
The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the

repository record for this item and our Policy Document available from the repository home

page for further information.

To see the final version of this work please visit the publisher’s website. Available access to

the published online version may require a subscription.

Copyright statement: © 2016 Wiley Periodicals, Inc. Full-text reproduced in accordance with the

publisher’s self-archiving policy.

This is the peer reviewed version of the following article: Jayaramani PP, Perera C,

Georgakopoulos D, Dustdar S, Thakker D and Ranjan R (2016) Analytics-as-a-Service in a Multi-

Cloud Environment through Semantically-enabled Hierarchical Data Processing. Software:

Practice and Experience. 47(8): 1139-1156, which has been published in final form at http://
dx.doi.org/10.1002/spe.2432. This article may be used for non-commercial purposes in

accordance with Wiley Terms and Conditions for Self-Archiving.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/76945822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291097-024X
http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms

JOURNAL OF SOFTWARE: PRACTICE AND EXPERIENCE

Analytics-as-a-Service in a Multi-Cloud Environment through
Semantically-enabled Hierarchical Data Processing

Prem Prakash Jayaraman
i1

, Charith Perera
2
, Dimitrios Georgakopoulos

1
,

Schahram Dustdar
3
, Dhavalkumar Thakker

4
, Rajiv Ranjan

5

1
RMIT University, Melbourne, 3000 Victoria, Australia.

2
Department of Computing, The Open University, Milton Keynes, MK7 6AA, United Kingdom

3
Distributed Systems Group, Vienna University of Technology, Argentinierstrasse 8/184-1, A-1040 Wein,

Austria.
4
University of Bradford, Bradford BD7 1DP, United kingdom

5
School of Computing Science, Newcastle University, NE1 7RU United Kingdom

SUMMARY

A large number of cloud middleware platforms and tools are deployed to support a variety of Internet of

Things (IoT) data analytics tasks. It is a common practice that such cloud platforms are only used by its

owners to achieve their primary and prede ned objectives, where raw and processed data are only

consumed by them. However, allowing third parties to access processed data to achieve their own

objectives signi cantly increases intergation, cooperation, and can also lead to innovative use of the data.

Multi-cloud, privacy-aware environments facilitate such data access, allowing di erent parties to share

processed data to reduce computation resource consumption collectively. However, there are

interoperability issues in such environments that involve heterogeneous data and analytics-as-a-service

providers. There is a lack of both - architectural blueprints that can support such diverse, multi-cloud

environments, and corresponding empirical studies that show feasibility of such architectures. In this

paper, we have outlined an innovative hierarchical data processing architecture that utilises semantics at

all the levels of IoT stack in multi-cloud environments. We demonstrate the feasibility of such architecture

by building a system based on this architecture using OpenIoT as a middleware, and Google Cloud and

Microsoft Azure as cloud environments. The evaluation shows that the system is scalable and has no signi

-cant limitations or overheads.

KEY WORDS: Internet of Things, Multi-cloud environments, Big data,Semantic Web, Data

Analytics

1. INTRODUCTION

Recent studies have shown that we generate 2.5 quintillion bytes of data per day [1] and this is

set to explode to 40 yottabytes by 2020. This will amount to approximately 5,200 gigabytes for

every person on earth. Much of these data is and will be generated from the Internet of Things

(IoT) [2]. IoT is a part of the future internet and comprises billions of internet connected objects

(ICOs) or `things' where each thing can sense, communicate, compute and potentially actuate

and can have intelligence, multi-modal interfaces, physical/virtual identities and attributes.

i
Correspondence to: RMIT University, Melbourne, 3000 Victoria, Australia.

ICOs can include wireless/wired sensors, RFIDs, data from social media, smart consumer

appliances (TV, smart phone, etc.), smart industries (such as equipment fitted with sensors),

scientific instruments (e.g., high energy physics synchrotron) and actuators. The vision of IoT is

to allow `things' to be interconnected anytime, anywhere, with anything and anyone, ideally

using self-con gured paths, networks and services. This vision has led to IoT emerging as a

major producer of big data. Today, cloud technologies [3, 4] provide the ability to store and e

ciently process large scale data sets by o ering a mix of software and hardware resources with

modest operating costs proportional to the actual use (pay-as-you use model) [5]. It is well

understood that the IoT big data applications need to process and manage streaming data from

geographically distributed data sources. The cloud computing model has emerged as a suitable

solution to ful l IoT big data applications' data processing needs. The cloud essentially acts as a

transparent layer between the IoT and applications providing exibility, scalability and hiding the

complexities between the two layers (IoT and applications). The fusion of cloud and IoT into

"Cloud of Things" has given rise to the following new cloud computing paradigms (but not limited

to): Sensing-as-a-Service, Sensing- and Actuation-as-a-Service, Video-Surveillance-as-a-

Service, Big Data Analytics-as-a-Service, Data-as-a-Service, and Sensor-Event-as-a-Service.

However, the integrated Cloud of Things approach impose several challenges right from the IoT

layer including device discovery, cost-e cient communication, device management and

monitoring, interoperability, quality of service and M2M issues to the cloud layer including

service discovery and delivery, big data management and analytics, cloud monitoring and

orchestration, mobility issues in cloud access, privacy and security and SLA management.

Further, the notion of *-as-a-service model will enable multiple independent operators to provide

various services across the CoT layers that will need to be integrated based on application

requirements. The proli c rise of IoT and the corresponding ecosystem will soon result in device

being owned and operated by independent providers. These solutions will mostly be constrained

into independent multiple-cloud provider silos. A multi-cloud environment consists of several

data centres which are geographically and topologically distributed across the Internet [6, 7].

The focus of this work is to address the challenge of facilitating multi-cloud data analytics for IoT

data originating from things that are owned and operated by multiple service providers. Enabling

third parties to access this data and the analytic capabilities can signi cantly increases the

innovation and value of end-user applications. IoT big data applications that need to process

and manage streaming data from multiple sources need to exploit the resources hosted across

multiple cloud data centres due to following reasons [8]:

IoT datasets and data sources can be geographically distributed hence moving them to a
single centralized data centre could lead to high network communication overhead.
The IoT data storage and processing needs cannot be full- lled by the computational
and storage resources o ered by any single data centre. For example, in the Azure
Cloud, there is a limit of 300 cores per application deployments (i.e. the maximum
number of VMs that can be deployed at any instance of time). Clearly, this could lead
to serious problems if the IoT datasets ow at a very high volume and velocity.
IoT datasets may be constrained by security and legal policies, i.e., data may not leave a
national jurisdiction or can not be streamed into a remote international data centre.

In this paper, we present hierarchical data analytics model for multi-cloud environments.

Our proposed approach allows end-user application to integrate and take advantage of

independent infrastructure and analytics service providers. We present a use case to

demonstrate the proposed hierarchical and distributed multi-cloud approach to facilitate e
ective and e cient sharing of analysed data across cloud providers. We use the popular

open-source IoT middleware platform namely OpenIoT [9] to demonstrate the feasibility of

our approach in multi-cloud environments. Finally, we conduct experimental evaluations on

Google Cloud and Microsoft Azure platforms to establish the performance of the proposed

hierarchical and distributed multi-cloud approach system.
It is important to note that our approach is not application dependant. Therefore, it can be

generalised in to any application domain where only the analytical functions employed
would need to be di ered. Any type of analytical functions can be used on our proposed

infrastructure. In this paper, we assume that all the cloud instances who engaged in a given
data analytics task are trust-able and veri ed, before organise them into a certain
hierarchical composition in order to support a given application.

2. MOTIVATION: ANALYTICS-AS-A-SERVICE

In sensing-as-a-service [10] model, data is exchanged seamlessly among data producers

(owners) and consumers via the cloud resources. Data producers are owners of the IoT devices

(products) and deploy them in their environments. These IoT products sense, analyse and

perform actuation to solve the needs of the data owners. While this data normally resides in

individual silos, sensing-as-a-service model promotes the sharing of data (liberating data from

silos) allowing data consumers to access the data using secure mechanisms. For example, a

plant biologist studying the spread of certain diseases in plants may want to know the list of a

ected farms to better understand the trajectory of the diseases. In this case, the aim of the

biologist is not to identify individual farms, but a while set of farms in speci c areas. When the

number of data providers and consumers increase, there is a need to develop an open data

market. The data from this market may not necessarily freely available [11] (may follow the cloud

computing pay-as-you-go model) but the metadata description the data would be. The meta data

will enable users and other services to discover relevant data stored in data owner silos.
Analytics-as-as-Service refers to next generation IoT data processing applications where

third party will be responsible for hosting IoT Analytics and data processing applications

(e.g., detecting events from video camera feeds, detecting events from smart home

sensors, etc.) on private/public cloud infrastructures. These analytics applications will be o

ered to end-users under pay-as-you-go-model. Currently, such a service model is o ered for

cloud-based hardware (CPU, Storage, and Network) and software (Databases, message

queuing systems, etc.) resources by providers such as Amazon Web Services. Providers

such as SalesForce.com o ers pay-as-you-go model for ERP and CRM applications.

However, ERP and CRM applications are fundamentally di erent from IoT Analytics

applications. Moreover analytics-as-a-service model introduces further complexities as

there is need to describe not only the data but also the analytics performed on the data.

Further, when data analytics exists as data silos within independent data owner clouds,

there is a need to develop systems that can function across multiple cloud providers. Such

systems will inherently require the following capabilities namely 1) ability to interoperate via

standard interfaces 2) ability to describe data 3) support for machine to machine

communication and 4) ability to describe the analytics built on the acquired data.
Another advantage provided by analytics-as-a-service model is that it supports knowledge

sharing while reducing the privacy risks. Due to the fact that this model does not share raw data,

it eliminates the risks associates with sharing raw data such as anonymised sharing of analysed

data, enforce restrictions on data storage location etc. Another advantage is the savings of

computational resources due to the elimination of redundant data processing. This means that

when one cloud IoT platform perform a certain data processing task over data, the recipient

cloud platforms does not required to perform the same data processing task again. For example,

one IoT cloud platform may collect data form motion sensors and cameras to determine how

much time in average a person may wait in a certain queue. One such data processing is done,

the recipient cloud can take average waiting time as an input. We elaborate on this example in

Section 5 when we present the use-case scenario. Further, analytics-as-a-service model also

reduces the data communication requirements. Typically, raw data is large in term of size.

However, the processed data is signi cantly smaller that raw data. Therefore, the amount of data

that need to be transferred from one cloud to another reduces drastically by saving network

communication bandwidth and costs.

4

3. CURRENT STATE OF THE ART: PROCESSING DISTRIBUTED INTERNET OF
THINGS DATA

Existing big data processing technologies and data centre infrastructures [12] have varied
capabilities with respect to meeting the distributed IoT data processing challenges. In this

section we summarize capabilities of existing technologies based on the review given in our

past work [8]. The proposed analytics-as-a-service model is expected to be extensively

leverage these technologies. We have reviewed literature under six di erent themes: 1)

basic data centre cloud computing infrastructure service stacks, 2) massive data processing
models and frameworks, 3) trusted and integrated data management services across data

centres, 4) data-intensive work ow computing, 5) benchmarking, application kernels,

standards and recommendations, and 6) sensing middleware in the Cloud.
1) Basic data centre cloud computing infrastructure service stacks
Commercial or public data centres, for example, Amazon Web Services and Microsoft Azure o

er computing, storage, and software resources as remotely programmable cloud services via

Application Programming Interface (API). These resources are orchestrated by deploying

virtualization software/middleware stacks. It is well understood that virtualization allows data

centre providers to get more out of physical resources by allowing multiple instances of virtual

cloud resources to run concurrently. For example, virtual machine orchestration systems such

as Eucalyptus and Amazon EC2; image management tools such as FutureGrid image repository

[13]; massive data storage/ le system such as GFS, HDFS, and Amazon S3; and data-intensive

execution framework including Amazon Elastic Map Reduce. In addition, FutureGrid
ii
 and

OpenStack also provide software stack de nition for cloud data centres.
On the other hand, private data centres are constructed typically by combining multiple

types of software tools & services. These software can include, cluster management
systems such as Torque, OSCAR, VMWare's vCloud and/or vSphere suites and SLURM
(Simple Linux Utility for Resource Management); parallel le/storage systems such as

SAN/NAS
iii

, Lustre; as well as data management systems such as BeSTMan
iv

 and

dCache
v
. Apart from, some private data centres are enabled for resource sharing with Grid

computing middleware, such as Globus Toolkits, Unicore, and gLite. In general access to
private data centre resources is restricted to known group of application administrators and
users due to stringent security and privacy concerns.

2) Big data processing models and frameworks
Big Data Processing Frameworks include software frameworks that enable creation of big

data application architecture [14]. These frameworks can be classi ed as follows:

Large-Scale Data Mining frameworks (FlexGP, Apache Mahout, MLBase, Yahoo
SAMOA) implement a wide range of Data Mining (DM) algorithms (clustering, decision
trees, latent Dirichlet allocation, regression, Bayesian) to analyse massive data sets
(historical and streaming) in parallel, by exploiting distributed resources.
Distributed Message Queuing frameworks (Amazon Kinesis, Apache Kafka) provide a
reliable, high-throughput, and low-latency system of queuing real-time streams of data.
Parallel and Distributed Data Programming frameworks (Apache Hadoop, Apache Storm).

Such frameworks enable development of distributed applications that deal with large sets

of cloud resources to parallel process massive amounts of historical and streaming data

[15, 14]. The large scale DM frameworks mentioned above are generally implemented on

top of parallel and distributed data programming frameworks. Low-level distributed system

management complexities (task scheduling, data staging, fault

ii http://FutureGrid.org/

iii http://capitalhead.com/articles/san-vs-das-a-cost-analysis-of-storage-in-the-enterprise.aspx

iii
 http://wiki.lustre.org/

iv
 https://sdm.lbl.gov/bestman/

v
http://www.dcache.org/

management, inter-process communication, result collection) are automatically taken
care of by these frameworks.
Data Store frameworks are categorised as NoSQL and SQL. NoSQL frameworks

(MongoDB, HyperTable, Cassandra, Amazon Dynamo) support access based on

transactional programming primitives, where an exact key allows search for an exact

value. Such predetermined access patterns lead to better scalability and predictions of

performance, which is suitable for storing large amounts of unstructured data (e.g.

social media postings). SQL data stores (MySQL, SQL Server, PostGreSQL) manage

data in relational tables, where the generic Structured Query Language can be used

to manipulate data (insert, delete, update). In essence, SQL Data Stores are more e

ective than NoSQL stores, where transactional integrity (ACID properties) is a strict

requirement. Future big data applications are likely to use both NoSQL and SQL data

stores, driven by data varieties and querying needs. SQL Engines (Apache Hive,

Apache Pig) enable the querying of data across a variety of cloud storage resources

including Amazon S3 and Hadoop Distributed File System (HDFS) based on

structured query language.

4) Data-intensive work ow orchestration framework
Typical work ow frameworks for managing scienti c big data applications includes

Pegasus, Kepler, Taverna, Triana, Swift, and Trident. Trdationally, in service computing
domain orchestration with BPEL and YAWL [16] has been extensively explored. On the

other hand, service choreography has been done using WS-CDL
vi

. More recently,

orchestration frameworks such as YARN (Yet Another Resource Negotiator [17]) and
Mesos [18] have emerged for coordinating IoT data analytics work ow tasks across multiple
big data processing frameworks (e.g. Apache Hadoop, Apache Storm, etc.).

5) Benchmark, application kernels, standards and recommendations
Several benchmarks and application kernels have been developed, for example, Graph 500

(graph500.org/), Hadoop Sort
vii

and Sort benchmark (sortbenchmark.org), MalStone [19],

Yahoo! Cloud Serving Benchmark
viii

, Google cluster workload
ix

, TPC-H benchmarks

(www.tpc.org/tpch), BigDataBench, BigBench, Hibench, PigMix, CloudSuite, and GridMix

powered by the needs of analyzing the performance of di erent big data workloads. These

benchmark suites model workloads for stress testing one or more categories of big data

processing frameworks such as Apache Hadoop and Apache Mahout. In the current generation

of framework suites, BigDataBench and BigBench are the most comprehensive ones. This is

due to the fact that they incorporate big data workload models for variety of processing

frameworks including NoSQL, DBMS, SPEs and batch processing frameworks. Mainly,

BigDataBench targets the application domains such as search engine, social network, and e-

commerce. Having said that, their is limited benchmarks and application kernels available for

heterogeneous data centers and IoT data tyoes. Specially, there is no consensus on available

performance benchmarking for executing large-scale IoT applications across distributed data

centers. Literally, the absence of inter-centre benchmark and standards need to be the primary

research agenda for the future. As of now, international organizations include NIST, OGF, DMTF

Cloud working group, Cloud Security Alliance, and Cloud Standards Customer Councilare all

working on cloud standards (occi-wg.org/)
x
.

6) Sensing Middleware in the Cloud
Over the last few years, number of IoT cloud has been made their way in the sensing

middleware marketplace. Thingworx (thingworx.com) and Xively (xively.com) are cloud-based

online platforms that process, analyse, and manage sensor data retrieved through a variety of

vi http://www.w3.org/TR/ws-cdl-10/

vii http://wiki.apache.org/hadoop/Sort

viii http://research.yahoo.com/Web Information Management/YCSB

ix http://code.google.com/p/googleclusterdata/

x
http://www.dmtf.org/standards/ovf

Bandwidth

A

B C D

Requirements

a4 a5 a6 a7 a8 a9 a10

E F

a2 a3 a1

G

Amout of Data
transffered

Sensor devices

in IoT

Figure 1. Theoretical View of Hierarchical
Data Analytics

different protocols. HomeOS [20] is a platform that supports home automation. HomeOS is

a software platform which can be installed on a normal PC. As with the smartthings

platform, applications can be installed to support di erent context-aware functionalities (e.g.

capturing an image from a door camera and sending it to the user when someone rings the

doorbell). Lab-of-things [21] is a platform built for experimental research. It allows the user

to easily connect hardware sensors to the software platform and enables the collection of

data and the sharing of data, codes, and participants. However, most of these platforms

hosted on the cloud by their owners and customers have no choice on the cloud

technologies used. There are a few open source IoT platform developed by both research

community (e.g. OpenIoT [9]) and industrial players (e.g. WSO2 IoT-

wso2.com/landing/internet-of-things/) that can be hosted any cloud available in the market

today. Therefore, in this paper, we used OpenIoT as the IoT platform of choice to develop

the prototypes.

4. HIERARCHICAL DATA ANALYTICS IN MULTI-CLOUDS

In this section, rst, we explain what hierarchical data analysis means in multi-cloud
environment and its important feature and characteristics. We then present the widely used
open-source IoT platform OpenIoT and describe its features that enable multi-cloud
hierarchical processing. The presented OpenIoT platform is driven by semantic web
concepts and hence incorporates extensive use of ontologies to de ne devices and
services. This feature of OpenIoT, which will be presented in detail is the foundation for
achieving the hierarchical multi-cloud data analytics model.

Let us consider the Figure 1. It is important to note that hierarchical data analytics does not

means that communication network has to be hierarchical. Hierarchical data analysis can

happen in any type of network. The fundamental idea is as follows. First, data is captured by leaf

nodes. In Figure 1, nodes A, B, C, and D can be considered as leaf notes which are responsible

for gathering data streams generated by di erent sources. Data sources could be hardware

sensors (e.g. temperature sensor) or a virtual sensors (e.g. calling a weather service). First, the

leaf nodes may analyse the data they gathered. Each node may have their own data analytical

capabilities (as denoted in a1...a10) based on the library of data analytics tools they have access

to.

Once data analytics are applied by leaf node, the data is transferred to the next layer of nodes

(i.e. node E and F). These nodes will run another set of analytics over the incoming data

streams and generate more abstract outputs (i.e. a data stream). Finally, E and F nodes

transfer their outputs to node G.
It is important to note that data processing does not follow any particular layered

structure. The idea is to perform analytics in a node and pass the results onto another node
to perform another set of analytics. As a result A, B, C, D does no have to be in the same
layer. One stream of data may directly be sent to node A without sending them to node E if
the analytics performed in node E is not required by the node A.

In both sensing-as-a-service model and analytics-as-a-service models, nodes are

collecting and processing data in order to achieve their own objective. Hierarchical data

analytics in multi-cloud environment occurs, when a given node does not have access to

required data (e.g. node G). In such occasions, initiation node sends requests to other

nodes in order to get access to the data it requires. Further, as shown by red arrows in

Figure 1, the amount of data need to be transferred between nodes as well as the

bandwidth requirement get reduced at each layer. Primarily the reason for this is that each

layer performs some-kind of analytics over the data and generates more aggregated

results. For example, an average function may aggregate data over 5 minutes and

generate a single tuple. In another instance, a function may combine sensor data from

video cameras to identify the number of people entering into a certain area over an hour.

Without sensing streaming video feeds, each processing node may only stream the number

count to the next node in the hierarchy. The proposed model has several advantages

namely:

It facilitates integration of services across various layers

It allows seamless integration of data producers and consumers staying agnostic to
infrastructure and technologies
It is a platform to build complex end-user applications without owning the data
production infrastructure nor the data processing tools/infrastructure
Allow seamless discovery of service provider capabilities that can be implemented
using many mechanisms including semantic discovery, probabilistic discovery, SOA-
style discovery etc.

4.1. OpenIoT: An Open source middleware for Internet of Things

The OpenIoT middleware [9] is a versatile blueprint architecture for collecting and

processing data from Internet of Things data sources. OpenIoT provides an innovative

complete IoT stack platform for IoT/cloud convergence which enables: (A) The integration

and streaming of IoT data and applications within cloud computing infrastructures; (B) The

deployment of semantically interoperable applications in the cloud; (C) The implementation

of mainstream cloud computing concepts and properties in the IoT domain, including the

concept of <Sensing-as-a-Service> (i.e. on-demand, utility-based access to IoT services)

and the concept of pay-as-you-go for IoT applications; (D) Handling of mobile sensors (e.g.,

smart phones) and associated QoS parameters (e.g., energy e ciency). OpenIoT currently

uses standard communication protocols such as TCP/IP and RESTful architecture to

enable communication between the di erent components. However, it is an open framework

with support for any new protocols such as CoAP.

4.1.1. OpenIoT: Architectural Overview The OpenIoT architecture is comprised of seven
main elements that belong to three di erent logical planes, as illustrated in Figure 2. These
planes are the Utility/Application Plane, the Virtualized Plane and the Physical Plane which
include the following modules:

Utility/Application Plane: The utility and application plane is responsible for managing
interaction with end-user applications. In particular, it provides a set of tools and interfaces
that users can use to deploy IoT application on-the- y. It comprises the following key
components namely:

The Request De nition enables the speci cation of service requests to the OpenIoT
platform. It comprises a set of services for specifying and formulating such requests,
while also submitting them to the Global Scheduler. This component can be realised
using a feature rich GUI (Graphical User Interface) allowing user interaction or via
APIs for machine to machine communication.
The Request Presentation is responsible for visualising the outputs of an IoT service.
This component creates mashups from the service decribption in order to facilitate
presentation of analysed data.
The Configuration and Monitoring component enables the management and con
guration of functionalities over the sensors and the (OpenIoT) services that are
deployed within the OpenIoT platform. Moreover, it enables the user to monitor the
health of the di erent deployed modules.

Virtualized Plane: The virtual plane is responsbile to bridge the device layer (physical) to the

application layer. The virtual plane in most cases is deployed on cloud environments and is

responsible for providing core functionalities and services to the physical and application layer.

Note that the cloud infrastructure could be either a public infrastructure (such as the Amazon

Elastic Compute Cloud (EC2)) or a private infrastructure (e.g., a private cloud deployed based

on Open Stack (http://www.openstack.org/)). It comprises the following components

The Directory Service (LSM-Light), keeps information about all the sensors and

services that are available in the OpenIoT platform. It also provides the means (i.e.

services) for registering sensors and services with the directory, as well as for the

look-up (i.e. discovery) of sensors and services. The architecture speci es the use of

semantically annotated descriptions of sensors as part of its directory service. This

component is developed by extending the W3C SSN ontology [9] allowing

representation of both sensors and their corresponding services respectively. The

directory service can be characterized as a sensor cloud, given that it primarily

supports storage and management of sensor data streams (and of their metadata).

This component of OpenIoT is vital to the relational of the proposed hierarchical multi-

cloud data analytics approach and will be discussed in detail in the following section.
The Global Scheduler, processes all the requests for on-demand deployment of
services and ensures their proper access to the resources (e.g. data streams). This
component undertakes the task of parsing the service request and accordingly
discovering the sensors that can contribute to its ful lment. It also selects the
resources, i.e., sensors that will support the service deployment, while also performing
the relevant reservations of resources.

S
e
c
u

ri
ty

)

S
e

c
u

ri
ty

 (
C

e
n

tr
a

li
s

e
d

 A
c

c
e
s

s

 pA

Request Definition Request Presentation
Config and Monitor

a
cilp

 P
n

o
ti

n
al

 e

 Cloud IoT Store (Linked triV

 Sensor Middleware)

OWL Virtuoso
Data

la
u

Pl

RDF RDF DataData Service Delivery & na

e

 Utility Manager

Sensor Sensor h
P

Gateway Gateway y

(X-GSN)
(X-GSN) cis

 a

CoAP Arduino Mobile

n
a
P

lle

Sensor
 XivelyX-GSN Broker

Figure 2. OpenIoT Architectural Overview

Figure 3. Sensor Description based on SSN

The Service Delivery & Utility Manager (SDUM), which performs a dual role. On one
hand, it combines the data streams as indicated by service work ow description, in
order to deliver the requested service. To this end, this component makes use of the
service description and the resources identi ed and reserved by the (Global)
Scheduler component. On the other hand, this component acts as a service metering
facility, which keeps track of utility metrics for each individual service. This allows
utility-based metering to facilitate the development of application using service
provided by disparate providers.

Physical Plane: The physical plane refers to the devices deployed in the physical
environment. This can include real hardware sensors and virtual sensors. This layer is
responsible for managing interactions between the device layer and the upper layers
(virtual and application). This layer enables both sensing and actuation capabilities. This
layer comprises the following component

The Sensor Middleware (Gateway), which collects, lters and combines data streams

stemming from virtual sensors (e.g. signal processing algorithms, information fusion

algorithms and social media data streams) or physical sensing devices (such as

temperature sensors, humidity sensors and weather stations). This middleware acts as a

hub between the OpenIoT platform and the physical world, since it enables access to

information stemming from the real world. Furthermore, it facilitates the interfacing to a

variety of physical and virtual sensors such as IETF COAP compliant sensors (i.e. sensors

providing RESTful interfaces), data streams from other IoT platforms (such as

https://xively.com) and social networks (such as Twitter). Among the main characteristics

of the sensor middleware is its ability to stream W3 SSN compliant sensor data in the

cloud. The Sensor Middleware is deployed on the basis of one or more distributed

instances (nodes), which may belong to di erent administrative entities. The prototype

implementation of the OpenIoT platform uses an enhanced/extended version of the GSN

middleware (namely X-GSN, which is currently as a module of the OpenIoT open source

project). However, other sensor middleware platforms could be also used in alternative

implementations and deployments of the OpenIoT architecture.

Security Plane: The security plane cuts across the OpenIoT architecture stack ensuring
an end-to-end security mechanism. The platform uses a token-based authentication system
supported by role-based access control for authentication, authorisation and identity
management.

4.2. Hierarchical Multi-Cloud Data Analytics using OpenIoT

The OpenIoT system is driven by semantic web technologies. It extensively uses an enhanced

version of the W3C SSN ontology namely OpenIoT ontology [22] to for semantics annotation of

data at each layer of the IoT stack i.e. device layer, virtual layer and the application layers.

OpenIoT exploits other semantic web technologies such as Linked Data[23] for dynamically
linking related sensor data sets with corresponding services and vice-versa and Resource
Description Framework (RDF), Web Ontology Language (OWL) and Simple Protocol and
RDF Query Language (SPARQL) for for semantic modelling, representation, storage and
retrieval of sensors and services. In this section, we will present the features of the
OpenIoT architecture that enables the realisation of multi-cloud data analytics applications.

The virtual layer services namely LSM-Light, Scheduler and SDUM are at the heart of the

OpenIoT architecture that enables the following capabilities namely: 1) Ability to register sensors

with semantic descriptions, 2) Ability to register service that are composed by the

user/application and 3) a discovery service that enables semantic discovery of sensors and

service. A service in OpenIoT is de ned as a speci cation that de nes the set of analytical

operation to be performed on a stream of sensor data and the respective visual presentation.
Description of Devices: The OpenIoT Ontology extends the W3C SSN ontology enabling it to

describe and register devices (sensors and things) with the virtual layer. Figure 3 presents an

example of a partial sensor description. The RDF below describes a sensor namely a Vaisala

Weather Station that has the capability to measure temperature and humidity.
Description of Services: The OpenIoT Service Description speci cation (OSDSpec) is

capable of describing in detail the service composed by the user/application. The OSDSpec
is modelled in the OpenIoT ontology and is stored/managed by the directory service and
scheduler components of the virtual layer. This OSDSpec allows the service to be
described in detail including query control features such as query schedule, permissions on
the query etc. Listing 1 is an example of an OpenIoT OSDSpec.

Discovery and Invocation of Devices and Services
Once the devices and services are registered with the virtual plane namely the directory

service, the directory service along with the scheduler and SDUM are used to discover and

invoke composed services. Listing 2 presents a sample SPARQL query that is used to perform

semantic discovery for devices (things) within a given location. The query also takes additional

parameters such as SensorType, SensorClass to perform more e cient discovery. The discovery

service is also used to discover services e.g. an analytic service o ered by a service provider.

Together, the virtual planes enables application to discover services o ered by independent

sensor infrastructure owners and analytics service providers.
The virtual plane components also provide API interfaces to invoke the discovered services.

The key contribution of the proposed multi-cloud model is to promote interoperability among di

erent data and analytic service providers. This is achieved by the discovery service combined

with the API allowing the development of the multi-cloud data analytics applications.

5. EXPERIMENTATIONS AND EVALUATIONS

In this section, we present a real-world usecase scenario where we demonstrate the
importance of hierarchical data processing in multi-cloud environments. Then, we describe
the experimental test-bed implemented using the OpenIoT system in order to validate the
feasibility and conduct performance evaluations.

5.1. A Case Study

TrueLeisure is company that operates di erent types of entertainment attractions. Among
them they have franchised their amusement park chain. As depicted in Figure 4, currently
Amusement parks are located in United States, United Kingdom, and Australia. These
amusement pars are fully owned and operated by the franchisees. However, TrueLeisure
continuously monitor and assess the service qualities and several other aspects of each of
the amusements part. TrueLeisure takes these assessment seriously as their brand image
is dependent on the quality of the services provided by the franchisees.

Listing 1: Sample OpenIoT Service Speci cation

<?xml version=" 1 . 0 " e n c o d i n g="UTF 8" ?>
<osd:OSDSpec x m l n s : s t=" h t t p : //www. w3 . o r g

/2007/SPARQL/ p r o t o c o l t y p e s#"
x m l n s : v b r=" h t t p : //www. w3 . o r g /2007/SPARQL/ r e s u l t s#"
x m l n s : r d f=" h t t p : //www. w3 . o r g /1999/02/22 r d f syntax ns#" x
m l n s : o s d=" h t t p : //www. o p e n i o t . eu / o s d s p e c "
x m l n s : x s i=" h t t p : //www. w3 . o r g /2001/XMLSchema i n s t a n c

e "> <osd:OAMO name="name0">
<osd:OSMO name="name1">

<o s d : q u e r y C o n t r o l s> <o

s d : Q u e r y S c h e d u l e>

</ o s d : Q u e r y S c h e d u l e>
<o s d : r e p o r t I f E m p t y>f a l s e</ o s d : r e p o r t I f E m p t y

>
</ o s d : q u e r y C o n t r o l s>
< o s d : r e q u e s t P r e s e n t a t i o n>

< o s d : w i d g e t widgetID=" h t t p :
//www. oxygenxml . com/">

<o s d : p r e s e n t a t i o n A t t r name=

"name2" v a l u e=" v a l u e 0 "/>

<o s d : p r e s e n t a t i o n A t t r name=

"name3" v a l u e=" v a l u e 1 "/>

</ o s d : w i d g e t>

<o s d : w i d g e t widgetID=" h t t p : //www.

oxygenxml . com/">

<o s d : p r e s e n t a t i o n A t t r name=

"name4" v a l u e=" v a l u e 2 "/>

<o s d : p r e s e n t a t i o n A t t r name=

"name5" v a l u e=" v a l u e 3 "/>

</ o s d : w i d g e t>
</ o s d : r e q u e s t P r e s e n t a
t i o n> <s t : q u e r y r e q u e s t>

<query>query0</ query> </
s t : q u e r y r e q u e s t>
<s t : q u e r y r e q u e s t>

<query>query1</ query>
</ s t : q u e r y r e q u e s
t> </osd:OSMO>

</osd:OAMO>
</ osd:OSDSpec>

Listing 2: Sample Device Discovery Query

SELECT ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 s e n s o r I d

FROM <h t t p : // o p e n i o t . eu /OpenIoT/ s e n s o r m e t a#>
WHER

E f
? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 s e n s o r I d <h t t p : //www. w3 . o r g

/1999/02/22 r d f syntax ns#type> <h t t p : //demo . o r g / ns#TestType> .
<h t t p : //demo . o r g / ns#TestType> <h t t p : //www. w3 . o r g /2000/01/ r d f schema

#s u b C l a s s O f> <h t t p : // p u r l . o c l c . o r g /NET/ s s n x / s s n#S e n s o r> .
? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 s e n s o r I d <h t t p : //www. l o a c n r . i t / o n t o

l o g i e s /DUL. owl#h a s L o c a t i o n> ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c
.

? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c g e o : g
e o m e t r y ? graphNode 2197552479500 geo .

? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c g e o : l a t ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l a t . ? g r a p h

N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o c g e o : l o n g ? g r a p h N o d e 2 1 9 7 5 5 2 4 7 9 5 0 0 l o n

.
FILTER (<b i f : s t i n t e r s e c t s>(? graphNode 2197552479500 geo , <

b i f : s t p o i n t>(6 . 6 3 5 2 2 7 2 0 3 3 6 9 1 4 1 , 4 6 . 5 2 1 1 9 3 7 8 1 7 9 7 8 1) , 1 5)) .
g

Amusement
Park in UK Amusement

Park in AUS
Amusement
Park in US

Jane, Data
Analyst at
TrueLeisure

Figure 4. A Case Study: Service Quality Monitoring
of Amusement Park Chain

Jane is a data analyst overseeing the quality assessment tasks of amusement parks at

TrueLeisure. She is responsible for continuously monitoring the service quality parameters. In

addition to Jane, each of the franchisees also have their own data analysis and quality control

division where they also monitor their own quality parameters. All the amusements parks are

augmented with a large number of sensors that collects various types information such as

environmental parameters (e.g. temperature, humidity, pressure), crowd movements, usage and

demand of each rides and attractions, operational status of machinery used in the amusement

part, etc. Each of the amusement parks have deployed their own IoT platforms to which sensors

are connected. Conceptually, a query would look like SELECT AVG(WaitingTime)

FROM United States, United Kingdom, Australia. The importance of this type of abstraction
is that Jane does not need to know how to nd waiting times in each location where each
location may employ di erent technological means to acquire di erent types of sensors data
to derive waiting times.

ServerName Location/Zone Con guration

OpenIoT-1-Azure Australia East Standard Instance, A3(4 Cores, 7GB Memory)

OpenIoT-2-Azure Australia East Standard Instance, A2(2 Cores, 3.5GB Memory)

OpenIoT-1-Google asia-east1-a n1-standard-2 (2 vCPUs, 7.5 GB memory)
 Table I. OpenIoT Implementation Details

One of the important service quality parameter is `waiting time'. This is a main contribution

factor towards customer satisfaction. Local quality assessment team continuously measures the

crowd waiting time of each ride and attraction within their own amusement park. The raw data

generated by sensors such as motion sensors, cameras, Bluetooth beacons, RFID tags are

used to calculate these waiting times. By measuring waiting times, local data analysis team can

recommend their operational division about any bottleneck within the park so the management

can take necessary actions to eliminate those to increase customer satisfaction. From Jane's

perspective, who is responsible for overseeing entire portfolio of amusement parks at

TrueLeisure, she is only interested in the big picture. That means Jane would like to create a

single parameter of waiting time (i.e. overall waiting time) by combining individual waiting times

(i.e. individual waiting time for each ride or attraction) together. As a results, she will have three

measures where each represent waiting time of each amusement park locates in United State,

United Kingdom and Australia. By plotting these measures in a line chart , Jane can view how

waiting time varies in real-time. Jane will report these high-level measures to her corporate

management so TrueLeisure can discuss with their franchises on future development of their

theme parks e ciently and e ectively. Figure 5 illustrate how data is being collected, processed

and transferred in such a scenario using the proposed hierarchical data analysis in a multi-cloud

environment. This scenario is a typical example of data producers, analysis service providers

and data consumers operating and managing their own infrastructure (each theme park) and

applications integrating these services to address speci c requirements (Jane interested in

overall performance of each theme park).

5.2. Experimental Setup

The experimental testbed is presented in Figure 6. The analytics service at each level was
implemented using the OpenIoT platform. The OpenIoT components presented in Section
4.1.1 have been implemented using Java J2EE framework using the Virtuoso RDF
triplestore[24]. For more details on the implementation of OpenIoT refer to www.openiot.eu.

The OpenIoT system was deployed on two instances of Microsoft Azure servers and one
instance of a Google Cloud Server. Table I provides a summary of the server
configurations.

Suammarized

Motion Results
Sensor

US
RFID

Camera la
b

o
lG

Bluetooth UK

Beacon
Data Flow

 Global Data

 Analyst

RFID (at TrueLeisure)

 AU
Local Data

Camera

 Analysts

Bluetooth

Beacon

Figure 5. Data Flow in Hierarchical Data

Processing

To test the performance of the system under load, we used Apache JMeter
xi

 to generate

user queries. The OpenIoT instance on windows azure are connected to the sensor
platforms producing the data. For experimental purposes, we used a test dataset collected
from publicly available weather and pollution data from the year 2014. The total amount of
data in the virutoso triple store is around 10 million triples.

5.3. Experiment Description

To evaluate the performance of the proposed hierarchical data analytics system using the

implemented OpenIoT system on multi-cloud environments, we conduct two experiments. The

OpenIoT instance on the Google Cloud (OpenIoT-1-Google) fetches data from the 2 OpenIoT

instances on Windows Azure cloud. The OpenIoT-1-Google server fuses data from the two

Azure instances to provide a combined analysis of the data to the end-user. To measure the

performance of the system, we use CLAMS [5], a multi-cloud multi-layer performance monitoring

framework. CLAMS enables a deep understanding of the performance of each individual

component of our hierarchical data analytics systems deployed across the cloud layers e.g. IaaS

and PaaS. CLAMS addresses the gaps in existing cloud monitoring tools inability to monitor

application deployed in multi-cloud provider environments.

Experiment 1 - Streaming Data: A key to the realisation of the multi-cloud hierarchical data

analytics model is its ability to handle streaming data. In this experiment, we use di erent two

cloud con gurations namely OpenIoT-1-Azure and OpenIoT-2-Azure. We test the stream data

performance by increasing the number of sensors from 1 to 10. Each sensor produces 5

data streams including temperature, humidity, carbon monoxide, pressure and noise. So in

total, when 10 sensors are active, the system handles around 50 data streams. The

streaming rate is xed at 1 data point/second. The data generated is time series data i.e. a

combination of timestamps associated with data points (double).

Experiment 2 - Distributed Hierarchical Query Performance: In this experiment, we measure

the response time for query processing. The queries are generated from the Google Cloud

OpenIoT instance and are processed distributed by the Azure instances of OpenIoT.

xi

http://jmeter.apache.org/

Performance (CPU, Memory)

CLAMS

Query Simulation

OpenIoT Services

Performance (CPU, Memory)

CLAMS

Cloud Instance 1

OpenIoT Services

Performance (CPU, Memory)

CLAMS

Cloud Instance 2

Figure 6. Experimental Testbed

(a) 1a: CPU Consumption
(b) 1b: Memory Consumption

Figure 7. Streaming Data Performance

5.4. Experimental Results

Experiment 1- Streaming Data Performance: Figure 7 presents the outcomes of our

experiment. The three components that are measured here include JBOSS (hosting all the

OpenIoT modules), Virtuoso (the datastore) and X-GSN (the streaming engine connecting

sensors to the OpenIoT platform). The results show some interesting observations including

CPU consumption of over 100%. This is due to the fact that in multi-core CPU, when more

than one core is used, the CPU consumption goes over 100. For example, in a 4 core CPU,

the maximum CPU consumption as reported by CLAMS could be a maximum of 400%. The

VM1 refers to the Azure-1 instance while the VM2 refers to Azure-2 instance. Overall, for

managing 50 data streams (10 sensors) at the rate of 1 second, the system performs signi

cantly well without any major bottlenecks. Since the memory consumption of the JBOSS is

controlled by the JVM, a trend of higher memory consumption for VM1 can be noted. This is

due to the higher memory availability (7 GB) on VM1 as compared to VM2 (3.5 GB).
Experiment 2- Distributed Hierarchical Query Performance: Figure 8 presents the outcome of

query response times on the two Azure con guration. The queries originated from the Google

Cloud OpenIoT instance. In general, the overall query response time is very good in

(a) 1a: Response Time - OpenIoT-1-Azure (b) 1b: Response Time - OpenIoT-2-Azure

Figure 8. Query Response Times

the order of 400 - 450 millisecond with number of parallel users increasing from 50 to 500.
As expected, the Azure 1 instance which has more memory and CPU cores performs better
than the Azure 2 instance. The interesting result here is, the response time decreases as
number of users increase. This is something we suspect to be associated with how the JVM
will allocate memory when the load on the system increases. This outcome is consistent
with the outcomes from both the Azure con gurations.

Figure 9 presents the CPU and memory consumption of both the Azure 1 and Azure 2
instances while processing the queries from the Google Cloud instance. As described
earlier, due to the higher con guration of Azure 1, we note that the JBOSS component of
OpenIoT in Azure 1 consumes upto 300% CPU. The same outcomes is observed with the
Memory consumption of JBOSS on each of the instance.

The experimental outcomes validates the following key contributes of the paper namely 1) It is

feasible to deploy a hierarchical data analytics system where the various systems could be

owned by di erent providers, 2) Using device and service discovery we can compose multi-cloud

data analytics applications, 3) the performance of such a system implemented using the widely

used OpenIoT system is scalable and does not show any signi cant limitations or overheads.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a novel, hierarchical data processing architecture suitable for

multi-cloud environments. This architecture provides exibility to di erent parties who host their

own cloud IoT platforms to share processed data to reduce computation resource consumption

collectively. This also reduces the risks associated in sharing raw data. Such low privacy risks

encourage data owners to share their data with third parties where they will use such data for

secondary objectives. The demonstrated system is semantically inter-operable. Such

interoperability allows di erent instances deployed in multi-cloud environments to work together

to collectively analyse data to achieve a common objective through hierarchical data processing.

This was demonstrated in this paper by real-world implementation of the OpenIoT system on

Azure and Google cloud platforms. Finally, the experimental results validate

(a) 1a: CPU Consumption - OpenIoT-1-Azure (b) 1b: CPU Consumption - OpenIoT-2-Azure

(c) 1a: Memory Consumption - OpenIoT-1-Azure (d) 1b: Memory Consumption - OpenIoT-2-

Azure Figure 9. Hierarchical Query Processing Performance

the scalability of our proposed multi-cloud data analytics approach. Moreover experimental

outcomes also show that the system does not impose any signi cant limitations or overheads.

Our next step is to develop a complimentary performance model for such hierarchical data

processing in multi-cloud environments for autonomous provisioning of cloud resources.

ACKNOWLEDGEMENTS

Charith Perera's work is supported by European Research Council Advanced Grant 291652
(ASAP).

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHOR'S CONTRIBUTIONS

Prem Prakash Jayaraman participated in brainstorming, design, experimentation and
drafting the manuscript. Charith Perera and Rajiv Ranjan participated in brainstorming,
design and drafting the manuscript. Dimitrios Georgakopoulos, Schahram Dustdar, and
Dhavalkumar Thakker were mentors and contributed to brainstorming, designing and help
structure the manuscript.

REFERENCES

1. Pepper R, Garrity J. The internet of everything: How the network unleashes the bene ts of big data.

Technical Report, CISCO 2014. URL http://blogs.cisco.com/wp-content/uploads/ GITR-2014-Cisco-
Chapter.pdf.

2. Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware computing for the internet of
things: A survey. Communications Surveys Tutorials, IEEE 2013; 16(1):414{454,
doi:10.1109/SURV.2013.042313. 00197.

3. Wang L, Chen D, Zhao J, Tao J. Resource management of distributed virtual machines. Int. J. Ad Hoc
Ubiquitous Comput. Jul 2012; 10(2):96{111, doi:10.1504/IJAHUC.2012.048261. URL http://dx.doi.org/
10.1504/IJAHUC.2012.048261.

4. Wang L, von Laszewski G, Younge A, He X, Kunze M, Tao J, Fu C. Cloud computing: a perspective
study. New Generation Computing 2010; 28(2):137{146, doi:10.1007/s00354-008-0081-5. URL http:
//dx.doi.org/10.1007/s00354-008-0081-5.

5. Alhamazani K, Ranjan R, Mitra K, Rabhi F, Jayaraman P, Khan S, Guabtni A, Bhatnagar V. An overview
of the commercial cloud monitoring tools: research dimensions, design issues, and state-of-the-art.
Computing 2015; 97(4):357{377, doi:10.1007/s00607-014-0398-5. URL http://dx.doi.org/10.1007/ s00607-
014-0398-5.

6. Song W, Wang L, Ranjan R, Kolodziej J, Chen D. Towards modeling large-scale data ows in a
multidatacenter computing system with petri net. Systems Journal, IEEE June 2015; 9(2):416{426, doi:
10.1109/JSYST.2013.2283954.

7. Wang L, Ma Y, Zomaya A, Ranjan R, Chen D. A parallel le system with application-aware data layout
policies for massive remote sensing image processing in digital earth. Parallel and Distributed Systems,
IEEE Transactions on June 2015; 26(6):1497{1508, doi:10.1109/TPDS.2014.2322362.

8. Wang L, Ranjan R. Processing distributed internet of things data in clouds. Cloud Computing, IEEE Jan
2015; 2(1):76{80, doi:10.1109/MCC.2015.14.

9. Soldatos J, Kefalakis N, Hauswirth M, Serrano M, Calbimonte JP, Riahi M, Aberer K, Jayaraman P,
Zaslavsky A, Zarko I, et al.. Openiot: Open source internet-of-things in the cloud. Interoperability and
Open-Source Solutions for the Internet of Things, Lecture Notes in Computer Science, vol. 9001. Springer
International Publishing, 2015; 13{25.

10. Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Sensing as a service model for smart cities
supported by internet of things. Transactions on Emerging Telecommunications Technologies (ETT) 2014;
25(1):81{ 93, doi:10.1002/ett.2704.

11. Perera C, Zaslavsky A. Improve the sustainability of internet of things through trading-based value
creation. Internet of Things (WF-IoT), 2014 IEEE World Forum on, 2014; 135{140, doi:10.1109/WF-IoT.
2014.6803135.

12. Wang L, Chen D, Hu Y, Ma Y, Wang J. Towards enabling cyberinfrastructure as a service in clouds.
Comput. Electr. Eng. Jan 2013; 39(1):3{14, doi:10.1016/j.compeleceng.2012.05.001. URL http://dx.doi.
org/10.1016/j.compeleceng.2012.05.001.

13. Diaz J, von Laszewski G, Wang F, Younge A, Fox G. Futuregrid image repository: A generic catalog
and storage system for heterogeneous virtual machine images. Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on, 2011; 560{564,
doi:10.1109/CloudCom.2011. 85.

14. Deng Z, Wu X, Wang L, Chen X, Ranjan R, Zomaya A, Chen D. Parallel processing of dynamic continuous
queries over streaming data ows. Parallel and Distributed Systems, IEEE Transactions on March 2015;
26(3):834{846, doi:10.1109/TPDS.2014.2311811.

15. Wang L, Geng H, Liu P, Lu K, Kolodziej J, Ranjan R, Zomaya AY. Particle swarm optimization based
dictionary learning for remote sensing big data. Knowledge-Based Systems 2015; 79(0):43 { 50, doi:
http://dx.doi.org/10.1016/j.knosys.2014.10.004. URL http://www.sciencedirect.com/science/article/
pii/S0950705114003712.

16. Ouyang C, Adams M, ter Hofstede A. Yet another work ow language: concepts, tool support and
application. Handbook of Research on Business Process Modeling, Cardoso J, van der Aalst W (eds.). IGI
Global: Germany, 2009; 91{121. URL http://eprints.qut.edu.au/80697/.

http://blogs.cisco.com/wp-content/uploads/GITR-2014-Cisco-Chapter.pdf
http://blogs.cisco.com/wp-content/uploads/GITR-2014-Cisco-Chapter.pdf
http://blogs.cisco.com/wp-content/uploads/GITR-2014-Cisco-Chapter.pdf
http://dx.doi.org/10.1504/IJAHUC.2012.048261
http://dx.doi.org/10.1504/IJAHUC.2012.048261
http://dx.doi.org/10.1007/s00354-008-0081-5
http://dx.doi.org/10.1007/s00354-008-0081-5
http://dx.doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1016/j.compeleceng.2012.05.001
http://dx.doi.org/10.1016/j.compeleceng.2012.05.001
http://www.sciencedirect.com/science/article/pii/S0950705114003712
http://www.sciencedirect.com/science/article/pii/S0950705114003712
http://eprints.qut.edu.au/80697/

17. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe J, Shah H, Seth

S, et al.. Apache hadoop yarn: Yet another resource negotiator. Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC '13, ACM: New York, NY, USA, 2013; 5:1{5:16,
doi:10.1145/2523616.2523633. URL http://doi.acm.org/10.1145/2523616.2523633.

18. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, Shenker S, Stoica I. Mesos: A
platform for ne-grained resource sharing in the data center. Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, NSDI'11, USENIX Association: Berkeley, CA, USA,
2011; 295{308. URL http://dl.acm.org/citation.cfm?id=1972457.1972488.

19. Bennett C, Grossman R, MalStone JS. A benchmark for data intensive computing. Technical Report,
Open Cloud Consortium 2009.

20. Dixon C, Mahajan R, Agarwal S, Brush AJ, Lee B, Saroiu S, Bahl P. An operating system for the home.
Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI'12,
USENIX Association: Berkeley, CA, USA, 2012; 25{25. URL http://dl.acm.org/citation.
cfm?id=2228298.2228332.

21. Brush AB, Filippov E, Huang D, Jung J, Mahajan R, Martinez F, Mazhar K, Phanishayee A, Samuel A, Scott J,
et al.. Lab of things: A platform for conducting studies with connected devices in multiple homes.
Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication,
UbiComp '13 Adjunct, ACM: New York, NY, USA, 2013; 35{38, doi:10.1145/2494091.2502068. URL
http://doi.acm.org/10.1145/2494091.2502068.

22. Soldatos J, Kefalakis N, Hauswirth M, Serrano M, Calbimonte JP, Riahi M, Aberer K, Jayaraman
PP, Zaslavsky A, Zarko IP, et al.. Interoperability and Open-Source Solutions for the Internet of Things:
International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,
September 18, 2014, Invited Papers, chap. OpenIoT: Open Source Internet-of-Things in the
Cloud. Springer International Publishing: Cham, 2015; 13{25, doi:10.1007/978-3-319-16546-2 3. URL
http://dx.doi.org/10.1007/978-3-319-16546-2_3.

23. Bizer C, Heath T, Berners-Lee T. Linked data-the story so far. Semantic Services, Interoperability and
Web Applications: Emerging Concepts 2009; :205{227.

24. Thakker D, Osman T, Gohil S, Lakin P. A pragmatic approach to semantic repositories benchmarking.
The Semantic Web: Research and Applications. Springer, 2010; 379{393.

http://doi.acm.org/10.1145/2523616.2523633
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=2228298.2228332
http://dl.acm.org/citation.cfm?id=2228298.2228332
http://doi.acm.org/10.1145/2494091.2502068
http://dx.doi.org/10.1007/978-3-319-16546-2_3

