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A Property-Driven Methodology for Formal
Analysis of Synthetic Biology Systems

Savas Konur and Marian Gheorghe

Abstract—This paper proposes a formal methodology to analyse bio-systems, in particular synthetic biology systems. An
integrative analysis perspective combining different model checking approaches based on different property categories is
provided. The methodology is applied to the synthetic pulse generator system and several verification experiments are carried
out to demonstrate the use of our approach to formally analyse various aspects of synthetic biology systems.

Index Terms—formal analysis, verification, model checking, synthetic biology, synthetic pulse generator
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1 INTRODUCTION

Synthetic biology is an emerging discipline, which
provides an engineering perspective to biology. There
have been tremendous research efforts over the last
few years to develop computational models, engi-
neering methods and tools supporting this discipline.
Many software platforms have been introduced, in-
cluding CAD design tools, DNA construction tools,
part libraries, etc. [1] In particular, computational
design tools are very useful in this respect, because
they enable designing and analysing biological parts,
devices and systems in a computer-based environ-
ment. Namely, they can mimic in vivo experiments
as in silico experiments. This obviously provides a
significant advantage to reduce the costs and duration
of wet-lab experiments.

Various tools have been devised in this respect,
which integrate different computational methods for
analysing synthetic biology systems. Simulation is
one of them, which has been predominantly used.
Although simulation plays an important role to dis-
cover system behaviours, it can only reveal limited
information.

Formal verification, a computational method permit-
ting to analyse all system behaviours, is an alter-
native and complementary approach to simulation.
This requires an abstract representation of the system
as a formal model. The exhaustive analysis required
by this method allows revealing more comprehen-
sive information than simulation. Model checking is
an algorithmic verification technique, where a formal
representation of a system property is verified against
a mathematical representation of a model. Various
model checking approaches, and hence tools (e.g.,
NUSMV [2], PRISM [3], PLASMA [4], and MC2 [5])
have been devised to support automatic verification.
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Model checking has been applied to systems biology
extensively. Recently, a survey paper [6] summarises
the research in this area by presenting various bio-
systems analysed by different model checkers.

The information inferred via the use of model
checking depends on the types of properties querying
the model. A model checking approach is utilised to
verify certain property types, implying that while one
approach supports a certain property type, another
approach might not support it. This suggests the
use of different approaches when formally analysing
different property types – for instance qualitative vs
quantitative behaviour [7]. However, most of the
systems biology models have been analysed using a
single model checking approach. This limits inferring
more information about different aspects of a system.

As far as we know, the vast majority of the bio-
models analysed using formal verification methods
are within the scope of systems biology. There is
very limited effort to apply model checking in the
context of synthetic biology (e.g. [8]) or attempts the
extend the application of this verification approach
in systems biology to synthetic biology problems [7].
This might be due to the fact that synthetic biology
requires an engineering approach and adequate tools
in this respect.

Another drawback is that model checking is a very
daunting and tedious task for non-experts, because
it requires a very good understanding of the model
checking philosophy and a reasonable familiarity with
both modelling and property specification languages.

In this paper, to target these challenges, we will
propose a formal approach to analyse bio-systems,
in particular synthetic biology systems. This sug-
gests an integrative perspective combining different
model checking approaches based on different prop-
erty types and the use of some natural language
patterns to express various properties. This approach
makes the use of the model checking methods very
effective and easy to use, even for non-experts in for-
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mal methods, which is coherent with the engineering
viewpoint in synthetic biology [1].

Our Contribution
We can summarise the contribution of the paper
as follows: (i) we provide some guidance on how
verification can be applied to biological systems; (ii)
we describe a platform to analyse several property
categories by taking advantage of how they are sup-
ported by various model checking approaches; (iii) we
devise automatic translations of a system model into
the input formats of different model checkers, helping
non-experts in avoiding using various modelling lan-
guages; (iv) we feature a novel property construction
method, which enables an automated property con-
struction process using natural language query pat-
terns, making the property specification process very
accessible to non-experts; and (v) we demonstrate our
approach on a synthetic biology construct as a step
towards the effective use of formal verification in
synthetic biology systems.

The paper is organised as follows: Section 2 pro-
vides a brief overview of model checking. Section 3
discusses the methodology in detail. Section 4 de-
scribes a synthetic biology construct used as a case
study. Section 5 addresses the application of the
methodology to a pulse-generator case study and
shows the corresponding verification experiments car-
ried out. Section 6 draws conclusions and discusses
future work.

2 MODEL CHECKING

Model checking is an algorithmic verification technique,
which analyses the validity of a logically defined
property using mathematical techniques. It is a com-
plementary approach to simulation because, unlike
simulation, it requires an exhaustive exploration of all
system behaviours. The algorithms devised to explore
models’ state spaces are implemented in specific tools,
called model checkers.

A model checker requires a mathematical represen-
tation of its input model written in a high-level model-
ing language and a property to be checked expressed
as logical statements, e.g. temporal logic formulas [9].
The model checker then exhaustively analyses the
property against the model, and returns a ‘yes’ or ‘no’
answer depending on the outcome of this analysis. In
case of a failure in verifying the property, it returns a
counter example to the user, which can then be used
to trace back and correct any faulty segments in the
model.

Model checking has been widely used in the veri-
fication of various systems, e.g. concurrent [10] and
distributed systems [11], multi-agent systems [12],
pervasive systems [13] and swarm robotics [14]. Re-
cently, it has been also applied to analysis of various
biological systems, e.g. ERK/MAPK pathway [15],

FGF signalling pathway [16], cell cycle in eukary-
otes [17], EGFR pathway [18], T-cell receptor signal-
ing pathway [19], cell cycle control [20], and genetic
Boolean gates [21], [22].

Classical model checking techniques are mainly
used to infer qualitative information about the sys-
tem behaviour. However, there are other dimen-
sions/facets required to understand more complex
system behaviours [23]. In synthetic biology, as well
as the qualitative information, we also need to infer
quantitative information to obtain more novel infor-
mation about system properties.

Probabilistic model checking is a quantitative exten-
sion of classical model checking, which allows us to
analyse the likelihood of an event to occur, such as
the concentration of a species exceeding a threshold
value, rather than just a ‘yes’ or ‘no’ answer. The
quantitive approach also permits to draw graphs re-
garding the evolution of various species, which can
be used to search for any trends in their behaviour or
to find any anomalies.

Although model checking is very useful to derive
vital information about the system’s behaviour, it is
known to be very resource demanding. The approach
is not feasible when it is applied to very large models
because a huge state space needs to be constructed
and explored. This is especially the case for synthetic
biology models because, as we will show later, these
models are very large, containing compartments and
components, and in most cases they stretch the capa-
bilities of the model checking tools.

Statistical model checking is an alternative model
checking technique which, unlike probabilistic model
checking, does not require an exhaustive exploration
of all behaviours. Instead, the method is based on
constructing a finite set of system runs (i.e. simulation
traces) and then calculating the correctness as an
approximation using statistical techniques, such as
Monte Carlo. Whereas, in the case of the probabilistic
model checking, a precise verification result can be
obtained as a result of numerical analysis, in statistical
model checking we can only obtain an approximate
result. The accuracy is calculated based on specified
degree of confidence. However, the performance is
significantly improved.

2.1 NUSMV
NUSMV [2] is one of the most popular tools, used
to model check the correctness of finite state-based
systems. NUSMV models are constructed using a
high-level modelling language, called SMV, which
allows a modular and hierarchical system descrip-
tion. NUSMV can verify temporal logic statements,
expressed in Linear-time Temporal Logic (LTL) and
Computation Tree Logic (CTL). For example, the
property

Prop. 1. “GFP is produced as a response to the signal
3OC12HSL”
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is expressed in CTL as

AG (3OC12HSL > 0⇒ EF GFP > 0)

where A (E, resp.) is a path operator representing
that for all (for some, resp.) executions of the system,
and F (G, resp.) is a temporal operator representing
the eventually (always, resp.) modality, meaning that a
behaviour is eventually (always, resp.) true.

NUSMV implements symbolic methods to have a
more compact representation of the state space and
hence to reduce the computational resources required
to perform the verification.

We note that SPIN [24] is another widely used
model checking tool, developed to verify qualitative
(temporal) properties. SPIN provides complete sup-
port for LTL, but cannot express CTL properties.

2.2 PRISM
The mostly widely used probabilistic model check-
ing tool is PRISM [3]. The tool allows model check-
ing of various probabilistic systems, such as discrete
time Markov chains (DTMCs), Markov decision pro-
cesses (MDPs) and continuous time Markov chains
(CTMCs). Models are constructed using a state-based
high-level language, called reactive modules. Quantita-
tive properties are expressed using the probabilistic
temporal logic PCTL [25] and Continuous Stochas-
tic Logic (CSL) [26]. Both languages can express
quantitative statements, such as the probability of
occurrence of an event. CSL is in particular useful
to express steady-state properties. For example, the
property

Prop. 2. “What is the probability that the signal will
be available in the steady-state?”

This property can be formally expressed as

S=? [3OC12HSL > 0]

where S denotes the likelihood of a property to hold
in the steady-state. PRISM also extends its property
language with reward formulas. For example, the
property

Prop. 3. “What is the expected GFP at time t?”
is specified in PRISM as follows:

R{“GFP”}=? [I = t]

where R is the reward operator and I is the instanta-
neous time operator.

PRISM implements numerical methods (along with
symbolic methods) to verify PCTL and CSL proper-
ties. The tool also permits statistical model checking,
which relies on a discrete-event simulator. One partic-
ular drawback of the PRISM’s statistical model check-
ing component is that it allows only a restricted set
of properties to be verified. For example, steady-state
and complex properties with embedded operators are
not supported.

2.3 PLASMA

PLASMA [4] is a statistical model checker for prob-
abilistic systems. The tool uses a finite number of
simulations to approximate the likelihood that an
arbitrary simulation trace satisfies a property. The
user either provides the number of the simulation
runs, or it provides an error and probability, the tool
then calculates the necessary number of simulations
to ensure that the estimated result is within the error
bound with the given probability [4].

PLASMA supports several models, including
DTMCs and CTMCs. Properties are specified using
the logic BLTL, a bounded variation of linear
temporal logic (LTL) augmented with a probability
operator. BLTL allows temporal properties bounded
with time. For example, consider the following
property:

Prop. 4. “What is the probability that the 3OC12HSL
concentration exceeds m within t seconds?”

It can be translated to BLTL as follows:

P=?

[
true U≤t 3OC12HSL > m

]
where P is the probability operator representing the
likelihood of a property to hold, and U≤t is a temporal
operator representing the bounded until, meaning that
until the time point t.

2.4 MC2

MC2 [5] is another statistical model checking tool,
which relies on the Monte Carlo approximation. The
tool constructs a number of finite simulation traces,
used to calculate the likelihood of properties to hold.
The tool relies on PLTLc as the property specification
language, a probabilistic extension of Linear Temporal
Logic (LTL) with “numerical constraints over real
value variables”. MC2 allows the full formula set
of probabilistic properties, enriched with some addi-
tional functions such as maximum/minimum concentra-
tions of a species and “derivative of the concentration
of species at each time point” [5]. For example, in
MC2, we can express properties such as

Prop. 5. “It is true with a probability greater than
0.95 that GFP increases until it reaches the half of its
maximum concentration.”

This property can be translated to PLTLc as follows:

P>0.95

[
d[GFP] > 0 U [GFP] =

1

2
max[GFP]

]
where U is a temporal operator representing until,
d[GFP] and max[GFP] represent the derivative and
maximum concentration of GFP, respectively. The for-
mula then means that the GFP concentration increases
until a time point, after which it always reduces and
eventually reaches to the half of its maximum value.
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Fig. 1: A property-based methodology for model checking synthetic biology systems.

3 A PROPERTY-DRIVEN METHODOLOGY

As described above, model checking is used to infer
information about the system’s behaviour. Depending
on the type of analysis, we can ask various types
of questions. However, these queries might require
specific query languages. For example, while one
query requires an exact result, for some other query
it is sufficient to provide an approximate result.

In this section, we provide a methodology com-
prising different model checking approaches. This
methodology is novel in the sense that rather than
using a single method or tool it integrates different ap-
proaches so as to analyse different types of properties.
This makes our methodology more flexible and easier
to expand when new property types are considered.

The overall model checking methodology, which

is described in more detail below, is presented in
Figure 1. The individual components illustrated in
this figure have been developed, and the third party
model checking tools (free and open source) have
been employed. As will be reported later, some of
these components are already integrated into the cur-
rent release of the INFOBIOTICS WORKBENCH soft-
ware platform [8]. However, in this paper, our fo-
cus is the entire methodology, we therefore use the
individual components standalone, and evaluate the
methodology accordingly.

3.1 A Software Suit for Synthetic Biology

The INFOBIOTICS WORKBENCH (IBW) [8] is a software
platform to model and analyse synthetic biology sys-
tems. This integrates various tools, enabling different
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Category Example
Non-probabilistic The concentration of FIS decreases and then becomes steady in stationary phase [27].

GFP is preceded by the production of at least one of LacI or TetR [28].
Probabilistic What is the probability that FGFR relocates and FGF is bound when relocation occurs [29]?

What is the probability that the concentration of Raf-1/RKIP/ERK-PP complex will be less than M until
the Raf-1/RKIP complex reaches the concentration C [30]?

Reward What is the expected time taken before FGFR relocates [29]?
What is the expected time to reach a state in which all of the gates have finished executing [31]?

Bounded What is the probability that the monomer is at level i at time T [32]?
The fraction of PP-ERK stays below the threshold with a given probability during the first 300 seconds [19].

Functional The protein rises then falls to less than 100 mMol at 60 minutes [5].
The active RAS peaks within 2 minutes to a maximum of 20% of total RAS [5].

TABLE 1: Some example properties from the literature.

types of in silico experiments, e.g. simulation [22],
model checking [21] and optimisation as well as
graphical visualisation.

The IBW’s simulator, MCSS, allows stochastic simu-
lation or deterministic numerical integration of mod-
els based on multi-compartmental cells, whose dy-
namics are governed by a set of kinetic rules. In
addition to standard (single compartment) Gillespie
stochastic simulation algorithms (SSAs) [33], MCSS
also employs a multi-compartmental SSA [34], [22].
IBW allows graphical viewing of simulation results
in different formats, e.g. timeseries, histograms, 3D
heat/surface maps and animations.

IBW integrates some model checking tools to enable
formal analysis of temporal, dynamic, spacial and
probabilistic behaviour of stochastic systems. Proper-
ties of system models are formulated as probabilistic
logic formulas and automatically verified.

IBW also provides a model editor to create and edit
models written in a dedicated high-level language.
Another feature of IBW is that it translates the outputs
of the experiments to various different formats. This
permits to analyse the results using different tools
outside the workbench.

3.2 Properties
In this paper, we identiy five property categories,
non-probabilistic, probabilistic, reward, bounded and func-
tional, which are extensively recurred in formal anal-
ysis of biological models. Some example properties
from the literature are presented in Table 1. Each
category type requires a different model checking
approach.

3.2.1 Property categories
Category 1: Non-probabilistic properties are qualita-
tive properties, used to capture qualitative informa-
tion, in particular information regarding the reaction
pathways and the network topology. Quantitative
information, e.g. “concentration levels of species”, is
not the primary concern for this category. Prop. 1 is
an example of non-probabilistic properties.

Property specification: This type of properties contain
only temporal aspect. They can therefore be expressed
in LTL or CTL.

Model checking approach: Non-probabilistic properties
can be verified using a model checker which supports
LTL and CTL. Since the properties concern the net-
work topology, we must query all possible pathways,
which implies that the exact model checking result
must be provided. We therefore choose NUSMV,
which employs numerical methods to perform exact
verification. Since SPIN does not support CTL, we do
not consider it in the verification of the Category 1
properties.

Category 2: Probabilistic properties provide informa-
tion about the likelihood of the occurrence of an event,
e.g. “the concentration level of a species exceeds a
threshold value”. Here, we are particularly interested
in steady-state properties, as they are recurring prop-
erties analysed in biological systems. Prop. 2 is an
example of probabilistic properties.

Property specification: This type of properties contain
both temporal and probabilistic aspects. Such proper-
ties can be specified in PCTL or CSL.

Model checking approach: Probabilistic properties can
be verified using a model checker which supports
PCTL and CSL. Most properties in this category
require exact verification results. We choose the PRISM
model checker, because it supports both languages
and employs numerical methods. We therefore use
PRISM’s numerical approach to verify properties using
the corresponding techniques. Estimated results can
be calculated using PRISM’s statistical approach. How-
ever, the statistical approach supports a very restricted
subset of PCTL and CSL (for example, the steady-
state properties are not supported), we therefore do
not consider the statistical approach for the Category
2 properties.

Category 3: Reward properties provide quantitative
information regarding the expected concentration lev-
els of species. So, instead of a probability value, they
rely on precise concentrations or more complex reward
structures [3]. Prop. 3 is a typical example of reward
properties.

Property specification: Although it is not part of the
original language, PRISM extends PCTL and CSL
with reward formulas.
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Pattern Example
Existence The concentration of the signalling molecules exceeds 0.1 µM within 100 seconds.
Absence The concentration of the signalling molecules never reaches 0.1 µM within the first 100 seconds.
Universality The concentration of the signalling molecules is always below the threshold with a probability greater than 0.9.
Recurrence The reporter protein is repeatedly produced when signalling molecules are introduced.
Steady-state In the steady state, the concentration of the signalling molecules is more than 0.1 µM.
Until The reporter gene will not be expressed until the concentration of the inducer is greatar than 0.2 µM.
Response The production of the transcriptional regulator is followed by the production of the reporter protein.
Precedence The production of the reporter protein is preceded by the production of the transcriptional regulator.
Reward The expected concentration of the reporter protein at the time instant 100 seconds exceeds 1.0 nM.

TABLE 2: Property patterns that the NLQ tool features.

Existence Absence Universality Recurrence Steady-state Until Response Precedence Reward

non-probabilistic

probabilistic

reward

bounded

functional

TABLE 3: Property categories vs. property patterns

Model checking approach: This type of properties can
be verified both numerically and statistically. Since we
deal with the expected values, the exact verification
results are not required. In order to benefit from
its computational advantage, we therefore employ
PRISM’s statistical approach to verify reward proper-
ties. We note that MC2 and PLASMA do not support
reward-based formulas.

Category 4: Bounded properties specify transient
properties, i.e. properties constrained by time. While
unbounded properties can express statements such as
“an event eventually occurs”, bounded ones express
properties holding within a certain time bound, e.g.
“an event occurs within a certain time”. Prop. 4 is an
example of this category.

Property specification: Bounded properties contain tem-
poral operators constrained by a time bound. BLTL,
a bounded variant of LTL, can express such proper-
ties, because it contains bounded temporal operators.
BLTL also employs a probability operator, allowing
to specify properties such as those similar to Prop. 4.

Model checking approach: To verify bounded properties,
we employ the PLASMA model checker. Here, we
assume the exact verification results are not required.
PLASMA can verify BLTL properties using some sta-
tistical techniques, and provides an approximate re-
sult for verification. We note that PRISM also allows
verifying bounded properties. But, because of high
computational resources demanded, it should be used
only when precise verification results are needed. On
the other hand, the tool’s statistical approach supports
a very restricted set of bounded properties. MC2
allows constraining formulas based on the number

of computation steps, but it does not capture ‘time
bounds’ required by these properties.

Category 5: Functional properties allow specification
of probabilistic properties, enriched with some func-
tions such as maximum/minimum and decrease/increase
of the concentrations of species. As an example, we
can consider Prop. 5.

Property specification: Such properties can be expressed
in PLTLc, a probabilistic extension of LTL with nu-
merical constraints.

Model checking approach: To verify the properties of this
category, we employ the MC2 tool. MC2 provides
approximate results, calculated using the Monte Carlo
approximation. Here, we assume the exact verification
results are not required. We remark that none of the
formalisms and tools used in previous categories can
be used to verify Category 5 properties.

3.2.2 Property building
Model checking tools require system properties to
be specified in a logical formal syntax. Expressing
properties in a logical formalism is a cumbersome and
error-prone process even for experts. In most cases,
logical formulas are not clear and intuitive enough to
capture their meanings.

In order to facilitate the property building process,
we feature a natural language query (NLQ) tool, which
constructs properties from a predefined set of prop-
erty patterns. The idea is that using a graphical user
interface, the user selects a pattern in the form of a
predefined natural language statement and provides
the necessary values (e.g. concentration amounts and
time bounds), then the tool automatically converts
the pattern to its formal counterpart based on the
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Pattern Natural language statement
Until #expr2 will eventually hold [ within time bound (#t1, #t2) ] until then #expr1 holds [ with a probability #op #p ]
Response #expr1 is always followed by #expr2 [ within time bound (#t1, #t2) ] [ with a probability #op #p ]
Steady-state #expr will hold in the steady-state [ with a probability #op #p ]
Reward The expected reward for #species at time instant #t has the bound #op #r

TABLE 4: Natural language statements of a subset of property patterns.

Property Pattern Translation Assignments
Prop. 1 Response AG ( #expr1 ⇒ EF #expr2) #expr1: 3OC12HSL > 0, #expr2: GFP > 0
Prop. 2 Steady-state S#op #p [#expr ] #expr: 3OC12HSL > 0, #op #p: =?
Prop. 3 Reward R{“#species”}#op #p [I=#t] #species: GFP, #op #p: =?, #t: t
Prop. 4 Until P#op #p [#expr1 U[#t1, #t2] #expr2 ] #expr1: true, #expr2: 3OC12HSL > m, #op #p: =?, #t1: 0 #t2: t
Prop. 5 Until P#op #p [#expr1 U #expr2 ] #expr1: d[GFP] > 0, #expr2: [GFP] = 1

2
max[GFP], #op #p: > 0.95

TABLE 5: Property construction using the patterns.

target model checker selected. The tool supports all
the logical formalisms and property categories used
in our methodology. It is very flexible as it can be
expanded easily when a new property category is
added or a new target logic is required. The NLQ
tool is compatible with the input/output formats of
IBW. For example, it can parse an IBW model to
extract the model variables, displayed to the user to
construct atomic expressions. So, the tool’s outputs
can be directly used in IBW to perform verification.

Table 2 presents the list of patters, currently em-
ployed in the NLQ tool. These patterns have been
derived from the most frequently used properties in
systems biology. The idea of introducing patterns for
recurring properties have been suggested in some pre-
vious studies e.g., [35], [36], [37], [38], [39], [40], where
several pattern systems have been defined for differ-
ent property categories, e.g. non-probabilistic, probabilis-
tic, etc. Here, we introduce a novel approach, based
on a different clustering mechanism, which associates
property patterns to property categories. So, unlike the
previous approaches, viewing property patterns in
one dimensional line (for a particular category type),
we view property patterns and property categories
from the two-dimensional perspective. Table 3 shows
how property patterns listed in Table 2 matches the
category patterns. Our approach allows us to define
different pattern sets for different property categories,
which facilitates the use of an appropriate model
checker for each property pattern.

In Table 3, some patterns are not defined for some
category types. For example, the ‘non-probabilistic’,
‘probabilistic’, ‘bounded’ and ‘functional’ categories
do not employ the reward operators; hence these cat-
egories do not cover the ‘Reward’ pattern. Similarly,
the ‘bounded’ category does not have the operators to
express the ‘Steady-state’ and ‘Recurrence’ patterns,
because these two patterns require unbounded oper-
ators.

We now explain the property construction in more
detail. The NLQ tool contains a pre-defined set of
property patterns. Table 4 presents a subset of these
patterns, from which we can construct Prop. 1–5.

When a user selects a pattern type, the tool automat-
ically displays the corresponding natural language
statement. The user then fills in the fields written in
bold using the GUI provided. The tool can read and
parse an IBW model and extracts all model variables.
The expressions (e.g. #expr1 and #expr2), which rep-
resent atomic state formulas, can then be constructed
using the model variables.

In the table, the patterns presented appear only in
the relevant context. For example, the ‘Reward’ and
‘Steady-state’ patterns will only appear in the case
of PRISM. [ within time bound (#t1, #t2) ] (where
#t1 and #t2 are integer values), [ with a probability
#op #p ] (where #op ∈ {<,>,=,≤,≥} when #p
∈ [0, 1], or #op #p is =?) are optional fields, which
also appear in the relevant context. For example, [
with a probability #op #p ] does not appear for
NUSMV. Similarly, the functions ‘max’ (denoting the
maximum), ‘min’ (denoting the minimum) and ‘d’
(denoting the derivative) are only available (when
constructing expressions) for MC2. In this way, we
take care of presenting the correct form of any selected
pattern and making the correct translation into the
target model checker based on the optionally chosen
probability and time bound fields.

Table 5 shows Prop. 1–5 are obtained by instantiat-
ing the patterns presented in Table 4.

3.3 Models
To make the modelling task easy, a synthetic biology
system should be modeled in an amenable formalism.
In several case studies [41], [34], [8], it has been shown
that Lattice Population P (LPP) systems are an intuitive
and well-structured modelling formalism, suitable for
synthetic biology. In this methodology, we therefore
take LPP systems as our biomodel language.

3.3.1 LPP Systems
Many biological models are multi-cellular by design,
where communication between cells is the key factor
to run the overall system. For example, it is the sig-
nalling molecule 3OC12HSL that provides communi-
cation between bacteria and triggers quorum sensing
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within different cells. It is therefore essential to adapt
a multi-cellular approach in the modelling language.

LPP systems [34], [8] are a a ruled-based mod-
elling formalism, based on stochastic and multi-
compartmental extension of P systems [42]. An LPP
system consists of (i) a finite set of objects repre-
senting system entities (genes, proteins, promoters,
RNAs, etc.), (ii) a finite set of labels naming mem-
branes, (iii) initial configuration of the system (initial
concentrations, etc.), (iv) membrane structure (a set of
membranes representing regions) and (v) a set of
multiset writing rules representing kinetic rules be-
tween species/molecules (gene regulation, complex-
ation, degradation, etc.).

The IBW tool suit accepts system models written
in a high-level modelling language, defined for LPP
systems. For example, the expression of two proteins
from a transcription unit containing two genes is
written in this language as follows:

ProteinExpression({X,Y},{c_1,c_2,c_3},{l}) =
{
rules:
r1: [ gene_X_Y ]_l -c_1-> [ gene_X_Y + mRNA_X_Y ]_l
r2: [ mRNA_X_Y ]_l -c_2-> [ mRNA_X_Y + X ]_l
r3: [ mRNA_X_Y ]_l -c_3-> [ mRNA_X_Y + Y ]_l
}

LPP systems also allow a spacial representation.
Namely, an LPP system embodies a two-dimensional
geometric lattice. For example, the following lattice
representation places the different bacterial strains
over the colony by distributing copies of the bacterial
strain 1 in the upper and lower boundaries of the
lattice, and the strain 2 in the rest of the lattice.

spatialDistribution
positions for bacteria_1

parameters
parameter i = 0:1:10
parameter j = 0:10:10

endParameters
coordinates

x=i
y=j

endCoordinates
endPositions
positions for bacteria_2

parameters
parameter i = 0:1:10
parameter j = 1:1:9

endParameters
coordinates

x=i
y=j

endCoordinates
endPositions

endSpatialDistribution

In addition to the rules governing the kinetics
within a cell, the language enables specifying translo-
cation rules representing the transmission of objects
between cells in the lattice. This makes the communi-
cation between cells possible.

The language also allows modularity and re-
usability by providing libraries of re-usable modules.
A library contains a collection of modules (usually

generic), and once created the modules within the
library can be instantiated with different species and
kinetic rates. Libraries can be also used in different
models.

Since LPP systems enable specifying multi-
compartmental, discrete and stochastic dynamics,
it is a suitable modelling approach for synthetic
biology.

3.3.2 Model translation

A typical model checker requires a mathematical
representation of its input model written in a high-
level modeling language. However, this is not an easy
task for non-experts because (i) they must be very
familiar with the modelling languages of all model
checkers employed, and (ii) the representations in all
the languages must be the same. Not surprisingly, this
should not be expected from a non-expert.

In our methodology, we therefore consider the au-
tomatic translation of a synthetic biology model to
the modeling languages of the model checkers we
employ. Namely, once a model is provided in the form
of LPP systems, the necessary inputs to these tools
are automatically generated. So, users do not need
to know anything about the syntax of the languages.
The translators take care of the necessary translations,
upon which the tools are called and verification ex-
periments are performed automatically.

We have implemented the translators to generate
the necessary inputs for the PRISM, PLASMA, MC2
and NUSMV tools.

3.3.3 Model reduction

Model checking has a well known problem: state
explosion. Namely, the state space of a model can ex-
pand very quickly, which might make model checking
very inefficient, and even impossible for some large
models (as in the case of synthetic biology models).
As discussed above, one solution is to use statistical
model checking. However, if the exact verification
results are required (as in the case of the Category
1 and Category 2 properties), we need to consider
alternative methods.

A good strategy to relieve the effect of the state
explosion problem is reducing the size of the state
space. In our methodology, we devise three methods
to do this:

(i) Reducing variable bounds: The state space is very
sensitive to the ranges (i.e. lower and upper bounds)
that model variables can take. In a typical biological
system, it is almost not possible to know the precise
ranges for products (and some reactants). In the for-
mal model that a model checker receives as input,
we therefore must provide estimated ranges for these
species. If we use unrealistic bounds for variables, the
resulting state space will be very large.
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Fig. 2: Propagation of GFP along the bacterial colony (generated in IBW).

To eliminate this problem, we have devised a
method that automatically predicts reasonable bounds
for model variables. The method first generates a set
of simulation traces, which are then analysed using
an invariant detector tool to determine the maximum
and minimum values of model variables. These values
are then used as the lower and upper bounds. This
method (i) saves users from providing bounds for
model variables (a very tedious task for models with
too many species) and (ii) prevents the increase in the
state space caused by unrealistic bounds.

We have implemented this method using the
DAIKON tool [43], which finds out mathematical prop-
erties (e.g. x ≤ 10 and y ≤ 2x) in a program. DAIKON
is originally developed to find invariants in high-level
programming languages e.g. C, C++ and Java. How-
ever, it has been also used to report invariants from
simulation traces [44], where it is used to facilitate the
specification of temporal properties, and to produce
the boundaries of the simulated system together with
other properties [45]. In this methodology, we extend
the work of [45], [44] by adjusting it to accept the
outputs of PRISM’s discrete event simulator.

Daikon can report many types of invariants, such
as arithmetic (y > 3x), non-zero (e.g. x 6= 1), element of
(e.g. x is one of {0, 1, 2}) and interval (e.g. 0 ≤ x ≤ 10).
The tool can also find some redundant invariants (e.g.
x == x). However, it employs a filtering mechanism
that permits omitting redundant and unwanted in-
variants to be returned. In this way, we can only
obtain the upper bound (e.g. x ≤ 2) and lower bound
(e.g. x ≥ 0) invariants.

We remark that this method is only applied to
the Category 2 properties. The Category 1 proper-
ties are verified against non-probabilistic models. We
can therefore ignore the kinetic aspect and consider
Boolean values for model variables [28], [46].

(ii) Resizing concentration levels: Reducing variable
bounds prevents increasing the state space as a result

of unrealistic bounds. However, the system might still
operate on high concentration levels. Modeling the
exact concentration levels has a profound effect on
the state space.

As a complementary approach to reducing variable
bounds, we have devised a method which resizes all
concentration levels by the same factor. To keep the
kinetic behaviour same, we also slow down reactions
by scaling down the kinetic constants by the same
factor.

Currently, this method is applied to LPP models
manually. An automatic deployment of the method is
under construction.

(iii) Simplifying the kinetic rules: Non-probabilistic
models can also be simplified by replacing a long
chain of reactions by a simpler rule set which will
capture the starting and ending parts of this chain,
and hence eliminating species that do not appear in
the new rule set. With this transformation we can
achieve a simplification of the state space, but also of
the number of transitions associated with the model
[46].

4 A SYNTHETIC BIOLOGY SYSTEM:
PULSE-GENERATOR

In this section, we will describe a synthetic biology
construct, to which our methodology will be applied.
The pulse-generator is a synthetic bacterial colony con-
structed by Weiss et. al [47], [48]. The system first
produces a signalling molecule, which triggers the
expression of the green fluorescent protein (GFP), and
then propagates GFP along the bacterial colony (see
Figure 2). The pulse generator consists of two types
of cells, sender and pulsing cells (see Fig. 3), which are
described as follows [8]:

“Sender cells contain the gene luxI from
Vibrio fischeri. This gene codifies the enzyme
LuxI responsible for the synthesis of the
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Fig. 3: The sender and pulsing cells of the pulse generator system (reproduced from [8]).

molecular signal 3OC12HSL (AHL). The luxI
gene is expressed constitutively under the
regulation of the promoter PLtetO1 from
the tetracycline resistance transposon.”

“Pulsing cells contain the luxR gene from
Vibrio fischeri that codifies the 3OC12HSL
receptor protein LuxR. This gene is under
the constitutive expression of the promoter
PluxL. It also contains the gene cI from
lambda phage codifying the repressor CI
under the regulation of the promoter PluxR
that is activated upon binding of the tran-
scription factor LuxR_3OC12. Finally, this
bacterial strain carries the gene gfp that cod-
ifies the green fluorescent protein under the
regulation of the synthetic promoter PluxPR
combining the Plux promoter (activated by
the transcription factor LuxR_3OC12) and
the PR promoter from lambda phage (re-
pressed by the transcription factor CI).”

The sender and pulsing cells are placed along a lattice.
Sender cells are placed at one end and pulsing cells
are distributed at the remaining part of the lattice. We
have previously carried out some verification analysis
for the pulse generator system [8], but this was only
based on PRISM.

5 APPLYING THE METHODOLOGY TO THE
PULSE GENERATOR

In this section, we will apply our methodology to
the pulse generator construct. Before presenting the
experimental results, we will first describe the models
to be used in the verification experiments.

Stochastic model. We create an LPP model for two bac-
terial strains, which represent the stochastic behaviour
of each cell. The reaction rules describe the regulation
of the corresponding promoters used in the sender
and pulsing cells. The sender cells consist of 11 kinetic
rules, which model the production of the 3OC12HSL
signal, and the pulsing cells comprise 38 kinetic rules,

which capture the production of the GFP protein (as
a response to 3OC12HSL).

The geometry of the bacterial colony is described
by a lattice, where the sender and pulsing cells are
distributed over specific regions. The lattice is sur-
rounded by boundary cells, which serve as a buffer
for molecules emitted from the border cells. In our
experiments below, we consider a 5 × 10 lattice (in-
cluding the boundary cells), where the sender cells are
placed up to the first three columns of the lattice, and
the pulsing cells are distributed over the remaining
locations.

Non-deterministic model. This model is a qualitative
abstraction obtained from the stochastic model by
removing the kinetic constants of the reaction rules.
The model captures the entire reaction network and
all pathways; but quantitative aspects of the system,
e.g. the concentration levels of species, are not repre-
sented. It describes the presence of molecular species
rather than their concentrations.

We note that the complete models and experimental
results can be accessed at [49].

5.1 Category 1: Non-probabilistic properties
Non-probabilistic properties are queried (exhaustively)
against the non-probabilistic model (representing
the basic model for qualitative analysis) using the
NUSMV model checker.

We now verify Prop. 1, representing the depen-
dency between molecular species and the sequence
of events occurring on various reaction pathways.
The corresponding CTL formula can be automatically
built, as described in Section 3.2.2. Table 6 presents the
verification result for this property.

5.2 Category 2: Probabilistic properties
In this approach, probabilistic properties are exhaus-
tively checked against a reactive modules model, auto-
matically generated from the LPP (stochastic) model.
We remark that the approach is not feasible for
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Property Langauge Model checker Result
Prop. 1 CTL NUSMV TRUE
Prop. 2 CSL PRISM numerical 0.95
Prop. 3 CSL PRISM statistical Figure 4a
Prop. 4 BLTL PLASMA Figure 4b
Prop. 5 PLTLc MC2 TRUE

TABLE 6: Verification of property categories.

model state space constr. time
estimated bounds 3× 1011 62 sec.
reduced variable bounds 5× 105 0.1 sec.
reduced variable bounds +

9× 102 0.006 sec.resized concentration levels

TABLE 7: State space and model construction time for
three different models.

large models because of the computational resources
required. For example, the lattice we have defined
contains more than 1000 rules, so model checking
is not eligible for such a large model. We therefore
consider a single cell type.

Our methodology applies the model reduction
methods, presented in Section 3.3.3, to make the nu-
merical model checking more feasible. Table 7 com-
pares the sizes of the state spaces and the construction
times for three different models of a sender cell: (i)
variable bounds are assigned to an estimated value of
200; (ii) realistic upper bounds obtained from the in-
variant detector are used; and (iii) the reduced upper
bounds are used and they are resized by a scale factor
1/10. As shown in Table 7, applying both techniques
significantly reduces the state space, making model
checking more amenable.

We now verify Prop. 2, representing a steady-state
property, against the sender cell model described in
(iii). As discussed in Section 3.2.1, we assume that the
exact verification results are required for this category.
We therefore use PRISM’s numerical engine to verify
the property (expressed in CSL), whose result is given
in Table 6. The CSL formulas can be automatically
generated using the NLQ tool.

5.3 Category 3: Reward properties
To verify reward-based formulas, we automatically
generate simulation traces from the reactive modules
model, and use PRISM’s statistical model checking
engine. We remind that MC2 and PLASMA do not
support reward-based formulas. The reward formulas
(featured in PRISM’s property language) can be auto-
matically generated using the natural language query
patterns, as described in Section 3.2.2.

We now verify Prop. 3 to obtain the concentration
level of GFP. The verification result is illustrated in
Figure 4a, which clearly shows that GFP propagates
through the pulsing cells. Namely, GFP is produced
earlier in the pulsing cells close to the sender cells
than those further away.

5.4 Category 4: Bounded properties
Bounded properties are verified using the PLASMA
model checker. The stochastic model is automatically
converted to the input format of PLASMA. Also, the
BLTL properties are generated using the property
patterns in the NLQ tool. PLASMA then performs
verification using statistical methods.

Prop. 4 represents a transient property, which is
verified using this approach. The verification result
for t1 = t2 = T and m1 = 0,m2 = 200 is presented
in Figure 4b, which is inline with the propagation
behaviour described in Section 4. We remind that
PRISM’s statistical model checking does not support
Prop. 4 (in its general form), and MC2 does not
capture the time bounds specified in the property.

5.5 Category 5: Functional properties
We use MC2 to verify the properties of this type,
as the tool’s specification language, PLTLc, supports
some functions to query the quantitative information
such as the max/min and decrease/increase of the
species concentrations. The simulation traces are au-
tomatically generated from an LPP model, and PLTLc

properties are automatically constructed using the
NLQ tool.

Table 6 illustrates the verification result of Prop. 5.
The property is satisfied for all pulsing cells in the
lattice. We note that this property cannot be verified
using the other model checkers.

6 CONCLUSION

In this paper, we have proposed a methodology to
formally analyse bio-systems, in particular synthetic
biology systems. The methodology suggests an in-
tegrative perspective using different model checking
approaches based on the different property types. The
methodology has been applied to the synthetic pulse
generator. We have carried out several verification
experiments to illustrate the use of our approach.

The methodology facilitates the model checking
process by automating the model construction and
property generation. Also, integrating various model
checkers enables us to formally analyse different as-
pects of a system. This approach makes the model
checking process easier and more accessible to non-
experts.

The IBW software platform currently integrates the
model translation and property construction compo-
nents. Some of the model reduction methods, i.e.
resizing concentration levels and simplifying the ki-
netic rules, have not been integrated into the tool,
because we currently do not have algorithms, finding
optimal solutions for different models. As the current
and future work, we will integrate the remaining
unintegrated parts to the next release of IBW, and
demonstrate the approach on new state-of-art syn-
thetic biology systems. We are also working on some
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Fig. 4: Verification results at the consecutive rows in the lattice, where pulsing cells are distributed.

new features, e.g. high-performance simulators. All
these features will be available in the next release of
the platform.
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M. Gheorghe, C. Ladroue, and S. Kalvala, “Modelling and
stochastic simulation of synthetic biological boolean gates,”
in The 16th IEEE International Conference on High Performance
Computing and Communications, 2014.

[23] S. Konur and M. Fisher, “A roadmap to pervasive systems
verification,” The Knowledge Engineering Review, 2014.

[24] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions
on Software Engineering, vol. 23, no. 5, pp. 275–295, 1997.

[25] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal Aspects of Computing, vol. 6, pp. 102–
111, 1994.

[26] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen, “Model-
checking algorithms for continuous-time markov chains,” Soft-
ware Engineering, IEEE Transactions on, vol. 29, no. 6, pp. 524–
541, 2003.

[27] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu,
M. Page, and D. Schneider, “Validation of qualitative models
of genetic regulatory networks by model checking: analysis
of the nutritional stress response in Escherichia coli,” Bioinfor-
matics, vol. 21, no. suppl 1, pp. i19–i28, 2005.

[28] S. Konur, M. Gheorghe, C. Dragomir, F. Ipate, and N. Krasno-
gor, “Conventional verification for unconventional computing:
a genetic XOR gate example,” Fundamenta Informaticae, 2014.

[29] M. Kwiatkowska, G. Norman, and D. Parker, Symbolic Systems
Biology. Jones and Bartlett, 2010, ch. Probabilistic Model
Checking for Systems Biology, pp. 31–59.

[30] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton, “Analysis
of signalling pathways using the PRISM model checker,” in
Proc. Computational Methods in Systems Biology (CMSB’05), 2005,
pp. 179–190.

[31] M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and
A. Phillips, “Design and analysis of DNA strand displacement
devices using probabilistic model checking,” Journal of the
Royal Society Interface, vol. 9, no. 72, pp. 1470–1485, 2012.

[32] F. Ciocchetta and J. Hillston, “Bio-PEPA: A framework for
the modelling and analysis of biological systems,” Theoretical
Comput. Science, vol. 410, no. 33-34, pp. 3065–3084, 2009.

[33] D. Gillespie, “A general method for numerically simulating
the stochastic time evolution of coupled chemical reactions,”
Journal of Computational Physics, vol. 22, no. 4, pp. 403–434,
1976.

[34] F. J. Romero-Campero, J. Twycross, M. Camara, M. Bennett,
M. Gheorghe, and N. Krasnogor, “Modular assembly of cell
systems biology models using P systems,” International Journal
of Foundations of Computer Science, vol. 20, no. 03, pp. 427–442,
2009.

[35] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in Proceed-
ings of the 21st international conference on Software engineering,
ser. ICSE ’99. ACM, 1999, pp. 411–420.

[36] L. Grunske, “Specification patterns for probabilistic quality
properties,” in Proceedings of the 30th international conference on
Software engineering, ser. ICSE ’08. ACM, 2008, pp. 31–40.

[37] P. T. Monteiro, D. Ropers, R. Mateescu, A. T. Freitas, and
H. de Jong, “Temporal logic patterns for querying dy-
namic models of cellular interaction networks,” Bioinformatics,
vol. 24, no. 16, pp. i227–i233, 2008.

[38] P. Bellini, P. Nesi, and D. Rogai, “Expressing and organizing
real-time specification patterns via temporal logics,” Journal of
Systems and Software, vol. 82, no. 2, pp. 183–196, Feb. 2009.

[39] C. Dragomir, F. Ipate, S. Konur, R. Lefticaru, and L. Mierlă,
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