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SUMMARY 

 
A large number of cloud middleware platforms and tools are deployed to support a variety of Internet of 

Things (IoT) data analytics tasks. It is a common practice that such cloud platforms are only used by its 

owners to achieve their primary and prede ned objectives, where raw and processed data are only 

consumed by them. However, allowing third parties to access processed data to achieve their own 

objectives signi cantly increases intergation, cooperation, and can also lead to innovative use of the data. 

Multi-cloud, privacy-aware environments facilitate such data access, allowing di erent parties to share 

processed data to reduce computation resource consumption collectively. However, there are 

interoperability issues in such environments that involve heterogeneous data and analytics-as-a-service 

providers. There is a lack of both - architectural blueprints that can support such diverse, multi-cloud 

environments, and corresponding empirical studies that show feasibility of such architectures. In this 

paper, we have outlined an innovative hierarchical data processing architecture that utilises semantics at 

all the levels of IoT stack in multi-cloud environments. We demonstrate the feasibility of such architecture 

by building a system based on this architecture using OpenIoT as a middleware, and Google Cloud and 

Microsoft Azure as cloud environments. The evaluation shows that the system is scalable and has no signi 

-cant limitations or overheads.  

 

 
KEY WORDS: Internet of Things, Multi-cloud environments, Big data,Semantic Web, Data 

Analytics 
 
 

 
1. INTRODUCTION 

 
Recent studies have shown that we generate 2.5 quintillion bytes of data per day [1] and this is 

set to explode to 40 yottabytes by 2020. This will amount to approximately 5,200 gigabytes for 

every person on earth. Much of these data is and will be generated from the Internet of Things 

(IoT) [2]. IoT is a part of the future internet and comprises billions of internet connected objects 

(ICOs) or `things' where each thing can sense, communicate, compute and potentially actuate 

and can have intelligence, multi-modal interfaces, physical/virtual identities and attributes.  
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ICOs can include wireless/wired sensors, RFIDs, data from social media, smart consumer 

appliances (TV, smart phone, etc.), smart industries (such as equipment fitted with sensors), 

scientific instruments (e.g., high energy physics synchrotron) and actuators. The vision of IoT is 

to allow `things' to be interconnected anytime, anywhere, with anything and anyone, ideally 

using self-con gured paths, networks and services. This vision has led to IoT emerging as a 

major producer of big data. Today, cloud technologies [3, 4] provide the ability to store and e 

ciently process large scale data sets by o ering a mix of software and hardware resources with 

modest operating costs proportional to the actual use (pay-as-you use model) [5]. It is well 

understood that the IoT big data applications need to process and manage streaming data from 

geographically distributed data sources. The cloud computing model has emerged as a suitable 

solution to ful l IoT big data applications' data processing needs. The cloud essentially acts as a 

transparent layer between the IoT and applications providing exibility, scalability and hiding the 

complexities between the two layers (IoT and applications). The fusion of cloud and IoT into 

"Cloud of Things" has given rise to the following new cloud computing paradigms (but not limited 

to): Sensing-as-a-Service, Sensing- and Actuation-as-a-Service, Video-Surveillance-as-a-

Service, Big Data Analytics-as-a-Service, Data-as-a-Service, and Sensor-Event-as-a-Service. 

However, the integrated Cloud of Things approach impose several challenges right from the IoT 

layer including device discovery, cost-e cient communication, device management and 

monitoring, interoperability, quality of service and M2M issues to the cloud layer including 

service discovery and delivery, big data management and analytics, cloud monitoring and 

orchestration, mobility issues in cloud access, privacy and security and SLA management. 

Further, the notion of *-as-a-service model will enable multiple independent operators to provide 

various services across the CoT layers that will need to be integrated based on application 

requirements. The proli c rise of IoT and the corresponding ecosystem will soon result in device 

being owned and operated by independent providers. These solutions will mostly be constrained 

into independent multiple-cloud provider silos. A multi-cloud environment consists of several 

data centres which are geographically and topologically distributed across the Internet [6, 7]. 

The focus of this work is to address the challenge of facilitating multi-cloud data analytics for IoT 

data originating from things that are owned and operated by multiple service providers. Enabling 

third parties to access this data and the analytic capabilities can signi cantly increases the 

innovation and value of end-user applications. IoT big data applications that need to process 

and manage streaming data from multiple sources need to exploit the resources hosted across 

multiple cloud data centres due to following reasons [8]: 

 

IoT datasets and data sources can be geographically distributed hence moving them to a 
single centralized data centre could lead to high network communication overhead.  
The IoT data storage and processing needs cannot be full- lled by the computational 
and storage resources o ered by any single data centre. For example, in the Azure 
Cloud, there is a limit of 300 cores per application deployments (i.e. the maximum 
number of VMs that can be deployed at any instance of time). Clearly, this could lead 
to serious problems if the IoT datasets ow at a very high volume and velocity.  
IoT datasets may be constrained by security and legal policies, i.e., data may not leave a 
national jurisdiction or can not be streamed into a remote international data centre. 

 
In this paper, we present hierarchical data analytics model for multi-cloud environments. 

Our proposed approach allows end-user application to integrate and take advantage of 

independent infrastructure and analytics service providers. We present a use case to 

demonstrate the proposed hierarchical and distributed multi-cloud approach to facilitate e 
ective and e cient sharing of analysed data across cloud providers. We use the popular 

open-source IoT middleware platform namely OpenIoT [9] to demonstrate the feasibility of 

our approach in multi-cloud environments. Finally, we conduct experimental evaluations on 

Google Cloud and Microsoft Azure platforms to establish the performance of the proposed 

hierarchical and distributed multi-cloud approach system.  
It is important to note that our approach is not application dependant. Therefore, it can be 

generalised in to any application domain where only the analytical functions employed 
would need to be di ered. Any type of analytical functions can be used on our proposed 

 

  
  



 
 
infrastructure. In this paper, we assume that all the cloud instances who engaged in a given 
data analytics task are trust-able and veri ed, before organise them into a certain 
hierarchical composition in order to support a given application. 
 
 
 
 

 

2. MOTIVATION: ANALYTICS-AS-A-SERVICE 

 

In sensing-as-a-service [10] model, data is exchanged seamlessly among data producers 

(owners) and consumers via the cloud resources. Data producers are owners of the IoT devices 

(products) and deploy them in their environments. These IoT products sense, analyse and 

perform actuation to solve the needs of the data owners. While this data normally resides in 

individual silos, sensing-as-a-service model promotes the sharing of data (liberating data from 

silos) allowing data consumers to access the data using secure mechanisms. For example, a 

plant biologist studying the spread of certain diseases in plants may want to know the list of a 

ected farms to better understand the trajectory of the diseases. In this case, the aim of the 

biologist is not to identify individual farms, but a while set of farms in speci c areas. When the 

number of data providers and consumers increase, there is a need to develop an open data 

market. The data from this market may not necessarily freely available [11] (may follow the cloud 

computing pay-as-you-go model) but the metadata description the data would be. The meta data 

will enable users and other services to discover relevant data stored in data owner silos.  
Analytics-as-as-Service refers to next generation IoT data processing applications where 

third party will be responsible for hosting IoT Analytics and data processing applications 

(e.g., detecting events from video camera feeds, detecting events from smart home 

sensors, etc.) on private/public cloud infrastructures. These analytics applications will be o 

ered to end-users under pay-as-you-go-model. Currently, such a service model is o ered for 

cloud-based hardware (CPU, Storage, and Network) and software (Databases, message 

queuing systems, etc.) resources by providers such as Amazon Web Services. Providers 

such as SalesForce.com o ers pay-as-you-go model for ERP and CRM applications. 

However, ERP and CRM applications are fundamentally di erent from IoT Analytics 

applications. Moreover analytics-as-a-service model introduces further complexities as 

there is need to describe not only the data but also the analytics performed on the data. 

Further, when data analytics exists as data silos within independent data owner clouds, 

there is a need to develop systems that can function across multiple cloud providers. Such 

systems will inherently require the following capabilities namely 1) ability to interoperate via 

standard interfaces 2) ability to describe data 3) support for machine to machine 

communication and 4) ability to describe the analytics built on the acquired data.  
Another advantage provided by analytics-as-a-service model is that it supports knowledge 

sharing while reducing the privacy risks. Due to the fact that this model does not share raw data, 

it eliminates the risks associates with sharing raw data such as anonymised sharing of analysed 

data, enforce restrictions on data storage location etc. Another advantage is the savings of 

computational resources due to the elimination of redundant data processing. This means that 

when one cloud IoT platform perform a certain data processing task over data, the recipient 

cloud platforms does not required to perform the same data processing task again. For example, 

one IoT cloud platform may collect data form motion sensors and cameras to determine how 

much time in average a person may wait in a certain queue. One such data processing is done, 

the recipient cloud can take average waiting time as an input. We elaborate on this example in 

Section 5 when we present the use-case scenario. Further, analytics-as-a-service model also 

reduces the data communication requirements. Typically, raw data is large in term of size. 

However, the processed data is signi cantly smaller that raw data. Therefore, the amount of data 

that need to be transferred from one cloud to another reduces drastically by saving network 

communication bandwidth and costs. 
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3. CURRENT STATE OF THE ART: PROCESSING DISTRIBUTED INTERNET OF  
THINGS DATA 

 

Existing big data processing technologies and data centre infrastructures [12] have varied 
capabilities with respect to meeting the distributed IoT data processing challenges. In this 

section we summarize capabilities of existing technologies based on the review given in our 

past work [8]. The proposed analytics-as-a-service model is expected to be extensively 

leverage these technologies. We have reviewed literature under six di erent themes: 1) 

basic data centre cloud computing infrastructure service stacks, 2) massive data processing 
models and frameworks, 3) trusted and integrated data management services across data 

centres, 4) data-intensive work ow computing, 5) benchmarking, application kernels, 

standards and recommendations, and 6) sensing middleware in the Cloud.  
1) Basic data centre cloud computing infrastructure service stacks  
Commercial or public data centres, for example, Amazon Web Services and Microsoft Azure o 

er computing, storage, and software resources as remotely programmable cloud services via 

Application Programming Interface (API). These resources are orchestrated by deploying 

virtualization software/middleware stacks. It is well understood that virtualization allows data 

centre providers to get more out of physical resources by allowing multiple instances of virtual 

cloud resources to run concurrently. For example, virtual machine orchestration systems such 

as Eucalyptus and Amazon EC2; image management tools such as FutureGrid image repository 

[13]; massive data storage/ le system such as GFS, HDFS, and Amazon S3; and data-intensive 

execution framework including Amazon Elastic Map Reduce. In addition, FutureGrid
ii
 and 

OpenStack also provide software stack de nition for cloud data centres.  
On the other hand, private data centres are constructed typically by combining multiple 

types of software tools & services. These software can include, cluster management 
systems such as Torque, OSCAR, VMWare's vCloud and/or vSphere suites and SLURM 
(Simple Linux Utility for Resource Management); parallel le/storage systems such as 

SAN/NAS
iii

, Lustre; as well as data management systems such as BeSTMan
iv

 and 

dCache
v
. Apart from, some private data centres are enabled for resource sharing with Grid 

computing middleware, such as Globus Toolkits, Unicore, and gLite. In general access to 
private data centre resources is restricted to known group of application administrators and 
users due to stringent security and privacy concerns.  

2) Big data processing models and frameworks  
Big Data Processing Frameworks include software frameworks that enable creation of big 

data application architecture [14]. These frameworks can be classi ed as follows: 
 

Large-Scale Data Mining frameworks (FlexGP, Apache Mahout, MLBase, Yahoo 
SAMOA) implement a wide range of Data Mining (DM) algorithms (clustering, decision 
trees, latent Dirichlet allocation, regression, Bayesian) to analyse massive data sets 
(historical and streaming) in parallel, by exploiting distributed resources.  
Distributed Message Queuing frameworks (Amazon Kinesis, Apache Kafka) provide a 
reliable, high-throughput, and low-latency system of queuing real-time streams of data.  
Parallel and Distributed Data Programming frameworks (Apache Hadoop, Apache Storm). 

Such frameworks enable development of distributed applications that deal with large sets 

of cloud resources to parallel process massive amounts of historical and streaming data 

[15, 14]. The large scale DM frameworks mentioned above are generally implemented on 

top of parallel and distributed data programming frameworks. Low-level distributed system 

management complexities (task scheduling, data staging, fault 
 
 
ii http://FutureGrid.org/

  
iii http://capitalhead.com/articles/san-vs-das-a-cost-analysis-of-storage-in-the-enterprise.aspx
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management, inter-process communication, result collection) are automatically taken 
care of by these frameworks.  
Data Store frameworks are categorised as NoSQL and SQL. NoSQL frameworks 

(MongoDB, HyperTable, Cassandra, Amazon Dynamo) support access based on 

transactional programming primitives, where an exact key allows search for an exact 

value. Such predetermined access patterns lead to better scalability and predictions of 

performance, which is suitable for storing large amounts of unstructured data (e.g. 

social media postings). SQL data stores (MySQL, SQL Server, PostGreSQL) manage 

data in relational tables, where the generic Structured Query Language can be used 

to manipulate data (insert, delete, update). In essence, SQL Data Stores are more e 

ective than NoSQL stores, where transactional integrity (ACID properties) is a strict 

requirement. Future big data applications are likely to use both NoSQL and SQL data 

stores, driven by data varieties and querying needs. SQL Engines (Apache Hive, 

Apache Pig) enable the querying of data across a variety of cloud storage resources 

including Amazon S3 and Hadoop Distributed File System (HDFS) based on 

structured query language. 
 

4) Data-intensive work ow orchestration framework  
Typical work ow frameworks for managing scienti c big data applications includes 

Pegasus, Kepler, Taverna, Triana, Swift, and Trident. Trdationally, in service computing 
domain orchestration with BPEL and YAWL [16] has been extensively explored. On the 

other hand, service choreography has been done using WS-CDL
vi

. More recently, 

orchestration frameworks such as YARN (Yet Another Resource Negotiator [17]) and 
Mesos [18] have emerged for coordinating IoT data analytics work ow tasks across multiple 
big data processing frameworks (e.g. Apache Hadoop, Apache Storm, etc.).  

5) Benchmark, application kernels, standards and recommendations  
Several benchmarks and application kernels have been developed, for example, Graph 500 

(graph500.org/), Hadoop Sort
vii

and Sort benchmark (sortbenchmark.org), MalStone [19], 

Yahoo! Cloud Serving Benchmark
viii

, Google cluster workload
ix

, TPC-H benchmarks 

(www.tpc.org/tpch), BigDataBench, BigBench, Hibench, PigMix, CloudSuite, and GridMix 

powered by the needs of analyzing the performance of di erent big data workloads. These 

benchmark suites model workloads for stress testing one or more categories of big data 

processing frameworks such as Apache Hadoop and Apache Mahout. In the current generation 

of framework suites, BigDataBench and BigBench are the most comprehensive ones. This is 

due to the fact that they incorporate big data workload models for variety of processing 

frameworks including NoSQL, DBMS, SPEs and batch processing frameworks. Mainly, 

BigDataBench targets the application domains such as search engine, social network, and e-

commerce. Having said that, their is limited benchmarks and application kernels available for 

heterogeneous data centers and IoT data tyoes. Specially, there is no consensus on available 

performance benchmarking for executing large-scale IoT applications across distributed data 

centers. Literally, the absence of inter-centre benchmark and standards need to be the primary 

research agenda for the future. As of now, international organizations include NIST, OGF, DMTF 

Cloud working group, Cloud Security Alliance, and Cloud Standards Customer Councilare all 

working on cloud standards (occi-wg.org/)
x
. 

6) Sensing Middleware in the Cloud  
Over the last few years, number of IoT cloud has been made their way in the sensing 

middleware marketplace. Thingworx (thingworx.com) and Xively (xively.com) are cloud-based 

online platforms that process, analyse, and manage sensor data retrieved through a variety of 
 
 
vi http://www.w3.org/TR/ws-cdl-10/

  
vii http://wiki.apache.org/hadoop/Sort
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different protocols. HomeOS [20] is a platform that supports home automation. HomeOS is 

a software platform which can be installed on a normal PC. As with the smartthings 

platform, applications can be installed to support di erent context-aware functionalities (e.g. 

capturing an image from a door camera and sending it to the user when someone rings the 

doorbell). Lab-of-things [21] is a platform built for experimental research. It allows the user 

to easily connect hardware sensors to the software platform and enables the collection of 

data and the sharing of data, codes, and participants. However, most of these platforms 

hosted on the cloud by their owners and customers have no choice on the cloud 

technologies used. There are a few open source IoT platform developed by both research 

community (e.g. OpenIoT [9]) and industrial players (e.g. WSO2 IoT-

wso2.com/landing/internet-of-things/) that can be hosted any cloud available in the market 

today. Therefore, in this paper, we used OpenIoT as the IoT platform of choice to develop 

the prototypes. 
 

 

4. HIERARCHICAL DATA ANALYTICS IN MULTI-CLOUDS 

 

In this section, rst, we explain what hierarchical data analysis means in multi-cloud 
environment and its important feature and characteristics. We then present the widely used 
open-source IoT platform OpenIoT and describe its features that enable multi-cloud 
hierarchical processing. The presented OpenIoT platform is driven by semantic web 
concepts and hence incorporates extensive use of ontologies to de ne devices and 
services. This feature of OpenIoT, which will be presented in detail is the foundation for 
achieving the hierarchical multi-cloud data analytics model.  

Let us consider the Figure 1. It is important to note that hierarchical data analytics does not 

means that communication network has to be hierarchical. Hierarchical data analysis can 

happen in any type of network. The fundamental idea is as follows. First, data is captured by leaf 

nodes. In Figure 1, nodes A, B, C, and D can be considered as leaf notes which are responsible 

for gathering data streams generated by di erent sources. Data sources could be hardware 

sensors (e.g. temperature sensor) or a virtual sensors (e.g. calling a weather service). First, the 

leaf nodes may analyse the data they gathered. Each node may have their own data analytical 

capabilities (as denoted in a1...a10) based on the library of data analytics tools they have access 

to.  

 

  
  



 
 
Once data analytics are applied by leaf node, the data is transferred to the next layer of nodes 

(i.e. node E and F). These nodes will run another set of analytics over the incoming data 

streams and generate more abstract outputs (i.e. a data stream). Finally, E and F nodes 

transfer their outputs to node G.  
It is important to note that data processing does not follow any particular layered 

structure. The idea is to perform analytics in a node and pass the results onto another node 
to perform another set of analytics. As a result A, B, C, D does no have to be in the same 
layer. One stream of data may directly be sent to node A without sending them to node E if 
the analytics performed in node E is not required by the node A.  

In both sensing-as-a-service model and analytics-as-a-service models, nodes are 

collecting and processing data in order to achieve their own objective. Hierarchical data 

analytics in multi-cloud environment occurs, when a given node does not have access to 

required data (e.g. node G). In such occasions, initiation node sends requests to other 

nodes in order to get access to the data it requires. Further, as shown by red arrows in 

Figure 1, the amount of data need to be transferred between nodes as well as the 

bandwidth requirement get reduced at each layer. Primarily the reason for this is that each 

layer performs some-kind of analytics over the data and generates more aggregated 

results. For example, an average function may aggregate data over 5 minutes and 

generate a single tuple. In another instance, a function may combine sensor data from 

video cameras to identify the number of people entering into a certain area over an hour. 

Without sensing streaming video feeds, each processing node may only stream the number 

count to the next node in the hierarchy. The proposed model has several advantages 

namely: 
 

It facilitates integration of services across various layers 
 

It allows seamless integration of data producers and consumers staying agnostic to 
infrastructure and technologies  
It is a platform to build complex end-user applications without owning the data 
production infrastructure nor the data processing tools/infrastructure  
Allow seamless discovery of service provider capabilities that can be implemented 
using many mechanisms including semantic discovery, probabilistic discovery, SOA-
style discovery etc. 

 

4.1. OpenIoT: An Open source middleware for Internet of Things 
 
The OpenIoT middleware [9] is a versatile blueprint architecture for collecting and 

processing data from Internet of Things data sources. OpenIoT provides an innovative 

complete IoT stack platform for IoT/cloud convergence which enables: (A) The integration 

and streaming of IoT data and applications within cloud computing infrastructures; (B) The 

deployment of semantically interoperable applications in the cloud; (C) The implementation 

of mainstream cloud computing concepts and properties in the IoT domain, including the 

concept of <Sensing-as-a-Service> (i.e. on-demand, utility-based access to IoT services) 

and the concept of pay-as-you-go for IoT applications; (D) Handling of mobile sensors (e.g., 

smart phones) and associated QoS parameters (e.g., energy e ciency). OpenIoT currently 

uses standard communication protocols such as TCP/IP and RESTful architecture to 

enable communication between the di erent components. However, it is an open framework 

with support for any new protocols such as CoAP. 

 

4.1.1. OpenIoT: Architectural Overview The OpenIoT architecture is comprised of seven 
main elements that belong to three di erent logical planes, as illustrated in Figure 2. These 
planes are the Utility/Application Plane, the Virtualized Plane and the Physical Plane which 
include the following modules:  

Utility/Application Plane: The utility and application plane is responsible for managing 
interaction with end-user applications. In particular, it provides a set of tools and interfaces 
that users can use to deploy IoT application on-the- y. It comprises the following key 
components namely: 
 

 



The Request De nition enables the speci cation of service requests to the OpenIoT 
platform. It comprises a set of services for specifying and formulating such requests, 
while also submitting them to the Global Scheduler. This component can be realised 
using a feature rich GUI (Graphical User Interface) allowing user interaction or via 
APIs for machine to machine communication.  
The Request Presentation is responsible for visualising the outputs of an IoT service. 
This component creates mashups from the service decribption in order to facilitate 
presentation of analysed data.  
The Configuration and Monitoring component enables the management and con 
guration of functionalities over the sensors and the (OpenIoT) services that are 
deployed within the OpenIoT platform. Moreover, it enables the user to monitor the 
health of the di erent deployed modules. 

 
Virtualized Plane: The virtual plane is responsbile to bridge the device layer (physical) to the 

application layer. The virtual plane in most cases is deployed on cloud environments and is 

responsible for providing core functionalities and services to the physical and application layer. 

Note that the cloud infrastructure could be either a public infrastructure (such as the Amazon 

Elastic Compute Cloud (EC2)) or a private infrastructure (e.g., a private cloud deployed based 

on Open Stack (http://www.openstack.org/)). It comprises the following components 
 

The Directory Service (LSM-Light), keeps information about all the sensors and 

services that are available in the OpenIoT platform. It also provides the means (i.e. 

services) for registering sensors and services with the directory, as well as for the 

look-up (i.e. discovery) of sensors and services. The architecture speci es the use of 

semantically annotated descriptions of sensors as part of its directory service. This 

component is developed by extending the W3C SSN ontology [9] allowing 

representation of both sensors and their corresponding services respectively. The 

directory service can be characterized as a sensor cloud, given that it primarily 

supports storage and management of sensor data streams (and of their metadata). 

This component of OpenIoT is vital to the relational of the proposed hierarchical multi-

cloud data analytics approach and will be discussed in detail in the following section.  
The Global Scheduler, processes all the requests for on-demand deployment of 
services and ensures their proper access to the resources (e.g. data streams). This 
component undertakes the task of parsing the service request and accordingly 
discovering the sensors that can contribute to its ful lment. It also selects the 
resources, i.e., sensors that will support the service deployment, while also performing 
the relevant reservations of resources.  
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Figure 2. OpenIoT Architectural Overview 

 

  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Sensor Description based on SSN 

 

 

The Service Delivery & Utility Manager (SDUM), which performs a dual role. On one 
hand, it combines the data streams as indicated by service work ow description, in 
order to deliver the requested service. To this end, this component makes use of the 
service description and the resources identi ed and reserved by the (Global) 
Scheduler component. On the other hand, this component acts as a service metering 
facility, which keeps track of utility metrics for each individual service. This allows 
utility-based metering to facilitate the development of application using service 
provided by disparate providers. 

 

Physical Plane: The physical plane refers to the devices deployed in the physical 
environment. This can include real hardware sensors and virtual sensors. This layer is 
responsible for managing interactions between the device layer and the upper layers 
(virtual and application). This layer enables both sensing and actuation capabilities. This 
layer comprises the following component 
 

The Sensor Middleware (Gateway), which collects, lters and combines data streams 

stemming from virtual sensors (e.g. signal processing algorithms, information fusion 

algorithms and social media data streams) or physical sensing devices (such as 

temperature sensors, humidity sensors and weather stations). This middleware acts as a 

hub between the OpenIoT platform and the physical world, since it enables access to 

information stemming from the real world. Furthermore, it facilitates the interfacing to a 

variety of physical and virtual sensors such as IETF COAP compliant sensors (i.e. sensors 

providing RESTful interfaces), data streams from other IoT platforms (such as 

https://xively.com) and social networks (such as Twitter). Among the main characteristics 

of the sensor middleware is its ability to stream W3 SSN compliant sensor data in the 

cloud. The Sensor Middleware is deployed on the basis of one or more distributed 

instances (nodes), which may belong to di erent administrative entities. The prototype 

implementation of the OpenIoT platform uses an enhanced/extended version of the GSN 

middleware (namely X-GSN, which is currently as a module of the OpenIoT open source 

project). However, other sensor middleware platforms could be also used in alternative 

implementations and deployments of the OpenIoT architecture. 
 

Security Plane: The security plane cuts across the OpenIoT architecture stack ensuring 
an end-to-end security mechanism. The platform uses a token-based authentication system 
supported by role-based access control for authentication, authorisation and identity 
management. 

 

4.2. Hierarchical Multi-Cloud Data Analytics using OpenIoT 
 
The OpenIoT system is driven by semantic web technologies. It extensively uses an enhanced 

version of the W3C SSN ontology namely OpenIoT ontology [22] to for semantics annotation of 

data at each layer of the IoT stack i.e. device layer, virtual layer and the application layers. 



 
OpenIoT exploits other semantic web technologies such as Linked Data[23] for dynamically 
linking related sensor data sets with corresponding services and vice-versa and Resource 
Description Framework (RDF), Web Ontology Language (OWL) and Simple Protocol and 
RDF Query Language (SPARQL) for for semantic modelling, representation, storage and 
retrieval of sensors and services. In this section, we will present the features of the 
OpenIoT architecture that enables the realisation of multi-cloud data analytics applications.  

The virtual layer services namely LSM-Light, Scheduler and SDUM are at the heart of the 

OpenIoT architecture that enables the following capabilities namely: 1) Ability to register sensors 

with semantic descriptions, 2) Ability to register service that are composed by the 

user/application and 3) a discovery service that enables semantic discovery of sensors and 

service. A service in OpenIoT is de ned as a speci cation that de nes the set of analytical 

operation to be performed on a stream of sensor data and the respective visual presentation.  
Description of Devices: The OpenIoT Ontology extends the W3C SSN ontology enabling it to 

describe and register devices (sensors and things) with the virtual layer. Figure 3 presents an 

example of a partial sensor description. The RDF below describes a sensor namely a Vaisala 

Weather Station that has the capability to measure temperature and humidity.  
Description of Services: The OpenIoT Service Description speci cation (OSDSpec) is 

capable of describing in detail the service composed by the user/application. The OSDSpec 
is modelled in the OpenIoT ontology and is stored/managed by the directory service and 
scheduler components of the virtual layer. This OSDSpec allows the service to be 
described in detail including query control features such as query schedule, permissions on 
the query etc. Listing 1 is an example of an OpenIoT OSDSpec.  

Discovery and Invocation of Devices and Services  
Once the devices and services are registered with the virtual plane namely the directory 

service, the directory service along with the scheduler and SDUM are used to discover and 

invoke composed services. Listing 2 presents a sample SPARQL query that is used to perform 

semantic discovery for devices (things) within a given location. The query also takes additional 

parameters such as SensorType, SensorClass to perform more e cient discovery. The discovery 

service is also used to discover services e.g. an analytic service o ered by a service provider. 

Together, the virtual planes enables application to discover services o ered by independent 

sensor infrastructure owners and analytics service providers.  
The virtual plane components also provide API interfaces to invoke the discovered services. 

The key contribution of the proposed multi-cloud model is to promote interoperability among di 

erent data and analytic service providers. This is achieved by the discovery service combined 

with the API allowing the development of the multi-cloud data analytics applications. 
 
 

 

5. EXPERIMENTATIONS AND EVALUATIONS 

 

In this section, we present a real-world usecase scenario where we demonstrate the 
importance of hierarchical data processing in multi-cloud environments. Then, we describe 
the experimental test-bed implemented using the OpenIoT system in order to validate the 
feasibility and conduct performance evaluations. 
 
 

5.1. A Case Study 
 
TrueLeisure is company that operates di erent types of entertainment attractions. Among 
them they have franchised their amusement park chain. As depicted in Figure 4, currently 
Amusement parks are located in United States, United Kingdom, and Australia. These 
amusement pars are fully owned and operated by the franchisees. However, TrueLeisure 
continuously monitor and assess the service qualities and several other aspects of each of 
the amusements part. TrueLeisure takes these assessment seriously as their brand image 
is dependent on the quality of the services provided by the franchisees. 

 

  
  
 

 



Listing 1: Sample OpenIoT Service Speci cation 
 

<?xml version=" 1 . 0 "  e n c o d i n g="UTF 8" ?>  
<osd:OSDSpec x m l n s : s t=" h t t p : //www. w3 . o r g 

/2007/SPARQL/ p r o t o c o l t y p e s#"  
x m l n s : v b r=" h t t p : //www. w3 . o r g /2007/SPARQL/ r e s u l t s#"  
x m l n s : r d f=" h t t p : //www. w3 . o r g /1999/02/22 r d f syntax ns#" x 
m l n s : o s d=" h t t p : //www. o p e n i o t . eu / o s d s p e c "  
x m l n s : x s i=" h t t p : //www. w3 . o r g /2001/XMLSchema i n s t a n c 

e "> <osd:OAMO name="name0">  
<osd:OSMO name="name1">  

<o s d : q u e r y C o n t r o l s> <o 

s d : Q u e r y S c h e d u l e> 

</ o s d : Q u e r y S c h e d u l e>  
<o s d : r e p o r t I f E m p t y>f a l s e</ o s d : r e p o r t I f E m p t y  

>  
</ o s d : q u e r y C o n t r o l s>  
< o s d : r e q u e s t P r e s e n t a t i o n>  

< o s d : w i d g e t widgetID=" h t t p : 
//www. oxygenxml . com/">  

<o s d : p r e s e n t a t i o n A t t r name= 

"name2" v a l u e=" v a l u e 0 "/> 

<o s d : p r e s e n t a t i o n A t t r name= 

"name3" v a l u e=" v a l u e 1 "/> 

</ o s d : w i d g e t>   

<o s d : w i d g e t  widgetID=" h t t p : //www. 

oxygenxml . com/">   

<o s d : p r e s e n t a t i o n A t t r name= 

"name4" v a l u e=" v a l u e 2 "/> 

<o s d : p r e s e n t a t i o n A t t r name= 

"name5" v a l u e=" v a l u e 3 "/> 

</ o s d : w i d g e t>    
</ o s d : r e q u e s t P r e s e n t a 
t i o n> <s t : q u e r y r e q u e s t>  

<query>query0</ query> </ 
s t : q u e r y r e q u e s t>  
<s t : q u e r y r e q u e s t> 

<query>query1</ query>  
</ s t : q u e r y r e q u e s 
t> </osd:OSMO>  

</osd:OAMO> 
</ osd:OSDSpec> 

 
 

 

  
  



 

 

Listing 2: Sample Device Discovery Query 
 
SELECT ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 s e n s o r I d 

FROM <h t t p : // o p e n i o t . eu /OpenIoT/ s e n s o r m e t a#>  
WHER

E f  
? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 s e n s o r I d <h t t p : //www. w3 . o r g 

/1999/02/22 r d f syntax ns#type> <h t t p : //demo . o r g / ns#TestType> .  
<h t t p : //demo . o r g / ns#TestType> <h t t p : //www. w3 . o r g /2000/01/ r d f schema 

#s u b C l a s s O f> <h t t p : // p u r l . o c l c . o r g /NET/ s s n x / s s n#S e n s o r> .  
? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 s e n s o r I d <h t t p : //www. l o a c n r . i t / o n t o 

l o g i e s /DUL. owl#h a s L o c a t i o n> ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c 
.  

? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c g e o : g 
e o m e t r y ? graphNode 2197552479500 geo .  

? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c g e o : l a t ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l a t . ? g r a p h 

N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c g e o : l o n g ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o n 

.  
FILTER (<b i f : s t  i n t e r s e c t s>( ? graphNode 2197552479500 geo , <  

b i f : s t  p o i n t>(  6 . 6 3 5 2 2 7 2 0 3 3 6 9 1 4 1 ,  4 6 . 5 2 1 1 9 3 7 8 1 7 9 7 8 1 ) ,  1 5 ) ) .  
g 
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Figure 4. A Case Study: Service Quality Monitoring 
of Amusement Park Chain 

 

 

Jane is a data analyst overseeing the quality assessment tasks of amusement parks at 

TrueLeisure. She is responsible for continuously monitoring the service quality parameters. In 

addition to Jane, each of the franchisees also have their own data analysis and quality control 

division where they also monitor their own quality parameters. All the amusements parks are 

augmented with a large number of sensors that collects various types information such as 

environmental parameters (e.g. temperature, humidity, pressure), crowd movements, usage and 

demand of each rides and attractions, operational status of machinery used in the amusement 

part, etc. Each of the amusement parks have deployed their own IoT platforms to which sensors 

are connected. Conceptually, a query would look like SELECT AVG(WaitingTime) 



FROM United States, United Kingdom, Australia. The importance of this type of abstraction 
is that Jane does not need to know how to nd waiting times in each location where each 
location may employ di erent technological means to acquire di erent types of sensors data 
to derive waiting times.  
 

 

ServerName Location/Zone Con guration 
   

OpenIoT-1-Azure Australia East Standard Instance, A3(4 Cores, 7GB Memory) 

OpenIoT-2-Azure Australia East Standard Instance, A2(2 Cores, 3.5GB Memory) 

OpenIoT-1-Google asia-east1-a n1-standard-2 (2 vCPUs, 7.5 GB memory) 
 Table I. OpenIoT Implementation Details 

 
 

 

One of the important service quality parameter is `waiting time'. This is a main contribution 

factor towards customer satisfaction. Local quality assessment team continuously measures the 

crowd waiting time of each ride and attraction within their own amusement park. The raw data 

generated by sensors such as motion sensors, cameras, Bluetooth beacons, RFID tags are 

used to calculate these waiting times. By measuring waiting times, local data analysis team can 

recommend their operational division about any bottleneck within the park so the management 

can take necessary actions to eliminate those to increase customer satisfaction. From Jane's 

perspective, who is responsible for overseeing entire portfolio of amusement parks at 

TrueLeisure, she is only interested in the big picture. That means Jane would like to create a 

single parameter of waiting time (i.e. overall waiting time) by combining individual waiting times 

(i.e. individual waiting time for each ride or attraction) together. As a results, she will have three 

measures where each represent waiting time of each amusement park locates in United State, 

United Kingdom and Australia. By plotting these measures in a line chart , Jane can view how 

waiting time varies in real-time. Jane will report these high-level measures to her corporate 

management so TrueLeisure can discuss with their franchises on future development of their 

theme parks e ciently and e ectively. Figure 5 illustrate how data is being collected, processed 

and transferred in such a scenario using the proposed hierarchical data analysis in a multi-cloud 

environment. This scenario is a typical example of data producers, analysis service providers 

and data consumers operating and managing their own infrastructure (each theme park) and 

applications integrating these services to address speci c requirements (Jane interested in 

overall performance of each theme park). 
 
 

5.2. Experimental Setup 
 
The experimental testbed is presented in Figure 6. The analytics service at each level was 
implemented using the OpenIoT platform. The OpenIoT components presented in Section 
4.1.1 have been implemented using Java J2EE framework using the Virtuoso RDF 
triplestore[24]. For more details on the implementation of OpenIoT refer to www.openiot.eu.  

The OpenIoT system was deployed on two instances of Microsoft Azure servers and one 
instance of a Google Cloud Server. Table I provides a summary of the server 
configurations. 
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To test the performance of the system under load, we used Apache JMeter 
xi

 to generate 

user queries. The OpenIoT instance on windows azure are connected to the sensor 
platforms producing the data. For experimental purposes, we used a test dataset collected 
from publicly available weather and pollution data from the year 2014. The total amount of 
data in the virutoso triple store is around 10 million triples. 

 

5.3. Experiment Description 
 
To evaluate the performance of the proposed hierarchical data analytics system using the 

implemented OpenIoT system on multi-cloud environments, we conduct two experiments. The 

OpenIoT instance on the Google Cloud (OpenIoT-1-Google) fetches data from the 2 OpenIoT 

instances on Windows Azure cloud. The OpenIoT-1-Google server fuses data from the two 

Azure instances to provide a combined analysis of the data to the end-user. To measure the 

performance of the system, we use CLAMS [5], a multi-cloud multi-layer performance monitoring 

framework. CLAMS enables a deep understanding of the performance of each individual 

component of our hierarchical data analytics systems deployed across the cloud layers e.g. IaaS 

and PaaS. CLAMS addresses the gaps in existing cloud monitoring tools inability to monitor 

application deployed in multi-cloud provider environments.  
 

Experiment 1 - Streaming Data: A key to the realisation of the multi-cloud hierarchical data 

analytics model is its ability to handle streaming data. In this experiment, we use di erent two 

cloud con gurations namely OpenIoT-1-Azure and OpenIoT-2-Azure. We test the stream data 

performance by increasing the number of sensors from 1 to 10. Each sensor produces 5 

data streams including temperature, humidity, carbon monoxide, pressure and noise. So in 

total, when 10 sensors are active, the system handles around 50 data streams. The 

streaming rate is xed at 1 data point/second. The data generated is time series data i.e. a 

combination of timestamps associated with data points (double). 
 

Experiment 2 - Distributed Hierarchical Query Performance: In this experiment, we measure 

the response time for query processing. The queries are generated from the Google Cloud 

OpenIoT instance and are processed distributed by the Azure instances of OpenIoT.  
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Figure 6. Experimental Testbed 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 1a: CPU Consumption 
(b) 1b: Memory Consumption 

 
Figure 7. Streaming Data Performance 

 

 

 

5.4. Experimental Results 
 
Experiment 1- Streaming Data Performance: Figure 7 presents the outcomes of our 

experiment. The three components that are measured here include JBOSS (hosting all the 

OpenIoT modules), Virtuoso (the datastore) and X-GSN (the streaming engine connecting 

sensors to the OpenIoT platform). The results show some interesting observations including 

CPU consumption of over 100%. This is due to the fact that in multi-core CPU, when more 

than one core is used, the CPU consumption goes over 100. For example, in a 4 core CPU, 

the maximum CPU consumption as reported by CLAMS could be a maximum of 400%. The 

VM1 refers to the Azure-1 instance while the VM2 refers to Azure-2 instance. Overall, for 

managing 50 data streams (10 sensors) at the rate of 1 second, the system performs signi 

cantly well without any major bottlenecks. Since the memory consumption of the JBOSS is 

controlled by the JVM, a trend of higher memory consumption for VM1 can be noted. This is 

due to the higher memory availability (7 GB) on VM1 as compared to VM2 (3.5 GB).  
Experiment 2- Distributed Hierarchical Query Performance: Figure 8 presents the outcome of 

query response times on the two Azure con guration. The queries originated from the Google 

Cloud OpenIoT instance. In general, the overall query response time is very good in 

 

  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 1a: Response Time - OpenIoT-1-Azure (b) 1b: Response Time - OpenIoT-2-Azure 

 
Figure 8. Query Response Times 

 

 

the order of 400 - 450 millisecond with number of parallel users increasing from 50 to 500. 
As expected, the Azure 1 instance which has more memory and CPU cores performs better 
than the Azure 2 instance. The interesting result here is, the response time decreases as 
number of users increase. This is something we suspect to be associated with how the JVM 
will allocate memory when the load on the system increases. This outcome is consistent 
with the outcomes from both the Azure con gurations.  

Figure 9 presents the CPU and memory consumption of both the Azure 1 and Azure 2 
instances while processing the queries from the Google Cloud instance. As described 
earlier, due to the higher con guration of Azure 1, we note that the JBOSS component of 
OpenIoT in Azure 1 consumes upto 300% CPU. The same outcomes is observed with the 
Memory consumption of JBOSS on each of the instance.  

The experimental outcomes validates the following key contributes of the paper namely 1) It is 

feasible to deploy a hierarchical data analytics system where the various systems could be 

owned by di erent providers, 2) Using device and service discovery we can compose multi-cloud 

data analytics applications, 3) the performance of such a system implemented using the widely 

used OpenIoT system is scalable and does not show any signi cant limitations or overheads. 
 

 

6. CONCLUSIONS AND FUTURE WORK 

 

In this paper we have proposed a novel, hierarchical data processing architecture suitable for 

multi-cloud environments. This architecture provides exibility to di erent parties who host their 

own cloud IoT platforms to share processed data to reduce computation resource consumption 

collectively. This also reduces the risks associated in sharing raw data. Such low privacy risks 

encourage data owners to share their data with third parties where they will use such data for 

secondary objectives. The demonstrated system is semantically inter-operable. Such 

interoperability allows di erent instances deployed in multi-cloud environments to work together 

to collectively analyse data to achieve a common objective through hierarchical data processing. 

This was demonstrated in this paper by real-world implementation of the OpenIoT system on 

Azure and Google cloud platforms. Finally, the experimental results validate 

 

  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 1a: CPU Consumption - OpenIoT-1-Azure (b) 1b: CPU Consumption - OpenIoT-2-Azure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 1a: Memory Consumption - OpenIoT-1-Azure (d) 1b: Memory Consumption - OpenIoT-2-

Azure Figure 9. Hierarchical Query Processing Performance 

 

the scalability of our proposed multi-cloud data analytics approach. Moreover experimental 

outcomes also show that the system does not impose any signi cant limitations or overheads. 

Our next step is to develop a complimentary performance model for such hierarchical data 

processing in multi-cloud environments for autonomous provisioning of cloud resources. 
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