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ABSTRACT 10 

This study uses an improved k-ε coupled shallow water equations (SWE) model that equipped with the 11 

numerical computation of the velocity fluctuation terms to investigate the turbulence structures of the 12 

open channel flows. We adapted the Kolmogorov K41 scaling model into the k-ε equations to 13 

calculate the turbulence intensities and Reynolds stresses of the SWE model. The presented model was 14 

also numerically improved by a recently proposed surface gradient upwind method (SGUM) to allow 15 

better accuracy in simulating the combined source terms from both the SWE and k-ε equations as 16 

proven in the recent studies. The proposed model was first tested using the flows induced by multiple 17 

obstructions to investigate the utilised k-ε and SGUM approaches in the model. The laboratory 18 

experiments were also conducted under the non-uniform flow conditions, where the simulated 19 

velocities, total kinetic energies (TKE) and turbulence intensities by the proposed model were used to 20 

compare with the measurements under different flow non-uniformity conditions. Lastly, the proposed 21 

numerical simulation was compared with a standard Boussinesq model to investigate its capability to 22 

simulate the measured Reynolds stress. The comparison outcomes showed that the proposed 23 

Kolmogorov k-ε SWE model can capture the flow turbulence characteristics reasonably well in all the 24 

investigated flows.     25 

 26 

Keywords: Kolmogorov K41 scaling law; SGUM model; SWE k-ε model; non-uniform flow 27 

experiment; Reynolds stress; turbulence structures  28 
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1  Introduction 30 

In order to simulate the turbulence structures in various flow conditions, the full 3D Navier Stokes 31 

(NS) numerical models are usually used (e.g., in Liu and Garcia [1] and Bihs and Olsen [2]). There are 32 

several 3D NS modelling numerical methods discovered in the recent decades that can be used to 33 

capture the free surface flow characteristics, namely the Marker and Cell (by Harlow and Welch [3]), 34 

the Volume of Fluid (by Lin and Liu [4]), the Arbitrary Lagrangian Eulerian (by Zhou and Stansby 35 

[5]) and the Level-Set methods (by Iafrati et al. [6]). However, the numerical simulation of the 3D NS 36 

equations to resolve the flow turbulence characteristics usually demands high computational cost, 37 

which strongly restricts its application in practical engineering aspects. There are two main reasons for 38 

that: (1) turbulent flows usually involve extensive and complex spatial domain evolution with very 39 

fine numerical meshes needed, and (2) those flows usually have very unsteady numerical wave speeds 40 

and that couple with small meshing areas will limit the maximum computational time step that can be 41 

employed to achieve accurate turbulent flow results. In the view of these reasons, the search for more 42 

computationally efficient model is crucial to achieve practical turbulent characteristics representation 43 

in various water engineering applications.      44 

In the more computationally effective 2D turbulence structures representation, some complex 45 

numerical models, such as the direct numerical simulation – DNS model [7] and large-eddy simulation 46 

– LES model [8], has been studied due to their previous success in simulating the 3D NS flows. 47 

Despite their high computational costs, their success has been restrained by the meshing control and 48 

tracking of turbulence eddies break-down, which subsequently contributed to their employment of 49 

high demanding numerical approaches. Other way to model the flow turbulence intensity or Reynolds 50 

stress in Reynolds Averaged Navier Stokes (RANS) model is by using the Reynolds stress-type model 51 

(RSM), such as the non-linear RSM model suggested by Shih et al. [9]. From the complex closure 52 

formulation of the RSM equations, it can be observed that the model is more computationally 53 

expensive than the k-type models, such as the k-ε model (refer to the studies by Rodi [10]; and more 54 
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recently by Cea [11]; Jiang et al. [12] and Pu et al. [13]), and by employing the RSM model might 55 

defeat the purpose to create a computationally practical model.     56 

Compared to the usual way of turbulence modelling by 3D NS model, the RANS type of Shallow 57 

Water Equations (SWE) model is more numerically efficient. However, there is a challenge to 58 

implement the numerical calculation of the turbulent intensity and Reynolds stress into the SWE 59 

model due to its Reynolds decomposed feature that discounts the velocity fluctuation terms in all 60 

directions. The comparative study on various numerical models conducted by Cea et al. [14,15] has 61 

proven that the 2D depth-averaged turbulence models can combine with the SWE model to give 62 

reasonable representation to flow turbulence structures in shallow flow condition. Inspired by them, 63 

this study implemented the Kolmogorov K41 scaling model (originally suggested by Kolmogorov [16-64 

18] and normally used to represent flow power spectrum such as in Pu et al. [13]; Nezu and Nakagawa 65 

[19]; and Hunt et al. [20]) into the k-ε equations to describe a new model that can be combined with 66 

the SWE model to give efficient turbulent structures simulation. The new model is efficient because: 67 

(1) its SWE simulates only 2D flow conditions, and (2) its velocity fluctuations are not represented by 68 

any complicated strain rate or vorticity tensor (as in the normal RSM and Boussinesq approaches), but 69 

instead are computed by the Kolmogorov method.  70 

As highlighted by the studies of Caselles et al. [21], Fernandez-Nieto et al. [22] and Xia et al. [23] 71 

using different numerical models and schemes, the numerical source terms are crucial to be treated in 72 

well-balanced manner for the complex flow modelling, especially for the turbulent flow induced from 73 

obstruction and complex geometry. Hence, a recently proposed surface gradient upwind method 74 

(SGUM) by Pu et al. [24] was used in this study to improve the numerical source term simulations by 75 

integrating them into the main upwind scheme commonly used to update the numerical flux terms. 76 

The utilised SGUM approach integrated the combined source terms from the SWE and k-ε equations 77 

into a monotonic upwind-Hancock (MUSCL-Hancock) scheme for the numerical fluxes and improved 78 
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the simulation accuracy of the flow turbulence structures. To this end, the newly proposed numerical 79 

model has been improved in both its modelling approach and numerical method.  80 

In order to verify the proposed model, both the obstruction induced flows and experimentally 81 

investigated non-uniform flows were used to compare with the model. In the obstructed flows 82 

investigation, a complex multiple-block obstructions induced flow study in literature was used to 83 

compare with the proposed model simulations. Furthermore, a laboratory experiment was also 84 

conducted under different non-uniform flow conditions to validate the presented model. Four different 85 

flow non-uniformity conditions were considered in our experiment, and multiple measurements at 86 

separate flow locations were taken for each non-uniform flow. All the flow experiments were 87 

conducted using the physical water flume facility located in the Hydraulic Laboratory at the University 88 

of Bradford (refer to Pu et al. [13] and Pu [25]).  89 

The comparisons between the numerical, experimental as well as literature studies showed that the 90 

proposed model can simulate the flow turbulence structures reasonably well for all the investigated 91 

flow conditions. These comparisons showed that the proposed model successfully combines the k-ε 92 

and Kolmogorov approaches into the 2D SWE model to efficiently re-generate the flow turbulence 93 

structures that are lost during the Reynolds decomposition process, which it represents an important 94 

numerical modelling aspect for simulating open channel flow applications in a practical manner.       95 

 96 

2  Shallow Water Equations (SWE) Model  97 

The SWE model is used to couple with the k- turbulence model in this study. Equations (1) – (3) 98 

present the 2D fully conservative SWE, and it is combined with the numerical flux terms from the k- 99 

model.  100 

0
u v

t x y

    
  

  
   (1)  101 
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In the equations above, the variable   refers to geopotential and is given by g h   , where h  is the 104 

water depth and g  is the gravitational acceleration. u  and v  are the depth averaged flow velocities in 105 

streamwise and lateral directions, respectively. k  is the flow turbulent kinetic energy (TKE), and the 106 

depth-averaged turbulent viscosity t  is calculated as 2 /t C k  , where C  is the turbulence 107 

viscosity coefficient (used in this study as 0.09C  ) and   is the flow TKE dissipation rate. x , y  108 

and t  denote the spatial-longitudinal, spatial-lateral and temporal domains, respectively.  109 

In equations (2) and (3), oxS  and oyS  are the bed slopes in the streamwise and lateral directions, 110 

respectively. For the friction slope of the channel fS , they are computed as follows  111 

2 2 2

4 /3fx

n u u v
S

h


 , and 

2 2 2

4 /3fy

n v u v
S

h


   (4) 112 

where n  is the Manning’s friction coefficient. 113 

 114 

3  Turbulence Model Implementation  115 

The 2D k-ε equations coupled with the SWE model are presented below [25,26]  116 

           
                      

t t
h k

k k

k kk uk vk
g R g R

t x y x x y y
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 

 (5) 117 
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 

 (6) 118 
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Each of the parameters hR , kR , and R  in equations (5) and (6) can be represented as  119 

       2 2 2

2 2t
h

hu hv hu hv
R

z x y y x
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32
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3
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h

  , and 120 
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22 22 4
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17
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R

h





  (7) 121 

The turbulence parameters used in equations (5) – (7) are 1 1.432C  , 2 1.913C  , 0.990k  , and 122 

1.290   (refer to the study by Pu et al. [13]). By using the combination of the above k-ε turbulence 123 

model with the Kolmogorov’s [16-18] law in estimating velocity fluctuations, we can compute the 124 

turbulence structures, including turbulence intensity and Reynolds stress, for the proposed model.  125 

Adapting the derived equation from the Kolmogorov K41 scaling law used in Nezu and Nakagawa 126 

[19] and Hunt et al. [20], the streamwise velocity fluctuation can be described in our numerical 127 

computation as 128 

     
3'

N N
N xi i
i

L

L
u

k

 
  (8)  129 

where i  and N  represent the numerical simulation space and time steps, respectively. 'u  is the 130 

fluctuation of the streamwise velocity (which represents turbulence intensity in x-direction), xL  is the 131 

macroscale of turbulence, and Lk  is the turbulence coefficient that can be calculated by equation (9). 132 

In equation (8), the numerical main-stream (streamwise) velocity fluctuation was calculated by a 133 

relationship between the numerically calculated   and comparative parameter xL .  134 

  3/2 5/22 /   L kk C   (9)  135 

In equation (9), kC  is a universal constant varies from 0.45 to 0.55.   is a dimensionless parameter 136 

defined as 0 xL k  in which the reciprocal 1
0k   is also a macroscale of turbulence, as the same as xL . 137 
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Hence, this study adopted the suggestion of Nezu and Nakagawa [19] in its numerical calculations, 138 

where   was estimated to be in the order of unity. The macroscale of turbulence xL  in equation (8) 139 

can be calculated by the Kolmogorov microscale of turbulence k  as 140 

   3/ 40.91
N N

x ki i
L Re   (10)  141 

where  142 

 
 

1/ 4
3

N k
k Ni

i




 
 
  

 (11) 143 

in which, Re  is the Reynolds number; and k  is the kinematic viscosity of flow.  144 

As an extension towards the mixing length theory proposed by Prandtl in 1945 to describe the 145 

dominant eddies mixing process, the turbulent kinetic energy (TKE) can be usually represented by the 146 

velocity fluctuations in different directions [19]. In our SWE model, due to the absent of vertical 147 

velocity fluctuation through depth-averaging, the numerically computed k  could be estimated as  148 

     2 21
' '

2

N NN

i i i
k u v    

 (12) 149 

where 'v  is the lateral velocity fluctuation (turbulence intensity in y-direction). Combining the 150 

streamwise turbulent intensity calculated using Kolmogorov approach in equation (8) and the 151 

computed k from k-ε equations (5) and (6) into equation (12), we can estimate the lateral turbulent 152 

intensity as well as u-v Reynolds stress to fully study the flow turbulence structures. The Kolmogorov 153 

model used in this study computes separate streamwise and lateral turbulent intensities before 154 

combining them to calculate the u-v Reynolds stress; and by this way it provides addition turbulent 155 

intensity information to investigate the flow turbulence structures. Since the Kolmogorov model 156 

calculates separate turbulent intensities for different directions, it can also be easily converted to use in 157 

1D model or to extend to consider flow turbulence structures in 3D model with appropriate 158 

assumptions. However, the current Kolmogorov approach extension to 3D model should be done in 159 
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caution as the 3D consideration will increase the computational cost as compared to the current 2D 160 

SWE approach, and this will hinder the practicality of the model.  161 

Also worth noting that the utilised k-ε model in equations (5) – (6) is valid under turbulent flow 162 

Reynolds number as suggested by Rodi [10] and Cea [11]. Its applications into various shallow flow 163 

cases have been tested by Cea [11]; Jiang et al. [12] and Younus and Chaudhry [27] for its validity on 164 

flows under different velocity and uniformity. For the Kolmogorov method used in this study, it is 165 

valid to represent turbulent structures in wide open channel flows as suggested by Nezu and Nakagawa 166 

[19]. Besides the method also showed stable characteristics towards the turbulent Reynolds number 167 

flow case, which this stable results was showing when Lk  in equation (9) was tested against Reynolds 168 

number [19]. Thus from these two separate findings on the SWE k-ε model and Kolmogorov method, 169 

this study suggests their combination to calculate the shallow water turbulence structures, which has 170 

been lost through the Reynolds decomposition process.      171 

 172 

4 Numerical Schemes  173 

In this study, the numerical flux terms were discretized using a Godunov-type Hancock scheme. The 174 

Hancock scheme was upgraded by a two-stage predictor-corrector time-stepping approach. A standard 175 

Harten Lax van Leer-contact (HLLC) approximate Riemann solver was used to couple with the 176 

Hancock scheme for the Riemann data reconstruction process. The slope limiter method was used in 177 

the HLLC solver to ensure the space discretization scheme satisfies the flux-limiting property [28-30]. 178 

The source term of the proposed numerical scheme was modelled using a surface gradient upwind 179 

method (SGUM) proposed by Pu et al. [24].  180 

The Godunov-type scheme was used in this study as it has been proven in Toro [28] and Toro and 181 

Garcia-Navarro [31] to show good capability to resolve the discontinuous condition in various shallow 182 

flow applications. This criterion is important for us to model the flow turbulence with discontinuities 183 
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and shocks under the shallow flow condition. Besides, the combination of HLLC approximate 184 

Riemann solver with Godunov-type scheme has been proven by Toro [28] to be numerically well-185 

fitted together by causing least spurious oscillations when compared to Reo or HLL solvers. Due to all 186 

these reasons, the full Godunov-type HLLC approximate Riemann numerical formulation is used in 187 

this study to simulate the flow turbulence in shallow water applications.  188 

To ease the numerical representation, equations (1) – (3) and (5) – (6) are combined into a single 189 

vector operation as follows  190 

t
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TS  193 

    (14)  194 

U , F  and TS  in equations (13) and (14) represent the matrices for the flow conserved variables, 195 

numerical flux and source terms, respectively; tu  is the resultant velocity defined by 2 2
tu = u +v ; 196 

and   is the gradient operator that can be expressed as    x y , where /   ix x  and 197 

/   jy y . i  and j  are the unit vectors in x- and y-directions, respectively.  198 

 199 

4.1 Monotone Upwind–Hancock Scheme 200 
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In our employed monotonic upwind scheme for conservative laws (MUSCL), the data reconstruction 201 

process of the flow conserved variables vector gives [28] 202 

  1/2
1/2 2

i iL
i i

q 

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U
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U
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where 1/2
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i
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i
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U

U
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i
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U
, 1/2 1i i i   U U U , and 1/2 1i i i   U U U  (16) 204 

where   is the slope limiter; and q  is the gradient of successive U . The van Leer’s limiter, which 205 

proposed and tested by van Leer [32] into the MUSCL scheme, has been used in equation (15). As 206 

suggested by the numerical tests of Toro [28] and Hu et al. [30], the van Leer’s limiter gives the best 207 

converged result to the analytical solution as compared with various other slope limiters; hence it is 208 

employed in this study.    209 

A Hancock two-stage predictor-corrector scheme was utilised to update U  across the time domain in 210 

the proposed explicit model. Unlike some common numerical schemes, e.g. the weighted average flux 211 

(WAF) and first-order centred (FORCE) schemes that use the Lax-Wendroff  (LW) and slope limiter 212 

centred (SLIC) methods, respectively, the MUSCL-Hancock scheme reconstructs its solution through 213 

the piece-wise linear functions that depend on values extrapolated from time-evolving boundary 214 

conditions [28]. In this way, the MUSCL-Hancock scheme can achieve second order accuracy in the 215 

spatial and temporal domains while maintains its stability.    216 

The predictor-corrector steps are given as [29,30] 217 

Predictor Step:  1/2
1/2 1/22

N N N N
i i i i

i

t

Ω


 
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Corrector Step:  1 1/2 1/2
1/2 1/2

N N N N
i i i i

i

t

Ω
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 


  U U F F  (18) 219 

where iΩ  is the cell area at i  step for the SWE model (Ω  will be the cell volume for a 3D model).  220 
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The Courant-Friedrichs-Lewy stability criterion was used to ensure t  does not exceed its maximum 221 

allowable limit, as represented below  222 

FL
t

Ω
t C

u c

 
   

    s s
   (19) 223 

where s i j=  represents the resultant normal unit vector; c  is the wave celerity ( c gh ); and FLC  224 

is the Courant number, which is limited by 0 1FLC  . By using smaller values of FLC , the simulation 225 

accuracy will be improved; however the computational cost will increase. The combination of CFL 226 

criterion with MUSCL-Hancock scheme has been well-tested by Toro [28], hence it is adopted here. In 227 

this study, a smaller FLC  number of 0.6 was used for the complex multiple obstructions induced flow 228 

simulations in Section 6.1; whereas a larger FLC  number of 0.8 was found to give stable simulations of 229 

the non-uniform flow experiments tested in Sections 6.2 and 6.3.  230 

 231 

4.2 Source Terms Scheme 232 

An original SGUM source terms treatment scheme proposed by Pu et al. [24] was integrated into this 233 

study to simulate the combined operation of F  and TS  in equation (13). This combination of F  and 234 

TS  in the numerical iterations can improve the numerical accuracy to predict the flow under different 235 

turbulence conditions and it has been fully tested on various numerical benchmark problems and 236 

experimental data in Pu and Lim [33] and Pu et al. [24] under conditions with and without coupling to 237 

the k-ε model, respectively. In this work, the SGUM is used to improve the numerical scheme to treat 238 

the combined source terms from SWE and k-ε equations. By applying the SGUM approach, the 239 

MUSCL-Hancock scheme in equations (17) – (18) will be altered to 240 

Predictor Step:  1/2
1/2 1/22

N N N N
i i i i

i

t

Ω


 


  U U f f  (20) 241 
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Corrector Step:  1 1/2 1/2
1/2 1/2

N N N N
i i i i

i

t

Ω
  

 


  U U f f  (21)  242 

where Ω  Tf = F S .  243 

 244 

4.3 Boundary Conditions  245 

The double boundary condition, tested in Hu et al. [30], is used for the proposed model, where two 246 

extra ghost-cells are utilised outside the computational space domain. There are two kinds of boundary 247 

considered, the transmissive and repulsive boundaries. Each of their corresponding boundary vectors 248 

BU  can be represented as  249 

Transmissive Boundary:   TB u v k    U    (22) 250 

Repulsive Boundary:    
TB u v k    U   (23) 251 

The afore-mentioned boundary conditions are updated by using 252 

U UB B
m+1 m       (24) 253 

U UB B
m+2 m-1      (25) 254 

where m  is the last space cell in the computational boundary excluding the ghost cells.  255 

 256 

5  Experimental Model 257 

An experimental study was carried out and its measured data were used to validate the proposed 258 

numerical model. The descriptions of the experimental instruments and conditions are discussed in the 259 

following sub-sections.  260 

 261 

5.1 Experimental Instruments 262 
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A rectangular tilting flume, which has dimensions of length 12m, width 0.45m and height 0.50m, was 263 

used in this study. The physical flume was located in the Hydraulic Laboratory at the University of 264 

Bradford, where all our experimental tests had been carried out. The upstream end of the flume is 265 

connected to the outlet pipe of a water pump, and its downstream end runs into a water tank. The water 266 

tank collects the water at downstream end before directing it to the pump to be recirculated into the 267 

flume. The flume has glasswalls and a painted steel base. An adjustable gate is located at the 268 

downstream end of the flume to control the flow elevation. The flume is also equipped with a track 269 

parallel to the flume base for attaching the measurement trolleys, which can be used as the Acoustic 270 

Doppler Velocimeter (ADV) or vernier water gauge holder. The flume slope is controlled by a 271 

mechanical screw located at the downstream side of the flume, and is equipped with a calibrated scale 272 

that indicates the vertical movement of the flume. This calibrated scale allows the tilted vertical 273 

distance to be determined up to an accuracy of one millimeter. For detailed experimental descriptions 274 

refer to Pu et al. [13] and Pu [25].  275 

The ADV used in this study is equipped with the four-probe-receiver to reduce the noise signal of the 276 

measurements as compared to the conventional three-probe-receiver ADV, as the fourth probe 277 

provides direct estimation to the instrumentation noise level [34]. It was suggested by Lemmin and 278 

Rolland [35] using the investigation on the time-averaged flow field data that the error sources of 279 

ADV measurements are generally contributed less than 4% relative error to the velocity 280 

measurements. Besides, Hurther and Lemmin [36] also suggested using the investigation on turbulent 281 

kinetic energy (TKE), turbulent intensity and Reynolds stress that the four-probe-receiver ADV allows 282 

measurements with relative error of less than 10%. Conclusively, these studies constantly suggested 283 

the reliability of the four-probe ADV in velocity and turbulence measurements.  284 

 285 

5.2 Experimental Conditions 286 
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A summary of all the hydraulic conditions in different non-uniform flow experiments is presented in 287 

Table 1. The velocity measurements were made at four separate streamwise locations (at 3m, 5m, 6m, 288 

and 7m from the flume inlet). At each streamwise location, the velocity measurements were made at 289 

several vertical positions. Fifteen to twenty-five vertical measurement points were used in a single 290 

location depending on the flow condition (presented in Table 1). Each sampling point can have a 291 

minimum sampling volume of 1mm3; however for the measurement points that have low signal-to-292 

noise ratio (SNR), the sampling volume will be increased. In all Test 1 – 4, the velocity measurements 293 

were conducted at the ADV sampling frequency of 100Hz for 5 minutes of the sampling time, which 294 

this sampling frequency was suggested by Hurther and Lemmin [36] to be sufficient ADV output rate 295 

for turbulence measurements.   296 

 297 

6  Results and Discussions  298 

The presented numerical model was applied to various flow applications to investigate: (1) its k- and 299 

SGUM models, and (2) the proposed Kolmogorov k- model to reproduce flow turbulence. For 300 

validation of the k- and SGUM models, a multiple obstructions induced flow outlined in the literature 301 

was tested and compared with the proposed model simulation. Then, the non-uniform flow 302 

experiments discussed before was used to investigate the combined Kolmogorov k- model and its 303 

ability to reproduce the flow turbulence structures.  304 

 305 

6.1  Multiple Obstructions Induced Flows   306 

A multiple obstructions induced flow is used in this section to produce a combination of different 307 

constructive and diffusive turbulent eddy effects to test the proposed k- SWE model. The 308 

experimental measurements of this flow test were conducted by Kabir et al. [37], where the 309 

dimensions and sizes of the tested obstructions in the flow are presented in Fig 1. In Kabir et al. test, 310 
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the full channel had a dimension of 3m length and 0.9m width. However, the channel was bounded by 311 

guide-walls to constraint the flow region to 2m length and 0.3m width, where the basic schematic 312 

diagram of this bounded region is presented in Fig 1. Three rectangular obstacles (one l b  and two 313 

parallel L c  blocks) were stationed in the channel against the flow. By referring to Fig 1, some 314 

dimensions of the channel and obstacles were fixed as: 25mmw b  , 200mmL  , and 2.5mmc  . 315 

In the experiment, different dimensions of g  (50.0, 75.0, 100.0, 125.0, 150.0, 175.0 and 200.0mm) 316 

were tested against the l b  block size with ratio of / 1.5l b  . The initial conditions of water depth, 317 

streamwise velocity, transverse velocity were set as 0.125mIh  , 0.24m/sIu  , and 0Iv  , 318 

respectively. Using the each settings of the experiment, separate simulations were run until the steady 319 

state was reached and the numerical results were compared with the experimental findings.  320 

The simulated flow fields of the two most extreme cases in the range of g , i.e. when 50.0mmg   and 321 

200.0mmg  , are presented at Figs 2 and 3, respectively. In Fig 2 when 50.0mmg  , one can 322 

observe that the turbulent eddies created at the back of l b  block causing a chaotic flow vorticity 323 

behaviour as compared with Fig 3 for 200.0mmg  , where the turbulent eddies occur more 324 

tranquilly. When the numerical tests were further run for different ratios of /l b , namely 325 

/ 1.0, 0.5, and 0.3l b  , we obtained different trend of change for velocity ratio at the flow inlet and 326 

outlet ( iu  and ou  - the points are presented in Fig 1). Figs 4(a) - (d) show the simulated results of 327 

/i ou u  at different /l b  ratios with three different sets of mesh as compared to the experimental 328 

measurements by Kabir et al. [37]. From this mesh refinement test, the reasonably converged results 329 

has been obtained from coarse mesh (200 × 20) to fine mesh (800 × 20) simulation for all /l b  ratio 330 

tests.  331 

In Figs 4(a) – (d), the most obvious difference between the numerical predictions and measurements 332 

occurs when /g w  ratio is small. When the gap g  is small (since w  fixed as constant), the secondary 333 
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currents are expected to be more significant in the space between the obstructions, i.e. at the back of 334 

l b  block, compared to the flow through bigger g  space. At small g , the flow features a stronger 3D 335 

characteristic due to the existing of strong secondary currents, and hence the 2D SGUM-SWE model 336 

could not capture it satisfactorily. Furthermore, the disagreement between the 2D SGUM-SWE model 337 

with measurements are also expected to be progressively more severe if gap g  becomes even smaller. 338 

Apart from that, Figs 4(a) – (d) show convincingly that the presented 2D SGUM-SWE model can be 339 

utilised as a reasonable tool to simulate the obstructed flow applications, due to its much lower 340 

computational cost than the 3D flow models. Moreover, due to the fact that the numerical iteration to 341 

resolve the turbulent eddies is usually a very time-consuming process, the SWE-type approach should 342 

be seriously considered as to achieve practical engineering simulations.  343 

 344 

6.2  Model Validation on Flow Velocity and Turbulent Kinetic Energy (TKE)   345 

In this section, the numerical simulations are completed for the physical experiments explained in 346 

Section 4, where the mesh size of 480 × 45 (excluding ghost cells) are found to give the most optimum 347 

results. Fig 5 shows the depth-averaged streamwise velocity comparisons between the numerical 348 

simulations and experimental measurements (for all Test 1 – 4 in Table 1). In the figure, one can 349 

observe that Test 1 – 3 had the accelerating characteristics across the streamwise direction from 3m to 350 

7m location, whereas Test 4 had the decelerating characteristics; hence, they are classified as the 351 

spatial-accelerating and spatial-decelerating flows, respectively. In detail comparison from the non-352 

uniform flow depth-averaged velocity variation across the streamwise locations, Test 1 and 3 match 353 

the measurements better than Test 2 and 4. However, all numerical simulations show reasonably low 354 

discrepancies of about 2% with respect to the experimental data. This comparison shows that the 355 

proposed simulated velocity represents the measured data well.  356 
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After gaining the insight of velocity profile discrepancy, in Fig 6 the depth-averaged numerical 357 

simulated TKE is presented and compared with the experimental data for the tests. The plot are 358 

produced against a dimensionless water height ratio Dh , which it is defined as below 359 

MI
D

MA MI

h h
h

h h





  (26) 360 

where MAh  and MIh  are the maximum and minimum water depths across the channel, respectively. Dh  361 

is a ratio to define the water-head difference in a flow system. In a spatial-accelerating flow, Dh  is 362 

decreasing from the upstream to downstream in the flow streamwise direction, whereas for a spatial-363 

decelerating flow Dh  is increasing.     364 

In Fig 6, the numerical simulations of the non-uniform flow depth-averaged TKEs at different 365 

streamwise locations compare well with the experimental measurements. In comparison, the spatial-366 

decelerating flow in Test 4 shows greater energy gradient variations than all other spatial-accelerating 367 

flows. This higher energy gradient is caused by the larger bed slope used in the spatial-decelerating 368 

flow that creates a bigger flow pressure gradient. Also, due to the steeper bed slope used in Test 4, a 369 

higher numerical discrepancy in the simulated TKEs can also be observed. In numerical terms, this 370 

larger discrepancy is caused by the increased oS  source terms used in the numerical simulation.  371 

 372 

6.3  Comparison with Boussinesq Model     373 

In Figs 7 – 8, the numerical predictions of the streamwise and lateral depth-averaged turbulence 374 

intensities, 'u  and 'v , respectively, are compared with the measured data for Test 1 – 4. There is no 375 

comparison presented involving the vertical turbulence intensity due to the depth-averaged nature of 376 

SWE. The numerical predictions of all depth-averaged streamwise and lateral turbulence intensities 377 

match our experimental data reasonably. Using an eddy viscosity assumption, the Reynolds stress   378 

can be modelled by the Boussinesq hypothesis on the diffusive momentum transport. In the well-379 
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known Boussinesq model, suggested by Launder and Spalding [38] as a combination with the k- 380 

model, each element of Reynolds stress ij  is related to the TKE and strain rate of mean flow as 381 

follows  382 

2
2

3
ij

t ij ijS k


 

    (27) 383 

where   is the flow density;  0.5 / /ij i j j iS u x u x       is the element of mean strain rate; and ij  is 384 

the Kronecker delta. Numerical simulations using equation (27) is employed here to compare with the 385 

proposed Kolmogorov k-ε model for reproducing the measured flow Reynolds stress. In Fig 9, we can 386 

observe that both proposed and Boussinesq models simulate the measured Reynolds stress with 387 

satisfactory correspondence.  388 

Table 2 presents the proposed model numerical discrepancies of Test 1 – 4 by benchmarking using the 389 

experimental data. The table shows that 'u , 'v  and ' 'u v    have the averaged discrepancies of 390 

2.33%, 2.23% and 3.68%, respectively, across all tests, which they outline the accuracy of the 391 

proposed model to reproduce the flow turbulence structures. In comparison, the streamwise and lateral 392 

turbulence intensities show similar averaged discrepancy, which they are both lower than that of their 393 

correlative Reynolds stress. However, all their discrepancies are significantly low, and that shows the 394 

proposed model capability. These comparisons further strengthen the idea of combining the 395 

Kolmogorov approach into the k- SWE model to propose a computationally cost-saving method for 396 

the practical simulation of RANS turbulence structures.    397 

 398 

7  Conclusions  399 

A numerical model has been proposed to combine the shallow water model with k-ε equations to study 400 

the flow turbulence structures. The Kolmogorov K41 scaling law was utilised to compute the flow 401 

velocity fluctuations in the combined k-ε SWE model, in order to determine the flow turbulence 402 
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intensities in different directions and Reynolds stress. The model was also further improved in its 403 

source terms numerical representation by using a SGUM approach. Literature studies and laboratory 404 

flow experiments, which were performed under the non-uniform flow conditions, were used to 405 

validate the proposed numerical model.  406 

The comparison with literature showed that the proposed k-ε and SGUM models were well-combined 407 

to reproduce the flow characteristics of the investigated multiple-obstructions induced flow. In our 408 

experiments, the numerical and experimental comparisons were accomplished in the flow velocity, 409 

TKE, streamwise and lateral turbulence intensities as well as Reynolds stress to fully investigate the 410 

proposed model representation of the flow turbulence structures. Besides, a standard Boussinesq 411 

model was also utilised to compare with our numerical and experimental Reynolds stress results, 412 

where good agreement was observed in between one another.  413 

All the comparison results showed that the presented model captured the experimental flow 414 

characteristics reasonably well in all the considered flows. All of these comparisons proved that the 415 

proposed k-ε SWE numerical model was capable to represent the actual flow turbulence structures 416 

after combining with the Kolmogorov K41 scaling model to perform the computationally efficient 417 

calculation in 2D. The finding of this study also proves that the Kolmogorov model should be given 418 

attention by future researches as an achievable approach to resolve the computationally demanding 419 

flow turbulence.   420 
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 506 

Table 1. Summary of experimental measurement conditions  507 

 508 

Test 
No. 

Slope 
(× 10-3)

Discharge 
(m3/s) 

Flow 
Characteristics 

No. of Measuring Points 
in a Single Location 

1 Flat 0.0270 
Spatial-

Accelerating 
20 

2 Flat 0.0315 
Spatial-

Accelerating 
22 

3 Flat 0.0360 
Spatial-

Accelerating 
25 

4 2.50 0.0315 
Spatial-

Decelerating 
15–19 

 509 

510 
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 511 

Table 2. Average numerical simulation discrepancies of the depth-averaged 'u , 'v  and   (benched by 512 

experimental measurements) in Figures 7 – 9 (for Test 1 – 4) 513 

 514 

 

Turbulence Structures 

Averaged Numerical Discrepancies (in %) 

Test 1 Test 2 Test 3 Test 4 

'u  2.3 2.4  2.1 2.5 

'v  2.6 2.5 2.0 1.9 

' 'u v    2.9 4.1 4.0 3.7 

 515 
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 516 

 517 

Figure 1. Layout of multiple obstructions induced flow 518 

 519 

520 
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 521 

 522 

Figure 2. Flow field around l b  block at dimensions 50.0mmg   and / 1.5l b    523 

 524 

525 
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 526 

 527 

Figure 3. Flow field around l b  block at dimensions 200.0mmg   and / 1.5l b    528 

 529 

530 
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 531 

 532 

Figure 4(a). /i ou u  comparison when / 1.5l b   533 

534 
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 535 

 536 

Figure 4(b). /i ou u  comparison when / 1.0l b   537 

 538 

539 
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 540 

 541 

Figure 4(c). /i ou u  comparison when / 0.5l b   542 

 543 

544 
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 545 

 546 

Figure 4(d). /i ou u  comparison when / 0.3l b   547 

 548 

549 



33 

 550 

2 3 4 5 6 7 8
0.4

0.6

0.8

2 3 4 5 6 7 8
0.4

0.6

0.8

D
e

p
th

-A
v

e
ra

g
e

d
 V

e
lo

c
it

y
 [

m
/s

]

2 3 4 5 6 7 8
0.4

0.6

0.8

2 3 4 5 6 7 8
0.4

0.6

0.8

Streamwise Location [m]

 

 

Proposed Model 

Experimental Measurements

Test 4

Test 3

Test 2

Test 1

 551 

 552 

Figure 5. Comparison of numerical simulated and experimental measured depth-averaged velocities for 553 

different tests  554 

 555 
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 559 

Figure 6. TKE against the water height ratio Dh  (symbol – experimental data, blue solid line – 560 

proposed numerical simulations) 561 

 562 
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 566 

Figure 7. Streamwise turbulence intensity against the water height ratio Dh  (symbol – experimental 567 

data, blue solid line – proposed numerical simulations) 568 
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 573 

Figure 8. Lateral turbulence intensity against the water height ratio Dh  (symbol – experimental data, 574 

blue solid line – proposed numerical simulations) 575 
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 580 

Figure 9. Reynolds stress against the water height ratio Dh  (symbol – experimental data, green solid 581 

line – Boussinesq model simulations, blue solid line – proposed numerical simulations) 582 
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