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Abstract ─ A comparison is presented between 

two indoor localization algorithms using received 

signal strength, namely the vector algorithm and 

the Comparative Received Signal Strength (CRSS) 

algorithm. Signal values were obtained using ray 

tracing software and processed with MATLAB to 

ascertain the effects on localization accuracy of 

radio map resolution, number of access points and 

operating frequency. The vector algorithm 

outperforms the CRSS algorithm, which suffers 

from ambiguity, although that can be reduced by 

using more access points and a higher operating 

frequency. Ambiguity is worsened by the addition 

of more reference points. The vector algorithm 

performance is enhanced by adding more access 

points and reference points while it degrades with 

increasing frequency provided that the statistical 

mean of error increased to about 60 cm for most 

studied cases.  

 

 Index Terms - CRSS, Indoor localization, Ray 

tracing, RSS. 

 

I. INTRODUCTION 
Indoor localization is the process of locating an 

object within a building, ideally with high 

accuracy and low computational effort [1]. 

Localization using Received Signal Strength 

(RSS) aims to establish a one-to-one relationship 

between the target location and the measured data 

[2]: as the distance between the target node and 

the receiver increases, the signal generally 

becomes weaker. Knowledge of the radio 

attenuation helps to establish the relationship 

between distance and RSS, a process known as 

radio mapping [2]. 

RSS-based localization techniques offer low 

cost, and low sensitivity to the bandwidth and 

undetected paths [3, 4]. On the other hand, they 

are sensitive to shadowing, low SNR, and non-

line-of-sight propagation, with errors increasing 

with resulting rapid power attenuation [5]. 

It is noteworthy that actual distance does not 

always scale linearly with the RSS value, 

especially in indoor environments, where obstacles 

may reduce the strength of the signal, thus giving a 

false indication that the target is far away from the 

transmitter [6 - 8].  Deployment of AP, taking into 

account environmental features, enhances the 

localization accuracy [9]. The variability of RSS 

measurements is due to many factors [10, 11]: 

 the orientation of the receiver 

 temporal factors - readings differ throughout 

the day because of the people movements 

 human factors since 50% of the human body is 

water 

 interference factors due to having devices 

operating in the same channel, although by 

using different channels the correlation 

becomes trivial. 

Using wireless sensor networks for localization 

purposes brings the advantages of continuous 

monitoring, low cost, and a capability to work 

unattended, even for years [12]. However, some 

problems can arise as those devices operate at 2.4 

GHz, and may experience interference with 

devices such as microwave ovens and Bluetooth 
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devices, with a resulting increase in error 

probability [6]. 

There are many different RSS–based algorithms 

used for indoor localization, including radio 

frequency (RF) fingerprinting, one of the best-

known algorithms [12, 14]. This has two phases. 

In the off-line or training phase, predetermined 

points are chosen. At each location, the system 

collects RSS values from the access points, either 

experimentally which will consume effort, time 

and cost, or using ray-tracing software, whereby 

the system builds a database of RSS with 

locations. This database is called a radio map [15]. 

The software takes account only of approximate 

building information, and details are ignored. This 

introduces more error in comparison with 

measurement data.  

In the on-line phase, RSS measurements are 

collected from unknown locations, and then values 

are compared with the existing radio map. The 

closest match to the database is taken as the best 

estimate of the target location [15]. 

The present research work compares two indoor 

localization algorithms based on RF-

fingerprinting, the vector algorithm and the 

Comparative Received Signal Strength (CRSS) 

algorithm. It extends previous work [16, 17]: here 

we have adopted lower operating frequencies. 

Section II offers a brief explanation of the 

methodology, and then Section III sets out the 

environment and specifications of the study. 

Finally, Section IV presents a discussion of the 

results.  

 

 

II. VECTOR AND CRSS 

ALGORITHMS  
 In our investigation, the relative benefits and 

drawbacks of two localization algorithms were 

investigated. The first algorithm, the vector 

algorithm, uses a vector of received signal strength 

readings measured at the reference point from the 

different access points within the facility. The 

readings are arranged according to the access point 

order. 

Vectors from the reference points are stored in 

the database, and the test node vector is compared 

with the database, by calculating the Euclidean 

distance between the test vector and the database 

vectors. The smallest Euclidean distance 

represents the closest reference point to the test 

node. 

The second algorithm is the CRSS algorithm. 

We extend the work done by authors in [18], 

whereby the vectors of the previous approach are 

converted into constraint matrices, which comprise 

the database of the radio map. Test node readings 

also are converted into a matrix, and then the 

Euclidean distance between this test node matrix 

and the database matrices is calculated, where 

again the smallest distance indicates the closest 

reference location to the test node.  

In the initial off-line phase, Ri(x, y) is the RSS 

from the transmitter or access point i at tag 

location (x, y). The elements of this matrix depend 

on RSS values, as shown:  

𝑀𝛼(𝑥, 𝑦) = [cij(𝑥, 𝑦)].   𝑖, 𝑗 = 1,2, … , 𝛼  (1) 

cij(𝑥, 𝑦) = |

+1      Ri(𝑥, 𝑦) >  Rj(𝑥, 𝑦).

−1      Ri(𝑥, 𝑦) <  Rj(𝑥, 𝑦)

 0       Ri(𝑥, 𝑦) =  Rj(𝑥, 𝑦).

. 

(2) 

cij(𝑥, 𝑦) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 𝑗. (3) 

where Ma(x, y) is the constructed matrix, and cij(x, 

y) compares the RSS access point for access point 

i with that for access point j. (x, y) is the location 

for the mobile which is considered to be known. 

The following example illustrates the method: 

assuming there are three APs, the RSS values 

received at the RP located at (x, y) are [-20 dBm, -

12 dBm, -14 dBm]. The first row compares the 

power received from the first AP with the other 

AP readings as explained in equation (2), the 

second row compares the power received from the 

second AP with the RSS values from the other 

APs, etc. The resultant matrix is  

 

𝑀3(𝑥, 𝑦) = [
0 −1 −1
1 0 1
1 −1 0

] 
 

(4) 

 

In the on-line phase, the radio map is 

constructed just as in the off-line phase, except 

that the location of the test devices is estimated by 

comparing the constraint matrix of a tag with those 

in the radio map. The closest matrix is the one 

with the smallest Euclidean distance, thus the 

corresponding location for the closest matrix is 

taken to be the closest location to the tag.  

The inherent redundancy that exists in each 

constraint matrix (i.e. insensitivity to the absolute 

RSS values) gives rise to an acceptable 
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performance for the positioning algorithm and 

makes the system more robust. 

In this work, we assume that the tags operate a 

protocol that avoids collision, so that in the case of 

multiple tags there will be no cross talk 

This study is based on a simple scenario 

without clutter, in order to clarify the relative 

merits of the proposed algorithms. We initially 

investigate a single room without clutter; further 

studies will examine the multipath fading arising 

from clutter.  

 

III. SIMULATION AND RESULTS 
 

A. THE CRSS Algorithm 

A severe drawback of the CRSS algorithm was 

exposed during the analysis of the results obtained 

in the project, termed “the ambiguity problem”. 

While generating the CRSS radio map, it was 

noted that some RPs have identical same 

constraint matrices, in that although each RP is 

likely to have unique power readings, the relative 

power readings are found frequently to coincide. 

The generated matrix does not depend on the 

absolute RSS readings only, but also on the 

descending order of the received power readings 

of the APs. Thus, a test area may divide into 

regions in which all the RPs located in that region 

can be represented by identical matrices. 

Consider a test area with three APs with RSS 

values: [x dBm, y dBm, z dBm]: we sort them 

according to these values, giving 13 possible 

arrangements as shown in the table.  

 

Table 1: Possible arrangements for RRS data 

from three Aps. 

1 𝑥 > 𝑦 > 𝑧 7 𝑦 > 𝑥 > 𝑧 

2 𝑥 > 𝑧 > 𝑦 8 𝑦 > 𝑧 > 𝑥 

3 𝑥 > 𝑦 = 𝑧 9 𝑦 > 𝑥 = 𝑧 

4 𝑥 = 𝑦 > 𝑧 10 𝑦 = 𝑧 > 𝑥 

5 𝑥 = 𝑧 > 𝑦 11 𝑧 > 𝑥 > 𝑦 

6 𝑥 = 𝑦 = 𝑧 12 𝑧 > 𝑦 > 𝑥 

13 𝑧 > 𝑥 = 𝑦 

This means that if this test area has 20 RPs, 

then in the best case the area can be represented by 

13 matrices, or even fewer. As shown above, this 

algorithm is dependent on the number of RPs and 

APs.  

In the localization process, a test point will 

create a matrix based on its RSS readings, using 

which the Euclidean distance is calculated. 

Because we are interested in the elements with the 

same matrix indices the Euclidean distance is 

estimated as in following: 

 
Fig. 1. Ambiguity example for a test area. 

  

  𝑒 =  √∑ ∑ (𝑐𝑖𝑗 − 𝑡𝑖𝑗)2𝑁
𝑗=1

𝑁
𝑖=1 . 

(5) 

where cij represents the elements in a radio map 

matrix c in row i and column j, and tij represents 

the corresponding element in the on-line matrix t.   

Some RPs have identical matrices, and 

consequently, more than one RP will appear as 

closest to the test point. This problem is termed 

ambiguity. Fig. 1 illustrates an example; four RPs 

appear equally closest to the test point, as their 

corresponding matrices have the same Euclidean 

distance to the test point matrix. 

 The effect of the ambiguity problem becomes 

worse if closest matrix is the same matrix for more 

than one RP. This can arise when RPs have similar 

propagation environments: when more than one 

RP has the same matrix, the phenomenon is called 

similarity.  

 

Table 2: Similarity in CRSS matrices for three 

APs at 200 MHz. 

No. of RPs 4 9 20 30 

Unique Matrices 4 3 0 0 

Matrix for 2 RPs 0 0 2 0 

Matrix for 3 RPs 0 2 2 0 

Matrix for 4 RPs 0 0 0 1 

Matrix for 5 RPs 0 0 2 4 

Matrix for 6 RPs 0 0 0 1 
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Table 3: Similarity in CRSS matrices for four APs 

at 200 MHz. 

No. of RPs 4 9 20 30 

Unique 

Matrices 
4 7 11 8 

Matrix for 2 

RPs 
0 1 3 5 

Matrix for 3 

RPs 
0 0 1 4 

 

The example in Fig. 2 helps more clearly 

explain the tables. Consider the similarity in the 

CRSS matrices for twenty RPs, four APs and 200 

MHz as in Table 3: among the RPs, 11 of them 

have distinct matrices, while in 3 pairs of RPs each 

shares the same matrix. Finally, another 3 RPs 

generate the same matrix.  

Inspection of the identical matrices shows them 

to be in adjacent location in groups of 2, 3, 4… 

etc. as also shown in the tables.  

 

Table 4: Similarity in the CRSS matrices for three 

APs at 400 MHz. 

No. of RPs 4 9 20 30 

Unique 

Matrices 
4 4 0 0 

Matrix for 2 

RPs 
0 1 2 1 

for 3 RPs 0 1 1 0 

for 4 RPs 0 0 2 1 

for 5 RPs 0 0 1 2 

for 6 RPs 0 0 0 1 

for 7 RPs 0 0 0 0 

for 8 RPs 0 0 0 1 

 

Increasing the number of RPs tends to worsen 

the effect of ambiguity, with more RPs having the 

same constraint matrix. Table 3 below shows the 

effect of increasing RPs in a test area with four 

APs and an operating frequency of 200 MHz. 

With only four RPs, all four generated matrices 

are unique, but with nine RPs two RPs share the 

same matrix while the other seven have unique 

matrices. With twenty RPs, three pairs of RPs 

share the same matrix, with a further triplet of 

three RPs having one matrix in common. The 

thirty RP case is even worse, with ten RPs sharing 

five matrices in pairs and twelve RPs sharing four 

matrices, i.e. four sets of triplet RPs with a matrix 

in common. 

 
Fig. 2. Example of similarity.  

 

Table 5: Similarity in the CRSS matrices for four 

APs at 400 MHz. 

No. of RPs 4 9 20 30 

Unique Matrices 4 7 10 15 

Matrix for 2 RPs 0 1 5 7 

Matrix for 3 RPs 0 0 0 1 

 

Similarity in CRSS matrices is affected by the 

number of APs used in the system, as the matrix 

size will correspondingly increase. Table 3 shows 

the similarity in the generated matrices using four 

APs for the same test area and the same operating 

frequency.  

The difference between the cases of four APs 

and three APs is obvious; adding more APs 

reduces the similarity in the generated matrices. 

From the previous tables, it can seen that adding 

more APs will reduce similarity, while adding 

more RPs will increase similarity.  

Results obtained when changing the frequency 

from 200 MHz to 400 MHz are shown in Tables 4 

and 5, which show that the similarity is reduced as 

the frequency increased.  

Ambiguity need not always have negative 

consequences, namely if the estimated locations 

surrounded the test point. Rather than identifying 

the test point as close to a certain RP, it would be 

located within a specific area. 

However, throughout all the experiments such a 

thing rarely happened. It is true that with 

increasing frequency, the similarity in the 

generated matrices will be less, but this does not 
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mean that localization performance is thereby 

improved: a test point considered to be close to 

fewer RPs using 400 MHz does not mean that 

these RPs are closer than those estimated at 200 

MHz, as shown in Fig. 3. 

 

 
Fig. 3. Less ambiguity does not imply better 

localization. 

The localization process includes the 

calculation of the Euclidean distance between all 

the matrices in the database and choosing the one 

representing the least error. As a result, more 

matrices may have the same Euclidean distance, 

therefore, more RPs will be considered as the 

closest RP. There have been sincere efforts to 

characterize the effect of the ambiguity 

analytically, however, the results show 

randomness in the number of the linked RPs to the 

test point as Fig. 4 shows. Based on results 

obtained from one experiment, this shows the 

number of the closest RPs using different radio 

map resolution. The similarity in the twenty RPs is 

less relatively when compared to the system with 

thirty RPs, but still this does not necessarily mean 

that the ambiguity effect will be less. Moreover, 

even if the number of the estimated “closest 

locations” is less, this does mean that an estimated 

location lies closest to the test point, as depicted 

previously in Fig. 3.  

The ambiguity problem is a severe drawback of 

the CRSS algorithm, which jeopardizes the 

system’s credibility, despite claims that it 

outperforms the vector algorithm due to the 

redundancy in the information embedded within 

the matrix [2]. A similar analysis was conducted 

for a more elaborate scenario including a number 

of rooms adjoining a corridor on a single floor of 

the author’s recent work [19] as shown in Fig. 5, 

and similar conclusions have been drawn.   

 

 
Fig. 4. The number of estimated RPs in the 

CRSS using different sets of radio maps. 

 

 
Fig. 5. The 3

rd
 floor of the Chesham Building, 

University of Bradford.  

 

As the present work shows that the CRSS 

algorithm is unreliable, in the following we 

consider the vector algorithm only.  

 

B. THE Vector Algorithm  

This algorithm is deemed successful as long as 

the estimated location is the closest to the actual 

location of the mobile terminal. When the 

estimated RP is not closest to the actual location of 

the mobile terminal, then the algorithm is said to 

have failed. The percentage of correctly estimated 

locations gives the success rate. 

Fig. 6 shows the localization performance for 

the vector algorithm using three APs and different 

radio map resolutions. The performance is 

enhanced as the number of the RPs increases; e.g. 

P(Error ≤ 2m) was about 0.26 for the four RP 
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system, and increased gradually up to 0.8 for the 

thirty RP system.  

 
Fig. 6. Localization error  for the vector algorithm 

using three APs, at 200 MHz 

 
Fig. 7. Statistical mean error for the vector 

algorithm. 

The statistical mean of error was also reduced 

as shown in fig. 7. Moreover, the performance 

shows more stability as the number of RPs 

increases; error deviation was reduced and the 

high error estimates were less common. For thirty, 

twenty, nine and four RPs the error for 85% of 

locations was less than (2.7, 3.2, 4.8, 6.15) m 

respectively. Thus, increasing the number of RPs 

improves localization and enhances stability. 

 

Fig. 7 shows the statistical mean error for the 

vector algorithm using three and four APs at 

different frequencies. The figure shows that the 

overall performance of the algorithm is poor for 

low-resolution radio maps. It improves gradually 

as the number of APs and RPs in the system 

increases. The system performance at 200 MHz 

improves steadily until it reaches a maximum level 

of accuracy. As shown in the metrics in table 6, 

the algorithm performance does not give 

satisfactory accuracy at 400 MHz except for the 

system that used thirty RPs and four APs. In 

general, the performance at 200 MHz is 

significantly better than at 400 MHz, however 

high-resolution radio maps and adequate numbers 

of APs will improve the algorithm’s performance 

to acceptable levels. 

 

Table 6: Success Rates for different sets of RPs, 

APs and frequencies. 

No. of 

APs 

No. Of RPs 200 MHz 400 MHz 

 

3 

APs 

4 RPs 65% 67% 

9 RPs 58% 47% 

20 RPs 49% 32% 

30 RPs 49% 32.7% 

 

4 

APs 

4 RPs 78% 72% 

9 RPs 72% 58% 

20 RPs 58% 54% 

30 RPs 52% 61% 

 

It can be noted that the success rate decreases as 

the number of RPs increases, as shown in table 6, 

although the localization error improved. This can 

be justified thus: the algorithm is considered 

successful when the estimated location is the 

closest RP to the test point. When the number of 

RPs in the radio map is limited, the RPs will be 

large distances away, and it is expected that they 

will be exposed to different fading parameters, so 

it will be easier for the algorithm to estimate the 

closest RP. However, as the number of RPs 

increases, they become closer to each other, and 

they will have more similar propagation 

environments, and thus comparable RSS readings. 

It will be more difficult for the algorithm to 

estimate the closest RP, and therefore the error 

will be enhanced.  

Fig. 8 shows the localization performance using 

four APs for different numbers of RPs, showing 

the outstanding performance of the algorithm 

especially with a high-resolution radio map, and 

they underline the importance of the number of 

APs in determining the overall system 

performance. They also suggest that even low-
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resolution systems could provide a system with 

good accuracy as long as there were an adequate 

number of APs in the system. If we exclude the 4 

RPs system, the algorithm shows stability and 

robustness, with deviations constant for the other 

systems. The most interesting result obtained is the 

performance of the localization using nine RPs, 

which is almost the same as for those using twenty 

and thirty RPs in the 0-2 m window, and 

outperforms them slightly in the 2-4 m window. 

For thirty, twenty, nine and four RPs the error for 

85% of locations was less than (3.37, 3.2, 2.28, 

5.385) m respectively. This may be considered as 

the optimum system, which has good performance 

metrics with only a few RPs used. 

 

 
Fig. 8. Localization error for the vector algorithm 

using four APs, at 200 MHz. 

 

Fig. 9 shows a localization error comparison 

between the three AP and four AP systems. The 

four AP system shows better performance, with a 

success rate enhanced from 58% to 74%. The 

statistical mean of error was improved from 2.52 

m to 1.86 m. Standard deviation was reduced from 

2.12 m to 1.7 m. The error performances of the 

two systems are almost the same in the 0-1 m 

window, but they do vary in the 1-2 m window.  

P(Error ≤ 2m) for three RPs was about 0.6 

whereas it was around 0.8 for the four RP system. 

This accuracy is satisfactory for many 

applications. The effect of adding an extra AP to 

the system is obvious as all the metrics reflect 

enhancement in performance. 

Fig. 10 shows the localization performance for 

the vector algorithm using three and four APs with 

a radio map resolution of thirty RPs. The success 

rate was enhanced from 49% to 52%, and the 

mean error has changed slightly from 1.68 m to 

1.7 m. Standard deviation remained the same at 

1.68 m. The performance of the two systems is 

effectively identical. It is clear that increasing the 

number of RP points will make the need for more 

APs less. In addition, increasing the number of 

RPs will enhance the performance of localization 

but the enhancement obtained may become 

insignificant, as the accuracy will saturate at a 

certain level. 

 

 
Fig. 9. Localization error for the vector algorithm 

using nine RPs. 

 

Fig. 10. Localization error for the vector algorithm 

using twenty RPs, at 200 MHz. 

 

As mentioned above, two operating 

frequencies, 200 MHz and 400 MHz, were used to 

conduct the experiments. In general, the 

localization performance with 200 MHz is better. 
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A justification for such results can be found in 

propagation theory. When a signal travels in space 

over a surface, as well as the direct wave there is 

also a ground wave traveling with it. Due to the 

different paths that the signals take, a phase shift 

of 180 degrees occurs every λ/2, leading to 

destructive interference and thus reduced power at 

those points. For example, at 400 MHz, this 

happens every 0.375 m, so test points at such 

locations will be completely irrelevant to the RP 

measurements. As the power readings in the area 

around the RP will change significantly, mapping 

the received power vector with the location will 

result in weaknesses in RSS-based algorithms. At 

200 MHz, cancellation occurs every 0.75 m and so 

the fluctuation in power readings is slower than 

with 400 MHz.  

 
Fig. 11. Localization error at 200 MHz and 400 

MHz, for twenty RPs. 

 

Table 7: Performance metrics of the vector 

algorithm for 200 MHz and 400 MHz. 

No. of 

APs 

Metric 200 

MHz 

400 

MHz 

 

3 APs 

Success rate 49% 32.7% 

Mean 2 m 2.97 m 

Standard 

deviation 

1.75 m 2.27 m 

 

4 APs 

Success rate 58% 54% 

Mean 1.82 m 2.57 m 

Standard 

deviation 

1.61 m 2.75 m 

 

Fig. 11 shows the performance of the vector 

algorithm for two different operating frequencies 

and a radio map resolution of twenty RPs. The 

algorithm performance with 200 MHz is clearly 

better than with 400 MHz. The error for 85% of 

locations was less than 3.2 m (three and four APs 

at 200 MHz), 6.3m (three APs at 400 MHz) and 

6.6m (four APs at 400 MHz). Moreover, table 7 

shows that the algorithm performance at 200 MHz 

with the use of three APs only is better than its 

performance with the use of four APs at 400 MHz 

provided that the statistical mean of error 

increased to about 60 cm for most studied cases. 

These results emphasize the importance of the 

operating frequency in determining the algorithm 

performance. 

IV. CONCLUSIONS 

The paper compares two indoor localization 

algorithms using received signal strength, the 

vector algorithm, and the CRSS algorithm. The 

experiment was carried out at 200 MHz and 400 

MHz, and the localization performance was tested 

for different numbers of access points (AP), and 

for different numbers of reference points (RP). In 

the vector algorithm, increasing the number of RPs 

enhances the localization process up to a certain 

limit, while increasing the number of APs will also 

result in better performance. Experiments show 

that increasing the number of RPs will compensate 

for a reduction in the number of APs, which seems 

to be attractive commercially. The CRSS 

algorithm suffers from ambiguity since more than 

one RP may have the same matrix, and increasing 

the number of RPs will only make the ambiguity 

worse. Reducing the number of the APs will 

increase the algorithm’s ambiguity. 

It is noted that a lower frequency is better for 

localization than a higher one. Based on the 

experimental results the vector algorithm is better 

in terms of accuracy, cost, and effort.  
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