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Abstract

The complexity of pervasive systems arises from the many different aspects that such systems possess.
A typical pervasive system may be autonomous, distributed, concurrent and context-based, and may
involve humans and robotic devices working together. If we wish to formally verify the behaviour of such
systems, the formal methods for pervasive systems will surely also be complex. In this paper, we move
towards being able to formally verify pervasive systems and outline our approach wherein we distinguish
four distinct dimensions within pervasive system behaviour and utilise different, but appropriate, formal
techniques for verifying each one.

1 Introduction

We are here concerned with the formal modelling and verification of pervasive systems, covering a
very broad class of systems that are typically mobile, dynamic, autonomous, distributed, concurrent and
context-based, and may involve humans and robotic devices working together (Dobson et al., 2010).

Let us consider a very typical pervasive system example that we have used in several earlier papers,
e.g. (Arapinis et al., 2009):

As we walk into a shopping centre, our intelligent clothing interacts wirelessly with shops in
the area and then with our mobile phone to let us know that our shoes are wearing out and
that the best deals nearby are at shops X, Y and Z.

Our computer, which holds a shopping list, also interacts with our phone to suggest the
optimum route to include shoes in our shopping, and with the shops to assess their stock.

At the same time, our computer interacts with the shopping centre’s network and finds that
one of our friends is also shopping, so a message is sent to the friend’s mobile/computer
to coordinate shopping plans and schedule a meeting for coffee at a close location in 15
minutes.

This might not yet exist, but such scenarios are neither very complex nor very far from being reality! There
are currently several deployed pervasive systems partially employing similar scenarios, e.g. Scatterbox (a
message forwarding system) (Knox et al., 2008), MATCH (a health care system for elderly and disabled
people at home) (Turner, 2012), CityEvents (a mobile multimedia system for displaying geolocated
cultural events) (Rosa et al., 2012), etc.
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There are, of course, many definitions of a pervasive system (Want et al., 2002; Greenfield, 2006);
even more if we include ubiquitous systems (Weiser, 1993) or adaptive/autonomic systems (Dobson et al.,
2006). In this paper, rather than choosing one of these (often ambiguous) definitions, we will instead
describe the systems we are concerned with in terms of the general classes of behaviour we expect to see
within them. Thus, the “pervasive systems” we address here typically contain the following aspects:

1. multiple interacting entities, with multi-dimensional properties;
2. truly autonomous decision making;
3. the implicit involvement of humans within the system; and
4. context-dependent behaviour.

While we will explain these aspects in more detail in Section 2, it is important to note that many systems
might have very simple/limited behaviours in one or more of these areas. For example, a pervasive system
that has no interaction with humans clearly has a trivial behaviour in (3) above. It is also important to note
that the four elements above are very general and while, for our analysis purposes, we consider them to
be distinct, in practice there will be unavoidable overlap.

So, in describing and analyzing such pervasive systems, we choose to treat the above four aspects
orthogonally as in Figure 1. As we see later, we verify properties of pervasive systems by verifying each
aspect independently. However, in the next section, we will attempt to justify the above categorization,
appealing to typical examples of pervasive systems.

PERVASIVE

SYSTEM

Human-Agent 
Teamwork

Multi-Dimensional
Activities

Context-Dependent Behaviour

Autonomous Behaviour

Figure 1: Four orthogonal aspects of pervasive systems.

Example. At this point, an obvious question is whether any real pervasive system can appropriately be
described in terms of our four dimensions. At present we can only answer that all the example systems
we have encountered can be viewed in this way. Here, we highlight a large pervasive system that can be
potentially be analyzed as we suggest.

The K4Care platform (Isern et al., 2011) is aimed at organizing and providing healthcare services in
“home care” domains. Specifically, it helps medical practitioners (e.g. doctors, physicians, specialists and
nurses) provide administrative and medical services, simplifying the coordination between participants.
The K4Care platform also features tools and methods helping the practitioners prepare personalised
treatments for patients based on healthcare standards.

We briefly identify our four views on the K4Care example.

1. The K4Care model is implemented on the K4Care platform which is itself distributed and multi-layer.
For example, the platform involves a knowledge layer, a data abstraction layer, and an agent-based
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layer. That all these aspects must interact and that real-time response is clearly of importance, together
points towards quite complex multi-dimensional descriptions.

2. The K4Care system is agent-based and involves a quite sophisticated range of reasoning techniques,
e.g about treatments, effects, diseases, etc. There appears to be a certain amount of autonomous
decision making in the system, again conforming to one of our key dimensions.

3. The provision of such health services involves not only interaction with a range of medical
practitioners (e.g. doctors, nurses) but also with “Home Care patients”. Such patients are typically
elderly, with illness and/or physical impairment. Modelling the activities of the K4Care system clearly
involves human-system interactions.

4. Finally, the system utilizes context, primarily in the form of ontologies, both at the level of reasoning
about treatment/procedures, and at the level of reasoning about activities in different situations.

Clearly, semi-automated home care support is an area where safety, security, reliability and efficiency are
all vital. And so formal methods, particularly formal verification, can surely be used.

2 Characteristics of Pervasive Systems

We now consider the four aspects from Figure 1 in more detail.

2.1 Multi-Dimensional Activity

Pervasive systems comprise many different facets and so we will need to describe/specify not just their
basic dynamic behaviour, but also how all these facets/dimensions evolve and interact. Even in the
relatively trivial “shopping” example above, we can see that the system involved has many different facets.

– It clearly has dynamic behaviour, together with (changing) knowledge about people and their plans.
– There are real-time aspects, not only in scheduling an appropriate meeting time but also in responding

to shopper movements in a timely manner.
– Since at least some part of the pervasive system has to try to model the “real world”, or at least an

abstraction of the environment, and since the sensors that are typically used for this can never be
perfect, then uncertainty must, necessarily, be involved.

– There is collaboration and cooperation, both at the level of agents ‘representing’ shoppers and at the
level of shops and agents cooperating to provide appropriate information and capabilities.

– Many elements are mobile, and there are many programs working at once but in different areas. Thus,
mobility, distribution and concurrency are essential.

– Clearly the software representing a shopper must also carry out autonomous decision-making (see
Section 2.2), for example to instigate a meeting for coffee.

And so on. As we can see, even from this simple example, a pervasive system can have many different
facets. Since we wish to specify and verify such systems, then we must ensure our specification
(Section 3.1) and verification (Section 4.1) techniques take these dimensions into account.

We will later see how a typical pervasive message forwarding system, such as Scatterbox (Knox et al.,
2008), requires a wide range of additional dimensions in order to explain/describe its behaviours:

Uncertain behaviour/accuracy of sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probabilistic (behaviours)
Location and tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . spatial, dynamic
System beliefs about location and activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . knowledge
Importance of messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . priority
Varying levels of user interruptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . priority
Communication connection failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probabilistic
Requirements of system efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real-time
Security of sensitive data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . knowledge, temporal
Modelling intelligent choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .motivations
Roles and responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . multi-agent
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So, in general, to be able to clearly specify any non-trivial pervasive system we will require descriptions
that combine, and explain interactions between, many such dimensions.

2.2 Autonomous Decision-Making

Pervasive systems contain components that can make autonomous choices, i.e. are often separated from
direct human control. Thus, with this autonomy the computational components can decide, for themselves,
what to do and when to do it. The specific form of autonomy we consider is that captured by the concept
of a rational agent. An agent (Wooldridge, 2002) essentially captures the idea of an autonomous entity,
being able to make its own choices and carry out its own actions. Beyond this, rational agents are
typically employed to represent more complex autonomous decision-making where communication and
explanation are vital; see Figure 2.

Uncertain environments increasing Intelligence

RATIONAL AGENTS

increasing Autonomy

Cooperation Coordination

Communication problems

Figure 2: Motivation for use of rational agents.

These agents are rational in the sense that they take their decisions in a rational and explainable way
(rather than, for example, purely randomly). The central aspects of the rational agent metaphor is that such
agents are autonomous, but can react to changes in circumstance and can choose what to do based on their
own agenda. In assessing such systems it may not be sufficient to consider what the agent will do, but we
must often also consider why is chooses to do it. The predominant view of rational agents is that provided
by the BDI (beliefs-desires-intentions) model (Rao and Georgeff, 1991, 1995) in which we describe the
goals the agent has, the ‘beliefs’ it has, and the choices it makes. The rational agent’s intentions are then
determined by its beliefs and goals.

2.3 Humans “in the loop”

Pervasive systems typically involve humans, or at least external autonomous entities, and a variety of
tools or artifacts within the system. Often, humans are actually embedded within pervasive systems, with
computation and communication happening all around them. In many cases, the overall behaviour of the
whole pervasive system depends on appropriate behaviour of the humans involved; in this case we can see
the human/system relationship as a very weak form of cooperation.

In some areas, computational/robotic elements play an even more collaborative role in the human-
system scenario. This is particularly the case if actual physical robots are involved. Although many
practical activities suggest human-robot cooperation, space exploration is an area at the forefront of
this where cooperation and teamwork is clearly required. As an example, NASA is interested in Robot-
Astronaut teams to be deployed on Mars (Sierhuis et al., 2003); see Figure 3(a).

While not directly involving such space applications, pervasive systems not only can involve multiple
robotic elements but also can require human-system interaction of a similar form. Consequently, the
problems raised by human-robot interactions can often re-appear in pervasive scenarios. On the domestic
front, the close interaction of multiple humans and robots in pervasive scenarios is becoming more
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Figure 3: Human-robot teamwork (a) in planetary exploration (NASA, Astronaut-Robot-Team-Concept),
and (b) in the home (RoboSafe, 2013).

prevalent, particularly in healthcare situations. Thus, the Robotics industry is actively developing “Robots
for the Home”, particularly as human assistants; see Figure 3(b). Clearly, this leads to safety concerns:

• Are the robots safe?
• How can we tell a robot what we want?
• Will a robot work out what we want it to do?
• And then, are we sure it will decide to do what we want?

This is a natural area where formal verification should, and can, make an impact (Fisher et al.,
2013). Indeed, as we will see later, specification and verification techniques developed for human-robot
interaction have an important role to play in assessing (high-level, and abstracted) human involvement in
pervasive systems.

2.4 Context Dependency

Pervasive systems are also context-dependent — their behaviour can change because of movement
between contexts. This can take (at least) two forms.

Simple context view
In the first form, “context modelling” is essentially concerned with recording someone’s location or
activity (Chen et al., 2003). For example, detecting a Bluetooth signal of one’s cellular phone in a seminar
room can be used to derive his/her context (in form of location or activity) in conjunction with other
information available e.g. calendar.

This context modelling is a popular technique studied by software engineers who wish to differentiate
subtle behavioural differences in systems (Henricksen and Indulska, 2004; Strang and Popien, 2004).
These behaviours are often in response to, or in anticipation of, human activity and some notion of
‘context’ of this form is at the heart of very many pervasive systems.

Complex context view
Another, more general, view is that ‘context’ should cover much more than location or activity. For
example, in the METATEM agent programming language (Fisher and Hepple, 2009), the context in which
an agent is acting is a first-class construct. Indeed, contexts are also agents and an agent is considered
to reside in (or be contained by) zero or more contexts. Context in METATEM is conceived as the more
abstract and flexible notion of anything that has an influence over an agent in a system. Specifically,
contexts do not just concern location, but can be

• roles or societal norms,
• teams or organisational structures,
• activities,
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• styles or preferences,
• locations,
• etc....

This gives a very powerful mechanism for programming and describing quite complex context-dependent
behaviours and so complex organisations and systems (Hepple et al., 2008). While there remains debate
about exactly what an ‘agent’ is, this view of hierarchical and active agents perhaps needs further
comment. While we can see an agent as capturing basic autonomous behaviour, there are many different
levels of abstraction over which this can be taken. Consider, for example, a flock of birds†. Seen at a high
level of abstraction, the ‘flock’ can be viewed as an autonomous entity with its emergent behaviour being
opaque to an external viewer. So, we could model the flock as an agent. But then, of course, if we move
into the flock we can discern local interactions between individual birds. Correspondingly, once we look
inside the agent’s content we can see (and interact with) representations of individual birds.

This duality, being able to treat the larger entity as an agent while at the same time being able to
move inside to interact with further agents in its content, is very powerful. It clearly has ancestry on
object-based systems, but extends this to agents with active, autonomous behaviour. The context/content
view is, thus, very useful for modelling entities that are autonomous and active at many different levels
of abstraction and often do not correspond to physical entities. For example roles and norms, teams and
other organisational structures, styles and preferences, etc.

It is important, in our later sections, that we are able to verify both varieties of the notion of ‘context’
described above. The first is simpler, but is used in many deployed pervasive systems. The second
approach is more powerful, and something like this is likely to become used in future pervasive system
development. Below we give an example for each approach.

ContextConstruct

Google
Calendar

    Sighting

Bluetooth

Sensor/Sender Forwar. Comp.

Message
SMS

Sighting

Situation

Reasoner

Feedback

E−mail

 Handler

Figure 4: Scatterbox message forwarding system (Konur et al., 2014).

Example (Knox et al., 2008). The Scatterbox system, as well as exhibiting multi-dimensional behaviour
as described in Section 2.1, also involves context-dependent behaviours. As described in (Knox et al.,
2008), Scatterbox is a message forwarding system, primarily designed as a testbed for context-aware
computing in pervasive scenarios. Each Scatterbox user’s context is defined by tracking his/her location
and by monitoring his/her daily schedule. This data is analysed, and ‘situations’ are identified that indicate
the user’s level of interruptibility. Once a message arrives, Scatterbox forwards it to the subscribed user
provided the user’s available context suggests they are in a situation where they may be interrupted. A
schematic diagram of Scatterbox is given in Figure 4.

†Our thanks to an anonymous reviewer for highlighting this.
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Example (Hepple, 2010). Consider an abstract ‘cookery’ example. Here, a cooking agent simply wants
to ‘cook’. But, to begin with, it does not know how to cook and does not know about any contexts.
Specifically, it initially has one goal (i.e. to ‘cook’) but has no plans telling it how to go about this. So,
this cooking agent now moves into a chef role context, which is itself another agent; see Figure 5(a). This
context agent provides the cooking agent with appropriate information, plans and capabilities associated
with the ‘role’ of being a ‘chef’; see Figure 5(b). Once the agent has received and assimilated these aspects
then it can legitimately take on the role of a ‘chef’ and can indeed satisfy its goal to be able to ‘cook’.
So, just by moving into a new context, the cookery agent has obtained new computational capabilities.
Moving into further contexts can bestow additional capabilities, or even constraints, upon the agent. In
this way, contexts are active, providing more than just a representation of ‘location’.

Figure 5: Cooking scenario (Dennis et al., 2008).

3 Specifying Pervasive Systems

Following our theme, if we are to program a pervasive system or specify system properties, then we must
address each of our four dimensions in turn (see Figure 6). In this section, we will both discuss how the
properties of multidimensionality are specified and how certain aspects of systems are programmed.

PERVASIVE

SYSTEM

Models of Human-
Agent Teamwork

Combinations
of Logics

Specifying and Programming
Context-Dependent Behaviour

Describing Rational Agency

Figure 6: Four orthogonal aspects for specifying pervasive systems.
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3.1 Multi-Dimensional Activity

In the specification of different aspects and dimensions, we use formal logics (Konur, 2013). Logics
provide a well-understood and unambiguous formalism for describing the behaviours, requirements, and
properties of systems. In addition, as we are concerned with the verification of pervasive systems, the well
researched proof, complexity, and satisfiability checking results can provide us with many practical tools
such as automated deduction or model checking systems.

An obvious issue with formally specifying pervasive systems is that formal logics have limitations. For
example, there might be system properties which cannot be represented formally in a particular logical
system. In order to maximise the expressivity of logics and hence to be able to verify more complex
properties, we combine different aspects of different logics.

Beyond classical Boolean logic there are vary many logics devised for a huge array of different types
of system. Choosing the appropriate logic provides a level of abstraction close to the key concepts of the
software, for example

• dynamic communicating systems −→ temporal logics
• systems managing information −→ logics of knowledge
• situated systems −→ logics of belief, contextual logics
• timed systems −→ real-time temporal logics
• uncertain systems −→ probabilistic logics
• cooperative systems −→ cooperation/coalition logics

Since we cannot easily describe all aspects of a pervasive system in one of these logics, we will often need
to combine formalisms. There are several standard ways to combine logics, with the three standard ones
being (Gabbay et al., 2003): temporalization (Finger and Gabbay, 1996); fusion (or independent join); and
product (or full join). Now, imagine we have two logics to combine, logic A (typically, a temporal logic)
and logic B.

We assume the logics A and B are graphically represented as in Figure 7.

logic A:

logic B:

Figure 7: Notation (Konur et al., 2013).

The temporalization permits only a restricted way that two component languages can interact with each
other. It is denoted by A(B), where a pure subformula of logic B can be treated as an atom within logic
A. This combination is not symmetric — A is the main logic, but at each world/state described by logic
A we might have a formula of B describing an embedded “B-world” (see Figure 8).

Figure 8: Temporalization of two logics (Konur et al., 2013).

As Figure 8 suggests, after we take some A-step(s) (straight arrow), we can take a B-step (dotted arrow).
From this point on, we are in the B world, and we cannot take an A-step anymore.

The fusion A⊕ B is more symmetric than temporalization in that, at any state/world, we can either
take an “A-step” or a “B-step” (see Figure 9). It is important to note that the two logical dimensions are
essentially independent (hence: “independent join”).

The product combination, A⊗ B, is similar to the fusion, but with a much tighter integration of the
logics (see Figure 10). Operators of the constituent logics tend to be commutative. This provides a stronger
integration of the component logics but, correspondingly, often results in logics of higher complexity than
fusions or temporalizations.
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Figure 9: Fusion of two logics (Konur et al., 2013).

Figure 10: Product of two logics (Konur et al., 2013).

Example. Once we can combine logics, for example using fusions, then we can combine several logics
together in order to provide a quite powerful descriptive framework. As an example of why combinations
of logics may be appropriate for formally specifying multi-dimensional behaviour in a pervasive system,
consider the following statement from an assistive healthcare scenario.

“If a patient needs medicine, then the patient believes that there is a probability of 65% that,
within 10 minutes, a nurse robot will want to assist the patient.”

In formalizing this we might write

needs medicine(patient)→B≥0.65patient♦
≤10Gnurse assist(patient)

where

B≥0.65patient means patient believes with 95% probability – probabilistic logics

♦≤10 means within 10 minutes – temporal logics

Gnurse means the nurse robot has a goal, and so wants to help the patient – BDI logics

3.2 Autonomous Decision-Making

Since our autonomous decision making components are to be characterised as rational agents, we program
such autonomous decision making using high-level programming languages for rational agents. Typical
programming languages for rational agents (Bordini, Dastani, Dix and El Fallah Seghrouchni, 2005;
Bordini et al., 2009) provide representations of

• beliefs
• desires (often referred to as goals)
• intentions (or invocations of rules/plans)
• actions
• deliberation mechanisms

Based on its beliefs and desires an agent can select an intention, or plan of action, which can then invoke
further basic procedures. This makes the programming and inspection of the decision making much more
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intuitive since the programmer is encouraged to describe the situations in which a given course of action
is applicable or desirable.

An example agent rule/plan in a typical programming languages for rational agents is given below
(Fisher et al., 2013):

Goal(eat) : Belief(has_money),
Belief(not has_food)
<- Goal(go_to_shop),

Action(buy_food),
Goal(go_home),
Action(eat),
+Belief(eaten).

This means that if the agent intends to eat and if it believes it has money, but does not have food, then
it will intend to go to the shop. Once the agent achieves its desire (i.e. goal), it will buy some food and
then intends to go home. When it is at home, the agent will eat and then update its beliefs to record that it
believes it has eaten.

Modern agent programming languages in this BDI (Beliefs, Desires and Intentions) paradigm were
pioneered by the PRS in the early 90s (Georgeff and Lansky, 1987; Rao and Georgeff, 1992), which sought
to abstract decision-making away from the more procedural aspects where control systems were used.
This BDI architecture has been shown to generalise widely to any situation in which autonomous decision
making is required to control complex software processes and a family of programming languages has
been developed to support the paradigm, for example AGENTSPEAK (Rao, 1996; Bordini, Hübner and
Vieira, 2005), 2APL (Dastani et al., 2005), GOAL (Hindriks et al., 2001) and Gwendolen (Dennis and
Farwer, 2008).

3.3 Modelling Teamwork: Humans “in the loop”

In a pervasive system, we can often see humans and autonomous components as working together as a
team. But how might we try to describe behaviours within such human-computer teams? To simplify,
we choose to model the high-level, cooperation and interaction, behaviours of the team participants,
abstracting away from low-level details such as movement. Specifically, we choose to carry out the
modelling of these high-level behaviours using the Brahms framework (Sierhuis, 2001; van Hoof, 2000;
Sierhuis and Clancey, 2002). This is a framework designed to model both human and robot activity again
using rational agents. As it was developed to represent activities in real-world contexts, it also allows the
representation of artifacts, data, and concepts in the form of classes and objects. Both agents and objects
can be located in a model of the world (the geography model) giving agents the ability to detect objects
and other agents in the world and have beliefs about the objects. Agents can move from one location in
the world to another by executing move actions, so simulating physical movement. For a more detailed
description, see (Sierhuis, 2001) and (Sierhuis, 2006).

The Brahms language was originally conceived of as a language for modeling contextual situated
activity behavior of groups of people. This has now evolved into a language for modelling both people and
robots/agents. As such it is ideal for describing human-agent/robot teamwork and indeed has been used
for this both in mundane scenarios and in modelling the “Robot-Astronaut Teams on Mars” mentioned
earlier. It has been particularly successful as it allows us to describe, concisely and precisely, the overall
team behaviours and so assess how well such teams work together.

Example (Stocker et al., 2012). We now consider a domestic home care application as an example to
illustrate the Brahms specification language. In this scenario, the helper robot reminds the assisted person
Bob to take his medication. The scenario is explained as follows:

The Robot has a workframe to deliver medicine to Bob; activated at pre-allocated times.
The Robot places the drugs on Bob’s tray and then monitors them hourly to check if they have
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been taken. A detectable takenMedicationC aborts the workframe if the drugs have been
taken and then updates the Robot’s beliefs. If the drugs have not been taken the workframe
reminds Bob to take his medication. The Robot counts the number of times it reminds Bob,
and after 2 reminders it notifies the House.

A fragment of the Brahms specification of this scenario is given below (Stocker et al., 2012):

workframe wf_checkMedicationC
{

repeat: true;
priority: 3;
detectables:

detectable takenMedicationC
{
when(whenever)
detect((Bob.hasMedicationC = false), dc:100)
then abort;

}
when(knownval(current.perceivedtime > 14) and

knownval(Bob.hasMedicationC = true) and
knownval(current.checkMedicationC = true))

do
{

checkMedication();
remindMedicationC();
conclude((current.checkMedicationC = false));
conclude((current.missedMedicationC = current.missedMedicationC + 1));

}
}

A workframe corresponds to a plan in standard rational agent programming languages. This particular
one has a certain priority level, events that can be detected, a set of triggers (captured within the when
clause), and a list of outcomes (after the do) such as calling further workframes or updating beliefs.

3.4 Context Dependency

Simple context view
In the shallow view of “context” we can simply describe/specify contextual information in terms
of changes in location. For example, we might describe a simple model of user movement by a
straightforward state-machine; see Figure 11. This then allows us to use a simple formal language, such
as temporal logic to describe changes in context, such as “♦SHOPPING”, meaning “eventually the user
will be in a SHOPPING context”.

HOME

WORK

SHOPPING COMMUTING

Figure 11: A simple model of user movement.
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Complex context view
In the case where we have the much more complex view of context, then (because each context is itself an
agent) we must embed this notion within an agent programming language. The formal semantics for such
a language, a variety of AGENTSPEAK, is provided in (Dennis et al., 2008). We can see from the simple
‘cookery’ example earlier that it is straightforward to view contexts as agents and so develop contexts
that share full agent-level behaviours amongst their contents. For example, when the cook enters the chef
context (see Figure 5), the sending of plans is triggered, and the cook agent receives plans for preparing
risotto, steak and pizza. This behaviour is written in the agent programming language as the following
plan (Dennis et al., 2008):

+content(Agent)[source(self)]
<- .print("Sending ", Agent, " plans...");

.send(Agent, tellHow, "+!cook(risotto)
: check_constraint(cook,risotto)
<- make(risotto).");

.send(Agent, tellHow, "+!cook(steak)
: check_constraint(cook,steak)
<- make(steak).");

.send(Agent, tellHow, "+!cook(pizza)
: check_constraint(cook,pizza)
<- make(pizza).").

The plan is triggered, in the Context agent, by a new Agent entering it. Once this happens, the Context
agent prints a statement then sends three messages to the Agent that just entered it. These messages
contain the new plans that the Agent can then add to its own capabilities.

4 Verification

As described above, in order to carry out formal verification of pervasive systems, we will actually verify
our four distinct dimensions separately; see Figure 12. So, let us examine all these four in more detail. As

PERVASIVE

SYSTEM

Model Checking 
Human-Agent 

Teamwork

Model Checking
Combinations

of Logics

Verification of 
Context-Dependent Behaviour

Verifying Rational Agents

Figure 12: Four orthogonal aspects for verifying pervasive systems.

we will see below, all are based on model checking (Clarke et al., 1999), but in very different ways.
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4.1 Verifying Combined Specifications

Formal description of pervasive and ubiquitous systems can involve many different logical dimensions.
This makes the verification task extremely difficult, since the interactions between these dimensions
increase complexity significantly. The techniques currently used for formalizing and verifying aspects
of pervasive and ubiquitous systems are very limited, often trying to describe system behaviour by
considering just one dimension rather than dealing with multiple formalisms at the same time.

One idea to tackle the problem would be to introduce complex logics comprising all the aspects
needed and develop new model checking methods and tools. However, devising new model checking
methods/tools for such complex logics is both difficult and time consuming.

In (Konur et al., 2013), we present a verification technique which allows the combination of model
checking techniques for different formal frameworks. Namely, instead of introducing new logics for
different combined aspects and developing model checkers for these logics, we combine existing logics
and devise a generic model checking method for these combined frameworks. A combined model
checking procedure can then be synthesised, in a modular way, from model checkers for constituent
logics. This avoids the re-implementation of model checking procedures.

An overview of our approach is presented in Figure 13. As the figure illustrates, a combined model
checker MCA⊕B for the combined logic A⊕ B employs the model checkers MCA and MCB for the
constituent logics A and B, respectively. Note that in the generic model checking procedure there are
several calls to MCA and MCB, but they are not shown in the figure to keep the presentation simple.

A   B

Combined

Model

A   B

Combined

Logic 

Formula

A

Model

⊕

⊕

A    

Formula

B    

Formula

B

Model

      

process

combined
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process

combined
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A

      

MC
B

MC
A   B

process

output

⊕

Figure 13: Overview of the combined model checking approach of (Konur et al., 2013).

This technique can be used to verify combined real-time, probabilistic, informational aspects, etc.
which are at the core of pervasive and ubiquitous systems. Using this method, we can model check the
combinations of the logics discussed in Section 3.1: temporal logics, logics of knowledge, logics of beliefs,
real-time temporal logics, and probabilistic logics.

4.2 Verifying Autonomous Behaviour

An advantage of using the BDI-paradigm to program and model autonomous decision making is that
several BDI programming languages now have associated formal verification techniques (Fisher et al.,
2007; Bordini et al., 2006; Jongmans et al., 2010; Dennis et al., 2012). The property specification
languages within such model checkers have to be extended in order to describe the key reasoning
components (beliefs, desires, etc.) but since these environments generally do not implement full logics
of knowledge or belief such modalities can be treated in a simple and efficient fashion, normally as
propositions within a temporal logic.
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The points where an autonomous decision making layer must interact with lower-level control layers
or the real world are more of a challenge and involve the construction of abstract models of these parts
of the system. There are two approaches to this problem: one is to use advanced mathematical techniques
such as hybrid automata to model the real world and the other is to use simple, highly abstract models,
and focus on capturing clearly the conditions under which the rational layer makes valid decisions.

The AIL/AJPF model checking toolkit (Dennis et al., 2012) that we have developed not only takes
the second of these approaches but, through the generic Agent Infrastructure Layer, provides a Java
framework to enable the implementation of interpreters for various agent programming languages and
the direct use of the AJPF agent program model checker. Through this AIL/AJPF approach, see Figure
14, verification for several high-level agent programming languages has already been carried out.

AgentSpeak
3APL
Jadex

MetateM

BDI languages

...

AIL

Java

property

AJPF Java listener

JPF Java listener

translation

implemetation

Figure 14: Verification of multiple agent programming languages (Bordini et al., 2008).

Here, operational semantics can be provided for a range of agent programming languages, including
AgentSpeak and METATEM, and then these semantics can be used within the generic model-checking
procedure provided by Java PathFinder (Visser et al., 2000).

4.3 Verifying Human-Agent Teams

As we have seen from Section 3.3, the Brahms simulation/modelling language is not only appropriate
for describing human-agent teamwork, but has been used in practice for non-trivial human-robot inter-
actions (Sierhuis, 2001; van Hoof, 2000; Sierhuis and Clancey, 2002). Consequently, Brahms provides
us with a ready-made framework for describing human-agent teamwork, as well as providing a range of
examples in specific areas (Clancey et al., 2003; Sierhuis et al., 2003; Sierhuis, 2006). It seems natural,
therefore, to aim towards the formal verification of Brahms models. The formal operational semantics for
the Brahms language produced in (Stocker et al., 2011) now forms the basis of our formal verification
of Brahms; see Figure 15. In (Stocker et al., 2012) a Brahms model of a human-agent team scenario
is translated to a Java representation of the corresponding semantics structure, which is then translated
into the SPIN model checker’s input language, Promela (Holzmann, 2003). Formal proerties are also
represented in Promela, and the verification problem is passed on to the SPIN tool. This approach
has been extended and refined, particularly improving efficiency by translating to alternaitve model-
checkers (Hunter et al., 2013).

4.4 Verifying Context-Dependent Behaviour

Simple context view
In this view, the context information is obtained by getting the location or the activity. For example,
in the Scatterbox system, the user context is obtained both by tracking the user’s location (via location
sensors) and by monitoring his/her daily schedule. The Scatterbox system analyzes this context data,
and determines the user’s context and corresponding level of interruptibility. However, the user’s actual
context might be different than the context derived by Scatterbox. Therefore, the exact interruptibility
level, determined by the exact user movement, and Scatterbox’s perceived user interruptibility might also
be different. We therefore distinguish between the exact interruptibility and the Scatterbox’s belief about
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Figure 15: Formal verification process of Brahms (Stocker et al., 2012).

the interruptibility, as these two might have different values. The system’s belief about the interruptibility
depends on the accuracy of the context acquisition process.

The Scatterbox system also analyzes incoming e-mails to determine the importance level. Similar to
the interruptibility case, the exact importance level and Scatterbox’s perceived importance level might be
different. We therefore distinguish between these two variables. For the same reason, we distinguish the
exact calendar information and the perceived calendar information.

When we verify the overall operation of the Scatterbox system, we usually refer to the perceived
information by Scatterbox. For example, if we want to verify that the Scatterbox accurately finds the
interruptibility of the user, we need to check whether the formula 2(B intr = intr) is true over the model
describing the behaviour of the Scatterbox system (intr and B intr denote the exact interruptibility and
perceived interruptibility, respectively).

In (Konur et al., 2014) we formally verified the Scatterbox system using probabilistic model checker
PRISM (PRISM, 2013). Since the user location is determined via location sensors, a quantitative
understanding of the effects of uncertain sensor input and inference was an essential part of this analysis.
We also analysed the dynamic temporal and stochastic behaviour of the system, allowing us to verify
formal requirements even in the presence of uncertainty in sensors.

Complex context view
As discussed in Section 3.4, context can be modelled in BDI-style agent programming languages in a
variety of ways — it can be subsumed into the belief system, used as part of a modular construction
of agent systems or modelled separately as a first class component of the agent state (Dennis et al.,
2008; Fisher and Hepple, 2009). All of these approaches can be incorporated easily into the operational
semantics of the BDI languages and thus agent model-checkers extended in a straightforward fashion to
reason about them.

As described above, the AIL/AJPF verification framework can, in principle, verify both AgentSpeak
and METATEM programs. The latter already has built in capabilities to reason about languages involving
Content and Context.

5 Concluding Remarks

There have been some approaches to the formalisation of pervasive systems, for example (Birkedal et al.,
2006; Ranganathan and Campbell, 2008; Arapinis et al., 2009; Bakhouya et al., 2012). In addition,
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significant aspects of the overall verification problem have already been tackled, for example probabilistic
verification (Kwiatkowska et al., 2002), analysis of context (Boytsov and Zaslavsky, 2011), stochastic
resource analysis (Gorrieri et al., 2002), and the verification of autonomy (Dennis et al., 2012). However,
few of these have considered both specification and verification, and none have incorporated all the
different aspects we describe here.

In this article, we have identified four orthogonal views and have tackled the verification of each of
these independently, and each to a different extent. Below we give a summary of our work carried out so
far:

1. combinations of logics: theoretical work on algorithms for model checking combined logics (Konur
et al., 2013);

2. autonomous decision-making: characterising rational agents, and then developing agent model
checking (Dennis et al., 2012) for analysing autonomous decision-making (Fisher et al., 2013);

3. human-agent teamwork: developing a verification method the Brahms workflow language (Stocker
et al., 2011, 2012) and its application to human-robot teamwork; and

4. context based computation:

– probabilistic verification of context-based systems (Konur et al., 2014), and

– extending agent model checking to agent languages with context (Dennis et al., 2008; Fisher and
Hepple, 2009).

At present the verification of all these aspects is carried out separately; in the future we will work
on integrating all these efforts into a holistic verification framework for pervasive systems. This is a
difficult problem: combining techniques for populations and individuals, discrete logic and feedback
control, abstracted human behaviour and stochastic activity, etc, requires a sophisticated framework and
it may well be that the complexity of this approach requires simplification and limitations on potential
interactions.
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