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Abstract

Computational models are perceived as an attractive alternative to mathematical

models, e.g. ordinary differential equations. These models incorporate a set of methods

for specifying, modelling, testing and simulating biological systems. In addition, they

can be analysed using algorithmic techniques, e.g. formal verification. This paper

shows how formal verification is utilised in systems and synthetic biology through

qualitative vs quantitative analysis. Here, we choose two well known case studies:

quorum sensing in P. aeruginosas and pulse generator. The paper reports verification

analysis of two systems carried out using some model checking tools, integrated to the
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Infobiotics Workbench platform, where system models are based on stochastic P

systems.

Introduction

Advances in our understanding of chemical and biological complexity are posed to open up a

new frontier in computing science. Indeed, what we like to call “algorithmic living matter”,

will lead to a new Bio-ICT revolution based on the ability to program all kinds of materials

in all kinds of environments at all scales, with engineered biological cells as the primary

workhorse of this brewing revolution. We are still, however, far away from the holy grail

of algorithmic living matter. This is so because, notwithstanding tremendous progress in

synthetic biology, we still lack the tools, both biotechnological and computational, that are

required to deliver highly calibrated and standardised bioparts and devices that could be

pluged-and-played seamlessly, scalably and dependably.

In software engineering, the concept of dependability1,2 includes such properties as reli-

ability, robustness and safety of software systems. In this paper we are concerned with the

later concept, namely dependability and in particular dependability of biomodels.

Model checking3 is at the cornerstone of software dependability. Model checking is a

computational technique exhaustively checking that a system satisfies certain requirements.

All extant tools for model checking require as a starting point a formal definition of “the

system” that will be analysed and queried. The method has been extensively used in the

verification of various systems. Recently, it has been also applied to formal analysis of

biomodels (e.g. ERK/MAPK pathway4). In order to initiate a wider exploration of these

concepts within the synthetic biology community, we focus on state-of-art model checking

tools and explore their potential and limitations for synthetic biology.

We have shown in5 that stochastic P systems6 are an amenable formalism to capture

a biomodel as it is both intuitive (as it follows a rule-base modeling philosophy) and well
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structured. The later is important as it allows us to automatically translate a biomodel

specification written in stochastic P systems to a model checking domain specific language

(DSL) in a rather straight forward manner.

In this paper we take that approach, namely, we specify two well known biological sys-

tems, one arising from systems biology (P. aeruginosas quorum sensing) and one from syn-

thetic biology (pulse generator). We use the Infobiotics Workbench tool,7 which is

based on stochastic P systems, to model the systems and formally analyse them using some

model checkers integrated into the workbench. We show how formal verification is utilised

in systems and synthetic biology by interplaying qualitative vs quantitative analysis. We

also address scalability issues using two case studies.

The paper is organised as follows: We will first provide an overview of Infobiotics

Workbench and stochastic P systems. This is followed by a brief description of model

checking. After describing the quorum sensing and pulse generator systems, we will discuss

the model checking experiments carried out and analyse the results. We will finally draw

conclusions and suggest areas of future work.

Infobiotics Workbench

The Infobiotics Workbench (Ibw) tool8 permits rapid bio-model prototyping and spec-

ification, simulation, verification, analysis and optimisation. This is an integrated software

suite consisting of individual components responsible for various functions. These are exe-

cuted from the Infobiotics Dashboard, which also helps visualising results in time and space.7

In Ibw, system models are constructed using a rule-based specification language, called

stochastic P systems. Stochastic P systems are utilised to specify (multi-)cellular systems

and molecular interactions taking place in different locations of the living cells or across cells

within a population. With these models there is a clear mapping of different locations of

biological systems into “compartments” delimited by membranes that have a formal rep-
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resentation within the stochastic P system language. Each molecular species is associated

with an object in the multiset corresponding to a membrane mapping the region or compart-

ment where the molecule is located. Depending on the complexity of these species, various

object types are utilised, including simple symbols or strings. Strings are also utilised to

represent the genetic information encoded by macromolecules such as RNA, DNA, proteins,

etc. Different simple molecular interactions or more complex gene expression, compartment

translocation, as well as cell division and death are specified using object and string rewriting

or communication, and compartment division or dissolution. These rules deal with multisets

of objects rather than objects.

Many P systems use these features in building a model. In the case of a stochastic P

systems, constants, called kinetic constants, are associated with rules in order to compute

their probabilities and time needed to be applied, according to Gillespie algorithm.9 This

approach is based on a Monte Carlo algorithm for stochastic simulation of molecular inter-

actions taking place inside a single volume or across multiple compartments. Stochastic P

systems representing models of individual living cells can be associated with different ge-

ometries or topologies for modelling multicellular systems with their interactions. One such

geometry is a grid of cells which can be represented by a lattice and inside each component

of it resides a membrane with stochastic behaviour. In this case, the communication is only

among neighbours. In our examples, we will use stochastic P systems containing only simple

objects, unicellular or multi-cellular structures. In the pulse generator system, we also use a

lattice to represent the geometry.

Related Work. We have shown10 that stochastic P systems cannot only be linked to

stochastic algorithms but also to coarsed grained molecular simulations, e.g. Dissipative Par-

ticle Dynamics, in order to model chemical processes taking place inside chemical miscelles

and vesicles. In5 we have shown how this biolanguage can be used to specify increasingly

complex models by reuse of rules’ “modules” capturing key biological processes such as tran-
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scription regulation, enhanced degradation rates due to addition of degradation tag fusions

to gene products, riboswitch controls, etc. Furthermore, due to its well structured syntax

and clear semantics, it is possible to apply in silico directed evolution over the specifications

in stochastic P systems and evolve circuits matching specific phenotypes.11,12

Model checking

Model checking is an algorithmic technique which formally demonstrates the correctness of

a system by means of strategic and exhaustive state space investigation. The technique is

based on building a mathematical model of the system in question. The properties to be

verified are expressed in specific logical expressions, called temporal logic formulas, and then

checked against the model.

Model checking tools allow analysing various temporal logic properties in an automatic

way. The method has been extensively used in the verification of various systems, e.g. con-

current13 and distributed systems,14 multi-agent systems,15 pervasive systems16 and swarm

robotics.17 Recently, it has been also applied to analysis of various biological systems, e.g.

ERK/MAPK pathway,4 FGF signalling pathway,18 cell cycle in eukaryotes,19 EGFR path-

way,20 T-cell receptor signaling pathway,21 cell cycle control,22 diabetes-cancer signaling

network,23 and genetic Boolean gates.24,25

Two types of verification approaches are utilised in this paper, a qualitative analysis

and a quantitative one.4 In the former all the possible behaviour pathways are considered

and the presence or absence of different species, in certain conditions, is detected or certain

sequences of events are verified. In the latter the appearance of certain amounts of species

is checked in accordance with certain conditions.

Figure 1 shows the taxonomy of the model checkers used in this paper.
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Model Checkers

Qualitative Quantitative

NuSMV Numerical  Statistical  

Prism  MC2  

Spin 

Figure 1: Taxonomy of the model checking tools discussed in the paper.

Qualitative model checking

A model checker requires an unambiguous representation of its input model, together with

a set of correctness claims (i.e. properties) generally expressed as temporal logic formulae.

In qualitative model checking, the correctness result is returned categorically, i.e. a ‘yes’ or

’no’ answer. In case of ‘no’, a counter-example is returned to help users find out why the

model does not satisfy the correctness claim.

In this paper, we explore the use of two qualitative model checkers: Spin and NuSMV.

Spin26 is a widely used model checking tool and is particularly suited for models of concurrent

and distributed systems, described by means of interleaved atomic instructions. It features

a high level modelling language, called Promela, which specializes in concise descriptions

of concurrent processes and interprocess communication. A practical and convenient aspect

of the language is the use of discrete primitive data types and custom data types similar

to the those in C, allowing fine grain model details or low level implementation features to

be directly expressed as part of the model. Spin provides complete support for Linear-time

Temporal Logic (LTL) and its on the fly verification procedure which avoids the necessity

to generate the global state space prior to the search for satisfiability.

NuSMV27 is another popular model checking tool, designed to verify synchronous and
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asynchronous systems. NuSMV’s high-level modelling language is based on Finite State

Machines (FSM) and allows the description of systems in a modular and hierarchical man-

ner. NuSMV supports the analysis of specification expressed in Linear-time Temporal Logic

(LTL) and Computation Tree Logic (CTL). NuSMV employs symbolic methods, allowing

a compact representation of the state space to increase the efficiency and performance. The

tool also permits conducting simulation experiments over the provided FSM model by gen-

erating traces either interactively or randomly.

Quantitative model checking

As described above, qualitative model checkers can only provide categorical information, i.e.

a ‘yes’ or ‘no’ answer. However, for most systems, especially synthetic biology models, we

want to know more about the quantitative nature of the system - concentration of certain

molecular species, temporal and spatial relationships involving such values, dependencies

between them.

Quantitative analysis provides us more precise and valuable information about the system

dynamics. Probabilistic model checking augments classical model checking with numerical

analysis techniques to infer quantitative information about system properties, e.g. “the

likelihood that a protein will be synthesised”. The numerical characteristic of quantitative

properties allows us to observe any trends or abnormalities in the system behaviour.

In this paper we will use Prism and MC2 as quantitative model chequers. Prism28 is

the mostly widely used probabilistic model checker. The tool supports several models, e.g.

discrete time Markov chains (DTMCs), Markov decision processes (MDPs) and continuous

time Markov chains (CTMCs). The tool accepts system models in a dedicated state-based

high-level language. The Prism language is mainly composed of a set of state (and global)

variables, commands and modules. Each module represents a part of the system. Modules

interact with each other and they collectively define the overall system behaviour.

As for probabilistic properties, Prism supports PCTL29 (a probabilistic extension of
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CTL) and Continuous Stochastic Logic (CSL30). Both languages employ special operators

to express quantitative information. As well as numerical methods, Prism employs symbolic

methods to improve the model checking efficiency.

Despite its usefulness in system analysis, model checking has a major drawback: scalabil-

ity. Since model checking is essentially an exhaustive state space search, it cannot cope with

very large state spaces. In another words, the model size has a big impact on the feasibility

of the approach.

To overcome this issue, an alternative model checking approach, statistical model check-

ing, has been proposed.31 Unlike standard model checking approach, statistical model check-

ing does not require numerical and symbolic techniques. The idea is that a number of sim-

ulation traces are generated, and the correctness is approximated using statistical methods,

e.g. Monte Carlo. This implies that we cannot obtain the exact verification results, but the

accuracy can only be calculated to a specified degree of confidence, based on the number

of independent simulation runs. Although the accuracy is not as precise as the numerical

approach, the performance of the model checking process is immensely improved.

As well as (numerical and symbolic) probabilistic model checking, Prism also supports

statistical model checking using its discrete event simulator. However, the statistical version

of the tool allows only a restricted set of property types to be model checked. For example,

we cannot model check steady-state properties.

MC232 is another statistical model checker, which allows a richer set of properties to be

model checked. As well as the full formula set of probabilistic temporal logic, we can also

express properties regarding the quantities such as maximum/minimum values of a species

and decrease/increase of concentrations. To carry out statistical model checking using MC2,

we can reuse previous simulation results, or can generate a larger set of simulation traces to

achieve higher confidence in the model checking results.

Both Prism and MC2 are integrated to the Ibw platform, which constructs the necessary

model checking inputs automatically. However, NuSMV and Spin are not integrated at
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the moment. In addition to a formal representation of models, model checking tools also

require system properties to be verified in a logical formal syntax. Ibw also features a natural

language query tool with a GUI which allows formal properties expressed in natural language

using some predefined patterns.7

Biological models

In this section, we will describe two biological models to be analysed using formal verification.

We have chosen two well known cases, one derived from systems biology (quorum sensing in

P. aeruginosas) and one derived from synthetic biology (pulse generator). We do this so we

can focus on our analysis methods rather than in the intricacies of a putative new biological

system.

Quorum sensing

Our first model is a well-known example in systems biology, quorum sensing. Quorum

sensing (QS) is a communication mechanism of bacteria, working based on some signalling

molecules. Once the QS process is activated, the concentration of the signalling molecule

is an indicator of the number of cells in the colony.33 QS has been designed and studied

in numerous papers. Here, we will focus on the construct designed by Saeidi et. al.34 The

authors designed a quorum sensing device which can sense the pathogenic Pseudomonas

aeruginosa bacteria, and upon detection it illuminates green fluorescent protein (GFP).

Figure 2 illustrates the quorum sensing device and its corresponding design. The system

can be briefly described as follows:34

“The TetR promoter (pTetR), which is constitutively on, produces a transcrip-

tional factor (LasR) that binds to AHL (3OC12HSL). The LuxR promoter (pLuxR),

to which LasR-AHL activator complex binds, serves as the inducible promoter in
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our sensing system. The formation of the LasR-AHL complex, which binds to the

LuxR promoter, leads to the production of GFP as the reporter protein.”

pTetR LasRRBS

LasR

AHL

pLuxR GFPRBS

GFP

AHLLasR

Figure 2: The genetic parts and design of the quorum sensing model (redrawn from34 with
permission).

To analyse different aspects of the quorum sensing system, we consider two variations of

the model: a rule-based stochastic model and non-deterministic model.

Stochastic model

The stochastic model comprises a set of rules, which govern the kinetic and stochastic be-

haviour of the system. The reaction rules and the corresponding kinetic rate contents are

provided in Table 1.

In Table 1, the kinetic constant k is dynamically calculated at each step according to the

following formula:34

k =

(
k7 +

k8 × [A pluxRR]n1

kn1
9 + [A pluxRR]n1

)
×
(
k10 +

k11 × [A pluxRR]n2

kn2
12 + [A pluxRR]n2

− [GFP]

)
where the entity [a] denotes the concentration of the species a. The reaction constants used

in the formula above is given in Table 2.
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Table 1: Reaction rules for the QS model.

Rule
Stochastic
constant

r1a Ptet LasR
k1a→ mRNA LasR k1a = 3.734 min−1

r1b mRNA LasR
k1b→ Ptet LasR k1b = 3.48E-1 min−1

r2 mRNA LasR
k2→ LasR k2 = 35.7 min−1

r3 LasR
k3→ k3 = 6.96E-2 min−1

r4a LasR + AHL
k4a→ LasR-AHL k4a = 9.6E6 min−1

r4b LasR-AHL
k4b→ LasR + AHL k4b = 0.0 min−1

r5a LasR-AHL + pLuxR
k5a→ A pluxRR k5a = 1.96E6 min−1

r5b A pluxRR
k5b→ LasR-AHL + pLuxR k5b = 10.2 min−1

r6 AHL
k6→ k6 = 2.832E-4 min−1

r7 A pluxRR
k→ GFP k

Table 2: Kinetic constants for the rule r7 .

constant value constant value
k7 4.051E-3 k11 1.0E-14 min−1

k8 9.567E-3 k12 2.4E-7 min−1

k9 9.742E-8 n1 2.0
k10 6.5E-16 n2 2.0

Non-deterministic model

The non-deterministic model is directly derived from the stochastic model by taking out

the kinetic constants. This model describes all the interactions provided by its stochastic

counterpart, but in a rather symbolic and qualitative way than showing more precise quan-

titative aspects of the system. All the possible pathways of the system are captured by the

model, but as the precise concentration of certain molecular species is not a key issue for

these models, in certain circumstances the multisets are bounded, even restricted to one or

two elements, describing their presence rather than their molecular concentration.
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Pulse-Generator model

The pulse generator is a colony of synthetically programmed bacteria, studied in Basu et

al.35 The system is composed of two sets of sender and pulsing cells (see Figure 3). The

sender cells produce a signalling molecule, propagated through the pulsing cells. The pulsing

cells express the green fluorescent protein (GFP) triggered by the signalling molecules, and

propagate the excess signalling molecules to the neighbouring cells.

PLtetO1 luxI

LuxI AHL

PluxL luxR PluxR cI PluxPR gfp

Sender Cell

CI

LuxR

GFP

Pulsing Cell

AHL AHL

LuxR

Figure 3: The sender and pulsing cells of the pulse generator system (redrawn from7).

Sender cells synthesize the signalling molecule 3OC6-HSL (AHL) through the enzyme LuxI,

expressed under the constitutive expression of the promoter PLtetO1. Pulsing cells express

GFP under the regulation of the PluxPR promoter, activated by the LuxR 3OC6 2 complex.

The LuxR protein is expressed under the control of the PluxL promoter. The GFP production

is repressed by the transcription factor CI, codified under the regulation of the promoter

PluxR that is activated upon binding of the transcription factor LuxR 3OC6 2.

In a colony, sender bacteria strains are located at one end of a specific spatial distribution,

e.g. lattice, and pulsing cells are located to the rest of the lattice.

Stochastic model

The stochastic behaviour of the pulse generator system is modelled using a set of stochastic P

system models. The language permits modelling a two-dimensional geometric lattice where
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“a population of stochastic P systems could be placed and over which molecules could be

translocated”.7

Each sender cell contains 11 reaction rules, which model the production of the signalling

molecule 3OC6-HSL. Each pulsing cells contains 38 reaction rules, which models the pro-

duction of the pulse of GFP protein as a response to the signal 3OC6-HSL. The geometry of

a bacterial colony containing both cell types is represented by a rectangular lattice. The

overall model of the pulse generator system is captured by “distributing cellular clones of

the sender cell strain at one end of the lattice and cellular clones of the pulsing cell strain

over the rest of the points”.7

Non-deterministic model

As for the previous model the kinetic constants are removed. In the case of a stochastic P

systems (with spacial information), the individual component models are compacted such

that an entire chain of reactions is replaced by one or a few simple rules. Consequently, the

overall number of interactions is reduced and all the species which do not appear in the new

set of rules are removed from the model. These changes are made in the non-deterministic

models as these are used for qualitative analyses where the concentration of certain molecules

is not significant or chain of reaction already analysed can be replaced by some abstractions

mimicking their behaviour through simpler rewriting mechanisms.

Experiments

In this section, we will discuss formal qualitative analysis of one systems and one synthetic

biology construct using the model checkers NuSMV (for the quorum sensing model) and

Spin (for the pulse generator model) to capture qualitative aspects of the system, and

quantitative analysis using the probabilistic model checkers Prism and MC2 to capture

stochastic and kinetic dynamics.
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Table 3: Main symbols in temporal logic formulas.

Temporal operator Informal meaning
F p p holds in some future state
G p p always holds in all future states
p U q p holds until q holds

Brach quantifier Informal meaning
E p for some paths (i.e. executions)
A p for all paths (i.e. executions)

Before discussing the experiments carried out, we present in Table 3 the main symbols

used in temporal logic formulas. Generally speaking, a property is constructed as follows:

branch quantifier + temporal operator + expression, e.g. AG (GFP ≥ thr).

In probabilistic temporal logics, we represent probabilistic properties with formulas of the

type P./ r [phi], which informally means that the probability of taking a branch satisfying

phi meets ./ r (where ./ ∈ {<,>,=,≤,≥} and r ∈ [0, 1]). In addition to the probabilistic

formulas, the Prism model checker also permits expressing reward-based formulas to cal-

culate expected values. For example, the reward formula R{“X”}=?[I = t] calculates the

expected value of X at the time instant t.

We note that the complete model and experimental results of the pulse generator can

be downloaded.36 These include LPP model files, simulation parameters, simulation results,

Prism model file, model checking parameters, a list of Prism properties and model checking

experimental results. The experimental results and source files of the quorum sensing model

can also be accessed.37

Quorum sensing model

Qualitative Model Checking

In accordance with the genetic parts and the design of the quorum sensing system presented

in Figure 2, the model consists of a chain of reactions. For instance, one can verify the

appearance of GFP later in the system, but not at the beginning, or the fact that the protein
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LasR binds to the signal molecule AHL (3OC12HSL) and the obtained complex, which binds

to the LuxR promoter, will eventually lead to the production of the GFP reporter protein.

These are expressed below, by using formulas expressed in LTL or CTL for the model

checker chosen in this respect.

Property 1. There are pathways in the system that eventually lead to producing GFP.

EF (GFP > 0).

This property, expressed in CTL and verified in NuSMV, is true, as expected.

We now show how one can check that a certain sequence of events must or might appear

in a chain of reactions. This is illustrated by the relationship between the formation of the

complex LasR AHL and the production of the GFP, by using a CTL formula in NuSMV.

Property 2. Always the Lasr AHL complex formation might eventually lead to the produc-

tion of GFP.

AG (LasR AHL > 0 ⇒ EF GFP > 0)

The result of this property is true and shows that the production of GFP is always preceded

by the Lasr AHL complex formation.

Quantitative Model Checking

In this section, we report the results of the quantitative analysis of the quorum sensing

model. The experiments have been carried out using Prism and MC2.

Prism results. We first start with the Prism results. Note that for computational reasons

(as discussed above), we have performed our experiments using the statistical (approximate)

model checking module of Prism, based on the discrete event simulator of the tool.

Below, we give both informal and formal representations of the properties checked:
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(a) A pluxR vs 3OC12HSL (b) GFP/GFP ratio vs 3OC12HSL

Figure 4: Expected amount of species in the quorum sensing model based on different initial
amounts of 3OC12HSL.

Property 1. What is the probability that the system produces GFP if there is not any

3OC12HSL?

The formal translation of this property in the Prism’s property language CSL is given as

follows:

P=?[3OC12HSL = 0 U GFP > 0].

The result of this property is 0.0, which ensures that the system will not produce GFP in the

absence of Pseudomonas.

Property 2. What is the probability that the production of GFP starts in t minutes (if

3OC12HSL is available initially)?

The property is formally translated as follows::

P=?[F
≤t GFP > 0].

The results obtained for t = 100 and t = 1000 are 0.13 and 0.76, respectively. As expected,

it takes some time the system to fuse GFP after sensing the bacteria.

Property 3. What is the expected A PluxR at the time instant t?

16



(a) A pluxR vs 3OC12HSL (b) GFP/GFP MAX vs 3OC12HSL

Figure 5: Expected amount of species in the modified model based on different initial
amounts of 3OC12HSL.

The property is formally expressed in CSL:

R{“A PluxR”}=? [I = t] .

The results based on different initial values of 3OC12HSL are illustrated in Figure 4a. The

figure shows that the concentration of the active complex A PluxR, producing GFP, depends

on the signalling molecule 3OC12HSL. The results are inline with the original design of the

device.34

Property 4. What is the ratio of GFP to its maximum value at the time instant t?

The property is translated as:

R{“GFP/GFP MAX”}=? [I = t]

The results are presented in Figure 4b, where GFP MAX denotes the maximum concentration

that GFP can reach. The results show that no matter the initial concentration of 3OC12HSL,

GFP can reach its maximum level at around 3000 mins.

We can conclude from Figure 4 that the QS device emits GFP in its highest level, even if

the 3OC12HSL’s concentration reduces to 0 in 25 minutes (see Figure 6a). Naturally, a sensing
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(a) 3OC12HSL (b) Ptet LasR vs 3OC12HSL

Figure 6: Expected amount of 3OC12HSL and Ptet LasR for both models.

device should stop fusing GFP when there is not any signalling molecule left (i.e. no bacteria

is available). To implement this effect, we have modified the QS device slightly by adding

two degradation rules for GFP and A PluxR. Based on these changes, we have re-analysed the

properties 3 and 4. As shown in Figure 5, the concentration levels of the both molecules

starts decreasing after all 3OC12HSL molecules are consumed.

Similar to Properties 3 and 4, we have also analysed the expected number of 3OC12HSL

and Ptet LasR. As expected, for both original and modified models, we have obtained the

same results (see Figure 6 ).

MC2 results. As discussed previously, the approximate model checking module of Prism

allows only a restricted set of property types to be model checked. MC2 permits expressing

a richer set of properties. As well as the full formula set of probabilistic temporal logic,

we can also express properties regarding quantitative aspects such as maximum/minimum

values of a species and decrease/increase of concentrations.

Below, we provide some properties analysed (against the original system) using MC2

and present the corresponding model checking results. Note that Prism’s statistical model

checker does not support these properties. Here we assume that the signalling molecule is

initially available.
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Property 1. Probability that the GFP production is activated whenever the signalling molecule

becomes available.

The formal translation of Property 1:

P=?[G ([3OC12HSL] > 0⇒ F [GFP] > 0)].

The result of this property is 1.0, which ensures that the system will produce GFP whenever

Pseudomonas is sensed.

Property 2. Probability that the GFP concentration eventually increases.

The formal translation of Property 2:

P=?[F (d[GFP] > 0)].

The result of this property is 1.0, which ensures that the system responds to 3OC12HSL.

Property 3. Probability that the GFP concentration increases within 1000 mins.

The formal translation of Property 3:

P=?[F (d[GFP] > 0 ∧ time ≤ 1000)].

The result of this property is 0.84, implying it is very likely that the system will produce

GFP within 1000 mins of sensing 3OC12HSL.

Property 4. Probability that the maximum GFP concentration is reached within 1000 mins.

The formal translation of Property 4:

P=?[F [GFP] = max[GFP] ∧ time ≤ 1000].

The result of this property is 0.80, implying it is likely that the system will respond to

3OC12HSL very strongly within 1000 mins.
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Property 5. Probability that GFP is fused in the steady-state.

The formal translation of Property 5:

P=?[F G [GFP] > 0].

The result of this property is 1.0.

We can obtain similar results for the modified model except Property 5, for which we have

obtained 0.0. These results show that in the original model the GFP production is activated

as a response to the availability of the signalling molecule and it never stops. However, in

the modified model, the GFP production is stopped after the signalling molecules are totally

consumed.

Pulse-Generator model

This is a model of a multi-cellular system showing how the verification method discussed so

far for a cell system can be extended to more complex cases, by avoiding the well known state

explosion problem that all the model checking approaches face. Firstly, for the qualitative

analysis we are focussing on two aspects: the verification of individual components of the

system and the verification of the entire system, or a significant fragment of it, by using ade-

quate modelling abstractions. Secondly, the quantitative approach will show how statistical

model checking can be used to verify properties referring to molecules from different parts

of the system.

Qualitative Model Checking

We start with verifying properties similar to those presented in the section on qualitative

model checking for the quorum sensing system.

Property 1. There is no pathway in the sending cell that eventually leads to the production
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of signal3OC6 in less then k steps.

G (step < k ⇒ signal3OC6 = 0).

The property, expressed in LTL, has been verified in Spin, which returned true for k = 5.

This type of properties are useful to acquire information about the reaction network of a

particular system. We do not repeat the experiments here, but one can show, similar to the

quorum sensing case, the presence of the molecules in different sequences of events.

For the multi-cellular case of the lattice system, we check whether the signal molecule

properly propagates through the system. Running such experiments, even for simple lattices

of 2 by 2, is very prohibitive in both time and memory requested. This shows that one

needs a different representation for the model used. One solution to overcome this issue is to

compact some long chains of reactions into simpler and shorter ones where only the molecules

directly involved in verification are kept. As we aim to check the propagation of the signal

molecules through the lattice, we use reduced models for the two cell types involved. The

sender cell has now 5 rules and the pulsing cell 7 rules. As the sending cells produce the

AHL (signal3OC6) signal molecule, the propagation of the AHL molecule is verified only

for the pulsing cells. For the experiments in this section the lattice will be reduced to a 2 by

4 size with two sender cells in the first row and pulsing cells in the rest.

Property 2. The presence of the GFP at row n ∈ {2, 3, 4} is preceded by the presence of

signal3OC6 in the preceding row, n′ = n− 1, or neighbour cell.

The property is translated as:

(F GFP pulsing n > 0) ⇒ ¬((signal3OC6 n’ = 0 ∧ signal3OC6 n = 0) U GFP pulsing n > 0).

We have verified this property, expressed in LTL, using Spin, which returned true.
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Quantitative Model Checking

We now present some numerical results based on quantitative analysis, performed using

Prism. The results presented in this section are summarised from our earlier work.7

In the following set of experiments, we consider a lattice of size 2 by 6. The sender cells

are placed to the first 2 rows and columns, i.e. the initial 2 by 2 section of the lattice. The

pulsing cells are distributed to the remainder of the lattice.

Property 1. What is the probability that GFP concentration at row n ∈ {3, 4, 5, 6} exceeds

100 at the time instant T?

The formal translation of this property in CSL is given as follows:

P=?[true U[T,T ] GFP pulsing n ≥ 100].

The verification results are presented as a 2D plot in Figure 7a.

Property 2. What is the probability that GFP concentration at row n ∈ {3, 4, 5} stays greater

than GFP concentration at row 6 until the time instant T where GFP concentration at row 6

exceeds GFP concentration at row n?

The property is formally translated to CSL as follows:

P=?[GFP pulsing n ≥ GFP pulsing 6 U[T,T ] GFP pulsing 6 > GFP pulsing n].

The verification results are illustrated in Figure 7b.

Property 3. What is the expected GFP concentration at row n ∈ {3, 4, 5, 6} at the time

instant T?

The property is formally expressed as:

R{“GFP pulsing n”}=? [I = T ] .
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(a) Prob. of GFP exceeds threshold (Prop. 1) (b) Prob. of relative GFP (Prop. 2)

(c) Expected GFP protein (Prop. 3) (d) Expected signal3OC6 (Prop. 4)

Figure 7: Quantitative analysis using probabilistic model checking (taken from7). Row n
denotes the nth row of the pulsing cells in the lattice and T denotes time.

The results are illustrated in Figure 7c.

Property 4. What is the expected signal3OC6 concentration at row n ∈ {3, 4, 5, 6} at the

time instant T?

The property is translated as:

R{“signal3OC6 pulsing n”}=? [I = T ] .

The corresponding verification results are shown in Figure 7d.

Based on the verification results, we can infer some important information regarding

the system dynamics and kinetic behaviour. Figure 7 clearly shows that the GFP expression

propagates in this bacterial colony. In particular, Figure 7a and 7c illustrate the propagation

of a wave of gene expression. It can be observed from these figures that the GFP concentration
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first increases in the rows closer to the sender cells, and then it gradually reduces to zero.

The rows far from the sender cells show a similar behaviour with some delay. This delay is

proportional to the distance of the row to the sender cells. Finally, Figure 7d shows that the

pulsing cells which are distant from the sender cells are less likely to produce a pulse.

Conclusion and Future Work

In this paper, we have shown how formal verification is utilised in systems and synthetic

biology through qualitative vs quantitative analysis. Here, we have chosen two well known

case studies: quorum sensing in P. aeruginosas and the pulse generator. We have constructed

the corresponding stochastic P system models using the Ibw software suit.

We have performed formal qualitative analysis of one systems and one synthetic biology

construct using the model checkers NuSMV (for the quorum sensing model) and Spin (for

the pulse generator model) to capture qualitative aspects of the system, and quantitative

analysis using the probabilistic model checkers Prism and MC2 to capture stochastic and

kinetic dynamics. Based on the verification results, we have inferred some important infor-

mation regarding the system dynamics and kinetic behaviour as well as the reaction network

and system topology.

In our future work we aim to broaden the spectrum of the current model checkers used in

formally verifying synthetic biology systems and to identify in a more rigorous way a suitable

model checker that fits the characteristics of a system and the properties that are verified in

this case.
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Graphical TOC Entry
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