
Testing Based on Identifiable P Systems Using Cover

Automata and X-Machines

Marian Gheorghe1, Florentin Ipate2 and Savas Konur1

1 School of Electrical Engineering and Computer Science
University of Bradford
Bradford BD7 1DP, UK

{m.gheorghe,s.konur}@bradford.ac.uk
2 Department of Computer Science

Faculty of Mathematics and Computer Science
University of Bucharest

Str. Academiei 14, Bucharest 010014, Romania
florentin.ipate@ifsoft.ro

Abstract

This paper represents a significant advance on the issue of testing for imple-
mentations specified by P systems with transformation and communicating
rules. Using the X-machine framework and the concept of cover automaton,
it devises a testing approach for such systems, that, under well defined con-
ditions, it ensures that the implementation conforms to the specification. It
also investigates the issue of identifiability for P systems, that is an essen-
tial prerequisite for testing implementations based on such specifications and
establishes a fundamental set of properties for identifiable P systems.

Keywords: P systems, X-machines, cover automata, testing

1. Introduction

Inspired by the structure and functioning of living cells, membrane com-
puting, the research field initiated by Gheorghe Păun [25], has been inten-
sively investigated in the last fifteen years. Its main research themes, in-
vestigated so far, refer to the computational power of different variants of
membrane systems (also called P systems), hierarchies of language or multi-
set classes produced by these devices, their capability to solve hard problems,

Preprint submitted to Information Sciences August 18, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/76945956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

decidability and complexity aspects [27]. There have also been significant de-
velopments in using the P systems paradigm to model various systems [6].
More recently variants of P systems have been introduced in connection with
modelling problems in various areas, e.g., systems and synthetic biology [10],
information in biotic systems [29], synchronisation of distributed systems [7],
grid algorithms [24], parallel algorithms utilised in 3D graphics [12].

Since P systems have been extensively used in various applications, it is a
natural question to ask whether these applications and their implementations
are correct and error-free. As testing is an essential part of software devel-
opment and in many cases consumes large percentages of project efforts and
budgets (test generation, in particular), it has been recently considered in
the context of P systems applications. Some widely used testing approaches,
such as mutation testing or transition cover have been considered [18] or
adapted (rule coverage [11]) for P systems specifications.

When a formal specification exists, test generation can be automated and,
in some cases, it is possible to guarantee that the test suite achieves a certain
level of fault detection. The successful application of the test suite to the im-
plementation may even, under some well defined conditions, guarantee that
the implementation conforms to the specification; this is called conformance
testing. In particular, conformance testing has been extensively studied for
finite state machine specifications and a number of test generation techniques
from such specifications exist [22]; these are widely used for testing hardware,
embedded systems or network protocols.

As test generation techniques from finite state machine specifications can
virtually guarantee (under well defined conditions) the correctness of the im-
plementation, the adaptation and application of such techniques to P systems
have been a tempting proposition and some initial ideas were outlined in [17].
The main problem, however, is that finite state machines can only be used to
specify the control of a software system; however, non-trivial data is often dif-
ficult, even impossible, to specify, using finite state machines. Consequently,
a more complex formalism that combines the finite state machines capabil-
ity to specify the control aspects of a system with suitable data structure is
needed.

Such a model is the X-machine [8]. Basically, an X-machine is like a
finite state machine in which transitions are labelled by processing functions
that operate on a data set [8, 14]. This formalism elegantly and effectively
combines the control aspects of the system with data structures, while allow-
ing them to be separately described. Conformance testing for X-machines

2

has been extensively studied and a number of test generation methods have
been devised [2, 19, 13]. However, all these have been developed for a par-
ticular class of X-machines, called stream X-machines [14]. Such X-machines
are useful as a specification vehicle for systems whose functionality can be
expressed as an input/output transformation, in particular for interactive
systems. This is not the case for P systems. In order to use X-machine
based techniques for P systems, these techniques would have to be extended
to more general classes of X-machines.

In this paper, we present a significant advance on testing implementations
based on P systems specifications, by using a general X-machine framework
and devising a suitable testing approach. Some essential properties of P
systems that make them amenable for this testing approach are identified.

Our contribution has three significant components:

– A testing method for the general X-machine model. A non-trivial ex-
tension of finite state machine testing based on a particular type of
finite state machine called cover automaton is developed.

– An X-machine representation of a P system with transformation and
communication rules. An approximation of the computation of the
P system is built using the cover automaton formalism and the pre-
viously devised testing method is applied to test an implementation
based on a P systems specification. The approach is fairly general, it
can be equally applied to cell-like and tissue-like P systems [23] with
transformation and communication rules and, under well defined con-
ditions, guarantees the correctness of the implementation under test
with regard to the P systems specification.

– Identifiable P systems. In order to ensure the correctness of the imple-
mentation under test against the P systems specification, the P systems
must meet a particular property, called identifiability. In this respect,
the concept of identifiable P systems is introduced and studied.

These represent major contributions of the paper, as they have not been
investigated in the context of P systems research and are essential for testing
implementations based on P systems specifications.

The paper is structured as follows. Section 2 provides basic concepts and
results: it briefly presents the P system model, finite automata and a variant
of the W -method, used for testing from finite cover automata specifications.

3

Section 3 investigates the issue of identifiability in the context of the P system
model. Section 4 presents the X-machine model and the newly developed
testing method based on X-machines. Section 5 shows how this method
can be applied to test implementations specified by P systems. Finally,
conclusions are drawn and further work is outlined in Section 6.

2. Preliminaries

Before proceeding, we introduce the notations used in the paper. For a
finite alphabet V = {a1, ..., ap}, V ∗ denotes the set of all strings (sequences)
over V . The empty string is denoted by λ and V + = V \ {λ} denotes the
set of non-empty strings. For a string u ∈ V ∗, |u|a denotes the number
of occurrences of a in u, where a ∈ V . For a subset S ⊆ V , |u|S denotes
the number of occurrences of the symbols from S in u. The length of a
string u is given by

∑
ai∈V |u|ai . The length of the empty string is 0, i.e.

|λ| = 0. V n denotes the set of all strings of length n, n ≥ 0, with members
in the alphabet V and V [n] =

⋃
0≤i≤n V

i. A multiset over V is a mapping
f : V → N. Considering only the elements from the support of f (where
f(aij) > 0, for some j, 1 ≤ j ≤ p), the multiset is represented as a string

a
f(ai1)

i1
. . . a

f(aip)

ip
, where the order is not important. In the sequel multisets

will be represented by such strings.

2.1. P systems

A basic cell-like P system is defined as a hierarchical arrangement of
membranes (a tree structure) delimiting compartments of the system. The
so-called membrane structure resembles the compartmentalisation of biolog-
ical systems. Each compartment contains a finite multiset of objects and a
finite set of rules, which may be empty. Any object (alone or together with
other objects) can be transformed into other objects, can diffuse through
membranes, and can dissolve the membrane in which it is placed [25]. When
the hierarchical structure is replaced by an arbitrary network of compart-
ments (a graph structure), we deal with tissue-like P systems [23].

One of the most investigated variants of P systems, using either a hierar-
chical structure of compartments or an arbitrary network of compartments,
relies on using transformation and communication rules [26] – generically
called processing rules. In this system the multisets of objects from each
compartment are processed by the rules associated to it, either transformed
into other objects or communicated to neighbouring compartments (those

4

directly connected to the current one). In some cases an environment is also
attached to the system. In this case some compartments can communicate
with the environment.

In the sequel we provide the definitions of a cell-like P system with m
compartments and of a computation associated with it – for more details
related to these concepts we refer to [27]. We will then define the concept of
identifiability.

Definition 1. A cell-like P system with m compartments is a tuple

Π = (V, T, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where

• V is a finite set, called alphabet.

• T is a subset of V , called the terminal alphabet.

• µ is a rooted tree with m nodes, called the P system structure; each
node, called compartment, consists of a unique label denoted by a nat-
ural number, i, 1 ≤ i ≤ m, and a multiset over V .

• w1, . . . , wm ∈ V ∗ are multisets of objects initially present in the m
compartments of µ.

• R1, . . . , Rm are finite sets of processing rules; the rules of Ri are applied
in the compartment with label i, 1 ≤ i ≤ m.

• i0 ∈ {1, . . . ,m} is the label of the output compartment.

Since now onwards the cell-like P system will be simply called P system.
Also a membrane with label i will be called membrane i.

The processing rules of Ri, 1 ≤ i ≤ m, have the form r : x → y, where
x ∈ V + and y ∈ (V × {here, out, in})∗ and are applied as follows: if z is
a multiset from compartment i, then x is removed from z and all objects
a that appear as (a, here) in y are added to the multiset from i; all the
objects a represented as (a, out) will be sent to the parent of i, and all the
objects a represented as (a, in) will be sent to one of the children of i, non-
deterministically chosen.

5

Definition 2. A configuration of a P system, Π, with m compartments, is
a tuple c = (c1, . . . , cm), where ci ∈ V ∗, 1 ≤ i ≤ m, is the multiset from
compartment i. The initial configuration is (w1, . . . , wm), where wi ∈ V ∗ is
the initial multiset of the compartment i, 1 ≤ i ≤ m.

A transition (or computation step), introduced by the next definition, is
the process of passing from one configuration to another.

Definition 3. Given two configurations c = (c1, . . . , cm) and c′ = (c′1, . . . ,
c′m) of a P system, Π, with m compartments, where for any i, 1 ≤ i ≤ m,
ui ∈ V ∗, and a multiset of rules Mi = r

n1,i

1,i . . . r
nki,i

ki,i
, nj,i ≥ 0, 1 ≤ j ≤ ki, ki ≥

0, a transition or a computation step is the process of obtaining c′ from c by
using the multisets of rules Mi, 1 ≤ i ≤ m, denoted by c =⇒(M1,...,Mm) c′,
such that for each i, 1 ≤ i ≤ m, c′i is the multiset obtained from ci by first
extracting all the objects that are in the left-hand side of each rule of Mi

from ci and then adding all the objects a that are in the right-hand side of
each rule of Mi represented as (a, here) and all the objects b that are in the
right-hand side of each rule of Mj, j 6= i, such that b is represented either as
(b, out) and i is the parent of j or (b, in) and i is a child of j.

In the theory of P systems, there are various ways of applying the rules,
i.e., of selecting the rules of the multisets Mi, 1 ≤ i ≤ m, utilised (applied)
in any transition. Those referred to in this paper are: maximal parallelism
(when in any compartment i, 1 ≤ i ≤ m, the multiset of rules, Mi, is
such that no other multiset containing Mi, which is applicable, exists); asyn-
chronous (in any compartment i, 1 ≤ i ≤ m, Mi is a multiset consisting of an
arbitrary number of rules); sequential (in any compartment i, 1 ≤ i ≤ m, Mi

consists of at most one element). We will denote them by max, async and
seq, respectively. When in a transition from c to c′ by using (M1, . . . ,Mm)
we intend to refer to a specific transition mode tm, tm ∈ {max, async, seq},
then this will be denoted by c =⇒(M1,...,Mm)

tm c′.
A computation in a P system is a sequence of transitions (computation

steps).
A configuration is called final configuration, if no rule can be applied to

it. In a final configuration the computation stops.
As usual in P systems, we only consider terminal computations, i.e., those

arriving in a final configuration and using one of the above mentioned tran-
sition modes. We are now ready to define the result of a computation.

6

Definition 4. For a P system Π using the transition mode tm, tm ∈
{max, async, seq}, by Ntm(Π) we denote the number of objects from the
terminal alphabet, T , appearing in the output compartment in a final con-
figuration.

Two P systems Π and Π′ are called equivalent with respect to the tran-
sition mode tm, tm ∈ {max, async, seq}, if Ntm(Π) = Ntm(Π′).

In this paper we will only deal with P systems having one single compart-
ment as this does not affect the general method introduced here and makes
the presentation easier to follow. Indeed, limiting the investigation to one
compartment P systems does not affect the generality of it due to the fact
that there are ways of flattening an arbitrary P system, of the type discussed
in this paper, into a P system with one single compartment. For details
regarding the flattening of a P system we refer mainly to [9], but similar
approaches are also presented in other papers ([28], [1]). Such a P system
will be denoted

Π = (V, T, µ1, w1, R1, 1),

where µ1 denotes the tree with one node. The rules on the right-hand side
will have multisets over V instead of V ×{here, out, in} as in the case of one
single compartment there is no need to indicate where objects are sent to.

We now introduce the key concept we aim to investigate in this paper,
namely identifiability. This is introduced in connection with the P system
model. The identifiability concept is first introduced for simple rules and
then is generalised for multisets of rules.

Definition 5. Two rules r1 : x1 → y1 and r2 : x2 → y2 from R1, are said to
be identifiable in configuration c, if they are applicable to c and if c =⇒r1 c′

and c =⇒r2 c′ then r1 = r2.

The rules are not identifiable when the condition from Definition 5 is not
satisfied. According to this definition one must have the following computa-
tion steps for the rules r1 and r2:

c = x1v1 =⇒r1 c′ = y1v1; c = x2v2 =⇒r2 c′ = y2v2.

Definition 6. The multisets of the rules M ′,M ′′ ∈ R∗1, are said to be iden-
tifiable, if there is a configuration c where M ′ and M ′′ are applicable and if
c =⇒M ′

c′ and c =⇒M ′′
c′ then M ′ = M ′′.

A P system Π has its rules identifiable if any two multisets of rules,
M ′,M ′′ ∈ R∗1, are identifiable.

7

2.2. Finite automata

In the following two subsections we briefly introduce the basic finite au-
tomata concepts and results to be used in the paper. These are largely from
[17].

Definition 7. A finite automaton (abbreviated FA) is a tuple
A = (V,Q, q0, F, h), where:

• V is the finite input alphabet;

• Q is the finite set of states;

• q0 ∈ Q is the initial state;

• F ⊆ Q is the set of final states;

• h : Q× V −→ Q is the next-state function.

As indicated by the above definition, only deterministic finite automata
will be considered. The next-state (partial) function h can be extended to
take sequences in the usual manner, i.e. h : Q× V ∗ −→ Q [8].

Given q ∈ Q, the set LqA is defined by LqA = {s ∈ V ∗ | h(q, s) ∈ F}. When
q is the initial state of A, the set is called the language accepted (defined) by
A and the simpler notation LA is used.

A state q ∈ Q is called reachable if there exists s ∈ V ∗ such that h(q0, s) =
q. A is called reachable if all states of A are reachable.

Given Y ⊆ V ∗, two states q1, q2 ∈ Q are called Y -equivalent if Lq1A ∩ Y =
Lq2A ∩ Y . Otherwise q1 and q2 are called Y -distinguishable. If Y = V ∗ then
q1 and q2 are simply called equivalent or distinguishable, respectively. Two
FAs are called (Y−)equivalent or (Y−)distinguishable if their initial states
are (Y−)equivalent or (Y−)distinguishable, respectively. A FA A is called
reduced if every two distinct states of A are distinguishable.

A FA A is called minimal if any FA that accepts LA has at least the
same number of states as A. A FA A is minimal if and only if A is reachable
and reduced. Furthermore, the minimal FA that accepts the same language
as a given FA A is unique (up to a renaming of the state set). These are
well-known results; for proofs and other details see for example [15].

8

2.3. Finite cover automata

A deterministic finite cover automaton (DFCA) of a finite language U is
a FA that accepts all sequences in U and possibly other sequences that are
longer than any sequence in U. The concept was introduced by Câmpeanu et
al. [3, 4].

Definition 8. Let A = (V,Q, q0, F, h) be a FA, U ⊆ V ∗ a finite language and
l the length of the longest sequence(s) in U . Then A is called a deterministic
finite cover automaton (DFCA) of U if LA ∩V [l] = U . A minimal DFCA for
U is a DFCA for U having the least number of states.

A minimal DFCA for U may have considerably fewer states than the
minimal FA that accepts U [16]. Hence, we have the advantage of using a
DFCA instead of the precise FA that accepts U .

In the remainder of this subsection we provide the necessary concepts for
characterising and constructing a minimal DFCA. These are largely from [3]
and [21].

Let U ⊆ V ∗ be a finite language, l be the length of the longest sequence(s)
in U and A be a FA; for simplicity, A is assumed to be reachable. For every
state q of A, we define level(q) as the length of the shortest input sequences
that reach q, i.e.

level(q) = min{|s| | s ∈ V ∗, h(q0, s) = q}.

Recall that a minimal FA that accepts U is a FA in which all states are
reachable and pairwise distinguishable. In a DFCA only sequences of length
at most l are considered; thus, every states q1 and q2 will have to be distin-
guished by some input sequence of length at most l−max{level(q1), level(q2)}.
If this is the case, we say that q1 and q2 are l-dissimilar. Unlike state equiv-
alence, similarity is not a transitive relation [3].

Definition 9. Let A = (V,Q, q0, F, h) be a reachable FA. States q1 and q2 are
said to be similar, written q1 ∼ q2 if q1 and q2 are V [j]-equivalent whenever
j = l − max{level(q1), level(q2)} ≥ 0. Otherwise, q1 and q2 are said to be
dissimilar, written q1 � q2.

A minimal DFCA for U can be obtained by decomposing the state set of
A based on the similarity criterion.

Definition 10. Let A = (V,Q, q0, F, h) be a reachable FA. (Qi)1≤i≤n is called
a state similarity decomposition (SSD) of Q if

9

• ∪1≤i≤nQi = Q;

• for every i and j, 1 ≤ i < j ≤ n, Qi ∩Qj = ∅;

• for every i, 1 ≤ i ≤ n and every q1, q2 ∈ Qi, q1 ∼ q2;

• for every i and j, 1 ≤ i < j ≤ n, there exist q1 ∈ Qi and q2 ∈ Qj such
that q1 � q2.

For every q ∈ Q we denote by [q] the set Qi of the decomposition such that
q ∈ Qi.

In other words, a state similarity decomposition of Q is a partition of
Q for which every two elements of the same class are similar and every two
distinct classes have at least a pair of dissimilar elements.

Theorem 1. [21] Let A = (V,Q, q0, F, h) be a reachable DFCA for U and let
(Qi)1≤i≤n be an SSD of Q. For every i, choose qi ∈ Qi such that level(qi) =
min{level(q) | q ∈ Qi}. Define A′ = (V,Q′, q′0, F

′, h′) by Q′ = {Q1, . . . , Qn},
q′0 = [q0], F

′ = {[q] | q ∈ F} and h′(Qi, a) = [h(qi, a)] for all i, 1 ≤ i ≤ n,
and a ∈ V . Then A′ is a minimal DFCA for U .

As similarity is not an equivalence relation, the SSD may not be unique
and, thus, there may be more than one DFCA for the same finite language U .
Several algorithms for constructing a minimal DFCA exist; the best known
algorithm [20] requires O(n log n) time.

2.4. The W -method for testing finite cover automata

In this section we present the W -method for generating test suites from
finite cover automata [16].

First, note that the W–method has been developed in the context of
Mealy automata; these are finite state machines with outputs and in which
all states are terminal. Since the output of these machines is not necessary
for our purposes (as it will transpire from Section 4), in the remainder of the
paper we will use a form of finite automaton in which all states are terminal,
but the next state function may be a partial (rather than total) function. In
this case, the words rejected by the automaton will be those for which h is
not defined. Such a model can be transformed into an FA that conforms to
Definition 7 by adding a new, non-final, (“sink”) state that collects all the
undefined transitions. However, this addition is not necessary for the testing

10

theory (the W -method) we will be presenting and so the “sink” state will
not be explicitly shown. For simplicity, in what follows, the set of final sets
will be omitted from the notation of an automaton (since this coincides with
the entire set of states).

In conformance testing we have a formal specification (in our case a FA)
and we want to generate a test suite such that whenever the implementation
under test (IUT) passes all tests, it is guaranteed to conform to the specifi-
cation. The IUT is unknown but it is assumed to behave like some element
from a set of models, called fault model. In the case of the W–method, the
fault model consists of all FAs A′ with the same input alphabet V as the
specification A, whose number of states m′ does not exceed the number of
states m of A by more than k (m′−m ≤ k), where k ≥ 0 is a predetermined
integer that must be estimated by the tester.

The W -method was originally devised for when the conformance relation
is automata equivalence [5]), but in this paper we are interested in confor-
mance for bounded sequences. In this case, the problem can be formulated as
follows: given an FA specification A and an integer l ≥ 1 (the upper bound)
such that LA contains at least one sequence of length l, we want to construct
a set of sequences of length less than or equal to l that can establish whether
the implementation behaves as specified for all sequences in V [l]. Since LA
contains at least one sequence of length l, A is a DFCA for LA ∩ V [l] and
so the test suite will check whether the IUT model A′ is also a DFCA for
LA ∩ V [l].

A test suite will be a finite set Yk ⊆ V [l] of input sequences that, for every
A′ in the fault model that is not V [l]–equivalent to A, will produce at least
one erroneous output. That is, A and A′ are V [l]-equivalent whenever A and
A′ are Yk–equivalent. 1

Suppose the specification A used for test generation is a minimal DFCA
for LA ∩ V [l] (if not, this can be minimised using algorithms such that given
in [20]) The W–method for bounded sequences, as developed in [16], involves
the selection of two sets of input sequences, S and W , as follows:

Definition 11. S ⊆ V ∗ is called a proper state cover of A if for every state
q of A there exists s ∈ S such that h(q0, s) = q and |s| = level(q).

1Naturally, the entire set V [l] can be chosen, but automata theory is used to reduce
the size of the test suite.

11

Definition 12. W ⊆ V ∗ is called a strong characterisation set of A if for
every two states q1 and q2 of A and every j ≥ 0, if q1 and q2 are V [j]-
distinguishable then q1 and q2 are (W ∩ V [j])-distinguishable.

Naturally, in the above definition, it is sufficient for q1 and q2 to be (W ∩
V [j])-distinguishable when j is the length of the shortest sequences that
distinguish between q1 and q2.

Once S and W have been selected, the test suite is obtained using the
formula:

Yk = SV [k + 1](W ∪ {λ}) ∩ V [l] \ {λ}.

This result is formally proved in [16].

Theorem 2. [16] For every FA A′ which has at most k more states than A,
LA ∩ V [l] = LA′ ∩ V [l] if and only if LA ∩ Yk = LA′ ∩ Vk.

3. Identifiable transitions in P systems

In this section we investigate the property of identifiability for P system
rules and multisets that will prove to be essential for testing these systems.
We establish the necessary and sufficient conditions for rule distinguishability
and we show how to construct P systems for which any pair of distinct
multisets is distinguishable.

We start by introducing a notation utilised in this section.

Notation 1. Given a multiset M = rn1
1 . . . rnk

k , where ri : xi → yi, 1 ≤ i ≤ k,
we denote by rM the rule xn1

1 . . . xnk
k → yn1

1 . . . ynk
k , i.e., the concatenation of

all the rules in M .

One can observe that the applicability of the multiset of rules M to a
certain configuration is equivalent to the applicability of the rule rM to that
configuration. It follows that one can study first the usage of simple rules.

Remark 1. For any two rules ri : xi → yi, 1 ≤ i ≤ 2, when we check whether
they are identifiable or not one can write them as ri : uvi → wzi, 1 ≤ i ≤ 2,
where for any a ∈ V , a appears in at most one of the v1 or v2, i.e., all the
common symbols on the left-hand side of the rules are in u. Obviously, when
v1v2 = λ and z1z2 = λ then the rules are not identifiable, as they represent
the same rule, u→ w.

12

We first show that the identifiability of two rules does not depend on the
configurations in which they are applicable. For the two rules introduced in
Remark 1 let us denote by cr1,r2 , the configuration uv1v2. Obviously this is
the smallest configuration in which r1 and r2 are applicable.

Lemma 3. Two rules which are identifiable in a configuration c are identi-
fiable in any configuration containing c in which they are applicable.

Proof. Applying the two identifiable rules, r1 and r2, to the configuration
c, one gets c′ and c′′ and c′ 6= c′′. If the rules are applicable to another
configuration c1 bigger than c, i.e, c1 = ct, then the results are c′1 = c′t and
c′′1 = c′′t and obviously c′1 6= c′′1, hence r1 and r2 are identifiable in c1.

Corollary 4. Two rules r1 and r2 identifiable in cr1,r2 are identifiable in any
configuration in which they are applicable.

Proof. The result is an immediate consequence of Lemma 3 and Remark
1.

One can formulate a similar result for two multisets of rules.

Corollary 5. Two multisets of rules M1 and M2 identifiable in crM1
,rM2

are
identifiable in any configuration in which they are applicable.

Proof. The result is an immediate consequence of Corollary 4 and Notation
1.

From now on, we will always verify the identifiability (or non identifia-
bility) only for the smallest configurations associated with rules or multisets
of rules and will not mention these configurations anymore in the results to
follow.

We make some comments regarding the constraint imposed on the rules
to be applicable as this has different meanings depending on the transition
mode.

Remark 2. For the async transition mode two multisets of rules (and two
rules) applicable in a configuration are also applicable in any other bigger
configuration. For the seq mode this is true only for multisets with one
single element and obviously for simple rules. In the case of the max mode
the applicability of the multisets of rules (or rules) to various configurations
depends on the contents of the configurations and other available rules. For

13

instance if we consider a P system containing the rules r1 : a→ a; r2 : ab→
abb; r3 : bb → c and the configuration c = ab then in c only r1 and r2 are
applicable and identifiable, but in c1 = abb, containing c, r1 is no longer
applicable, but instead we have r2 and the multiset r1r3 applicable.

Remark 3. In the following results whenever we refer to arbitrary rules or
multisets of rules they are always meant to be applicable with respect to the
transition mode.

We now provide a characterisation of the two rules to be (non) identifiable.

Theorem 6. The rules r1 : x1 → y1 and r2 : x2 → y2, are not identifiable if
and only if they have the form r1 : uv1 → wv1 and r2 : uv2 → wv2 and for
any a ∈ V , a appears in at most one of v1 or v2.

Proof. Let us start with this implication “=⇒”. As we have already discussed
one can use the rules as r1 : uv1 → y1 and r2 : uv2 → y2 and for any a ∈ V ,
a appears in at most one of v1 or v2; and one can consider the smallest
configuration where they are applicable, cr1,r2 = uv1v2. Applying these rules
to this configuration, the following computations are obtained:

cr1,r2 =⇒r1 y1v2; cr1,r2 =⇒r2 y2v1.

As these rules are not identifiable it turns out that the results of the two
computations are the same, i.e., y1v2 = y2v1. Given that for any a ∈ V ,
a appears in at most one of v1 or v2, it follows that y1 contains v1 and y2
contains v2, i.e., y1 = w1v1 and y2 = w2v2. From the equality of the results
of the computations it follows that w1 = w2 = w and this proves the result.

Let us consider the opposite “⇐=”. In this case the rules are r1 : uv1 →
wv1, r2 : uv2 → wv2 and for any a ∈ V , a appears in at most one of v1 or
v2. We consider again the smallest configuration cr1,r2 = uv1v2 and apply the
two rules; then one can obtain:

cr1,r2 =⇒r1 wv1v2; cr1,r2 =⇒r2 v1wv2.

Hence, r1 and r2 are not identifiable.
The above proof assumes that v1 and v2 are not empty multisets. The

result remains true when one of them or both are empty. In the latter case
we have the same rule, which might have the right-hand side λ.

14

Based on the result provided by Theorem 6 one can state when two rules
are identifiable.

Corollary 7. The rules r1 : uv1 → wz1 and r2 : uv2 → wz2, such that for
any a ∈ V , a appears in at most one of v1 or v2, are identifiable if and only
if v1 6= z1 or v2 6= z2.

One can formulate similar results regarding the identifiability of the mul-
tisets of rules by referring to the associated rules as introduced by Notation
1.

With the results obtained so far one can determine, for a P system,
whether any two rules are identifiable or not. In various transition modes
utilised in P systems – maximal parallelism or asynchronous mode – in any
computation step either single rules or multisets of rules are involved. It is
then important to determine whether the identifiability of single rules can
be lifted to multisets of rules. More precisely, we want to know whether it
is true that the identifiability of any pair of simple rules is inherited by the
multisets of rules. Unfortunately, this is not true in general, as it is shown
by the next example.

Example 1. Let us consider a P system with the following four rules: r1 :
a→ b, r2 : b→ a, r3 : c→ d, r4 : d→ c. According to Corollary 7, any two
rules are identifiable, but M1 = r1r2 and M2 = r3r4 are not, as rM1 : ab→ ab
and rM2 : cd → cd are identity rules and according to Theorem 6 they are
not identifiable.

However, one can show that some particular multisets of rules are iden-
tifiable when their components are. More precisely, we have the following
result.

Theorem 8. If r1 and r2 are identifiable then rn1 and rn2 are identifiable, for
any n ≥ 1.

Proof. According to Corollary 7 the rules can be written r1 : uv1 → wz1 and
r2 : uv2 → wz2, such that for any a ∈ V , a appears in at most one of v1 or
v2, and v1 6= z1 or v2 6= z2. This implies that vn1 6= zn1 or vn2 6= zn2 , for any
n ≥ 1, i.e., rn1 and rn2 are identifiable.

One can ask whether the more general case of r1 and r2 being identifiable
leads to rn1 and rm2 (with arbitrary n,m ≥ 1) being identifiable. Unfortu-
nately, this does not prove to be true. Let us consider the identifiable rules

15

r1 : a → b and r2 : aa → bb; the multisets r21 and r2 are not identifiable as
they are identical.

One can show that identifiability of any two multisets of rules can be
achieved in some special circumstances. Assume for a P system Π = (V, T, µ1,
w1, R1, 1), as introduced in Definition 1, we build the following P system

ΠL = (V ′, T, µ1, w1, R
′
1, 1)

extending each rule on its right-hand side with its label – hence the index L
associated with the P system; more precisely, if Lab(R1) = {r | r : x → y ∈
R1} then

• V ′ = V ∪ Lab(R1); and

• R′1 = {r′ : x→ yr | r : x→ y ∈ R1}.

Also for any multiset of rules M we will denote by Lab(M) the multiset of
labels of rules occurring in M .

Theorem 9. For any P system Π, the P system ΠL is such that (i) Ntm(Π) =
Ntm(ΠL) and (ii) any two multisets of rules are identifiable, for any of the
transition mode tm, tm ∈ {max, async, seq}.

Proof. First in order to show that Π and ΠL are equivalent for any transition
mode tm, tm ∈ {max, async, seq}, one can observe that for any terminal
computation in Π

u0 = w1 =⇒M1
tm u1 . . . un−1 =⇒Mn

tm un

there is a terminal computation in ΠL and vice versa

u′0 = w1 =⇒M ′
1

tm u′1 = u1Lab(M1) . . . u
′
n−1 = un−1Lab(M1) . . . Lab(Mn−1)

=⇒M ′
n

tm u′n = unLab(M1) . . . Lab(Mn−1)Lab(Mn),

where M ′
i , 1 ≤ i ≤ n, is obtained from Mi, 1 ≤ i ≤ n, by replacing each rule

r ∈ R1 by its corresponding r′ ∈ R′1.
Obviously, |un|T = |u′n|T , which proves the equivalence of the two devices.
Let us consider two multisets of rules, M1 and M2, applicable to a con-

figuration in given transition mode. One can use Notation 1 to obtain the

16

rules, rM1 and rM2 , associated with the multisets of rules, and Remark 1 for
providing the following format of them:

rMi
: uvi → wziLab(Mi), 1 ≤ i ≤ 2.

Obviously, vi 6= ziLab(Mi), 1 ≤ i ≤ 2, and according to Corollary 7 the rules
are identifiable and consequently the multisets of rules, M1 and M2.

This result is useful as it shows how one can get P systems with all
applicable multisets of rules being identifiable. The downside is that we have
to slightly change the rules and collect all the labels, and these increase the
size of all the intermediary results. One can partially alleviate some of these
constraints, but only in certain circumstances, as it is shown below. Before
providing the result one more notation will be introduced. For a P system
Π = (V, T, µ1, w1, R1, 1), as introduced in Definition 1, we build the following
P system

ΠL,λ = (V ′, T, µ1, w1, R
′′
1, 1)

where V ′ is defined as for ΠL and R′′1 is obtained based on R′1 by adding label
erasing rules, i.e.,

R′′1 = R′1 ∪ {r′′ : r → λ | r : x→ yr ∈ R′1}.

With this newly introduced P system we aim to remove the labels generated
in the previous steps, hence one can reduce the size of the intermediary
results.

Theorem 10. For any P system Π, the P system ΠL,λ is such that (i)
Ntm(Π) = Ntm(ΠL,λ) and (ii) any two multisets of rules are identifiable,
for any of the transition mode tm, tm ∈ {max, seq}.

Proof. In order to prove the equivalence Ntm(Π) = Ntm(ΠL,λ), tm ∈ {max,
seq}, we consider a terminal computation of length n in Π, similar to the
one provided in the proof of Theorem 9.

In the case of tm = max, the corresponding terminal computation in ΠL,λ

consists of n + 1 steps: the first is identical with the first step in Π, but is
using corresponding rules from R′1; the rest of the n steps in ΠL,λ use both
rules from R′1 and rules r′′ : r → λ for all the labels r appearing in each
configuration; in the last step, n+ 1, only label erasing rules are utilised and
the final configuration is the same in both P systems.

17

When tm = seq then in each step of a terminal computation in Π only
one single rule is used. If we assume its length is n then the corresponding
terminal computation in ΠL,λ will consists of 2n steps and both will lead to
the same configuration.

These prove the equivalence of Π and ΠL,λ for tm ∈ {max, seq}.
For proving the identifiability of any two applicable multisets of rules we

distinguish between the two transition modes considered. Let us start with
tm = max and two multisets M1 and M2. They both can consist of a multiset
over R′1 and one over {r′′ : r → λ | r : x→ yr ∈ R′1}. Let us denote them by
Mi,V and Mi,Lab, respectively, for i = 1, 2. Given that both M1 and M2 are
applicable in the max mode then it follows that M1,Lab = M2,Lab. So, it will
be enough just to show that M1,V and M2,V are identifiable and this follows
from the argument used in the proof of Theorem 9 for the identifiability of
the two multisets of rules.

In the case of tm = seq the two multisets of rules are in fact simple rules,
as in each step only a single rule is applied. The two considered rules, r1
and r2 can be (i) both from R′1 or {r′′ : r → λ | r : x → yr ∈ R′1}; or (ii)
one from R′1 and one from {r′′ : r → λ | r : x → yr ∈ R′1}. It is obvious
that any two rules from R′′1 are identifiable, according to Corollary 7, and
consequently the rules above.

The construction utilised in Theorem 10 does not work in the case of the
asynchronous transition mode. Indeed, let us consider a P system with a
set of rules including r1 : a → a and r2 : b → b. These are not identifiable
according to Theorem 6. If we build the rules from R′′1, r′1 : a → ar1,
r′′1 : r1 → λ, r′2 : b → br2, r

′′
2 : r2 → λ, and consider the configuration abr1,

then according to the async mode both r′2 and r′1r
′′
1r
′
2 applicable, but are not

identifiable (r′1r
′′
1 is the same as r1, i.e., a→ a).

4. X-machine based testing

An X-machine is a finite automaton in which transitions are labelled by
partial functions on a data set X instead of mere symbols [8]. In many
previous publications, a particular class, called stream X-machines, in which
X is composed of input and output streams and an internal storage called
memory, is considered, but in this paper we use the general model.

Definition 13. An X-Machine (abbreviated XM) is a tuple

Z = (Q,X,Φ, H, q0, x0),

18

where:

• Q is the finite set of states;

• X is the (possibly infinite) data set;

• Φ is a finite set of distinct processing functions; a processing function
is a non-empty (partial) function of type X −→ X;

• H is the (partial) next-state function, H : Q× Φ −→ Q;

• q0 ∈ Q is the initial state;

• x0 ∈ X is the initial data value.

It is sometimes helpful to think of an X-machine as a finite automaton
with the arcs labelled by functions from the set Φ. The set Φ is often called
the type of Z. The automaton AZ = (Φ, Q,H, q0) over the alphabet Φ is
called the associated finite automaton (abbreviated associated FA) of Z. The
language accepted by the automaton is denoted by LAZ

.

Definition 14. A computation of Z is a sequence x0 . . . xn, with xi ∈ X,
1 ≤ i ≤ n, such that there exist φ1, . . . , φn ∈ Φ with φi(xi−1) = xi, 1 ≤ i ≤ n
and φ1 . . . φn ∈ LAZ

. The set of computations of Z is denoted by Comp(Z).

A sequence of processing functions that can be applied in the initial data
value x0 is said to be controllable.

Definition 15. A sequence φ1 . . . φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, is
said to be controllable if there exist x1, . . . , xn ∈ X such that φi(xi−1) = xi,
1 ≤ i ≤ n. A set P ⊆ Φ∗ is called controllable if for every p ∈ P , p is
controllable.

We now turn our attention to test generation from an X-machine. Let us
assume we have an X-machine specification Z and an (unknown) IUT that
behaves like an element Z ′ of a fault model. In this case, the fault model will
be a set of X-machines with the same data set X, type Φ and initial data
value x0 as the specification.

The idea is to reduce checking that the IUT Z ′ conforms to the specifi-
cation Z to checking that the associated automaton of the IUT conforms to
the associated automaton of the X-machine specification. We will then need
a mechanism that translates sequences of processing functions into sequences
of data values. This will be called a test transformation of Z.

19

Definition 16. The test transformation of Z is the (partial) function t :
Φ∗ −→ X∗ defined by:

• t(λ) = x0. (1)

• Let p ∈ Φ∗ and φ ∈ Φ.

– Suppose t(p) is defined. Let t(p) = x0 . . . xn.

∗ If xn ∈ dom φ then:

· If p ∈ LAZ
then t(pφ) = t(p)φ(xn). (2)

· Else t(pφ) = t(p). (3)

∗ Else t(pφ) is undefined. (4)

– Otherwise, t(pφ) is undefined. (5)

In general, consider a sequence of processing functions, p = φ1 . . . φn.
First suppose that p is controllable. If p is contained in the language de-
fined by AZ then the second rule of the above definition will be applied for
every processing function in the sequence, so t(p) will be the associated com-
putation x0 . . . xn of Z. Otherwise, the second rule will be applied until a
prefix φ1 . . . φk+1 of p is found that is not in the language defined by AZ , so
t(φ1 . . . φk) = x0 . . . xk, where φ1 . . . φk denotes the longest prefix of p that is
in LAZ

. Then the second rule will be applied once more, so t(φ1 . . . φk+1) =
x0 . . . xk+1. For the remaining processing functions φk+2, . . . , φn, the third
rule will be applied and so t(p) = t(φ1 . . . φk+1) = x0 . . . xk+1. Finally, if p is
not controllable, rules (4) and (5) ensure that t(p) is undefined. All these are
summarised by the following lemma.

Lemma 11. Let t be a test transformation of Z and p = φ1 . . . φn, with
φ1, . . . , φn ∈ Φ.

• Suppose p is controllable and let x1, . . . , xn ∈ X such that φi(xi−1) = xi,
1 ≤ i ≤ n.

– If p ∈ LAZ
, then t(p) = x0 . . . xn.

– If p /∈ LAZ
, then t(p) = x0 . . . xk+1, where k, 0 ≤ k ≤ n − 1, is

such that φ1 . . . φk ∈ LAZ
and φ1 . . . φkφk+1 /∈ LAZ

.

• If p is not controllable, then t(p) is not defined.

20

Proof. We prove the results by induction on j, 1 ≤ j ≤ n.
We prove the results for j = 1. By rule (1) of Definition 16, t(λ) = x0.

Suppose φ(x0) = x1. If φ1 ∈ LAZ
, then by rule (2) of Definition 16, t(φ1) =

x0x1; else, by rule (3) t(φ1) = x0. If x0 /∈ dom φ1 then, by rule (4), t(φ1) is
undefined.

Assume the results hold for j, 1 ≤ j ≤ n − 1. Suppose φ1 . . . φj+1 is
controllable and let φi(xi−1) = xi, 1 ≤ i ≤ j. If p ∈ LAZ

then, by the
induction hypothesis, t(φ1 . . . φj) = x0 . . . xj and, by rule (2) t(φ1 . . . φj+1) =
x0 . . . xj+1. If p /∈ LAZ

let k, 0 ≤ k ≤ j − 1, be such that φ1 . . . φk ∈
LAZ

and φ1 . . . φkφk+1 /∈ LAZ
. By the induction hypothesis t(φ1 . . . φj) =

x1 . . . xk+1 and so, by rule (3), t(φ1 . . . φj+1) = x0 . . . xk+1. If φ1 . . . φj+1 is not
controllable then either φ1 . . . φj is not controllable or φ1 . . . φj is controllable
and xn /∈ dom φj+1. If φ1 . . . φj is not controllable then, by the induction
hypothesis, t(φ1 . . . φj) is not defined and so, by rule (5), t(φ1 . . . φj+1) is not
defined. If φ1 . . . φj is controllable and xn /∈ dom φj+1, then, by rule (4),
t(φ1 . . . φj+1) is not defined.

In order to establish that the associated automaton of the IUT Z ′ con-
forms to the associated automaton of the X-machine specification Z, we have
to be able to identify the processing functions that are applied when the com-
putations of Z and Z ′ are examined. Informally, Φ is identifiable if, given
any two distinct processing functions φ1 and φ2 and any data value x, the
two functions cannot produce the same data value x′ when applied in x.

Definition 17. Φ is called identifiable if for all φ1, φ2 ∈ Φ, whenever there
exists x ∈ X such that φ1(x) = φ2(x), φ1 = φ2.

If Φ is identifiable, then we are able to establish if a controllable sequence
of processing functions is correctly implemented by examining the compu-
tations of the specification Z and the implementation Z ′, as shown by the
following lemma.

Lemma 12. Let Z and Z ′ be XMs with type Φ. Suppose Φ is identifiable.
Let p = φ1 . . . φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, be a controllable sequence.
Suppose t(p) is a computation of Z if and only if t(p) is a computation of
Z ′. Then p ∈ LAZ

if and only if p ∈ LAZ′ .

Proof. “=⇒”: Suppose p ∈ LAZ
. Since p is controllable then t(p) = x0 . . . xn

such that φi(xi−1) = xi, 1 ≤ i ≤ n. x1 . . . xn is a computation of Z and so
x0 . . . xn is a computation of Z ′. Then there exist φ′1, . . . , φ

′
n ∈ Φ such that

21

φ′1 . . . φ
′
n ∈ LAZ′ and φ′i(xi−1) = xi, 1 ≤ i ≤ n. Since Φ is identifiable it

follows that φ′i = φi, 1 ≤ i ≤ n.
“⇐=”: Suppose p /∈ LAZ

. Let k, 0 ≤ k ≤ n − 1 be such that φ1 . . . φk ∈
LAZ

and φ1 . . . φkφk+1 /∈ LAZ
. Then t(p) = x0 . . . xk+1 such that φi(xi−1) =

xi, 1 ≤ i ≤ k + 1. We prove by contradiction that φ1 . . . φk+1 /∈ LAZ′ .
Assume φ1 . . . φk+1 ∈ LAZ′ . Then x1 . . . xk+1 is a computation of Z ′ and so
x1 . . . xk+1 is a computation of Z. Then there exist φ′1, . . . , φ

′
k+1 ∈ Φ such

that φ′1 . . . φ
′
k+1 ∈ LAZ

and φ′i(xi−1) = xi, 1 ≤ i ≤ k+1. Since Φ is identifiable
it follows that φ′i = φi, 1 ≤ i ≤ n. Then φ1 . . . φk+1 ∈ LAZ

, which provides a
contradiction as required.

As for the case of finite automata discussed in Section 2.4, we are inter-
ested to show that the implementation Z ′ conforms to the specification Z
for sequences of length up to a given upper bound l. A test suite that will
establish this property will be called an l-bounded conformance test suite.

Definition 18. Let Z be an X-machine and C a fault model for Z. An l-
bounded conformance test suite for Z w.r.t. C, l > 0, is a set T ⊆ X[l+1] such
that for every Z ′ ∈ C the following holds: if T ∩ Comp(Z) = T ∩ Comp(Z ′)
then Comp(Z) ∩X[l + 1] = Comp(Z ′) ∩X[l + 1].

That is, whenever any element of T is a computation of Z if and only if
it is a computation of Z ′, Z ′ conforms to Z for sequences of length up to l.

The following theorem shows that the test transformation defined earlier
provides a mechanism for converting test suites for finite automata into set
suites for X-machines.

Theorem 13. Let Z be an XM with type Φ, data set X and initial data
value x0. Suppose Φ is identifiable and LAZ

∩ Φ[l] is controllable. Let C be
a set of XMs such that for every Z ′ ∈ C, LAZ′ ∩ Φ[l] is controllable. Let
P ⊆ Φ[l], such that, for every Z ′ ∈ C, whenever P ∩ LAZ

= P ∩ LAZ′ we
have LAZ

∩ Φ[l] = LAZ′ ∩ Φ[l]. Then t(P) is an l-bounded conformance test
suite for Z w.r.t. C.

Proof. Let Z ′ ∈ C. Assume t(P)∩Comp(Z) = t(P)∩Comp(Z ′). Let p ∈ P .
If p is controllable, by Lemma 12, p ∈ LAZ

if and only if p ∈ LAZ′ . If p is
not controllable, p /∈ LAZ

and p /∈ LAZ′ . As p is arbitrarily chosen, we have
P ∩ LAZ

= P ∩ LAZ′ . Then LAZ
∩ Φ[l] = LAZ′ ∩ Φ[l]. Hence, by Definition

14, it follows that Comp(Z) ∩X[l] = Comp(Z ′) ∩X[l].

22

We can now apply the results presented in Section 2.4 to produce test
suites from an X-machine specification Z. Let l > 0 be a predefined upper
bound. We assume that Φ is identifiable and LAZ

∩ Φ[l] is controllable (we
will discuss the satisfiability of these requirements in the next section, in the
context of the XM model of a P system). We assume that AZ , the associated
automaton of Z, is a minimal DFCA for LAZ

∪Φ[l] (if not, this is minimised
as discussed earlier2). Suppose the fault model C is the set of X-machines Z ′

with the same data set X, type Φ and initial data value x0 as Z such that
LAZ′ ∩ Φ[l] is controllable, whose number of states m′ does not exceed the
number of states m of Z by more than k (m′ − m ≤ k), k ≤ 0. Then an
l-bounded conformance test suite for Z w.r.t. C is

Tk = t(SΦ[k + 1](W ∪ {λ}) ∩ Φ[l] \ {λ}),

where S is a proper state cover of AZ , W is a strong characterisation set of
AZ and t is a test transformation of Z.

5. Modelling and testing P systems using X-machines

In order to generate test suites for a P system using the method pre-
sented above, an appropriate X-machine model needs to be defined first.
As discussed in Section 2.1, multi-membrane P systems can be collapsed
into one membrane systems [9]. In the following we consider the case of
a one membrane P system Π = (V, T, µ1, w1, R1, 1). A configuration of Π
can be changed as a result of the application of one or more rules, in par-
allel. The idea is to express the computation tree of Φ as an X-machine
Zt = (Qt, X,Φ, H t, qt0, x0). In order to keep the computation tree of the P
system Π finite, only computations of maximum l steps will be considered,
with l > 0 a predefined integer. Let R1 = {r1, . . . , rn} be the set of rules of
Π. As only finite computations are considered, for every rule ri ∈ R1 there
will be some Ni such that, in any step, ri can be applied at most Ni times,
1 ≤ i ≤ n. Thus the X-machine Zt = (Qt, X,Φ, H t, qt0, x0) is defined as
follows:

• Qt is the set of nodes of the computation tree of maximum l steps;

2The minimisation preserves the controlability requirements as the set LAZ
∩ Φ[l] re-

mains unchanged.

23

• qt0 is the root node;

• X is the set of multisets with elements in V ;

• x0 is the initial multiset w1;

• Φ is the set of (partial) functions induced by the application of multisets
ri11 . . . r

in
n , 0 ≤ i1 ≤ N1, . . . , 0 ≤ in ≤ Nn, i1 + . . . in > 0;

• H t is the next-state function determined by the computation tree.

Remark 4. Note that, by definition, LAZ
is controllable.

Remark 5. The set of (partial) functions, Φ, from the above definition
is identifiable (according to Definition 17) if and only if the corresponding
multisets of rules are pairwise identifiable (according to Definition 6).

Example 2. Let us consider one compartment P system Π1 = (V, V, µ1, w1,
R1, 1), where V = {a, b, c}, w1 = ab, R1 = {r1 : a→ b, r2 : ab→ bc, r3 : c→
b, r4 : c→ cc}. Let us build the computation tree considering that rules are
applied in the maximally parallel mode. The initial configuration w1 = ab is
at the root of the tree (level 0 of the tree). Two computation steps are possible
from the root: ab =⇒r1 b2 and ab =⇒r2 bc. Then the configurations b2 and bc
are at the first level of the tree. No rule can be applied in b2 (this is a terminal
configuration of Π1), but two computation steps exist form bc: bc =⇒r3 b2 and
bc =⇒r4 bc2. The new configurations produced represent the second level of
the tree. Again, no rule can be applied in b2, but there are three computation
steps from bc2: bc2 =⇒r23 b3, bc2 =⇒r3r4 b2c2 and bc2 =⇒r24 bc4. No rule can
be applied in b3, but there are three computation steps from b2c2 and five
from bc4: b2c2 =⇒r23 b4, b2c2 =⇒r3r4 b3c2 and b2c2 =⇒r24 bc4; bc4 =⇒r43 b5,
bc4 =⇒r33r4 b4c2, bc4 =⇒r23r

2
4 b3c4, bc4 =⇒r3r34 b2c6 and bc4 =⇒r44 bc8. The

configurations produced by these eight rules represent the fourth level of the
tree.

One can observe that any two of the above multisets of rules are iden-
tifiable, according to Corollary 7, and consequently they produce different
results when applied to the same configuration – see above.

Let the upper bound on the number of computation steps considered be
l = 4. It can be observed that rules r1 and r2 have been applied at most once,
so N1 = 1 and N2 = 1, whereas rules r3 and r4 have been applied at most
four times, so N3 = 4 and N4 = 4. Therefore the type Φ of the X-machine Zt

24

qt
0

qt
1 qt

2

qt
3 qt

4

qt
6

qt
8 qt

9
qt
10

qt
7

qt
12 qt

13
qt
14 qt

15qt
11

qt
5

r1 r2

r3 r4

r2
3

r3r4

r2
4

r2
3 r3r4

r2
4

r4
3 r3

3r4

r2
3r

2
4

r3r
3
4

r4
4

Figure 1: The associated automaton AZt corresponding to the computation tree for Π1

and l = 4

corresponding to the computation tree is the set of partial functions induced
by the multisets ri11 r

i2
2 r

i3
3 r

i4
4 , 0 ≤ i1 ≤ 1, 0 ≤ i2 ≤ 2, 0 ≤ i3 ≤ 4, 0 ≤ i4 ≤ 4,

i1 + i2 + i3 + i4 > 0. The associated automaton AZt is as represented in
Figure 1.

Let LAZt ⊆ Φ∗ be the language accepted by the associated automaton
AZt . In order to apply the test generation method presented in Section 4, an
X-machine Z whose associated automaton AZ is a DFCA for LAZt needs to
be constructed first. In what follows we show how Theorem 1 can be used
to define such an X-machine. Let ≤ be a total order on Qt such that q1 ≤ q2
whenever level(q1) ≤ level(q2) and denote q1 < q2 if q1 ≤ q2 and q1 6= q2.

25

In other words, the node at the superior level in the tree is before the node
at the inferior level; if the nodes are at the same level then their order is
arbitrarily chosen. Define P t = {q ∈ Qt | ¬∃q′ ∈ Qt · q′ ∼ q, q′ < q} and
[q] = {q′ ∈ Qt | q′ ∼ q ∧ ¬∃q′′ ∈ P t · q′′ ∼ q′, q′′ < q} for every q ∈ P t (i.e.
[q] denotes the set of all states q′ for which q is the minimum state similar
to q′). Then we have the following result.

Theorem 14. Let Z = (Q,X,Φ, H, q0, x0), where Q = {[q] | q ∈ P t},
q0 = [qt0], H([q], φ) = [H t(q, φ)] for all q ∈ P t and φ ∈ Φ. Then AZ is a
minimal DFCA for LAZt .

Proof. Let q ∈ P t, q1, q2 ∈ [q]. Since q1 ∼ q, q2 ∼ q, level(q) ≤ level(q1)
and level(q) ≤ level(q2), q1 ∼ q2 [16, 17]. Thus, since the other conditions of
Definition 10 follow directly from the definition of [q], ([q])q∈P t is an SSD of
Qt. Then, by Theorem 1, AZ is a minimal DFCA for LAZt .

Example 3. Consider Zt as in the previous example. P t = {qt0, qt1, qt2, qt4, qt7};
[qt0] = {qt0, qt8, qt9, qt10, qt11, qt12, qt13, qt14, qt15}, [qt1] = {qt1, qt3, qt5}, [qt2] = {qt2}, [qt4] =
{qt4, qt6}, [qt7] = {qt7}. Then Z = (Q,X,Φ, H, q0, x0), where Q = {[qt0], [qt1], [qt2],
[qt4], [q

t
7]} and q0 = [qt0]. The associated automaton of Z is a minimal DFCA

for LAZt and is as represented in Figure 2.

Once the X-machine Z has been constructed the test generation process
entails the following steps:

1. Construct the sets S and W (proper state cover and char-
acterisation sets, respectively).
We illustrate this step for Z as in Example 3. As λ, r1, r2, r2 r4, r2 r4 r

2
4

are the sequences of minimum length that reach [qt0], [q
t
1], [q

t
2], [q

t
4] and

[qt7], respectively, S = {r1, r2, r2 r4, r2 r4 r24} is a proper state cover of
Z. Furthermore, since r1 distinguishes [qt0] from all remaining states
and r3, r3r4 and r43 hold the same property for [qt2], [qt4] and [qt7], re-
spectively, W = {r1, r3, r3r4, r43} is a strong characterisation set of Z.
(Notation: for rules r and r′, rr′ denotes the application of rules r and
r′ in one single step, whereas r r′ (separated by space) denotes the
application of rule r in one step followed by the application of rule r′

in the following step; the second notation is also used for multisets of
rules.)

26

[qt
0]

[qt
1] [qt

2]

[qt
4]

[qt
7]

r1 r2

r3

r4r2
3

r3r4

r2
4

r4
3

r3
3r4

r2
3r

2
4

r3r
3
4

r4
4

Figure 2: The DFCA for LAZt

2. Determine the fault model of the IUT.
This entails establishing the transitions that a (possibly faulty) im-
plementation is capable to perform. For example, when the correct
application of rules (in the P system specification) is in the maximally
parallel mode max, one fault that we may consider is when the rules
are applied in a less restrictive mode such that the asynchronous mode
async. Hence the notion of controllability for P systems is defined by
considering this, less restrictive, application mode.

Definition 19. A sequence of multisets of rules p = M1...Mm, with Mi ∈ R∗1,
1 ≤ i ≤ m, is said to be controllable if there exist configurations u0 =
w1, u1, . . . , um, ui ∈ V ∗, 0 ≤ i ≤ m, such that ui−1 =⇒Mi

FM ui, 1 ≤ i ≤
m, where u =⇒M

FM u′ denotes a computation step in the fault model from
configuration u to configuration u′ by applying the multiset of rules M .

Example 4. Consider again the P system Π1 as in Example 2. Then ab =⇒r2

bc and bc =⇒r4 bc2, but bc2 =⇒r4 bc3 does not hold since the rules of Π1 must

27

be applied in the maximally parallel mode. However, if we consider that in
the fault model of the IUT rules may be applied in the asynchronous mode,
the sequence r2 r4 r4 is controllable. The fault model is also determined by
the maximum number of states m + k that the IUT may have, where m is
the number of states of the X-machine Z and k ≥ 0 is a non-negative integer
estimated by the tester.

3. Construct an l-bounded conformance test suite.
This is Tk = t(Yk), where Yk = SΦ[k + 1](W ∪ {λ}) ∩ Φ[l] \ {λ} and t
is a test transformation of Z.

According to [5], the upper bound for the number of sequences in SΦ[k+
1]W is m2 · rk+1 and the total length of all sequences is not greater that
m2 · (m + k) · rk+1, where r is the number of elements of Φ. In particular,
for k = 0, the respective bounds are m2 · r and m3 · r. The increase in size
produced by replacing W with W ∪ {λ} in the above formula is negligible.
Note that these bounds refer to the worst case; in an average case, the size
of Yk is much lower. Furthermore, the size of t(Yk) is normally significantly
lower than the size of Yk since only the controllable sequences are in the
domain of t.

Example 5. We illustrate the construction of the test transformation t with
an example. Consider again Φ1 as in Example 2 and Z as in Example 3. The
rule application mode is maximal parallelism for Φ and the asynchronous
mode for the fault model. Consider the sequences s0 = λ, s1 = r2, s2 =
s1 r4, s3 = s2 r4, s4 = s3 r4, s5 = s4 r1 and s6 = s5 r1. By rule (1) of
Definition 16, t(s0) = x0 = ab. As ab =⇒r2 bc, by rule (2) t(s1) = ab bc.
Similarly, as bc =⇒r4 bc2, by rule (2) t(s2) = ab bc bc2. On the other
hand r4 cannot be applied in configuration bc2 in the maximally parallel
mode, but bc2 =⇒r4

FM bc3 (in the asynchronous mode) and so, by rule (2),
t(s3) = ab bc bc2 bc3. Furthermore, bc3 =⇒r4

FM bc4 and so, by rule (3) of
Definition 16, t(s4) = t(s3) = ab bc bc2 bc3. As r1 cannot be applied in
bc4, by rule (4) t(s5) is undefined. Furthermore, by rule (5), t(s6) is also
undefined, so no test sequences will be generated for s5 and s6.

Note that the test suite may contain both positive and negative test se-
quences. A positive test sequence is a sequence of configurations that is a
computation of Z, whereas a negative test sequence is a sequence of con-
figurations that is not a computation of Z. A successful application of a

28

positive test sequence on the IUT will produce a computation of the IUT,
whereas the successful application of a negative test sequence will produce
no corresponding computation on the IUT.

Note that the application of the previously constructed test suite is guar-
anteed (when successfully applied to the implementation under test) to en-
sure that the IUT conforms to the specification (for sequences up to length
l) if the processing functions Φ are identifiable.

6. Conclusions

In this paper we have presented a testing approach for P systems that,
under well defined conditions, ensures that the implementation conforms to
the specification. We have also investigated the concept of identifiable P
systems, which is essential for testing these systems. This concept has been
discussed for one-compartment systems, but can be naturally extended for
an arbitrary P system with m compartments.

Indeed, the two distinct multisets of rules M ′ = (M ′
1, . . . ,M

′
m) and M ′′ =

(M ′′
1 , . . . ,M

′′
m) are identifiable, if there is a configuration c = (c1, . . . , cm)

where M ′ and M ′′ are applicable and if c =⇒M ′
c′ and c =⇒M ′′

c′ then M ′ =
M ′′. One can notice that M ′ and M ′′ might have only certain components
distinct in order to be distinct multisets of rules. One can also introduce the
concept of strong identifiability which means that any two components of the
two multisets of rules are identifiable. This concept will be considered in our
future work together with specific classes of P systems using various types of
rules and constraints in applying them.

Acknowledgements. The authors would like to thank the anonymous
reviewers for their comments and suggestions that have contributed to the
improvement of the paper. Marian Gheorghe and Savas Konur acknowledge
the support from EPSRC (EP/I031812/1). Marian Gheorghe’s and Florentin
Ipate’s work is partially supported by CNCS-UEFISCDI (PN-II-ID-PCE-
2011-3-0688).

[1] Agrigoroaiei, O., Ciobanu, G., 2010. Flattening the transition P systems
with dissolution. In: Proceedings of the 11th International Conference
on Membrane Computing. CMC’10. Springer-Verlag, pp. 53–64.

[2] Bogdanov, K., Holcombe, M., Ipate, F., Seed, L., Vanak, S., 2006. Test-
ing methods for X-machines: A review. Form. Asp. Comput. 18 (1),
3–30.

29

[3] Câmpeanu, C., Sântean, N., Yu, S., 1999. Minimal cover-automata for
finite languages. In: Revised Papers from the Third International Work-
shop on Automata Implementation. WIA ’98. Springer-Verlag, pp. 43–
56.

[4] Câmpeanu, C., Sântean, N., Yu, S., 2001. Minimal cover-automata for
finite languages. Theor. Comput. Sci. 267 (1-2), 3–16.

[5] Chow, T. S., 1978. Testing software design modeled by finite-state ma-
chines. IEEE Trans. Softw. Eng. 4 (3), 178–187.

[6] Ciobanu, G., Pérez-Jiménez, M. J., Păun, Gh., 2005. Applications of
Membrane Computing (Natural Computing Series). Springer-Verlag.

[7] Dinneen, M. J., Yun-Bum, K., Nicolescu, R., 2012. Faster synchroniza-
tion in P systems. Natural Computing 11 (4), 637–651.

[8] Eilenberg, S., 1974. Automata, Languages, and Machines. Academic
Press, Inc.

[9] Freund, R., Leporati, A., Mauri, G., Porreca, A. E., Verlan, S., Zandron,
C., 2014. Flattening in (tissue) P systems. In: Revised Selected Papers
of the 14th International Conference on Membrane Computing - Volume
8340. CMC 2013. Springer-Verlag, pp. 173–188.

[10] Frisco, P., Gheorghe, M., Pérez-Jiménez, M. J. (Eds.), 2014. Appli-
cations of Membrane Computing in Systems and Synthetic Biology.
Springer-Verlag; Emergence, Complexity and Computation Series, Vol.
7.

[11] Gheorghe, M., Ipate, F., 2009. On testing P systems. In: Membrane
Computing. Springer-Verlag, pp. 204–216.

[12] Gimel’farb, G. L., Nicolescu, R., Ragavan, S., 2013. P system imple-
mentation of dynamic programming stereo. Journal of Mathematical
Imaging and Vision 47 (1–2), 13–26.

[13] Hierons, R. M., 2010. Checking experiments for stream X-machines.
Theor. Comput. Sci. 411 (37), 3372–3385.

[14] Holcombe, M., Ipate, F., 1998. Correct Systems. Building a Business
Process Solution. Springer, Applied Computing Series.

30

[15] Hopcroft, J. E., Motwani, R., Ullman, J. D., 2006. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc.

[16] Ipate, F., 2010. Bounded sequence testing from deterministic finite state
machines. Theor. Comput. Sci. 411 (16-18), 1770–1784.

[17] Ipate, F., Gheorghe, M., 2009. Finite state based testing of P systems.
Natural Computing 8 (4), 833–846.

[18] Ipate, F., Gheorghe, M., 2009. Mutation based testing of P systems.
International Journal of Computers, Communication and Control 4 (3),
253–262.

[19] Ipate, F., Holcombe, M., 2008. Testing data processing-oriented systems
from stream X-machine models. Theor. Comput. Sci. 403 (2-3), 176–191.

[20] Körner, H., 2003. On minimizing cover automata for finite languages in
O(n log n) time. In: Proceedings of the 7th International Conference
on Implementation and Application of Automata. CIAA’02. Springer-
Verlag, pp. 117–127.

[21] Körner, H., 2003. A time and space efficient algorithm for minimizing
cover automata for finite languages. Int. J. Found. Comput. Sci. 14 (06),
1071–1086.

[22] Lee, D., Yannakakis, M., 1996. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE 84 (8), 1090–1123.

[23] Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A., 2003. Tis-
sue P systems. Theor. Comput. Sci. 296 (2), 295–326.

[24] Nicolescu, R., 2014. Structured grid algorithms modelled with complex
objects. In: Revised Selected Papers of the 16th International Confer-
ence on Membrane Computing - Volume 8340. CMC 2013. Springer-
Verlag, pp. 56–79.

[25] Păun, Gh., 2000. Computing with membranes. Journal of Computer and
System Sciences 61 (1), 108–143.

[26] Păun, Gh., 2002. Membrane Computing: An Introduction. Springer-
Verlag.

31

[27] Păun, Gh., Rozenberg, G., Salomaa, A., 2010. The Oxford Handbook
of Membrane Computing. Oxford University Press, Inc.

[28] Verlan, S., 2015. Using the formal framework for P systems. In: Re-
vised Selected Papers of the 14th International Conference on Membrane
Computing - Volume 9504. CMC 2015. Springer-Verlag, pp. 321–337.

[29] Vincenzo, M., 2013. Infobiotics. Springer-Verlag; Emergence, Complex-
ity and Computation Series, Vol. 3.

32

