbPS

down to sufficiently low values, the differential cross section may even become negative as a

consequence of the unitary nature of the parton shower. Setting the value of µbPS to a small

value, the entire leading order bottom cross section contributions will be distributed in a

phase space with Higgs transverse momenta not significantly exceeding µbPS. Since this cross

section is negative for the dominant interference term, the spectrum must become negative

at some point when lowering µbPS.

Another approach at taking into account the bottom quark contributions in a parton

shower Monte Carlo simulation shall therefore be suggested here. The non-factorisation

of the real emission matrix elements above some scale Qbcut can be taken into account by

correcting any parton shower emissions harder than this scale with the appropriate fixed

order matrix elements. This can be done consistently using the leading order CKKW merging
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techniques described in chapter 2. Setting the merging scale for the bottom contributions

Qbcut to mb implements the correction of parton shower emissions in the regime, where the

matrix elements involving mb do not factorize. In contrast to the method in which the parton

shower starting scale ist set to mb, this does not restrict all emissions to the phase space

below this scale. Above Qcut, parton shower emissions are, however, corrected using the

appropriate fixed-order accuracy of the real emission matrix elements. Their non-factrisation

is therefore properly accounted for.

Furthermore, the parametric accuracy of this method guarantees a leading order accurate

Higgs transverse momentum distribution above Qbcut. This is parametrically the same accur-

acy that NLO-matched parton shower simulations achieve. The bottom quark corrections to

inclusive observables are only leading order accurate, however. But as mentioned in section

4.3, the NLO corrections to the bottom contributions in the inclusive cross section are very

small.

Figure 4.7b shows the bottom quark effects on the pT spectrum in this approach. Matrix

elements with up to one jet are included in the merging such that a leading order accuracy

in αs is guaranteed for both the top and the bottom contributions to the pT spectrum.

This allows a direct comparison to figure 4.6. The effects of the bottom quarks lead to a

very similar suppression pattern over the entire displayed range of pT . The large NLO

K-factor that appears in the MC@NLO calculations of the top contributions affects the overall

normalisation of the bottom quark effects in the ratio plot, however. They are correspondingly

smaller by roughly 50 % in the ratio plot of figure 4.7b when compared to figure 4.6. The

sensitivity to variations of the scale in the calculation that effectively accounts for the presence

of the bottom mass in the problem is drastically reduced. Figure 4.7b includes an uncertainty

band corresponding to variations of Qbcut in the interval between mb and 31 GeV. On the

displayed scale, these variations are hardly visible.

4.7 Finite Top Mass Effects at a Future Collider

Having considered a Run-II LHC collider setup so far, it is also interesting to assess the

magnitude of finite top mass corrections at higher energies in future collider experiments.

Among the options that are being currently considered is a hadron-hadron collider operating

at a centre-of-mass energy of 100 TeV [206, 207]. In this section, Higgs production through

gluon fusion at a 100 TeV proton-proton collider will therefore be considered.

Figure 4.8 shows the Higgs transverse momentum distribution at 100 TeV for Higgs

production in association with up to three jets calculated at fixed leading order. From the

ratio plots in the lower panels of this figure it is evident that the relative size of the finite

top-mass corrections to the pT distributions exhibit the same universal suppression pattern
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Figure 4.8: Differential Higgs transverse momentum distributions in Higgs production with
up to three jets at a future 100 TeV proton-proton collider. The error bands
indicate independent variations of the factorisation and renormalisation scales
by factors of two up and down.

for all jet multiplicities. When comparing the results for collider energies of 13 TeV and 100

TeV, the similarity of the relative size of the corrections is quite remarkable. Considering

the increase in partonic energy that is available at 100 TeV, one could have expected that for

a given value of Higgs pT , the mean partonic centre-of-mass energy would be higher, thus

giving rise to larger discrepancies between the HEFT calculation and themt-exact calculation.

This is, however, not the case, even for three-jet final states, where the jets can in principle

carry large amounts of additional energy.

However, a notable effect of the increased centre-of-mass energy can be observed when

considering cumulative distributions, as exemplified in figure 4.9. The total cross section

receives large finite top mass corrections at
√
s = 100TeV when applying a minimum trans-

verse momentum cut on the Higgs. This is due to the fact that the tail of the Higgs transverse

momentum spectrum exceeds far into the high energy regime, where finite top-mass effects

are large. The effect is already substantial for a cut of pT > 50GeV, where the HEFT result

overshoots the mt-exact result by more than 50 % in the three-jet case. The same effect can

be observed in the n-jet inclusive cross sections that are displayed in figure 4.9b as a function

of the minimum jet transverse momentum. Even for moderate cuts on the jet transverse

momenta around 50 GeV, large corrections of the order of −30 % are observed, indicating

a poor description of even very inclusive observables in three-jet final states. Table 4.2

illustrates this further with the leading order cross sections for all three jet multiplicities at

p
j,min
T = 50GeV.
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Figure 4.9: Fixed-order cross sections for Higgs production in association with up to three
jets as a function of a minimum Higgs transverse momentum cut (left panel) and
as a function of the minimum jet transverse momentum cut (right panel) with
finite top-mass effects taken into account at a 100 TeV proton-proton collider.
The lower panels show the ratios to the respective HEFT predictions and quantify
the finite top-mass corrections. The uncertainty bands indicate independent
variations of the factorisation and renormalisation scales by factors of two up and
down.

H H j H j2 H j3

HEFT 215 pb 138 pb 94 pb 68 pb
SM 229 pb 137 pb 79 pb 47 pb

Table 4.2: Leading order inclusive cross sections for Higgs boson boson production at a
100 TeV-collider in association with n = 0,1,2,3 jets based on the mt-exact calcula-
tion (SM) and the HEFT approximation. Jets are reconstructed using the anti-kT
algorithm with R = 0.4 and a minumum transverse momentum of 50 GeV. Factor-
isation and renormalisation scales were set to the Higgs mass in the calculation.
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4.8 New Physics Effects in the Higgs-Gluon Coupling

While the Higgs couplings to massive gauge bosons can be extracted from measurements of

processes that proceed dominantly though tree-level diagrams, current measurements of the

Higgs coupling to top quarks largely rely on loop-mediated couplings between gluons and

the Higgs [26].

A more direct measurement can be performed based on top pair associated Higgs produc-

tion. However, the extremely complex final states that arise from this production mechanism

and the smaller production cross sections render such analyses challenging [208–212].

On the other hand, a determination of the top Yukawa coupling based on loop-induced

couplings necessarily comes with a certain model dependence. Assuming that this coupling

is entirely due to top quark loops, one can constrain yt from measurements of the Higgs

production rate in gluon fusion, but this assumption becomes invalid if additional BSM

particles contribute to the loops. In composite Higgs models, the top Yukawa can be shifted

downwards, while additional vector-like top partners can contribute in such a way as to

largely compensate for this effect [213–217]. In Supersymmetric theories, top and bottom

squarks can generate sizeable perturbative corrections to the Higgs-gluon coupling that can

also compensate each other in certain parameter regions [218–222]. In both scenarios, the

total gluon fusion production rates would be unaffected and additional strategies would

have to be devised in order to disentangle Standard Model contributions from possible BSM

contributions in the loops.

As demonstrated in section 4.5, the Higgs transverse momentum spectrum is sensitive

to the mass of particles that mediate the Higgs-gluon interactions. In the region of large

pT � mt , the the infinite top mass approximation predicts a much harder spectrum than

the mt-exact result. Contributions from a hypothetical additional BSM particle of mass

M � pT � mt would therefore manifest themselves in an excess of events in the high-pT
regime. Based on this observation, it was proposed in the literature to use event kinematics of

jet-associated Higgs production as a probe for new physics in the Higgs-gluon coupling [179,

203, 223–225]. The work presented in this section aims at assessing the LHC’s potential for

constraining generic BSM scenarios by means of this strategy, with a particular emphasis on

improved simulations based on the implementation of finite top mass effects presented in

section 4.3. For this purpose, a benchmark model will be considered which is based on the

following considerations: as long as M � pT �mt is satisfied, one can capture the impact of

additional heavy states of massM in the loops by means of an effective interaction in the form

of (4.2). Focusing on the case where the BSM physics leads to a simultaneous reduction of

the top Yukawa coupling by a factor of κt < 1, thus leaving the total gluon fusion production

cross section approximately untouched, one can parametrise the relevant interactions by a
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Lagrangian of the form

L = LSM(yt = κty
SM
t ) +κg

αs
12π

H
v
GµνG

µν . (4.12)

The two reference parameter sets

(κt ,κg )SM = (1,0) , (4.13)

(κt ,κg )BSM = (0.7,0.3) . (4.14)

will be considered. While the first point corresponds to the Standard Model, the second BSM

parameter set was chosen such that the total gluon fusion cross section remains approximately

SM-like by satisfying κt +κg = 1, in order to avoid tension with existing measurements.

The discriminating observable for the two benchmark scenarios in this analysis is the

Higgs transverse momentum spectrum. In the literature, it has been pointed out that in the

regime of large Higgs transverse momenta, final states with two or even three jets contribute

significantly [194] and that the inclusion of not only one-jet final states has the potential to

increase sensitivity [203]. It is therefore desirable to include matrix elements for higher jet

multiplicities in a merged calculation also for the signal. With the implementation of heavy

quark mass effects presented in section 4.3, such a merged calculation can be performed

fully automatically. Focusing on the phase space of large Higgs transverse momenta, bottom

contributions will be neglected throughout. Technically, the simultaneous inclusion of finite

top mass effects and contributions arising from the effective gluon-Higgs coupling in the

Lagrangian (4.12) can be achieved by means of SM loop matrix elements. For this purpose,

the top quark Yukawa coupling is modified with a factor κt and an additional SM quark

contribution is introduced. The mass of this additional quark is set to a very large value and

its Yukawa is modified with the a multiplicative factor κg . The decay channel for the Higgs

considered here is H →W + +W −→ `+`−ν`ν̄` with ` ∈ {e,µ}.
The dominant backgrounds to this signature arise from top pair production and non-

resonant W pair production (with no intermediate Higgs boson or tops). The latter can

be split up further into a component that proceeds through tree-level diagrams at leading

order and a gluon-initiated QCD contribution that is mediated by quark loops (see chapter

5 for more details). The top backgrounds as well as the tree-induced WW component

are simulated using the NLO multi-jet merging techniques of [89, 90]. In case of the top

background, NLO matrix elements for the core process are included along with LO matrix

elements for up to three additional hard jets. The tree-induced WW contributions are

simulated using NLO matrix elements for up to one jet and LO matrix elements for up to

three additional jets in the final state. For the loop-induced contributions, leading order

merging techniques can be employed as described in chapter 5. Matrix elements for up to

54



4.8 New Physics Effects in the Higgs-Gluon Coupling

jj
φ∆

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 H+jets
+jetstt

WW+jets

 
jj

φ∆d
σd σ

1

(a) Dijet azimuthal separation in the two-jet in-
clusive sub samples of signal and background
contributions.

T,ll
p

0 100 200 300 400
0

0.001

0.002

0.003

0.004

0.005

0.006 H+jets
+jetstt

WW+jets

 
T,ll

dp
σd σ

1

(b) Charged dilepton transverse momentum.

Figure 4.10: Example distributions for observables used to suppress backgrounds.

one additional jet are included in this setup.

In order to estimate the LHC’s sensitivity for the benchmark BSM scenario, an analysis

that largely follows the H →W +W − analysis of reference [203] with fully leptonic W boson

decays was performed. Charged leptons ` with transverse momentum above 20 GeV are

reconstructed in the pseudorapidity range |η` | < 2.5. Jets are reconstructed using the anti-kT
algorithm with radius parameter R = 0.5 and a minimum transverse momentum of 40 GeV. A

b-jet veto is applied in order to suppress top backgrounds, assuming a b-tagging efficiency of

70 % throughout the phase space with a mistag rate of 2 %. As an effect of spin correlations,

the charged leptons in the signal tend to be emitted into the same direction [226, 227]. This

also applies to the neutrino pair and motivates a cut on the charged dilepton azimuthal

separation ∆φ`` < 0.8, a missing transverse energy requirement of Emiss
T > 45GeV, and a cut

on the charged dilepton transverse momentum p``T > 180GeV. A charged dilepton invariant

mass requirement of 10GeV < m`` < 60GeV suppresses Drell-Yan backgrounds. After the

application of this cut, Drell-Yan backgrounds are negligible and hence not considered

further in what follows. In the two-jet inclusive sub sample, angular correlations between

the two leading jets can be exploited in order to suppress top pair backgrounds (see figure

4.10a). An azimuthal separation of ∆φjj < 1.8 is applied in order to achieve this.

Table 4.3 shows a cut flow with total cross sections after the successive application of each

of the cuts described above. Figure 4.10 shows example distributions for observables used to
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njet ≤ 1 njet ≥ 2
H WW tt̄ H WW tt̄

p`T > 20GeV, |y` | < 2.5 87.9 3220 9640 6.50 203 5890
b-jet veto 84.9 3180 7400 5.09 189 2790
10GeV < m`` < 60GeV 69.0 628 1470 4.22 36.2 503
Emiss
T > 45GeV 49.7 504 1250 3.55 32.6 493

∆φ`` < 0.8 24.0 195 561 2.78 20.2 237
mT < 125GeV 23.7 74.5 250 2.75 10.8 119
pHT > 300GeV 0.27 1.41 1.24 0.42 2.12 5.32
p``T > 180GeV 0.15 0.58 0.35 0.24 0.98 1.87
∆φjj < 1.8 0.21 0.69 0.90

Table 4.3: Signal and background cross sections in fb after each step in the applied cut flow.
The inclusive samples are split into sub-samples of up to one jet and more than
one jet in the final state.

suppress backgrounds.

In order to assess the LHC’s Run-II sensitivity for the benchmark BSM scenario, a two-

dimensional binned log-likelihood test is performed. The event rates binned in the Higgs

transverse momentum and in the number of jets serve as input. This procedure exploits

the shapes of the Higgs transverse momentum spectrum in individual jet bins, which have

proven to exhibit a universal dependence on the loop structure that mediates the Higgs-gluon

coupling. The methods of [228] are used to calculate a signal confidence level CLs as defined

in [229, 230]. Figure 4.11 shows the expected signal confidence level as a function of the

integrated luminosity based on this analysis and assuming the absence of new physics in the

Higgs-gluon coupling. As shown in this plot, an exclusion of the BSM benchmark scenario

based on CLs < 5% would require an integrated luminosity of around 700 fb−1.

4.9 Conclusions

The description of the heavy quark loop-induced couplings between gluons and the Higgs

boson in terms of an approximate effective interaction greatly facilitates calculations of the

most dominant Higgs production channel at the LHC. This approximation can be understood

as a low-energy or infinite top mass limit. For the calculation of the inclusive cross section at

LHC energies, the low-energy approximation yields results that agree with a full calculation

within the perturbative uncertainties even at N3LO. Observables that are more sensitive

to large partonic energy transfers are, however, poorly described when employing the

low-energy effective theory description. In particular, the Higgs transverse momentum
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Figure 4.11: Expected signal confidence level CLs for the BSM benchmark scenario as a
function of the integrated luminosity collected at the LHC with

√
s = 13TeV.

distribution is overestimated by orders of magnitude in the tail. Full calculations including

the exact top mass dependence beyond the leading order are only available for fully inclusive

Higgs production. However, at large transverse momentum, Higgs production in association

with jets has a large impact.

An implementation of finite top mass effects in gluon fusion Higgs production that allows

to systematically include corrections in an approximate way at NLO for in principle arbitrary

jet multiplicities in the final state was presented in this work. Based on this approximation,

results for the Higgs boson transverse momentum distributions obtained from NLO matched

and merged samples were presented. When comparing the top quark mass dependence

in one-, two-, and three-jet final states, a universal suppression can be observed. This

pattern agrees very well with the corresponding leading order results and an approximate

factorisation of top mass effects from αs corrections was therefore observed. Finite top mass

corrections were also studied for a hypothetical future proton-proton collider operating

at a centre-of-mass energy of 100 TeV. In contrast to the situation at the LHC, finite top-

mass effects are sizeable at 100 TeV even when considering inclusive jet cross sections with

moderate cuts on the jet transverse momentum. It should furthermore be noted, that the

event rates for Higgs-boson production in association with TeV-scale jets can exceed several fb

at a future 100 TeV hadron collider [4]. In this kinematic regime, the HEFT approximation

completely fails and finite top-mass effects must be taken into account in order to obtain

meaningful predictions.

A treatment of contributions involving the bottom Yukawa coupling based on mb- and
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mt-exact leading order matrix elements in combination with tree-level multi-jet merging

techniques was proposed. This approximation is appropriate since it allows to retain leading

order accuracy for the corresponding contributions in the pT -spectrum and it also allows

to account for the non-factorisation of real emission amplitudes for pT above mb. In this

approach, the uncertainty associated with the appearance of mb as an additional scale in the

calculation is drastically reduced as opposed to other methods proposed in the literature.

It has been pointed out previously by other authors that the sensitivity of the Higgs

transverse momentum spectrum to the loop-structure which mediates the Higgs-gluon

coupling can be used to constrain new physics which couples to both the Higgs and gluons.

Using the approximate implementation of top mass effects at NLO, the LHC’s sensitivity

to such BSM scenarios in a jet-differential analysis was estimated. It was found that an

integrated luminosity close to 1 ab−1 is needed in order to exclude the BSM benchmark

scenario studied. On that time scale it appears unlikely that this detailed kinematic analysis

will be able to compete with dedicated Higgs couplings measurements that include top-

associated Higgs modes [208–212].
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Invisible Higgs Decay Searches

In the Standard Model, “invisible” Higgs decays, i.e. Higgs decays into particles that escape

the experiment undetected due to their negligible strong and electromagnetic interactions,

arise mostly from Z-mediated couplings of the Higgs to neutrinos. LHC searches for invis-

ibly decaying Higgs bosons are not sensitive to the actual Standard Model invisible Higgs

branching fraction of about 0.1 %. These searches rather aim at constraining BSM models

that predict an enhancement of this observable. Examples of such model include extensions

of the SM in which an additional scalar field is introduced which is not charged under any

of the SM gauge groups [231–237]. Being a singlet, such a field can have renormalisable

couplings only to the Higgs. It therefore mediates interactions with an otherwise completely

“hidden” sector. Such models are hence sometimes referred to as Higgs portal models and can

provide, with the singlet scalar itself, a viable dark matter candidate, for example

The collider signature of an invisibly decaying Higgs boson is characterised by a mo-

mentum imbalance of the measurable final state. At a hadron collider like the LHC, this

imbalance can only be measured in the transverse plane, since the centre-of-mass momentum

of the colliding partons along the beam direction is unknown. Invisibly decaying Higgs

bosons would therefore manifest themselves in an excess of events with missing transverse

momentum and can only be identified though the recoiling visible part of the final state.

In gluon fusion, where QCD jets can provide the recoil for an invisibly decaying Higgs

boson, the irreducible background due to neutrino production through Z bosons in associ-

ation with jets is extremely large, rendering this channel unuseful for invisible Higgs decay

searches [238]. The tagging dijet system in VBF [239] or the decay products of the vector

boson in VH production, however, can be used to suppress backgrounds to a sufficiently low

level [240, 241]. Both of these production channels are of vital importance for the derivation

of upper bounds on the Higgs invisible branching fraction at the LHC. Using Run-I data,

ATLAS and CMS were able to exclude invisible Higgs branching fractions larger than 23 %

and 58 %, respectively [242, 243]. In view of these results and the SM prediction for this

observable, it can be concluded that there is still ample room for new physics in the Higgs

sector. Continuing efforts to further constrain the invisible Higgs branching fraction during
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Figure 5.1: Lowest order of Feynman diagram contributing to hadronic ZH production.

Run-II are therefore required in order to close an otherwise unexplored region where new

physics could be found.

The subject of the work presented in this chapter is a careful analysis of formally subleading

loop-induced contributions to both signal and background in searches for invisible Higgs

decays in the Z-associated Higgs production channel. These contributions were not included

in the invisible Higgs decay analyses of Run-I data performed by ATLAS and CMS [243, 244]

and their phenomenological impact therefore needs to be quantified. The discussion will be

focused on final states in which the Z boson decays into oppositely charged pairs of either

electrons or muons, which will be collectively denoted as l±. Hadronic Z decay channels are

of relevance for LHC analyses as well, but they are typically more difficult to reconstruct and

less sensitive [243, 245]. However, since the conclusions drawn from the analysis presented

here concern additional production mechanisms for the ZH system, the decay mode of the Z

will be of little relevance for the discussion.

5.1 Z-Associated Higgs Production in the SM

At leading order, the production of a Higgs boson in association with a Z bosons proceeds

through the Higgs-strahlung diagram depicted in figure 5.1. Due to the apparent diagram-

matic similarity to the Drell-Yan lepton pair production process qq̄→ l+l−, the NLO QCD

corrections to the tree-level differential cross section can be derived from corresponding

Drell-Yan calculations [246]. As in case of the Drell-Yan process, the scale uncertainties,

being of the order of 5 % at NLO QCD for LHC energies, are very modest. When going

to NNLO, the scale uncertainty is further reduced to only 2 % [247]. Parts of the NNLO

QCD corrections can be obtained from the corresponding Drell-Yan calculation, but the bulk

of correction to the inclusive cross section is due to additional loop-induced contributions.

They arise from gluon-initiated partonic channels through the loop diagrams shown in

figure 5.2. Since there are no lower-order diagrams contributing to these channels, their

contribution enters as the square of the diagrams shown in figure 5.2 at relative order α2
s . It

is therefore part of the NNLO correction to the hadronic process pp→ ZH , despite being a

LO contribution to the partonic process gg→ ZH . The loop-induced contributions are also
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Figure 5.2: Feynman diagrams contributing to the partonic process gg→ l+l−H

separately UV finite and gauge-invariant because no tree-level couplings exist that could

mediate this partonic scattering and potentially absorb a divergence.

Loop-induced contributions to the total cross section of ZH production were first calcu-

lated in references [248–250] and their relative magnitude of around 10 % at the LHC turns

out to be larger than what one might naively expect from an NNLO QCD correction [247].

This is a well-understood feature of gluon-induced corrections at high energies. Due to the

steep increase of the gluon PDFs with decreasing longitudinal momentum fraction of the

gluons involved in the partonic scattering, the relative αs suppression of the gluon-initiated

contributions is partly compensated at high enough hadronic centre-of-mass energies. As

will be shown explicitly, their event kinematics is also very different from the tree-induced

contributions. This is to be anticipated due to the structure of the Feynman diagrams. For

example, despite the apparent similarity to the lowest-order diagram of the tree-induced

channel, the triangle diagram in figure 5.2a does not feature a pole in the region where

the intermediate Z propagator that is attached to the loop goes on shell. This is due to the

Landau-Yang theorem [251, 252], which forbids decays of a massive spin-1 particle into two

photons or gluons. Furthermore, the loop-induced contributions are exclusively mediated

by heavy quarks and therefore feature threshold effects when the partonic centre-of-mass

energy crosses the threshold for on-shell top quark production. For the box diagram in

figure 5.2b, this is straightforward to see. In the usual approximation where the first two

generations’ quarks are treated as massless, they do not contribute to these diagrams since

they are proportional to the quarks’ Yukawa couplings. Despite not involving any fermion

Yukawa, the contributions of massless quarks to the triangle graphs of figure 5.2a vanish

as well. This can be seen as follows. The vector-like couplings of the gluon triangle to any

vector boson vanishes according to Furry’s theorem [253]. The remaining axial couplings to

the Z are of equal magnitude but opposite sign for a pair of quarks in a SU (2) doublet. Their

sum thus always cancels if the quarks have equal mass. Therefore, only contributions from

the top and bottom quarks remain. It is worth noting that the triangle diagram and the box

diagram in figure 5.2 interfere destructively, as pointed out by the authors of [250].
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Figure 5.3: Sample of leading order diagrams for the production of a charged lepton pair in
association with a pair of neutrinos.

5.2 Backgrounds

Irreducible VV-Backgrounds

The signal signature for invisible Higgs decay searches in association with a leptonically

decaying Z boson is experimentally indistinguishable from the signature of charged dilepton

production in association with neutrinos. When requiring two charged leptons of the same

flavour but opposite electrical charge, this irreducible background is mostly due to double

resonant ZZ production as shown in figure 5.3a. Other In addition, there are contributions

due to intermediate W ± bosons and single resonant diagrams. Because the irreducible

background is characterised by diagrams with two intermediate vector bosons, it will be

referred to as the ZZ/WW -background in the following.

As in the case of the signal, there are loop-induced components to the background as

well [254–257]. The relevant diagrams with intermediate Z bosons are shown in figure

5.4. The box diagram in figure 5.4b also includes contribution due to intermediate photons.

Single resonant diagrams exist as well but they yield a contribution which vanishes in the

limit of massless leptons [254]. In addition to contributions from intermediate Z bosons

and photons, loop-induced diagrams with pairs of intermediate W bosons contribute to the

background. As in the case of the ZZ process, there are single resonant diagrams, but their

contributions cancel with triangle diagrams similar to 5.5a, where the Higgs is replaced with
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Figure 5.4: Feynman diagrams contributing to the ZZ component of the process gg→ l+l−νν̄
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Figure 5.5: Feynman diagrams contributing to the WW component of the process gg →
l−ν̄l l

+νl

a Z boson [256, 257]. The corresponding triangle diagram with an intermediate photon

vanishes due to Furry’s theorem.

Reducible Backgrounds

In addition to the backgrounds discussed above, which contribute through partonic final

states that match the signal signature, there are further background processes to be con-

sidered. They can be categorised as follows:

ZW Final states with three charged leptons produced through an intermediate

ZW pair can fake a signal if the additional charged lepton originating

from the W decay is not vetoed.

Inclusive Z The production of charged lepton pairs with no additional neutrinos

can pollute the signal through events with a poorly reconstructed visible

final state, resulting in a transverse momentum imbalance. Neutrinos

originating from hadron decays can also contribute to missing transverse

momentum.
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Top Pairs Top pairs that decay leptonically produce final states with two oppositely

charged leptons, two neutrinos, and two bottom quarks. If the jets

initiated by the bottom quarks are not identified and vetoed, such final

states contribute as well.

5.3 Simulation Setup

Simulation of Loop-Induced Contributions

Full higher-order calculations of loop-induced contributions are extremely challenging. The

calculation of NLO corrections to these partonic processes is beyond currently available

automatised techniques due to two-loop diagrams that enter the virtual corrections. In case

of the signal, the calculation is most difficult, since the two-loop virtual corrections include

massive double box integrals. Only approximate NLO calculations of this process have been

performed in the limit of an infinitely heavy top quark [258].

In the analysis presented here, parts of the radiative QCD corrections will hence be

incorporated by means of the leading order multi-jet merging techniques described in

chapter 2, rather than by performing full NLO calculations, which are beyond currently

available automatised techniques. Using merging techniques, the leading effects of additional

QCD radiation on the key differential distributions can be reliably recovered. Multiple soft

emissions are accounted for through the parton shower, while the description of hard

emissions is improved through the inclusion of the appropriate fixed-order matrix elements.

Since the numerical evaluation of one-loop matrix elements is computationally extremely

expensive, only matrix elements with up to one extra QCD parton in the final state are used

in the merged calculation. The approximate NLO calculation of loop-induced contributions

to the signal in [258] and the corresponding results for the background [259–261] indicate

large higher order corrections also to inclusive observables of the order of 100 %. This

will be accounted for by uniformly scaling up loop-induced contributions by a factor of 2

throughout.

The merging techniques applied here require the relevant matrix elements to be finite

after applying a jet-resolution criterion on the final state. For the partonic channel with

only gluons in the initial and final state, there are no tree-level diagrams. All squared loop

diagrams of this channel are therefore finite and can be included without restrictions. A

sample of diagrams contributing to this channel are depicted in figure 5.6. Enhanced by

the gluon PDFs at LHC energies, these contributions can be expected to give the dominant

contribution. They were therefore included in the calculations presented in [259–265].

When employing a parton shower, contributions from partonic channels with one quark in

the initial state are also generated. In a merged calculation, it is thus desirable to include
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Figure 5.6: Sample of one-loop Feynman diagrams for the partonic channel gg→ ZHg
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Figure 5.7: Sample of one-loop Feynman diagrams for the partonic channel gq→ ZHq

corresponding matrix elements as well. All diagrams with an external quark line and a

closed quark loop are therefore included in the calculation presented here. This includes

contributions with one and two quarks in the initial state, as shown in figure 5.7 and figure

5.8, respectively. The latter configurations are not generated by the parton shower but they

are included here for completeness. The finiteness of all matrix elements used in the merged

calculation was checked explicitly through numerical evaluation. It is also worth noting

that diagrams with quarks in the initial state can interfere with tree-level diagrams. This

interference contributes at lower order in αs. It is thus included as an NLO-correction to the

tree-induced contributions as described below.

Simulation of Tree-Induced Contributions

For the purpose of this study, the tree-induced Hl+l− signal contributions, the tree-induced

ZZ/WW backgrounds, the ZW backgrounds, the top-pair backgrounds, and the inclusive

Z background are calculated using the NLO merging techniques described in chapter 2.

NLO matrix elements for up to one extra QCD parton in the final state are included in the

calculations of all processes. In case of the inclusive Z process, NLO matrix elements for

two additional jets in the final state are included as well. The calculation of the top quark

background is simplified by using matrix elements with stable top quarks in the final state

and by simulating their decay in the narrow-width-approximation at leading order using
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Figure 5.8: Sample of one-loop Feynman diagrams for the partonic channel gq→ ZHq

the methods introduced in section 3.6. Hadronisation and underlying event simulations are

included throughout.

Note that real-emission corrections to the VV background with two additional QCD

partons in the final state are included in the merged calculation. They would normally

include contributions from l+l−ννbb̄ final states. Since these final states are dominated by

diagrams with intermediate top quarks, they are removed from the VV sample and instead

accounted for through the simulation of the resonant the top pair production.

Note also that the virtual corrections to the matrix elements with one extra QCD parton in

the final state include the interference term between tree-level diagrams and the one-loop

diagrams whose squared contribution is accounted for through the loop-induced part as

described above.

5.4 Characteristics of Loop-Induced Contributions

In order to assess the impact of loop-induced contributions in invisible Higgs decay searches,

an analysis similar to the Run-I studies of ATLAS [244] and CMS [243] in the Z-associated

production channel was performed for Run-II energies of
√
s = 13TeV. The analysis is focused

on leptonic Z boson decays. The leptonic Z boson decay products are required to have a

transverse momentum larger than 20 GeV with pseudorapidity |ηl | < 2.5. In this kinematic

region, a good experimental electron and muon reconstruction efficiency is guaranteed.

Events with exactly two such oppositely charged leptons of the same flavour are selected,

thus suppressing the ZW background with an third hard lepton in the final state. In order

to suppress non-resonant backgrounds with no intermediate Z, the invariant mass of the

dilepton pair mll is required to be close to the Z boson mass mZ with

|mll −mZ | < 15GeV . (5.1)

The cuts described above will be referred to as the “basic” cuts in the following.

Jets are reconstructed using the anti-kT algorithm in the pseudorapidity range |η| < 5 with

radius parameter R = 0.4. They are required to have a transverse momentum of at least
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30 GeV and can be used to suppress tt̄ and Z plus jets backgrounds by means of jet vetoes.

At least for the tree-induced contributions, a jet veto should affect the signal rate only mildly

because jets are dominantly produced through initial state radiation off quarks in this case.

The tt̄ background with its two b-jets in the final state can, however, be effectively suppressed.

In the ATLAS analysis of [244], only events without any jets were retained. The CMS analysis

of [243], however, allowed for one jet in the final state and separated events into exclusive

one- and zero-jet sub samples.

The missing transverse energy is reconstructed from the sum of three-momenta pi of all

“visible” particles in the final state, including photons, leptons, and hadrons:

Emiss
T = |pmiss

T | = |
∑
i

piT | (5.2)

A lower cut on the missing transverse energy of roughly Emiss
T > 100GeV is typically applied

in order to suppress the Z plus jets and similar backgrounds that do not feature genuine

missing transverse energy in the partonic scattering process. The invisible Higgs branching

fraction will be treated as an unknown throughout the discussion. For the presentation of

differential distributions and cross sections, an invisible branching fraction of 100 % will

be assumed. This value is already excluded by current measurements but it will only affect

the overall normalisation of differential distributions and cross sections, which is of little

relevance for the discussion.

Large parts of the discussion will be centred around the relative impact of loop-induced

contributions in searches for invisible Higgs decays. These contributions will be labelled

“Loop2” throughout in order to distinguish them from the respective contributions that are

induced by tree-level diagrams, which carry the label “Tree” in what follows. Using this

notation, the relative impact of loop-induced contributions to signal and background can be

quantified in terms of the ratio of cross sections

R(E0) =
σLoop2(Emiss

T > E0)

σTree(Emiss
T > E0)

(5.3)

as a function of a minimum missing transverse momentum cut E0. The basic cuts described

above are understood to be always applied. Since the event samples in the analyses of

references [243, 244] are divided according to exclusive jet multiplicities, it is helpful to

analyse this observable in exclusive jet bins. Figure 5.9 shows the functional dependence

of R(E0) in exclusive jet bins. While the relative contribution of loop-induced processes to

the background remains moderate throughout, a 50 % correction to the signal due to loop-

induced processes can be observed for missing transverse energy cuts between 100 GeV and

150 GeV. In this region, both signal curves in figure 5.9 feature a distinctive peak. This peak
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Figure 5.9: Ratio of loop- and tree-induced cross sections as a function of the minimum
transverse energy cut in exclusive jet bins. Individual curves for the signal (ZH)
and background (ZZ,WW ) contributions are shown. The uncertainty bands are
generated via independent variations of the factorisation and renormalisation
scale in the calculation of the loop-induced contributions by factors of two up
and down.

also appears in the differential missing transverse energy distribution, which is shown in

figure 5.11. It is a manifestation of the top pair threshold at partonic centre-of-mass energies

around ŝ = 4m2
t [250]. Assuming that the final state is produced with no longitudinal motion,

the top pair threshold is approached when the transverse momentum of the Higgs boson

reaches approximately 110 GeV. The loop-induced partonic background processes, being

mediated dominantly by light quark flavors, do not feature such pronounced threshold

effects.

Another distinctive feature of the loop-induced signal contributions is their large relative

size in the one-jet bin when compared to the zero-jet bin, as shown in figure 5.9. In contrast

to the background contributions, the signal contributions are much larger in the one jet

bin, relative to the respective tree-induced contributions. This indicates differences in the

QCD radiation pattern of the two processes, with the signal process radiating stronger. The

propensity of a certain process to radiate can be quantified in terms of the jet veto efficiency

ε(pjT ) =
σ

0−jet
excl (pjT )

σ
. (5.4)

It represents the fraction of events one retains after applying a jet veto and therefore depends

on the minimum transverse momentum p
j
T of the jet definition. Figure 5.10 shows the

dependence of the jet veto efficiency on the jet transverse momentum p
j
T for both the loop-

induced background process and the loop-induced signal process. The overall picture in
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Figure 5.10: Jet veto efficiencies for the loop-induced components of signal (labelled ZH)and
background processes (labelled ZZ,WW ). The left panel shows the Sudakov
approximations as described in the text. The right panel shows the efficiencies
after imposing a cut on the missing transverse momentum Emiss

T .

which the signal process typically produces more QCD radiation is confirmed by an overall

lower jet veto efficiency throughout the displayed range of pjT .

These observations can be understood quantitatively. In the leading logarithmic approx-

imation, where a probabilistic parton shower treatment as outlined in chapter 2 can be

applied, the jet veto efficiency is given by a no-emission probability, and hence in terms of

the Sudakov form factor. For a process with two gluons in the initial state, we have [58]

ε(pT ) =
[
∆g (p2

T ,Q
2)
]2

= exp

−2CA

∫ Q2

p2
T

dt′

t′
αs(t′)

2π

ln
(
ŝ
t′

)
− 11

6
+

5
9


 , (5.5)

where the scale Q denotes the energy scale that characterises the process. In case of the

background, this scale is near the mass of the intermediate vector bosons, i.e. around 2mZ . In

case of the signal, however, the average partonic centre-of-mass energy can exceed the sum of

the intermediate bosons’s masses considerably because the Higgs boson is typically produced

with large transverse momentum above 100 GeV due to the aforementioned threshold effect.

Inspired by these considerations, one can derive two characteristic scales

QZZ =mZ +mZ +κ
〈
pZT

〉ZZ,WW
(5.6)

QZH =mZ +mH +κ
〈
pZT

〉ZH
, (5.7)
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Figure 5.11: Missing transverse energy distributions for the signal and the ZZ and WW
background processes. Separate histograms for loop-induced and tree-induced
components are shown in the left panel. The merged calculation of loop-induced
contribution displayed in the upper panels (MEPS@Loop2) is compared to a
calculation based on the parton shower only (Loop2+PS) in the lower panels,
which show the ratio of the two predictions. The uncertainty bands are generated
via independent variations of the factorisation and renormalisation scale by
factors of two up and down.The right panel shows results for the loop-induced
signal process for hypothetical scenarios with a heavier top quark.

where
〈
pZT

〉ZZ,WW
and

〈
pZT

〉ZH
denote the mean transverse momentum of the dilepton pair

in the respective samples and κ is a factor of order one. Figure 5.10 shows the resulting

approximation of jet veto efficiencies by the Sudakov form factor in equation (5.5) obtained

with the scale choices (5.7) and (5.6) for κ ≈ 1.5. Because there is a considerable arbitrariness

in choosing an appropriate scale, figure 5.10 shows bands for the Sudakov approximation

that are generated by varying the scales in (5.7) and (5.6) by factors of
√

2 up and down. The

resulting bands can qualitatively reproduce the jet veto efficiencies observed in the Monte

Carlo samples in the region of moderate pjT , where the leading logarithmic approximation is

applicable. Figure 5.10 also shows the jet veto efficiencies after applying a missing transverse

energy cut of Emiss
T > 120GeV. In this kinematic regime, the signal and background jet veto

efficiencies are now almost identical, since the additional cut leads to similar mean partonic

centre-of-mass energies in both processes. This is in further support of the arguments put

forward above.

Having established that in particular the loop-induced contributions to the signal in

invisible Higgs decay searches can be sizeable, their final impact after the application of
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Figure 5.12: Azimuthal correlation (left panel) and correlation of the magnitude (right panel)
of dilepton momentum and the missing transverse energy vector in the tree-
induced and loop-induced signal contributions. Individual distributions for the
inclusive samples as well as the zero-jet exclusive sub samples are displayed in
the upper panels. The lower panels show the ratio of the latter to the former. The
uncertainty bands are generated via independent variations of the factorisation
and renormalisation scale by factors of two up and down.

further background suppression cuts needs to be determined. Further key observables

for the purpose of background suppression are based on correlations between the missing

transverse energy vector and the dilepton momentum. In the signal contributions, the

dilepton transverse three-momentum pllT = pl
+

T +pl
−
T and the missing transverse momentum

vector pmiss
T are strongly correlated. At leading order, they are always back-to-back and of

equal magnitude, which implies

δT =
|pllT −E

miss
T |

pll
T

= 0 (5.8)

∆φ(pll ,pmiss) = π , (5.9)

where pllT = |pllT |. This correlation is necessarily much weaker in all reducible backgrounds,

since the transverse recoil of the dilepton pair in any of those contributions is not exclusively

provided by missing transverse momentum, even at leading order. These backgrounds can

therefore be efficiently suppressed by vetoing events with a δT above some cut and events

with an azimuthal separation ∆φ(pll ,pmiss) below some cut.

Figure 5.12 shows the relevant distributions for tree- and loop-induced signal contributions.
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Tree-induced Loop-induced

σincl σ
0−jet
excl σ

1−jet
incl σ incl σ

0−jet
excl σ

1−jet
incl

[fb] [fb] [fb] [fb] [fb] [fb]

Basic selection 34.5 21.1 13.4 4.9 1.74 3.2
Emiss
T > 120GeV 9.7 4.98 4.74 2.9 0.95 1.96

∆φ(ll,Emiss
T ) > 2.5 8.0 4.97 3.04 2.4 0.95 1.42

|pT (ll)−Emiss
T |/pT (ll) < 0.25 6.5 4.81 1.65 1.57 0.88 0.70

Table 5.1: Cut flow for typical selection cuts in invisible Higgs decay searches. Tree- and loop-
induced contributions to the signal processes are listed separately. The quoted
cross section are for LHC proton-proton collisions at

√
s = 13TeV.

For the tree-induced components, the distributions shown in figure 5.12 peak strongly at

large azimuthal separations ∆φ(ll,Emiss
T ) and at small values of |Emiss

T − pllT |/p
ll
T . In the case

of the loop-induced contributions, the enhancement is much less pronounced in these

regions. Background suppression cuts on ∆φ(ll,Emiss
T ) and |Emiss

T − pllT |/p
ll
T therefore suppress

loop-induced contributions slightly more than the tree-induced contributions to the signal.

The less pronounced peak structure in the corresponding distribution can be attributed to

larger amounts of QCD radiation in the loop-induced signal contributions. Additional QCD

radiation decorrelates the momenta of the ZH pair by providing more final state objects that

the Higgs boson can recoil against. As can be seen in the lower panels of figure 5.12, the

relative contributions of one-jet events is in fact larger for loop-induced contributions than

for tree-induced contributions even near |Emiss
T − pllT |/p

ll
T = 0 and ∆φ(ll,Emiss

T ) = π.

Table 5.1 shows the cross sections after typical selection cuts as they were applied in

Run-I LHC analyses [243, 244] in the form of a cut flow for LHC collision energies of 13 TeV.

Despite the fact that the cuts on |Emiss
T − pllT |/p

ll
T = 0 and ∆φ(ll,Emiss

T ) = π slightly disfavour

the loop-induced signal processes, their contribution remains sizeable even in the zero-jet

exclusive sub sample. In fact, at the end of the cut flow, the relative size of the loop-induced

contributions is at the level of 25 %, 20 %, and 40 % in the inclusive sample, the zero-jet

exclusive sample, and the one-jet inclusive sample, respectively.

The large loop-induced contributions in the inclusive one-jet sub samples motivate further

studies on the impact of multi-jet merging. In jet observables, merging effects can naturally

be expected to be large. Without merging, any extra parton level QCD radiation is generated

only by the parton shower and hard jets are, correspondingly, not appropriately described.

The transverse momentum distribution for the hardest jet in loop-induced signal and back-

ground contributions is shown in figure 5.14. Large discrepancies can be observed when

comparing the spectra obtained from a merged simulation with the ones obtained from a

simulation based on the parton shower only. In the region of large transverse momenta, the
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Figure 5.13: Missing transverse energy ( /ET ) distribution for the total signal contributions
(labelled H(inv)Z(ll) in this figure, including loop- and tree-induced compon-
ents) and the major background processes. The distribution labelled VV ′gg+qq
includes loop- and tree-induced contributions to the ZZ/WW processes as well
as the ZW process. The zero-jet exclusive sub sample is shown on the left while
the one-jet exclusive sub sample is shown on the right.

latter underestimates the spectrum by orders of magnitude. For example, a relative factor

of approximately 10 can be observed for pjlead
T ≈ 300GeV which is even further enhanced

at higher energies. In this regime, the soft and collinear approximation inherent to the

parton shower fails. By merging matrix elements with one additional jet into the sample,

one can recover the corresponding fixed-order matrix element accuracy that is required for

an appropriate description in this regime. The signal and background merging corrections

exhibit similar patterns below p
jlead
T ≈ 2mt . Above this threshold, however, larger corrections

are observed in case of the signal. Furthermore, the background spectrum obtained from

the merged simulation features a suppression below p
jlead
T ≈ 100GeV when compared to the

simulation based on the parton shower only. This indicates an overestimation of one-jet mat-

rix elements by the parton shower splitting kernels in this regime. The right panel of figure

5.14 shows a comparison of the leading jet transverse momentum spectrum obtained from a

parton shower simulation, from a merged calculation, and from a fixed order calculation.

The fixed order calculation reproduces both the enhancement of the merged result in the

tail as well as the corresponding suppression below Emiss
T ≈ 100GeV, confirming that both

features are indeed genuine effects of the 1-jet matrix elements which are included in the

merged calculation.
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Of even higher relevance in the context of invisible Higgs decay searches are the missing

transverse energy distributions. They are shown in figure 5.11, where a merged calculation

of loop-induced contributions is compared to a calculation based on the parton shower in the

lower panel. For the signal process, the inclusion of additional matrix elements implements

very large corrections above Emiss
T ≈ 200GeV of the order of several hundred per cent. The

simulation based on only the parton shower drastically underestimates the spectrum in this

region. The background distributions show no sign of a discrepancy in the tail. Instead, a

slight suppression in the region of small values of Emiss
T can be observed when comparing

the merged calculation to the simpler parton shower simulation. The origin of the striking

differences between loop-induced signal and background components can be attributed to

the different loop structure, with the signal process being mediated mostly through loops

of heavy top quarks. At large values of Emiss
T , configurations in which the Higgs boson

recoils against a hard jet rather than the dilepton pair apparently have a large impact. These

configurations are properly accounted for only in the merged calculation, where they are

described with the appropriate fixed-order matrix elements. The hard jet probes the details

of the loop structure which is characterised by the top quark mass and the corresponding

effects thus become extremely large for missing transverse energy values above the top

mass. The right panel of figure 5.11 shows the missing transverse energy distribution for the

loop-induced signal process for two hypothetical scenarios in which the top quark mass is

scaled up by factors of 1.5 and 2.0. In order to keep the normalisation of the distributions

similar, the top Yukawa coupling is kept fixed. From the lower panel of figure 5.11 it is

evident that for these hypothetical scenarios the large enhancement of the spectrum in the

tail of the distribution is shifted towards even higher values of Emiss
T , thus confirming that

the loop structure is in fact the origin of the enhancement.

5.5 Constraints on Invisible Decays in Run-II

In this section, the sensitivity of the Z-associated Higgs production channel with leptonic

Z decays for a measurement of the invisible Higgs branching ratio during Run-II of the

LHC with
√
s = 13TeV is analysed. For this purpose, signal and background Monte Carlo

events were generated as outlined in section 5.3. The analysis is inspired by the Run-I

searches of [243, 244] but slightly adapted in light of the findings discussed in section 5.4. In

the analysis presented here, exactly two isolated same-flavour, opposite-sign leptons with

transverse momentum above 20GeV in the pseudorapidity range |η| < 2.5 are required. The

lepton isolation criterion applied requires that the hadronic energy deposited withing a cone

of radius R = 0.2 around the lepton momentum be smaller than 20 % of the lepton energy.

The invariant mass of the di-lepton systemmll is required to fall into a Z-boson mass window
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Figure 5.14: Leading jet transverse momentum distribution for loop-induced contributions
to signal and background. For illustration purposes, tree-induced contributions
are shown in the upper panel of the left figure as well. The merged calculation
(MEPS@Loop2) of loop-induced contributions is compared to simulation based
on the parton shower only (Loop2+PS) in the lower panel. The uncertainty bands
are generated via independent variations of the factorisation and renormalisa-
tion scale by factors of two up and down. The right panel shows the leading jet
transverse momentum as obtained from a merged calculation, a parton shower
simulation, and a fixed-order calculation of the loop-induced contributions to
the process pp→ l+l−νν̄ + jet.
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with |mll −mZ | < 15GeV. Jets are reconstructed using the anti-kT jet algorithm with radius

parameter R = 0.4. Only jets with transverse momentum above pjT > 30GeV and |ηj | < 5

are retained in the analysis. To suppress the large tt̄ background, b-tagged jets are vetoed,

assuming a 70 % b-tagging efficiency and mistagging rate of 1 % [266]. In order to account

for a finite experimental energy resolution, a smearing of the missing energy vector with a

Gaussian shape of width ∆Emiss
T = 20GeV is applied.

Since most of the signal sensitivity lies in the boosted regime with Emiss
T > 100GeV, where

the Z boson decays are emitted at small opening angles, a small azimuthal separation of

the leptons ∆φ(l, l) < 1.7 is required in the analysis. This cut suppresses in particular the tt̄

background further. In contrast to cuts on ∆φ(ll,Emiss
T ) and |Emiss

T − pllT |/p
ll
T , however, it does

not suppress loop-induced contributions to the signal more than tree-induced contributions.

The full event samples are divided into zero- and one-jet exclusive sub samples, following

the analysis of [243]. Given that the signal rate in the one-jet bin is significantly enhanced

by loop-induced signal contributions, the events in the one-jet are not discarded as in the

analysis of reference [244]. Figure 5.13 shows the missing transverse energy distribution

for the signal and background components after the event selection outlined above. The

combination of jet a two-jet veto and the missing transverse energy cut reduces both the

Z+jets and tt̄ backgrounds to manageable levels. The ZZ,WW backgrounds, however,

remain sizeable.

In order to estimate the constraining power of this analysis for the invisible Higgs branch-

ing ratio BR(H → inv), a two-dimensional binned log-likelihood test was performed. The

event rates in binned in the missing transverse energy and the number of jets serves as

input. This procedure exploits the shapes of distributions in both panels of figure 5.13. The

methods of [228] are used to calculate a confidence level CL based on the CLs technique [229,

230].

Figure 5.15 shows the 95 % CL upper limit on the invisible Higgs boson branching ratio

to be expected from LHC Run-II as a function of the integrated luminosity. By means

of the analysis presented here, it is possible to constrain the invisible branching ratio to

values below 0.3 with an integrated luminosity of only 10 fb−1. This is to be compared

to Run-I limits of 0.75 and 0.58 set by ATLAS and CMS, respectively, in the Z-associated

Higgs production channel. Figure 5.15 also shows the quantitative impact of loop-induced

contributions. When neglecting loop-induced contributions to the background, the limits

are stronger and the sensitivity is thus overestimated. For small integrated luminosities, the

limit on the invisible branching ratio is underestimated by slightly more than one standard

deviation. If one neglects the loop-induced signal component, the bounds one would obtain

would be of course weaker. At 10 fb−1, this would result in shifting the correct bound on the

invisible branching fraction from about 0.3 to approximately 0.4.
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5.6 Constraints on Simplified Dark Matter Models

As briefly mentioned in chapter 1, there is convincing evidence for the presence of a signific-

ant amount of Dark Matter in the universe. While the concrete nature of this hypothesised

form of matter remains unclear, weakly interacting massive particles (WIMPs) are one of the

most widely studied candidates for Dark Matter. Within the standard model of cosmology

and its thermodynamic description of the universe, the WIMP hypothesis assumes that

WIMPs were produced at an early stage and in thermal equilibrium with Standard Model

matter. With the following cool-down of the universe, the WIMP density would drop as it

contributes to its overall energy content. However, assuming that WIMPs can only annihilate

pairwise into SM particles, this mechanism becomes suppressed with decreasing WIMP dens-

ity due to the decreasing probability of two WIMPs “finding” each other. This mechanism

is commonly referred to as freeze-out. If the thermally averaged product of Dark Matter

velocity and Dark Matter annihilation cross section into SM particles approximately assumes

a certain value of about 〈σv〉 ≈ 3× 10−26 cm3/s, this mechanism can potentially explain the

sizeable relic abundance of Dark Matter observed today. For weakly interacting particles with

a weak scale mass, the thermally averaged annihilation cross section naturally falls into the

this region, hence the name “WIMP”.
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(left) and pp→ l+l−χχ̄ j (right).

Since the concept of a WIMP is fairly generic, a variety of BSM models that predict

viable WIMP Dark Matter candidates exists. Their detection is the aim of both direct

detection experiments and collider searches. Direct detection experiments [267, 268] rely

on scattering reactions between Dark Matter particles and heavy nuclei. These reactions

typically involve small energy transfers in the keV range. In hadron collider searches [269–

275], the production of Dark Matter particles would manifest itself in the form of missing

transverse Energy.

With no indisputable evidence for the detection of Dark Matter in any of those experiments,

it is advantageous to interpret experimental results model-independently in an effective

field theory (EFT) framework. In this approach, the interactions of Dark Matter particles are

introduced through a set of non-renormalisable effective operators whose coefficients can be

constrained by experimental analyses. This description is equivalent to integrating out the

degrees of freedom which would mediate the effective interactions in a particular model. It

is therefore applicable only if typical energy transfers in the experiment do not exceed the

masses of particles that are integrated out. This requirement is typically satisfied in direct

detection experiments, where the measured energy transfers are of the order of a few keV.

In LHC experiments, the energy scales involved are much larger and the applicability of EFT

analyses is thus limited [276–283]. Instead of resorting to UV-complete theories and thereby

losing the model independence of any derived constraint entirely, a set of simplified models

can be invoked [284–290]. By introducing particles that mediate the interactions between

the visible SM sector and the Dark Matter particles in a generic way, these models restore a

proper description of the high energy collider regime while still representing a wide range of

specific BSM models.

In the work presented in this section, expected limits on the parameter space of a simplified

model for particle Dark Matter are derived using the analysis described in section 5.5. The

model under consideration contains a fermionic Dirac Dark Matter particle χ as well as a

mediator of either scalar or pseudoscalar nature that couples both χ and Standard Model
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fermions [291–303]. The concept of Minimal Flavour Violation is invoked in order to

avoid existing experimental constraints on flavour symmetry violating effects [304]. This

is achieved by imposing the Standard Model structure of Yukawa couplings yf onto the

mediator couplings to SM fermions, i.e. by assuming those couplings to be proportional to

the fermion masses. The relevant terms in the Lagrangian of this model read

LDM/SM =−
∑
f

yf√
2

(
g
φ
v φf̄ f + igAv f̄ γ5f A

)
− gφχφχ̄χ − igAχ χ̄γ5χA. (5.10)

In (5.10), the summation is understood to be over all Standard Model fermions f . gAv and

g
φ
v are the SM fermion coupling strengths of the pseudoscalar mediator A, and the scalar

mediator φ, respectively. The mediators couple to the Dirac Dark Matter particle with

coupling strengths gAχ and gφχ . At the LHC, interactions of the form (5.10) lead to various

signatures with missing transverse energy. Since the scalar mediators have essentially the

same couplings to SM fermions as the Higgs boson, there are also Z-associated Dark Matter

production channels with an intermediate scalar mediator. These channels are very similar

to Z-associated Higgs production in the Standard Model and the corresponding collider

signatures are identical to those studied in the previous section. The analysis presented in

section 5.5 is therefore directly applicable. The absence of a tree-level scalar-Z-coupling

for the Dark Matter Mediator implies the absence of tree-induced contributions to the

pp→ l+l−χχ̄ signal process, however. Triangle diagrams with an intermediate Z coupling to

the quark loop as displayed in figure 5.2a are also absent. Figure 5.16 shows two example

Feynman diagrams contributing to the signal process, i.e. Dark Matter pair production in

association with a dilepton pair.

Technically, the simulation of the simplified Dark Matter signal can be achieved by modi-

fying the Z-Higgs coupling and the top-Higgs coupling in a Standard Model calculation by

factors of κV and κt , respectively. Setting κt = 1, κV = 0, and mh = mφ/A in the Standard

Model simulation, one can calculate the on-shell production cross section for the mediator

in the simplified Dark Matter model with a scalar mediator. In order to accommodate a

pseudoscalar, one needs to adapt the Lorentz-structure of the fermion-Higgs coupling. These

functionalities were implemented in OpenLoops in order to facilitate this study. Working

in the narrow-width-approximation and assuming BR(h→ inv) = BR(φ/A→ χχ̄) = 1, one

can perform the entire calculation with on-shell mediators, since the decay products of the

scalars are not reconstructed in the analysis.

For illustration purposes, the missing transverse energy distribution for a scalar mediator

of mass mφ = 125GeV for (κt ,κV ) ∈ {(1,1), (0,1), (1,0)} after applying the event selection cuts

described in section 5.5 is shown in figure 5.17. Note that (κt ,κV ) = (1,1) corresponds to a

Standard Model invisible Higgs decay signal. From figure 5.17 it is evident that, in the tail
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Figure 5.17: Transverse missing energy distribution (labelled /ET in this figure) after applying
the selection cuts of the analysis described in section 5.5. Individual curves
are shown for the loop-induced signal (labelled HZgg in this figure) with a
scalar mediator and (κt ,κV ) ∈ {(1,1), (0,1), (1,0)} as described in the text. For
(κt ,κV ) = (1,0), i.e. the simplified Dark Matter model, results for a pseudoscalar
mediator are shown as well. The Standard Model signal arising from the tree-
induced HZ process with an invisibly decaying Higgs is included for reference
(labelled HZqq̄).

of the distribution, the contributions involving the Z-coupling interfere destructively with

those involving the heavy quark couplings of the mediator. As a consequence, the simplified

Dark Matter signal is enhanced in the tail compared to the Standard Model Higgs invisible

decay signal. For (κt ,κV ) = (1,0), i.e. the simplified Dark Matter model, the pseudoscalar

signal is displayed in figure 5.17 as well. It is very similar to the scalar signal with relative

differences below 10 % throughout the displayed range of missing transverse energy.

In order to assess the Run-II sensitivity of the analysis described in section 5.5 in the

context of simplified Dark Matter models, a two-dimensional binned log-likelihood analysis

based on the missing transverse momentum distributions in exclusive jet bins was performed.

This analysis was carried out using the same techniques and the same background predic-

tions that were used in order to obtain the limits presented in section 5.5. An integrated

luminosity of 100 fb−1 was assumed. Working in the narrow-width-approximation and

assuming BR(φ/A→ χχ̄) = 1, exclusion limits only depend on the parameters that alter

the mediator production cross section, i.e. on the mediator mass and its coupling to SM

fermions gφ/Av . This dependence is illustrated in figure 5.18, which shows the expected 95 %

CL upper limit on gv as a function of the mediator mass mφ/A for scalar and pseudoscalar
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Figure 5.18: Expected 95 % CL upper limit on the mediator coupling to fermions gv as a
function of the mediator mass mφ/A for a simplified Dark Matter model with
a scalar (left) and a pseudoscalar mediator (right). For comparison, the 95 %
CL upper limits of the LUX direct detection experiment [305] is shown along
with 95 % CL upper limits set by the FermiLAT indirect detection experiment
[306]. Furthermore, the value of gv required in order to reproduce observed
Dark Matter thermal relic density is also shown in both cases as a function of
the mediator mass.

mediators. gφ/Av be constrained to values below 1 in all of the considered mediator mass

range, i.e. between 100 GeV and 400 GeV. The bounds on models with a mediator of scalar

and pseudoscalar nature are very similar as a result of their similar transverse momentum

distributions.

In order to put the collider bounds into context, the non-collider bounds of references

[291, 292] are shown in figure 5.18 as well. They include limits from both direct and indirect

detection experiments. Direct detection experiments constrain the Dark-Matter nucleon

scattering cross sections, which depend on gφ/Aχ and mχ in addition to gφ/Av and the mediator

mass mφ/A. This also applies to the indirect detection experiments considered here, which

constrain thermally averaged Dark Matter annihilation cross sections into Standard Model

particles. In order to facilitate a simple comparison with direct and indirect detection

experiments, a scenario with gφ/Aχ = gφ/Av and mχ = 10GeV is assumed. Having made this

choice, the limits from both types of experiments can be translated into limits on gφ/Av as a

function of the mediator mass.

The strongest direct detection bounds on the scalar mediator scenario in the relevant Dark

Matter mass range are set by the LUX experiment [305]. No direct detection bounds on
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5 Loop-Induced Production Channels in Invisible Higgs Decay Searches

the pseudoscalar scenario are shown in figure 5.18 because the relevant scattering cross

sections are suppressed by factors of the relative nucleon-DM velocity, which is of the order

of 10−3. The indirect detection bounds shown in figure 5.18 are from limits on the Dark

matter annihilation cross section into bottom quarks set by the Fermi Large Area Telescope

experiment [306]. This bound is only relevant for the pseudoscalar scenario because the

relevant Dark Matter annihilation cross sections are velocity suppressed for a scalar-mediated

interaction.

The Dark Matter abundance observed in the present-day universe can be translated into an

estimate of the total thermally averaged Dark Matter annihilation cross section into Standard

Model particles [307]. A canonically quoted estimate is 〈σv〉 ≈ 3× 10−26 cm3/s. For reference,

the value of gφ/AV that reproduces this value is included in figure 5.18 as a function of the

mediator mass and assuming gφ/Av = gφ/Aχ .

Under the aforementioned assumptions, the expected LHC bounds are very strong in

comparison to non-collider limits. Only for scalar mediators with masses below 200 GeV are

direct detection bounds stronger. For the pseudoscalar model, the expected LHC bounds

are stronger than non-collider bounds throughout the explored region of mediator masses.

Furthermore, the analysis discussed here is sensitive to parameters ranges that are required

in order to obtain the correct thermal relic density.

5.7 Conclusions

Current measurements of the Higgs branching fraction into invisible states leave ample room

for new physics in the Higgs sector. Additional measurements of the invisible Higgs branch-

ing fraction are therefore of major importance for the LHC Run-II. For these measurements,

the Z-associated Higgs production mode is one of the key channels. In this work it was shown

that loop-induced contributions to the background and in particular to the signal are signi-

ficant for this channel. Both of these additional contributions should be taken into account

when deriving limits on the invisible Higgs branching fraction. It was shown that merging

techniques are indispensable when modeling the QCD radiation patterns of the loop-induced

contributions. Key jet observables like the missing transverse energy distribution of the

signal have proven to be sensitive to the matrix element corrections implemented by the

merging. Using these state-of-the-art Monte Carlo simulation techniques, the sensitivity of

the Z-associated production channel was estimated using an analysis that largely follows

the Run-I analyses performed by ATLAS and CMS. It was found that with only 10 fb−1 of

integrated luminosity in Run-II, the invisible Higgs branching ratio can be constrained to

values below 0.3.

Furthermore, it was shown that the same analysis can be used in order to constrain the
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5.7 Conclusions

parameter space of simplified Dark Matter models with scalar mediators. In these models,

the signal process of Z-associated Dark Matter production is entirely loop-induced and a

reliable modeling of loop-induced processes is of even higher priority. Based on an integrated

luminosity of 100 fb−1, it was shown that a 13 TeV LHC collider analysis can significantly

constrain the simplified Model parameter space and that collider bounds are competitive

with bounds derived from non-collider experiments.
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6 Rare Higgs Decays into Light

Resonances

The aim of the work presented in this section is an assessment of the LHC’s potential of

observing Higgs boson decays into light resonances through their hadronic decay channels.

The motivation to consider these decays is twofold.

Firstly, Higgs decays into composite light quarkonia are predicted by the Standard Model.

Such decays involve the Yukawa couplings of the quarkonia constituent quarks and have

therefore been proposed as a probe for measuring Higgs boson couplings to first and second-

generation quarks [308, 309]. However, for Standard Model couplings, the branching

ratios for exclusive Higgs boson decays are generally very small, e.g BR(h→ Z ηc) ≈ 1.4×
10−5, BR(h→ ρ0γ) ≈ 1.68× 10−5 or BR(h→ J/ψ γ) ≈ 2.95× 10−6, rendering such analyses

challenging [308, 310, 311]. Nevertheless, both general purpose experiments at the LHC

have performed searches for exclusive Higgs boson decays, focusing on the dimuon decays of

vector quarkonia. Using Run-I data, the ATLAS collaboration has set 95 % confidence level

upper limits of O(10−3) on the branching ratios BR(h→ J/ψ γ) and BR(h→ Υ (1S,2S,3S) γ)

[312], while the CMS collaboration obtained a similar upper limit for BR(h→ J/ψ γ) [313].

Secondly, Higgs boson decays into elementary light resonances are predicted by many

extensions of the SM [314]. They arise generically in scenarios with multiple Higgs fields. In

the NMSSM, Higgs boson decays into an additional light CP-odd scalar can occur. Close to

the alignment limit of the Two-Higgs-Doublet Model (2HDM) of Type I or II, a light CP-odd

scalar with a mass of a few GeV can also be phenomenologically accommodated along with a

125 GeV SM-like Higgs boson h [315].

Hence, rare decays of Higgs bosons into light elementary or composite resonances are

of direct relevance for the two most important tasks of the upcoming LHC runs, namely

precision measurements of the Higgs boson properties, and searches for new physics.

While most existing search strategies rely upon resonance decays into leptons, the total

width of most composite resonances and elementary scalars is dominated by decays into

hadronic final states, e.g. BR(ηc → hadrons) > 52%1 [316]. Instead of exploiting only

leptonic decay modes, one should therefore consider inclusive hadronic decays as well. Light

1Based on a simple sum of the branching fractions for the observed decays of the ηc into stable hadrons
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resonances X with masses mX below or around 10 GeV are highly boosted if produced in

the decay of a SM Higgs boson with a mass of 125 GeV. The decay products of X are thus

confined within a small area of the detector. The angular separation of the decay products

of the resonance X scales like ∆R =
√
∆η2 +∆φ2 ∼ 4mX /mh, where η is the pseudorapidity

and φ the azimuthal angle. Separating the decay products in the calorimeters of the detector

poses a challenge, as the typical size of hadronic calorimeter cells is 0.1×0.1 in the η-φ-plane.

Thus, to discriminate two jets the angular separation of their axes has to be roughly ∆R & 0.2.

If opening angles are smaller, the total energy deposit of the resonance’s decay products can

still be measured, but the substructure, i.e. the energy sharing between the decay products,

becomes opaque. To maintain the ability to separate between signal and QCD-induced

backgrounds, a track-based reconstruction is proposed. Trajectories of charged particles

as measured in the tracking detectors provide a much better spatial resolution than the

reconstructed calorimeter clusters. Recently, a similar approach was advocated for highly

boosted electroweak scale resonances [317–320].

In this work, track-based reconstruction techniques are used to evaluate the sensitivity

of general purpose detectors at hadron colliders, with characteristics similar to those of

ATLAS [13] and CMS [14], in measuring rare Higgs boson decays into light hadronically

decaying resonances. Focusing on the high luminosity LHC (HL-LHC) regime, the analysis

assumes a data set corresponding to an integrated luminosity of 3000 fb−1 collected at

centre-of-mass energy
√
s = 13TeV. Two Higgs boson production channels are considered:

inclusive Higgs production and Higgs production in association with a hard jet of transverse

momentum pT > 150GeV. As two benchmark cases for rare Higgs boson decays into light

resonances, the decays h→ Z(→ ``) + ηc and h→ Z(→ ``) +A are considered, where A is

assumed to be an elementary CP-odd scalar of mass 4 GeV which decays mostly hadronically.

The characteristics of the h→ Z(→ ``) + ηc benchmark are expected to be representative

of similar decays to vector charmonia (e.g. h→ Z(→ ``) + J/Ψ ), due to similarities in their

hadronic decay patterns and small mass differences.

6.1 Simulation Setup

For the simulation of both the signal and the background contributions, the Sherpa Monte

Carlo is used. Parton shower effects, hadronisation, as well as underlying event contributions

are taken into account throughout. Both Higgs boson production processes, h+jet and inclus-

ive h, are calculated at NLO and matched to the parton shower. Finite top quark mass effects

in the gluon fusion production mechanism are taken into account as described in section 4

and reference [2]. The Higgs boson decays h → Z ηc, h → ZA as well as the subsequent

decays of the elementary pseudoscalar A and the Z boson are calculated perturbatively at
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leading order using the algorithm and methods described in chapter 3 and reference [1]. For

the elementary pseudoscalar, decays into cc̄ pairs and decays into gluons via an effective

heavy-quark mediated interaction are considered separately. The decay of the ηc is simulated

by the hadron decay module of Sherpa after the parton shower step. The parton shower

therefore does not affect the kinematics of the ηc decay products. This in contrast to the

elementary pseudoscalar A, whose decay products can radiate during the parton shower

before hadronising. For the implementation of a pseudoscalar and its interactions, the UFO

model format and the methods described in chapter 3 were used [1, 128].

For the inclusive Z boson background, the full dilepton final state is taken into account in

the matrix elements and the core process is calculated at NLO. Additional hard jet emissions

are accounted for by means of multi-jet merging techniques [90]. Leading order matrix

elements with up to two additional jets are included in the setup.

The generated event samples are further processed with the Delphes detector simulation

framework [321], which uses parametrised descriptions of the response of particle physics

detectors to provide reconstructed physics objects, allowing a realistic data analyses to

be performed. As an example of a general purpose LHC detector, the default ATLAS

configuration card included in Delphes is used.

6.2 Reconstruction Setup and Selection

Leptonic Z Boson Decay Reconstruction

The reconstruction of Z→ `` decays begins with the identification of isolated lepton (electron

or muon) candidates. Reconstructed leptons are required to satisfy pT > 6GeV and |η| < 2.5.

An isolation requirement based on the presence of reconstructed tracks and calorimeter

deposits within ∆R < 0.2 of a lepton is imposed. The sum of the transverse momentum

of such objects is required to be less than 10% of the transverse momentum of the lepton

itself. Oppositely charged pairs of isolated leptons, which satisfy 81GeV < m`` < 101GeV

are identified as Z boson candidates.

Hadronic Resonance Reconstruction

The reconstruction of hadronically decaying resonances begins with a search for anti-kt
calorimeter jets with R = 0.4, seeded by clusters of calorimeter energy deposits. Calorimeter

jets are required to have pT > 30GeV and |η| < 2.5. Any jets which are within ∆R < 0.3 of

leptons forming a Z→ `` candidate are rejected. Following the identification of a calorimeter

jet, the jet constituents are used to seed a search for an anti-kt calorimeter jets with R = 0.2.

The identification of an R = 0.2 jet from the constituents of the initial R = 0.4 jet is required
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Figure 6.1: Distributions of input variables used as input to the BDT training for jets from
A→ gg decays and jets produced in association with Z bosons.

to be successful. This procedure, i.e. the reconstruction of anti-kt R = 0.2 jets from the

constituents of identified R = 0.4 jets, is repeated for track jets, seeded by reconstructed

charged particles. Track jets are associated to calorimeter jets by a simple spatial matching,

based on a requirement of ∆R < 0.4 between the axes of the R = 0.4 calorimeter and track

jets. Only jets reconstructed with both calorimeter and track components are considered

for further analysis and at least one such jet is required to be reconstructed. As mentioned

previously, the hadronic decay products of the light resonance are expected to be highly

boosted and hence confined within a small radius jet. The two jet reconstruction steps with

different radii R = 0.4 and R = 0.2 are therefore expected to yield jets with similar properties

in case of the signal, since the highly collimated decay products are clustered into the jet in

both cases. In case of background jets, one can expect a more significant amount of radiation

contained in the R = 0.4 jet to be lost when reconstructing the narrow jet with R = 0.2.

To distinguish hadronically decaying charmonium states or light scalars from the copious

production of low pT background jets, a boosted decision tree (BDT) is employed through

the TMVA package [322]. The following variables are used as input to the BDT:
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Figure 6.2: The background rejection as a function of signal efficiency for the low mass res-
onances considered for the inclusive (left) and h+ jet (right) production channels.
Separate curves are shown for the h→ ηcZ channel and the h→ ZA channel. The
two partonic decay channels of A are also considered separately.

• The pT of the R = 0.4 and track and calorimeter jets

• The number of track constituents associated with the R = 0.4 and R = 0.2 track jets

• The masses of the R = 0.4 and R = 0.2 track and calorimeter jets

• The ratio of the R = 0.2 calorimeter (track) jets pT to the pT of the associated R = 0.4

calorimeter (track) jet

• The spatial separation, ∆R, between the leading pT track within the R = 0.4 track jet

and the jet axis

• The ratio of the highest track pT to the pT of the R = 0.4 track jet

The BDT was trained with the inclusive Higgs production sample and the Z+jets sample as

input before the leptonic Z boson reconstruction. The hadronic reconstruction described here

can therefore be used as a generic hadronic tagger and is not tied to a particular production

channel.

Examples of the distributions of the variables used to train the BDT are shown in figure 6.1.

The performance of the BDT is summarised in figure 6.2, where the background rejection

efficiency is shown as a function of the signal efficiency. As demonstrated in this figure,

the performance of the analysis is insensitive to the modelling of the hadronic decay of the

light resonances. Very similar efficiency curves are obtained for the composite ηc and for the
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elementary A, despite the fact that no parton showering is involved in the treatment of the

decay products of the ηc. Similarly, the partonic decay channel chosen for the pseudoscalar,

being either A→ cc̄ or A→ gg, affects the result only very little.

Selection of h→ ZA and h→ Z ηc Decays

Events containing at least one hadronic decay candidate and one Z → `` candidate are

considered for further analysis. In the case of the h+ jet production channel, an additional

R = 0.4 anti-kt calorimeter jet with pT > 150GeV and |η| < 2.5 is required (no substructure or

matching track jet is required). The single Z boson candidate with m`` closest to the Z boson

mass is chosen to form the h→ ZA(ηc) candidate. If multiple hadronic decay candidates are

reconstructed, the candidate which when paired with the Z→ `` candidate has an invariant

mass closest to mh = 125GeV is chosen. Finally, the transverse momentum of the h candidate

is required to exceed 20 GeV. The invariant mass of the jet-dilepton system is shown for the

inclusive and h+ jet production channels in figure 6.3.

The BDT response is shown for both the signal and background contributions to the

inclusive and h+ jet production channels in figure 6.4.

6.3 Statistical Analysis and Results

The expected performance of the analysis is used to evaluate expected 95 % CL limits

on the branching fractions BR(h → ZA) and BR(h → Zηc). When deriving the former,

BR(A→ gg) = 1.0 or BR(A→ cc̄) = 1.0 are assumed. The yields of signal and background

events within a reconstructed Higgs mass window of 110GeV < m``j < 140GeV are used to

evaluate the limits. To exploit the additional sensitivity offered by the BDT, a requirement on

the BDT response is imposed. The value of this requirement is optimised to provide the best

limit on the branching fractions of interest. The expected 95 % CL limits on the branching

fractions of interest are shown table 6.1. Branching fraction limits at the 1 % level can be

expected. The inclusive production channel is found to be slightly more sensitive than the

h+ jet channel.

In addition to the production channels described, Higgs boson production in association

with a leptonically decaying Z boson was also considered as a possible channel to gain

additional sensitivity. Initial studies into this channel demonstrated improved signal to

background ratios when compared to the two channels constituting the main study, though

the substantially lower number of signal events resulted in expected branching fraction limits

that were up to an order of magnitude higher than the the inclusive and h+ jet channels.
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Figure 6.3: The invariant mass distribution of the jet-dilepton system (with no BDT based
selection applied) in inclusive h production (left) and h+ jet production (right) is
shown for A→ gg (top), A→ cc̄ (middle) and ηc→ hadrons (bottom) signals in
comparison to the background contribution.
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Figure 6.4: The normalised BDT response for the inclusive (left) and h+jet (right) production
shown for A→ gg (top), A→ cc̄ (middle) and ηc→ hadrons (right) in comparison
to the background.
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Channel h→ ZA(→ gg) h→ ZA(→ cc̄) h→ Z ηc

Inclusive 2.0% 2.1% 2.0%
h+ jet 3.6% 3.7% 3.7%

Table 6.1: The expected 95 % CL limits on the branching fractions of interest for both the
inclusive and h+ jet channels, assuming 3000 fb−1 at

√
s = 13TeV.

6.4 Constraints on the 2HDM Parameter Space

With a focus on the HL-LHC, it is assumed here that the Higgs boson couplings be tightly

constrained to SM-like values. Assuming no evidence for new physics in the HL-LHC data,

any 2HDM scenario compatible with the observations would therefore necessarily be close to

the alignment limit. It has been pointed out in reference [315] that a light pseudoscalar A

with mass below 10 GeV can be accommodated in this limit, particularly in Type I models,

which are considered here. However, to the author’s knowledge, no detailed analysis for this

final state has been provided so far. In this mass range, the pseudoscalar has a considerable

hadronic branching fraction and the results of our analysis can therefore be used in order to

constrain such models. The hadronic decays of the light pseudoscalar proceed dominantly

through quarks instead of gluons in the relevant parameter region. As shown in figure 6.2,

the analysis presented here is, however, largely insensitive to these details.

In order to assess the constraining power of the analysis described above in this context,

a 2HDM parameter scan for a fixed pseudoscalar mass of mA = 4GeV was performed. For

each parameter point, the branching ratio relevant for the interpretation of our results,

BR(h→ ZA), was calculated. At tree level, the corresponding partial decay width is given by

Γ (h→ ZA) =
|p|

8πm2
h

|M(h→ ZA)|2 =
g2
hZA

2π
|p|3

m2
Z

, (6.1)

where p is the three-momentum of either of the two decay products in the rest frame of the

Higgs boson. Using the usual parametrisation of the 2HDM in terms of physical masses and

the angles α and β [323], the hZA-coupling in the is given by

ghZA =
ecos(β −α)

2cosθW sinθW
. (6.2)

The partial decay width Γ (h→ ZA) therefore vanishes in the strict alignment limit, where

cos(β − α) = 0. The corresponding branching fraction, however, can reach values of the

order of a few per cent already for small cos(β −α), especially if the decay h→ AA does not

contribute substantially to the Higgs boson’s total width. The focus will therefore be on the
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6 Rare Higgs Decays into Light Resonances

parameter region where ghAA = 0 at tree level, which implies [324]

m2
12 = (2m2

A +m2
h)sin(2β)/4.0 . (6.3)

To ensure alignment, a uniform scan with sin(β − α) ∈ [0.99,1.0] is performed. In this

regime, one can assume the production cross sections of the 125 GeV-Higgs to be SM-like

and directly apply the previously obtained limit on BR(h→ ZA). Note, however, that the

limit must be applied to BR(h → ZA) × BR(A → hadrons), since BR(A → hadrons) = 1

was assumed previously. When determining BR(A→ hadrons), indirect hadronic decays

through τ-leptons are also included, which gives BR(A→ hadrons) ≈ 82%. The remaining

free parameters of the model are uniformly varied in the intervals mH ∈ [130,600]GeV,

mH± ∈ [50,600]GeV, and tanβ ∈ [0.1,5.0]. The physical spectrum and the relevant branching

fractions are calculated with 2HDMC version 1.7.0 [325].

For each point, consistency checks for vacuum stability of the potential and tree-level unit-

arity are performed using the corresponding functionalities of 2HDMC. Experimental con-

straints on the electroweak oblique parameters S,T ,U [326, 327], as calculated by 2HDMC,

are taken into account. Only points that can be accommodated within these constraints are

retained. Points that are incompatible with exclusion limits set by LEP, Tevatron, and LHC

analyses are also rejected. For this purpose, the numerical program HiggsBounds [328–331]

is employed. All analyses implemented in version 4.3.1 are taken into account. Only para-

meter points for which none of the scalars in the spectrum can be excluded at 95 % CL by

any of the analyses are retained in our scan. In order to check for compatibility with LHC

and Tevatron Higgs boson signals, the HiggsSignals program [332, 333] is employed. Any

points that are excluded at 95 % confidence level based on the χ2 calculated by HiggsSignals

are discarded.

In figure 6.5, the results of the parameter scan are illustrated. The distribution of all

parameter points that pass the applied theoretical and phenomenological constraints in a two-

dimensional parameter plane spanned by cos2(β −α) and BR(h→ ZA)×BR(A→ hadrons)

is shown. Figure 6.5 also shows the tree-level functional dependence of these quantities

given by equation (6.1), assuming for simplicity Γ htot = Γ
hSM
tot . For large cos(β − α), this is

assumption is violated due to the opening of further decay channels. At small cos(β −α),

however, the corresponding approximation proves to be reasonable for parameter points

that pass the applied phenomenological constraints. As illustrated in figure 6.5, the scanned

parameter space can effectively be constrained to very small values of cos2(β−α) by applying

our expected limit on BR(h→ ZA). In fact, no parameter point with cos2(β −α) > 0.0035

survives the limit set by the analysis presented above, translating to sin(β −α) & 0.998 in

the scanned subspace of parameters. Correspondingly, a mere 12 % of the parameter points

displayed in figure 6.5 fall in the region of allowed values forBR(h→ ZA)×BR(A→ hadrons)
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Figure 6.5: Distribution of scanned parameter points in the cos2(β −α) vs. BR(h→ ZA) ×
BR(A → hadrons) plane. The colour-coding denotes the density of points in
the respective areas as indicated by the colour bar. The tree-level functional
relationship between cos2(β −α) and BR(h→ ZA)×BR(A→ hadrons), assuming
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hSM
tot is shown as well. The dashed line shows the expected 95 % CL upper

limit on the displayed branching fraction. All points above this line are expected
to be excluded by the analysis presented here.

after applying the limit on BR(h→ ZA).

6.5 Conclusions

Searches for rare and exclusive Higgs boson decays are at the core of the program of the high

luminosity LHC. The observation of Higgs boson decays into light elementary or composite

resonances would be evidence for the existence of physics beyond the Standard Model.

While previous experimental strategies to reconstruct light resonances relied entirely

on their leptonic decay products, the prospects for their discovery in the often dominant

hadronic decay channels was assessed in this work. The focus was placed on Higgs boson

production processes with the largest cross sections, pp→ h and pp→ h+jet, with subsequent

decays h→ ZA or h→ Z ηc. The former is present in many multi-Higgs extensions of the

Standard Model, while observing the latter at a branching ratio of BR(h→ Z ηc) ≥ 10−3 could

indicate an enhanced Higgs-charm coupling.

The decay products of light resonances with masses below a few GeV that arise from

Higgs decays are highly collimated and get emitted into a small area of the detector. In such

scenarios, jet substructure is an indispensable tool to retain sensitivity in discriminating
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6 Rare Higgs Decays into Light Resonances

signal from large QCD-induced backgrounds. In particular, by exploiting the improved

angular resolution of track-based observables, a good signal-to-background discrimination

can be achieved, which results in a limit on the branching ratios of O(1)% for a data sample

corresponding to 3000 fb−1 at
√
s = 13TeV. The limit on the branching fraction BR(h→ ZA)

can be translated into tight constraints on a 2HDM parameter sub space in the alignment

limit.
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Summary and Outlook

A comprehensive new physics event generation framework based on the Sherpa Monte Carlo

was presented in chapter 3 of this thesis. The framework is compatible with the widely used

universal UFO BSM model format and supports a wide range of generic models. To facilitate

event generation for models with arbitrary Lorentz structures, a new code generator for

optimised Lorentz calculator routines was developed and integrated in the framework. The

new fixed-order aspects of BSM event generation were thoroughly validated. It is left for

future work to complete the last remaining steps towards a framework that supports event

generation for completely arbitrary UFO models. This would require the implementation of

spin-3/2 fields, the implementation of spin-2 external wave functions, and the generalisation

of colour structures within the matrix element generator Comix.

In chapter 4, an implementation of heavy quark mass corrections to an effective description

of the gluon fusion Higgs production mechanism was described. This implementation allows

for an approximate treatment of finite top quark mass effects at NLO for Higgs production in

association with an arbitrary number of jets, thus facilitating the generation of NLO multi-jet

merged samples with finite top mass effects taken into account. In the approach presented,

the effect of bottom quark loops is included at leading order. As an alternative to other

methods proposed in the literature, multi-jet merging was considered in order to take into

account the non-factorisation of amplitudes involving bottom loops in the resummation

performed by the parton shower. A significant reduction of the associated uncertainties was

thereby achieved. In a phenomenological study, the new implementation of finite top mass

effects was used in order to assess the prospects of using the Higgs transverse momentum

spectrum as a probe to constrain BSM models that introduce new particles which alter the

loop-mediated Higgs-gluon coupling. While this strategy turned out to be feasible with a

large data set collected at the LHC, it is likely that other more direct LHC analyses including

top-associated Higgs production will be more competitive.

The new implementation of heavy quark mass effects in gluon fusion now allows for a

meaningful description of the Higgs transverse momentum spectrum. A comparison of

theory predictions to statistically significant LHC Run-II measurements of Higgs differential

kinematics is therefore facilitated. The large perturbative uncertainties in gluon fusion Higgs
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production even at NLO might, however, ultimately require NNLO calculations with finite

heavy quark mass effects taken into account for the high luminosity phase of the LHC.

In chapter 5, loop-induced contributions to the Z-associated Higgs production channel

and the corresponding backgrounds were scrutinised in the context of invisible Higgs decay

searches. It was found that the loop-induced contributions have a significant impact on

the bounds on the invisible Higgs branching fraction derived from LHC measurements.

Furthermore, the impact of higher order corrections for loop-induced contributions was

assessed using multi-jet merging techniques. While these techniques allowed to capture

important and large effects of QCD real emission corrections on key differential distributions,

the perturbative uncertainties remain large. In order to improve upon these uncertainties,

full NLO calculations that involve the genuine two-loop contributions will be required in the

future.

In chapter 6, a new strategy for measuring rare Higgs decays into light resonances was

proposed. This strategy makes use of jet substructure techniques in order to exploit the often

dominant hadronic decay modes of the light resonances of interest. It was found that Higgs

branching fractions into light, hadronically decaying resonances can be constrained to the

percent-level with a data set corresponding to an integrated luminosity of 3000 fb−1 in the

high luminosity phase of the LHC. Furthermore, it was shown that this constraint can be

used to place severe bounds on a Two-Higgs-Doublet model in the alignment limit.
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