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Abstract: In this paper, the gyrotropic bi-anisotropy of the chiral medium in substrate 
constitutive parameters (ξc and ηc) of a rectangular microstrip patch antenna is introduced in 
order to observe its effects on the complex resonant frequency, half-power bandwidth and 
input impedance. Numerical calculations and analysis based on the dominant mode are 
carried out to show that the latter is directly related to the former. This paper is based on the 
Moment Method as full-wave spectral domain approach using sinusoidal basis functions. Two 
new results, namely the appearance of the difference (ξc-ηc) and sum (ξc+ηc) of the two 
magneto-electric elements are obtained in the electric transverse components and Green 
tensor expressions, respectively. These new results can be considered as a generalisation form 
of the previously published work. 
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1. Introduction
The antennas resonators first appeared in the 1950s and researchers starting work on this

technology on the 1970s [1]-[2]. Recently, a big interest was dedicated to complex materials 
(example magnetized ferrites, anisotropic dielectrics, meta-materials, chiral, .. etc.), and their 
effects on the possible realization of devises based on MIC (Microwave Integrated Circuits) 
and antenna based on APC (Antenna Printed Circuits) [1]-[5]. 

The chiral materials was first introduced in 1988 by Engheta [6], it is then used as 
substrates in the design of printed antennas, the term ‘chirostrip’ was invented later on. 
Chiroptical guides were developed in 1989, and named by Engheta and Pelet in [7]. These 
invented meterials have opened new field of theoretical studies on the properties of these 
patch antennas and chiral-based resonators: examples, new polarizations [8], coupling TE/TM 
wave generation [9], crossing polarizations, ‘slow’ resonant frequency [10], bandwidth and 
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surface wave [11]. The resolution of Maxwell's equations, in such structures, had not been 
completely finished before 2001 [12], [13]. And since then , the interaction of electromagnetic 
fields with chiral materials has been studied, in which the chiral medium is used in many 
applications relating antenna arrays [6], radome antennas, microstrip substrates [6] [8] and 
waveguides [7] [14]. 

Using chiral materials as substrate and superstrate for the propose of MIC (Microwave 
Integrated Circuits) and APC (Antenna Printed Circuits), was reported in [15]-[21]. In 
addition to, Toscano et al. [18] and Zebiri et al. [19]-[21] have lately proved that the chiral 
substrates can advantageously be used to adjust the antenna resonant frequency and  to 
increase or decrease the bandwidth, and to improve the input impedance [21], this will be 
reflected in a better adaptation. 

The effect of the chiral medium on the waveguides propagation was the subject of many 
researchers such as the electromagnetic propagation in waveguides filled with bi-
isotropic/chiral materials were reported in the literature [22]-[28]; these media were also used 
in microstrip antennas not only to improve the resonant frequency and bandwidth but also 
reduce losses due to the surface waves radiation from microstrip antenna printed on a chiral 
substrate [17] [19] [20] [27]-[31]. The propagation characteristics of the anisotropic 
transmission lines have also prompted some interesting works as in [32]-[36].  

A chiral medium could be either reciprocal [37] or nonreciprocal in accordance with this 
magneto-electric parameter [25] [38]-[41]. The general linear medium is described by bi-
anisotropic constitutive relations given in [38] [42]. The effect of this medium with these 
constitutive parameters can be considered as symmetrically or asymmetrically structures in 
electronic components parameters [43] [44].  

The research work presented in [45] focused on chiral medium, for which those reciprocal 
bi-isotropic medium whose existence was out of controversy-nonreciprocal bi-isotropic 
medium that have neither been found nor manufactured; and the possibility of their existence 
is currently under discussion in the open literature [46], [47]; in addition to the nonreciprocal 
behavior of particular classes of such materials has also been studied in [48]-[50]. In this 
work, a gyrotropic bi-anisotropy of chirality for a rectangular patch antenna is detailed and 
discussed in terms of complex resonant frequency, half-power bandwidth and input 
impedance. New results were achieved for example: a direct link between the antenna 
parameter and property of chirality were established; and the effects of non-reciprocity 
combined with reciprocity anisotropy of such a medium have been predicted.  

2. Theory 

2.1 Chiral medium 
The geometry under consideration is shown in Fig. 1, the rectangular patch with 

dimensions (a, b) along the two axes (x, y) respectively is printed on a grounded bianisotropic 
dielectric slab of thickness d1. This bianisotropic medium is characterized by four 
independent constitutive tensors. 

For bianisotropic medium, D and B are respectively related to both E and H. The 
expression of the field components will be restricted by consideration of the macroscopic 
constitutive relations in the following form [31] [33] [51] [52]: 
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EHB    (1) 

 
HED    (2) 

 
Where the permeability, permittivity and magneto-electric elements are given respectively by 
[31] [33] [51]-[53]: 
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Fig. 1: Rectangular microstrip patch antenna with chiral substrate 

 
In [19] [20] a special case of the above magneto-electric elements is treated. As a 

definition the bianisotropic medium is a generalization of the anisotropic and chiral medium 
[15], where there are different types of anisotropic medium: uniaxial, biaxial, gyrotropic, etc. 
An important step in the distinction between anisotropic medium comes through splitting the 

constitutive parameter dyadic x (x= , ,  and  ) into two parts, symmetric and 
antisymmetric [50] [54]: 
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This simplified to:  
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And I is the unit dyadic. 
 

The symmetric part of the x dyadic has principal axis along the x, y, z directions, and these 
elements determine the axial, uniaxial and biaxial anisotropy. Concerning the other elements 

gx  (antisymmetric part) they present the gyrotropic anisotropy of medium. Furthermore, 

when all the constituent parameters are scalar, in this case the medium becomes bi-isotropic. 

Regarding the gyrotropic bi-anisotropy constitutive parameters  and  given by equation 
(3), it is possible to use several medium types, depending on the constitutive tensors of 
equation (3), the linear complex medium are given as follows [53] [55] [56]: 
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2.2 Green’s Tensor Evaluation  

Assuming an e i t  time variation and starting from Maxwell’s equations in the Fourier 
transform domain, one can show that the transverse magnetic (TM or E) and transverse 
electric (TE or H) counterparts of the tangential electric and magnetic fields in the Fourier 
domain for an anisotropic bounded region having anisotropy tensor type given by (3), can be 
expressed in compact matrix form as follows: 
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Where SE~ and SH~  are the transverse electric and the magnetic components according to the 
TE and TM modes.  
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Using Maxwell equations it is possible to express the longitudinal components of the electric 
and magnetic field in the chiral medium according to the following expressions 
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Where the spectral coefficients eA , hA , eB  and hB are functions of the variables s , e

z  and 
h
z , these are respectively the free space propagation for TE and TM modes.  

 
The proposed structure is studied and the boundary conditions have been applied after then 
the dyadic Green’s function is obtained, this is expressed as in the following tensor: 
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For an electric and non-magnetic medium having biaxial anisotropy with regard to the 
permittivity, the previous expressions are well detailed in [57], and for the case cc    we 
obtain exactly the same detailed expression in [19].  

2.3 Integral Equation Solution 
The integral equation describing the electric field on the patch is expressed with the 

application of the boundary conditions [19]-[21][58]-[59] as: 
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Galerkin's procedure of the moment method in the Fourier domain can be used, which 

enables the integral equation in (25) to be discretized into matrix equation. Where the surface 
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   
   

 
  0
b
a

BB
BB






























1

1

43

21

M

N

MMNM

MNNN  
(26) 

 



This Journal in press of International Journal of Applied Electromagnetics and Mechanics paper, 3rd June 2016  
 

Where: NNB )( 1 , MNB )( 2 , NMB )( 3  and MMB )( 4  are the elements of the digitalized 
matrix equation. 
 
Equation (26) has a non-trivial solution only in the case where the condition below is verified. 
 

0))((det B  (27) 
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characteristics are estimated around this frequency, equation (27) is called characteristic 
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and if : expresses the losses by radiation in the case of radiating antenna, the half power 
bandwidth is defined in [19]-[21][57]-[59] as: 
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2.4 Input impedance formulation 

The input impedance of an antenna can be calculated as a combination of electric field 
dispersed with the current on the probe, according to the following expression: 
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With: xmI  and ynI  are the coefficients to be determined, and m and n define the number of 
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 zGG yxzxzx ,,  and  zGG yxzyzy ,,  are the spectral Green functions for the chiral 

substrate case, where  zJJ yxxmxm ,,~~   and  zJJ yxynyn ,,~~   are the Fourier transforms of 

the basis functions in the spectral domain. 

Attempt some algebraic calculations, the final forms can be stated as follows: 
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Where the surface currents J on the patch are expanded into a finite series of basis function Jxn 
and Jym. 

For a digital convergence of equations (32)-(34), we have followed the steps discussed in 
[21][60]-[62]. For the case cc    it is found that they are the same as in [21]. 

3. Numerical Analysis 

The effect of bianisotropic substrate provided with gyro-chirality upon the complex 
resonant frequency, the half-power bandwidth and the input impedance has been studied. It is 
assumed the relative permittivity of the medium is 1x=1z=2.32, and the dimensions of the 
rectangular patch are 1 cm×1.5 cm as shown in Fig. 1. The normalized real part of the 
resonant frequency with respect to the fundamental mode frequency fo, is given in Fig. 2.a, 3.a 
and 4.b respectively. The half-power bandwidth with respect to the substrate thickness and for 
different values of the magneto-electric element is presented in Fig. 2.b-4.b. 
 

According to the results shown in Fig. 2, 3 and 4 of the resonant frequency and the 
bandwidth; in addition to Fig. 5 and 6 of the input impedance, the following summarized 
remarks could be illustrated:  

 The effect of the chirality is remarkable only for thick layers, whereas for those 
infinitely small this effect is unperceived. 

 In the case of a positive chirality, for all of the four cases ((ξc=0, ηc=+2), (ξc=+2, ηc=0) 
in Fig. 2, (ξc=+1,25, ηc=+0,75) in Fig. 3; the real resonant frequency increases, but the 
band-width part decreases; and actually the effect of the two parameters in this case is 
added and they were in good agreement with those found in literature [19]. However for 
the negative chirality case characterized by (ξc=0, ηc=-2), (ξc=-2, ηc=0)), leads to 
opposite variations compared to the preceding ones, and also compared with the case 
(ξc=ηc=-1) that it gives the same effect as in [19]. 

 In the latter case (ξc=-ηc), it is noted that no effect of chirality was absolutely observed 
on the resonance frequency and bandwidth, though it is apparently remarkable in the 
formula of equation 3. 

 Figs. 5 and 6, show that the input impedance is directly related with the chirality, which 
leads to consider this effect for achieving a better impedance matching. The parameters 
amplitudes vary depending on the chirality, as reported in [1], whereas the case of chiral 
bi-isotropic medium was considered, these parameters are constant in amplitude, that 
proposed good advantageous for the circuit design; on the other hand, the two cases 
((ξc=0, ηc=+2), (ξc=+2, ηc=0) in Fig.5, have the same effect on the input impedance for 
(ξc=+1 , ηc=+1); however, the negative chirality case characterized by (ξc=0, ηc=-2), 
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(ξc=-2, ηc=0)) illustrated in Fig. 6 shows that the chiral medium becomes an isotropic 
dielectric.  
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Fig. 2: Chirality effect on the (a) real part of resonant frequency, (b) half-power bandwidth; 

for ( ≠ ,( ≠0,  =0) and ( =0,  ≠0)), a=1.5cm, b=1cm, r=2.35. 
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Fig. 3: Chirality effect on the (a) real part of resonant frequency, (b) half-power bandwidth; 

for ( ≠ ,  ≠0 and  ≠0), a=1.5cm, b=1cm, r=2.35. 
  



This Journal in press of International Journal of Applied Electromagnetics and Mechanics paper, 3rd June 2016  
 

0 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20

0,84

0,88

0,92

0,96

1,00

 [19]
 [19]
 [19]
 
 

N
or

m
al

iz
ed

 re
al

 fr
eq

ue
ny

(a) d/b
 

0 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20
0

2

4

6

8

10

12

14

16
 [19]
 [19]
 [19]
 
 

B
W

 (%
)

(b) d/b
 

 
Fig. 4: Chirality effect on the (a) real part of resonant frequency, (b) half-power bandwidth; 

for ( =- ), a=1.5cm, b=1cm, r=2.35. 
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Fig. 5: Chirality effect on the (a) real part of the input impedance, (b) imaginary part of the 
input impedance; for (a=7.62cm, b=11.43cm, x0=1.52cm, y0=0.385 cm, εx=εz=2.64), ( ≠

, and ( ≠0,  =0), ( =0,  ≠0)). 
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Fig. 6: Chirality effect on the (a) real part of the input impedance (b) imaginary part of the 
input impedance; for (a=7.62cm, b=11.43cm, x0=1.52cm, y0=0.385 cm, εx=εz=2.64), and (

=- ). 

4. Conclusions 
The effect of bianisotropic substrate provided with gyro-chirality on microstrip patch 

antenna has been presented. The results in terms of the complex resonant frequency, half-
power bandwidth and input impedance have been calculated and compared with earlier work. 
Two new results were concluded; the first was that the effective magneto-electric element 



This Journal in press of International Journal of Applied Electromagnetics and Mechanics paper, 3rd June 2016  
 









 cc 2
1  is the addition of the two elements ξc and ηc on the input impedance. The second 

effect with the gyro-chiral parameter on the transverse components was appearing in 

equations (3) and (4)), by the introducing the coefficient   zcce   2
1

0 , that expresses loss or 

gain, subject to the choice of the two constitutive parameters ξc and ηc. It can also be noted 
that it represents the asymmetric and the non-reciprocity effect that can be added to these 
parameters in the transverse components.  
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