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Abstract 

Reverse osmosis (RO)is one of the most important technologies used in wastewater treatment 

plants due to high contaminant rejection and low utilization of energy in comparison to other 

treatment procedures. For single-component spiral-wound reverse osmosis membrane 

process, one dimensional steady state and dynamic mathematical models have been 

developed based on the solution-diffusion model coupled with the concentration polarization 

mechanism. The model has been validated against reported data for wastewater treatment 

from literature at steady state conditions. Detailed simulation using the dynamic model has 

been carried out in order to gain deeper insight of the process. The effect of feed flow rate, 

pressure, temperature and concentration of pollutants on the performance of the process 

measured in terms of salt rejection, recovery ratio and permeate flux has been investigated. 

 

Keywords: Spiral-wound reverse osmosis; One dimensional steady state and dynamic 

modeling; Wastewater treatment 

 

1. Introduction 

Reverse osmosis can be defined as a process of removing undesirable species (salts, 

pollutants, etc.) from liquid solutions (seawater, wastewater, etc.) by pumping the solution at 

higher pressure than the osmotic pressure within a closed vessel which facilitates the solvent 

to flow from the concentrated side to the diluted side (Jain et al., 2004).  Over the last 

decades, the membrane technology has experienced significant advancement that reduces the 

cost of filtration and enhances the quality of drinking water. As a consequence, this 

technology can be considered as the lowest cost technology for water desalination (Carter, 

2015) in comparison to others existing technologies, such as thermal desalination (multistage 

flash desalination, MSF; multi-effect distillation, MED) (Moonkhum et al., 2010). RO is a 

prominent separation process in process industries (such as textile, paper, food, 

electrochemical, biochemical industries) and in wastewater treatment in addition to water 

desalination due to its power to separate impurities effectively and in a way appropriate to the 
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environmental demands (Elhalwagi, 1992; Bódalo-Santoyo et al., 2003; Nguyen et al., 2009; 

Slater et al., 1983). As a result, a number of researchers in the past decades developed several 

mathematical models of RO desalination process in order to explain the separation technique 

and to carry out model based optimisation to enhance the efficiency of the production process 

(Sassi and Mujtaba, 2012, 2013a,b; Barello et al., 2015; Manenti et al., 2015).  

In RO process, the solution-diffusion model has been widely considered as one of the 

simplest non-porous or homogeneous models related to transport mechanism through the 

membrane (Mujtaba, 2012). Avlonitis et al. (1991, 1993 and 2007) have developed an 

explicit analytical steady state spatial model for spiral-wound modules based on the solution-

diffusion theory but assumed constant physical properties and neglected the diffusive mass 

transport along the axial and spiral dimensions in both channels. Boudinar et al. (1992) have 

proposed another steady state model for spiral-wound RO module based on the solution-

diffusion model assuming the pressure loss in the two channels being a function of brine and 

permeate friction parameters (Darcy’s law for porous media) and constant fluid density.  

A one dimensional steady state model for spiral-wound RO membranes has been developed 

by Geraldes et al. (2005) based on the solution-diffusion model but including the variation of 

velocity, pressure and brine concentration along the membrane length with temperature 

impact. However, the model neglected the pressure drop in the permeate channel and the 

diffusion flow in the feed side. Sagne et al. (2009) considered a modified unsteady state one 

dimensional model based on the solution-diffusion model for the rejection of dilute aqueous 

solution of five volatile organic compounds from brackish water used in fermentation 

industries. The model neglected the impact of concentration polarization and degraded the 

flux of solute.  

All the above proposed models are validated with the sea water and brackish water 

experimental data. 

Sundaramoorthy et al. (2011a,b) have stated a one dimensional analytical study state model 

by assuming the validity of the solution-diffusion model and incorporates the spatial variation 

of pressure, flow rates and solute concentration in the feed channel. Also, the model assumed 

constant values for both the permeate concentration and pressure along the permeate side and 

constant temperature. The model has been validated with the experimental data of organic 

solute but showed an increase in the average permeate concentration due to increase in the 

operating pressure for most of the mathematical predictions. 

In a summary, sea and brackish water desalination have been extensively modelled as one 

and two dimensional steady state and dynamic models with a number of assumptions (Sirkar 
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et al., 1982; Senthilmurugan et al., 2005). However, a limited number of published models 

describing RO process, especially for wastewater treatment is available in the public domain 

(Sundaramoorthy et al., 2011a).In addition, there are a few validation studies of mathematical 

models with wastewater experimental data (Sundaramoorthy et al., 2011b). 

In this work, a one dimensional steady state and dynamic model applicable for spiral-wound 

RO process is suggested. This model will base on the solution-diffusion model and relax the 

assumptions of constant physical properties and concentration of the fresh water on the 

permeate side. In addition, the brine concentration varies along the membrane length due to 

the impact of both plug-flow and diffusion flow. Also, it will consider the impacts of 

diffusion, temperature and concentration polarization on the whole process. The robustness of 

this model will be appraised by a simulation study with an observational data for wastewater 

treatment from literature. Then, the effect of feed flow rate, pressure, concentration and 

temperature will be checked on the efficiency of the unit for recovery ratio, salt rejection and 

permeate flux. Finally, the system response will be checked for different step changes of 

operating parameters. 

 

2. Model development 

2.1 The main principles 

Spiral-wound modules contain an envelope of a number of glued flat membranes wrapped 

around a central tube. The brine water is pumped and forced to run along the membrane 

length where the fresh water is collected out in the tube at the permeate side. Fig. 1shows the 

direction of flow inside the module. The specific dimensions of the module are length and 

width (𝐿 and 𝑊) and the feed and permeate space channels are (𝑡𝑓 and 𝑡𝑝) [m] respectively 

with 𝐴𝑚 = 𝐿𝑊 [m²] as the area of the membrane. Also, according to the method of 

discretization used by gPROMS(Process system Enterprise Ltd., 2001),the area of the 

membrane will be split into four sub-sections of equal area where the proportion of each sub-

section will be obtained by: 

𝐴𝑠𝑒𝑐𝑡𝑖𝑜𝑛= 𝑊 ∆𝑥     (1) 

Where, ∆𝑥 =
𝐿

4
 

Specifically, the reverse osmosis module (Fig. 1) is composed of two sides, the feed side 

where the brine flow rate changes along (x) (the horizontal direction) and the permeate side. 

The accumulated permeate water flows in the same direction of feed and then flows in the 

spiral direction into a central perforated pipe. While, the fresh water is flowing perpendicular 
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from the feed side to the permeate side through the membrane region. As mentioned above, 

the model in this work will employ the solution-diffusion model to identify the criteria of 

separation along the membrane. Besides, the concentration polarization theory will be used to 

describe the deviation of mass transfer coefficient in the feed channel. The validation of this 

model will be carried out using experimental data from a laboratory scale spiral-wound RO 

based wastewater treatment process removing chlorophenol from diluted aqueous solutions. 

The model will include explicit steady and dynamic equations for calculating the solute 

concentration on the wall of the membrane, the brine and permeate channels together with the 

pressure, water and solute fluxes, brine and permeate flow rates and finally the temperature at 

each point along the one dimension in both sides of the membrane. 

 

 

Fig.1: Schematic diagram of a spiral wound membrane module 

 

2.2 The assumptions 

The following assumptions were made to develop the process model: 

1. Flat membrane sheet with negligible channel curvature. 

2. Validity of the solution-diffusion model. 

3. Validity of the Darcy’s law for the feed channel where the friction parameter is 

applied to characterize the pressure drop. 

4. Negligible pressure drop in the freshwater side and a constant pressure of 1 atm is 

assumed. 

5. The permeate concentration will be varied along the membrane length, but the mean 

value will be considered as the fresh water output concentration for the calculation of 
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the whole unit solute rejection. This is attributed to the direction of the accumulated 

permeate flow rate, which is in the spiral direction. 

6. Negligible flow rate in spiral direction for brine channel (one dimensional model).  

 

Note, these assumptions are considered based on the extensive literature review on RO 

process models considered by others (as referenced in section 1) for desalination. 

Interestingly as presented in later sections, these assumptions were found to be also quite 

valid for the considered RO process for wastewater treatment (see section 5). 

 

3. Model structure 

According to the principles of the solution-diffusion model which assumes no interaction 

between the solute and solvent fluxes, the solvent and solute fluxes (𝐽𝑤and  𝐽𝑠) [m/sec and 

Kmol/m²sec] through the membrane are (Lonsdale et al., 1965): 

𝐽𝑤(𝑥) = 𝐴𝑤 (∆𝑃𝑏(𝑥)
− ∆𝜋(𝑥))                                                                                                  (2)                                             

𝐽𝑠(𝑥) = 𝐵𝑠(𝐶𝑤(𝑥) − 𝐶𝑝(𝑥))                (3) 

Where, 𝐴𝑤[m/atm sec] and 𝐵𝑠 [m/sec] are the pure water and solute permeability constants of 

the membrane. (∆𝑃b−∆𝜋) [atm] is the quantity of force per unit area required to cope with the 

osmotic pressure and to release pure water from the feed solution. ∆𝑃 is the trans-membrane 

pressure and ∆𝜋 is the osmotic pressure difference along the length of the membrane L [m] 

defined by Eqs. (4 and 5). (𝐶𝑤, 𝐶𝑝) [Kmol/m³] are the solute concentration at the membrane 

wall and permeate side respectively. 

∆𝑃𝑏(𝑥)
= (𝑃𝑏(𝑥) − 𝑃𝑝)                                                                                                               

(4) 

∆𝜋(𝑥) = 𝑅𝑇𝑏(𝑥)(𝐶𝑤(𝑥) − 𝐶𝑝(𝑥)) (5) 

Where, 𝑅, 𝑇𝑏 , 𝑃𝑏 and 𝑃𝑝 [atm m³/KmolK, Kandatm] are the gas constant, the temperature of 

the brine, the brine pressure and the permeate pressure respectively. 

𝐽𝑤 is linked to concentration polarization and 𝑘 [m/sec] (mass transfer coefficient of the solute 

through the membrane) by the following equation: 

(𝐶𝑤(𝑥)−𝐶𝑝(𝑥))

(𝐶𝑏(𝑥)−𝐶𝑝(𝑥))
= 𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
)(6) 

With 100% of solute rejection (𝐶𝑝(𝑥) = 0), the above equation reduces to: 

(𝐶𝑤(𝑥))

(𝐶𝑏(𝑥))
= 𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
)                                                                                                                (7) 
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Where,𝐶𝑤(𝑥) and 𝐶𝑏(𝑥)[Kmol/m³] are the solute concentration at the wall of membrane and 

brine channel respectively. 

By substituting Eqs. (4 and 5) in Eq. (2) and Eq. (6) in Eq. (3), it gives: 

𝐽𝑤(𝑥) = 𝐴𝑤 ((𝑃𝑏(𝑥) − 𝑃𝑝) − 𝑅𝑇𝑏(𝑥)(𝐶𝑤(𝑥) − 𝐶𝑝(𝑥)))(8)       

𝐽𝑠(𝑥) = 𝐵𝑠 𝑒𝑥𝑝 (
𝐽𝑤(𝑥)

𝑘(𝑥)
) (𝐶𝑏(𝑥) − 𝐶𝑝(𝑥))    (9) 

Also, the solute flux through the membrane can be written as: 

𝐽𝑠(𝑥) = 𝐽𝑤(𝑥)𝐶𝑝(𝑥)    (10) 

The total (whole module) mass and solute balance can be presented as: 

𝐹𝑏(0) 𝜌𝑏(0)

𝑀𝑤𝑏(0)
=

𝐹𝑏(𝑥) 𝜌𝑏(𝑥)

𝑀𝑤𝑏(𝑥)
+

𝐹𝑝(𝑥) 𝜌𝑝(𝑥)

𝑀𝑤𝑝(𝑥)
     (11) 

Where, 𝐹𝑏(0),  𝜌𝑏(0), 𝐹𝑏(𝑥), 𝜌𝑏(𝑥),  𝐹𝑝(𝑥) and 𝜌𝑝(𝑥)[m³/sec, Kg/m³] are the feed flow rate and 

density at (x=0) any point along the feed and permeate channels respectively. 

By assuming constant density and molecular weight (due to small quantity of contaminant), 

Eq. (11) can be written as: 

𝐹𝑏(0) =  𝐹𝑏(𝑥) + 𝐹𝑝(𝑥)       (12) 

𝐹𝑏(0)𝐶𝑏(0) = 𝐹𝑏(𝑥)𝐶𝑏(𝑥) + 𝐹𝑝(𝑥)𝐶𝑝(𝑥)     (13) 

The change in brine flow rate in (x) direction can be estimated with the water flux through the 

membrane, by using: 

𝑑𝐹𝑏(𝑥)

𝑑𝑥
=  −

𝑑𝐹𝑝(𝑥)

𝑑𝑥
=  −𝑊 𝐽𝑤(𝑥)(14) 

Similarly, the permeate flow rate for each sub-section can be written as: 

𝐹𝑝(𝑥) = 𝐽𝑤(𝑥) 𝑊 ∆𝑥  (15) 

Where, ∆𝑥 [m] is the length of the sub-section. 

Finally, the pressure drop along the length of the membrane in the brine channel can be 

accounted from the momentum balance equation which is based on the Darcy’s law where 

the pressure loss is caused by the wall friction along the membrane: 

𝑑𝑃𝑏(𝑥)

𝑑𝑥
= −𝑏 𝐹𝑏(𝑥)    (16) 

Where, 𝑏 [atm sec/m
4
] is the friction factor along the feed and permeate channels. 

 

3.1 The conservation equations of the dynamic model 

One of the requirements for designing control systems of RO is the development of a 

dynamic model which can predict the transient characteristics of the plant and be used later to 



7 
 

maintain an acceptable level of cost. The brine concentration varies along the membrane 

length due to the impact of the plug-flow and diffusion terms. 

According to solute balance along (x-axis) of membrane length and for sub-section of (∆𝑥), 

the change of solute hold-up can be written as: 

𝑑(𝐶𝑏(𝑥)𝑊 𝑡𝑓 ∆𝑥)

𝑑𝑡
= (𝐹𝑠  𝑊 𝑡𝑓)

𝑥=0
− (𝐹𝑠 𝑊 𝑡𝑓)

𝑥=∆𝑥
− 𝐽𝑠(𝑥) 𝑊 ∆𝑥    (17) 

Where, 𝐹𝑠 [Kmol/m² sec] is the solute molar flux in x-direction and 𝐽𝑠 [Kmol/m² sec] is the 

solute molar flux through the membrane. By dividing the two sides of the above equation by 

the volume of sub-section with an arrangement, it reduces to: 

𝑑(𝐶𝑏(𝑥))

𝑑𝑡
= − [

(𝐹𝑠)𝑥=∆𝑥−(𝐹𝑠)𝑥=0

∆𝑥
] −

𝐽𝑠(𝑥)

𝑡𝑓
(18) 

𝑑(𝐶𝑏(𝑥))

𝑑𝑡
= − [

𝑑𝐹𝑠(𝑥)

∆𝑥
] −

𝐽𝑠(𝑥)

𝑡𝑓
     (19) 

The solute molar flux can be defined as: 

𝐹𝑠(𝑥) =
𝐶𝑏(𝑥) 𝐹𝑏(𝑥)

𝑊 𝑡𝑓
− 𝐷𝑏(𝑥)

𝑑𝐶𝑏(𝑥)

𝑑𝑥
     (20) 

Where,𝐷𝑏(𝑥)[m²/sec] is the diffusivity coefficient of brine in water. The second term of Eq. 

(20)explains the effect of dispersion flux in the bulk fluid. 

Finally, the set of dynamic model equations for the brine and permeate concentrations can be 

written as: 

𝑑𝐶𝑏(𝑥)

𝑑𝑡
= −

𝐶𝑏(𝑥)

𝑡𝑓  𝑊

𝑑𝐹𝑏(𝑥)

𝑑𝑥
−

𝐹𝑏(𝑥)

𝑡𝑓 𝑊

𝑑𝐶𝑏(𝑥)

𝑑𝑥
+

𝑑

𝑑𝑥
[𝐷𝑏(𝑥)

𝑑𝐶𝑏(𝑥)

𝑑𝑥
] −

𝐽𝑤(𝑥)𝐶𝑝(𝑥)

𝑡𝑓
  (21) 

Similarly, for the permeate concentration: 

𝑑𝐶𝑝(𝑥)

𝑑𝑡
= −

𝐶𝑝(𝑥)

𝑡𝑝 𝑊

𝑑𝐹𝑝(𝑥)

𝑑𝑥
−

𝐹𝑝(𝑥)

𝑡𝑝 𝑊

𝑑𝐶𝑝(𝑥)

𝑑𝑥
+

𝑑

𝑑𝑥
[𝐷𝑝(𝑥)

𝑑𝐶𝑝(𝑥)

𝑑𝑥
] +

𝐽𝑤(𝑥)𝐶𝑝(𝑥)

𝑡𝑓
 (22) 

Where,𝐷𝑝[m²/sec] is the diffusivity coefficient of permeate along the length of the membrane 

which varies with temperature and concentration.  

As can be seen from the above two equations, the dynamic behaviour of both feed and 

permeate concentrations is controlled by the flux of solute penetrate the membrane. Also, the 

dynamic behaviour of brine flow rate, brine and permeate pressures can be estimated from 

Eqs. (14 and 16): 

𝑑𝐹𝑏(𝑥)

𝑑𝑡
= ⟦{−𝑊 (𝐴𝑤 ((𝑃𝑏(𝑥) − 𝑃𝑝) − 𝑅 𝑇𝑏(𝑥) 𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
) (𝐶𝑏(𝑥) − 𝐶𝑝(𝑥))))} −

𝑑𝐹𝑏(𝑥)

𝑑𝑥
⟧ ( 

𝐹𝑏(𝑥)

𝑡𝑓 𝑊
)(23) 

𝑑𝑃𝑏(𝑥)

𝑑𝑡
= [{(−𝑏 𝐹𝑏(𝑥))} −

𝑑𝑃𝑏(𝑥)

𝑑𝑥
] (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊 
)   (24)  

Furthermore, the water and solute fluxes through the membrane can be calculated from: 
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𝑑𝐽𝑤(𝑥)

𝑑𝑡
= {(𝐴𝑤 ((𝑃𝑏(𝑥) − 𝑃𝑝) − 𝑅𝑇𝑏(𝑥)(𝐶𝑤(𝑥) − 𝐶𝑝(𝑥)))) − 𝐽𝑤(𝑥)} (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊 ∆𝑥
)(25) 

𝑑𝐽𝑠(𝑥)

𝑑𝑡
= {(𝐵𝑠𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
) (𝐶𝑏(𝑥) − 𝐶𝑝(𝑥))) − 𝐽𝑠(𝑥)} (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊 ∆𝑥
)    (26) 

The accumulated wall concentration along the length of the membrane can be calculated 

from: 

𝑑𝐶𝑤(𝑥)

𝑑𝑡
= {(𝐶𝑝(𝑥) +  𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
) (𝐶𝑏(𝑥) − 𝐶𝑝(𝑥))) − 𝐶𝑤(𝑥)} (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊 ∆𝑥
)       (27) 

The last set of equations contains the energy balance dynamic equations of brine and 

permeate temperatures along the length of the membrane. By assuming well insulated 

system: 

𝑑𝑇𝑏(𝑥)

𝑑𝑡
= [

𝐹𝑏(𝑥)(𝑇𝑏(𝑥−∆𝑥)−𝑇𝑏(𝑥))

𝑡𝑓 𝑊 ∆𝑥
] − [

𝐽𝑤(𝑥)(𝑇𝑏(𝑥)−𝑇𝑝(𝑥))

𝑡𝑓
](28) 

𝑑𝑇𝑝(𝑥)

𝑑𝑡
= [

𝐽𝑤(𝑥)(𝑇𝑏(𝑥)−𝑇𝑝(𝑥))

𝑡𝑓
]      (29) 

Where,𝑇𝑏 and 𝑇𝑝 [°C] are the temperature at brine and permeate channels respectively. 

Occasionally, the values of average solute rejection, the recovery, the total recovery and 

permeate flow rate at each point and overall permeate flow rate values are calculated as 

follows: 

𝑅𝑒𝑗(𝑎𝑣) =
𝐶𝑏(𝑥=𝐿)−𝐶𝑝(𝑎𝑣)

𝐶𝑏(𝑥=𝐿)
 𝑥100  (30) 

Where, 𝐶𝑏(𝑥=𝐿) and 𝐶𝑝(𝑎𝑣) are the outlet brine and average permeate concentrations 

respectively. 

𝐶𝑝(𝑎𝑣) = ⅀𝐶𝑝(𝑥)  … … … … … … . . … (𝑥 = 0 𝑡𝑜 𝑥 = 𝐿)(31) 

𝑅𝑒𝑐(𝑥) =
𝐹𝑝(𝑥)

𝐹𝑏(0)
 𝑥100     (32) 

𝑅𝑒𝑐(𝑇𝑜𝑡𝑎𝑙) =
𝐹𝑝(𝑇𝑜𝑡𝑎𝑙)

𝐹𝑏(0)
 𝑥100   (33) 

Where,𝑅𝑒𝑐(𝑥)and 𝑅𝑒𝑐(𝑇𝑜𝑡𝑎𝑙)are the recovery rate at each point along the brine channel and 

the total recovery of the whole unit, while 𝐹𝑝(𝑥) and 𝐹𝑏(0) are the permeate flow rate at each 

point on the membrane and the inlet feed flow rate respectively. 

𝐹𝑝(𝑥) =  𝐽𝑤(𝑥) 𝑊 ∆𝑥        (34) 

𝐹𝑝(𝑇𝑜𝑡𝑎𝑙) = ⅀𝐹𝑝(𝑥) … … … … … … … (𝑥 = 0  𝑡𝑜  𝑥 = 𝐿)       (35) 

 

3.2 The conservation equations of steady-state model 
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The brine and permeate concentration along the length of the membrane can be estimated by 

eliminating the hold-up term in the dynamic model Eqs. (21 and 22) and re-arrangement 

yields: 

0 = −
𝐶𝑏(𝑥)

𝑡𝑓  𝑊

𝑑𝐹𝑏(𝑥)

𝑑𝑥
−

𝐹𝑏(𝑥)

𝑡𝑓.𝑊

𝑑𝐶𝑏(𝑥)

𝑑𝑥
+

𝑑

𝑑𝑥
[𝐷𝑏(𝑥)

𝑑𝐶𝑏(𝑥)

𝑑𝑥
] −

𝐽𝑤(𝑥)𝐶𝑝(𝑥)

𝑡𝑓
                        (36) 

0 = −
𝐶𝑝(𝑥)

𝑡𝑝  𝑊

𝑑𝐹𝑝(𝑥)

𝑑𝑥
−

𝐹𝑝(𝑥)

𝑡𝑝.𝑊

𝑑𝐶𝑝(𝑥)

𝑑𝑥
+

𝑑

𝑑𝑥
[𝐷𝑝(𝑥)

𝑑𝐶𝑝(𝑥)

𝑑𝑥
] +

𝐽𝑤(𝑥)𝐶𝑝(𝑥)

𝑡𝑓
(37) 

Eqs. (36 and 37) can be re-written as: 

𝑑
(𝐶𝑏(𝑥)𝐹𝑏(𝑥))

𝑡𝑓 𝑊

𝑑𝑥
= −

𝐽𝑠(𝑥)

𝑡𝑓
+

𝑑

𝑑𝑥
(𝐷𝑏(𝑥)

𝑑𝐶𝑏(𝑥)

𝑑𝑥
)                                                         (38) 

𝑑
(𝐶𝑝(𝑥)𝐹𝑝(𝑥))

𝑡𝑝 𝑊

𝑑𝑥
=

𝐽𝑠(𝑥)

𝑡𝑓
+

𝑑

𝑑𝑥
(𝐷𝑝(𝑥)

𝑑𝐶𝑝(𝑥)

𝑑𝑥
)                                                                     (39) 

In addition, the energy balance equations (assuming a constant heat capacity for permeate and 

brine) for the brine channel can be written as: 

𝐹𝑏(𝑥)(𝑇𝑏(𝑥−∆𝑥) − 𝑇𝑏(𝑥)) = 𝐽𝑤(𝑥)(𝑇𝑏(𝑥) − 𝑇𝑝(𝑥)) 𝑊 ∆𝑥                     (40                                            

(𝑇𝑏(𝑥) − 𝑇𝑝(𝑥)) = 0                                                                         (41) 

 

3.3 The physical properties equations 

This study covers the experimental work of dilute chlorophenol aqueous solutions on spiral-

wound module, so the physical properties equations of the solution has been conceived as 

identical to water equations. The mass transfer coefficient is a function of pressure, 

concentration, flow rate and temperature, which means that k will vary with the membrane 

length. The set of physical properties equations is: 

The diffusivity of brine and permeate [m²/sec] are given by the relations (Koroneos, 2007): 

𝐷𝑏(𝑥) = 6.725𝐸 − 6  𝑒𝑥𝑝 {0.1546𝐸 − 3  𝐶𝑏(𝑥) 𝑥18.01253 −
2513

𝑇𝑏(𝑥)+273.15
}           (42)            

𝐷𝑝(𝑥) = 6.725𝐸 − 6  𝑒𝑥𝑝 {0.1546𝐸 − 3  𝐶𝑝(𝑥)𝑥18.01253 −
2513

𝑇𝑝(𝑥)+273.15
}            (43)         

While the viscosity of brine and permeate [Kg/m sec] are given by the relations: 

𝜇𝑏(𝑥) = 1.234𝐸 − 6  𝑒𝑥𝑝 {0.0212𝐸 − 3  𝐶𝑏(𝑥) 𝑥18.0153 +
1965

𝑇𝑏(𝑥)+273.15
}               (44) 

𝜇𝑝(𝑥) = 1.234𝐸 − 6  𝑒𝑥𝑝 {0.0212𝐸 − 3  𝐶𝑝(𝑥)𝑥18.0153 +
1965

𝑇𝑝(𝑥)+273.15
}               (45) 

The density of brine and permeate [Kg/m³] are given by the equations below: 
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𝜌𝑏(𝑥) = 498.4 𝑚𝑓(𝑥) + √[248400 𝑚𝑓(𝑥)
2 + 752.4 𝑚𝑓(𝑥)𝐶𝑏(𝑥)𝑥18.0153]   (46) 

𝜌𝑝(𝑥) = 498.4 𝑚𝑝(𝑥) + √[248400 𝑚𝑝(𝑥)
2 + 752.4 𝑚𝑝(𝑥)𝐶𝑝(𝑥) 𝑥18.0153]     (47) 

Where:  

𝑚𝑓(𝑥) = 1.0069 − 2.757𝐸 − 4  𝑇𝑏(𝑥)                                                               (48) 

𝑚𝑝(𝑥) = 1.0069 − 2.757𝐸 − 4  𝑇𝑝(𝑥)                                                 (49) 

The Reynolds number along the feed and permeate channels can be calculated from: 

𝑅𝑒𝑏(𝑥) =
𝜌𝑏(𝑥)𝑑𝑒𝑏 𝐹𝑏(𝑥)

𝑡𝑓 𝑊 𝜇𝑏(𝑥)
                                                                               (50) 

𝑅𝑒𝑝(𝑥) =
𝜌𝑝(𝑥)𝑑𝑒𝑝 𝐽𝑤(𝑥)

𝜇𝑝(𝑥)
                                                                           (51) 

Where, 𝑑𝑒𝑏, 𝑑𝑒𝑝 [m] are the equivalent diameters of the feed and permeate channels 

respectively. 

𝑑𝑒𝑏 = 2𝑡𝑓       (52) 

𝑑𝑒𝑝 = 2𝑡𝑝         (53) 

Finally, the mass transfer coefficient [m/sec] along the feed channel side can be calculated 

from: 

𝑘(𝑥)𝑑𝑒𝑏 = 147.4  𝐷𝑏(𝑥)  𝑅𝑒𝑏(𝑥)
0.13𝑅𝑒𝑝(𝑥)

0.739𝐶𝑚(𝑥)
  0.135                                                 (54) 

Where the exponents in Eq. (54) have been experimentally predicted by Sundaramoorthy et 

al. (2011b) for chlorophenol aqueous solution and showed a fit about 0.99 as a regression 

coefficient in the method of least squares. Also, 𝐶𝑚 is a dimensionless solute concentration 

and can be calculated from: 

𝐶𝑚(𝑥) =
𝐶𝑏(𝑥)

𝜌𝑤
                                                                                                       (55) 

Where,𝜌𝑤 is the molal density of water (55.56 kmol/m
3
). 

The final set of model equations used for simulation is presented in Appendix (A) with the 

degree of freedom analysis. 

The model presented in this section is built within gPROMS (general Process Modelling 

System) Model builder which provides a modelling platform for steady state and dynamic 

simulation, optimisation, experiment design and parameter estimation of any process. 

 

4. Problem specifications: Steady-state simulation 
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The input data satisfying the degree of freedom is shown in Table 1. A commercial thin film 

composite RO membrane packed into a spiral-wound module (Make: Ion Exchange, India) 

used by Sundaramoorthy et al. (2011b)in their experimental work to remove chlorophenol 

from aqueous solutions of different concentrations. The characteristics of the spiral-wound 

module are presented in Table 1. The transport parameters of this model (𝐴𝑤, 𝐵𝑠 and 𝑏) are 

also shown in Table 1. The solute concentrations vary from(0.778E-3to 6.226E-3Kmol/m
3
). 

The feed was pumped in three different flow rates of (2.166E-4, 2.33E-4 and 2.583E-

4m
3
/sec) with a set of pressures variesfrom5.83 to 13.58 atm for each flow rate. 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Input data: Membrane characteristics and geometry 
Make Ion Exchange, India 

Membrane material TFC Polyamide 

Module configuration Spiral wound 

Number of turns 30 

Feed spacer thickness (𝑡𝑓) 0.8 mm 

Permeate channel thickness (𝑡𝑝) 0.5 mm 

Module length (𝐿) 0.934 m 

Module width (𝑊) 8.4 m 

Module diameter 3.25 inches 

𝑏 8529.45(
𝑎𝑡𝑚.𝑠𝑒𝑐

𝑚4 ) 

𝐴𝑤 9.5188E-7(
𝑚

𝑎𝑡𝑚.𝑠𝑒𝑐
) 

𝐵𝑠(chlorophenol) 8.468E-8(
𝑚

𝑠𝑒𝑐
) 

 

5. Model validation 

Tables 2, 3 and 4 depict the experimental results of chlorophenol removal carried out by 

Sundaramoorthy et al. (2011b) and the model predictions for three groups of feed flow rates 

(each group holding five different feed concentrations under four different feed pressures) 

with estimated percentage error between the experimental results and the model predictions. 

Also, Tables 2, 3 and 4 compare the experimental results and the model prediction for the 

outlet brine concentration, outlet feed flow rate, average permeate concentration and solute 

rejection with different inlet feed flow rates, pressures and concentrations. As can be seen, 
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the predicted values of the theoretical model are in a good agreement with experimental ones 

over the ranges of pressure and concentration. It can be mentioned that the model tends to 

only underestimate the outlet permeate concentration for lower values of inlet concentration. 

Apparently, this may be attributed to negligible bulk flow in the spiral direction of the unit. 

The model is then used for further simulation as reported in the next section. Note that to 

ensure grid independent solutions 8 zone distributed model has also been tested, but the 

solutions remained the same as those with 4 zone discretization. 
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Table 2  

Model validation with experimental results for inlet feed flow rate of (𝐹𝑏(0) =2.166E-4m³/sec) 

 
Cb(L)E+3 
(Kmol/m³) 

%Error 

Cp(av)E+3 
(Kmol/m³) 

%Error 

% 𝑅𝑒𝑗𝑎𝑣 

%Error 

Fb(L)E+4 (m³/sec) 

%Error 

No 
Pb(0),       
atm 

Tb(0),     
°C 

Cb(0)E+3     
(Kmol/m³) 

Exp. Model Exp. Model Exp. Model Exp. Model 

1 5.83 30 0.778 0.854 0.8502 0.50 0.37 0.393 -6.21 56.7 53.76 5.18 1.80 1.888 -4.88 

2 7.77 30 0.778 0.9042 0.901 0.35 0.368 0.3759 -2.14 59.3 57.8 2.52 1.67 1.754 -5.02 

3 9.71 30 0.778 0.948 0.935 1.33 0.366 0.375 -2.45 61.4 59.89 2.45 1.59 1.620 -1.88 

4 11.64 30 0.778 1.002 0.983 1.96 0.363 0.3813 -5.04 63.8 61.24 4.01 1.50 1.489 0.73 

5 13.58 30 0.778 1.065 1.036 2.73 0.36 0.391 -8.61 66.2 62.27 5.93 1.37 1.357 0.94 

6 5.83 32 1.556 1.711 1.723 -0.68 0.652 0.696 -6.74 61.9 59.57 3.76 1.906 1.896 0.52 

7 7.77 32 1.556 1.778 1.823 -2.50 0.642 0.635 1.09 63.9 65.18 -2.00 1.736 1.764 -1.61 

8 9.71 32 1.556 1.850 1.936 -4.62 0.631 0.613 2.85 65.9 68.34 -3.70 1.63 1.632 -0.14 

9 11.64 32 1.556 1.943 2.064 -6.17 0.624 0.6086 2.46 67.9 70.51 -3.84 1.523 1.502 1.33 

10 13.58 32 1.556 2.05 2.209 -7.75 0.615 0.6136 0.22 70.0 72.22 -3.17 1.416 1.3737 2.98 

11 5.83 32 2.335 2.575 2.58 -0.17 0.886 0.94 -6.09 65.6 63.25 3.58 1.868 1.906 -2.03 

12 7.77 32 2.335 2.662 2.73 -2.53 0.884 0.852 3.619 66.8 68.81 -3.00 1.761 1.777 -0.90 

13 9.71 32 2.335 2.791 2.9 -3.90 0.882 0.814 7.70 68.4 71.95 -5.19 1.666 1.649 1.02 

14 11.64 32 2.335 2.894 3.09 -6.74 0.88 0.801 8.97 69.6 74.11 -6.47 1.566 1.523 2.74 

15 13.58 32 2.335 3.044 3.31 -8.70 0.88 0.802 8.86 71.1 75.78 -6.58 1.478 1.398 5.41 

16 5.83 32 3.891 4.245 4.268 -0.54 1.244 1.18 5.14 70.7 72.35 -2.33 1.898 1.925 -1.42 

17 7.77 32 3.891 4.444 4.525 -1.82 1.231 1.24 -0.73 72.3 72.59 -0.40 1.808 1.800 0.44 

18 9.71 32 3.891 4.590 4.801 -4.59 1.299 1.17 9.93 71.7 75.68 -5.55 1.681 1.677 0.23 

19 11.64 32 3.891 4.753 5.111 -7.51 1.198 1.14 4.84 74.8 77.78 -3.98 1.65 1.557 5.63 

20 13.58 32 3.891 5.029 5.46 -8.55 1.187 1.126 5.13 76.4 79.38 -3.90 1.536 1.437 6.44 

21 5.83 31 6.226 6.80 6.75 0.85 1.668 1.82 -9.11 75.5 73.08 3.20 1.923 1.951 -1.47 

22 7.77 31 6.226 7.111 7.105 0.09 1.657 1.59 4.04 76.7 77.55 -1.10 1.828 1.838 -0.54 

23 9.71 31 6.226 7.381 7.495 -1.54 1.491 1.495 -0.26 79.8 80.05 -0.31 1.75 1.726 1.37 

24 11.64 31 6.226 7.763 7.928 -2.12 1.475 1.451 1.62 81.0 81.69 -0.85 1.641 1.615 1.58 

25 13.58 31 6.226 8.049 8.411 -4.48 1.457 1.436 1.44 81.9 82.92 -1.24 1.575 1.506 4.38 
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                            Table 3  

                            Model validation with experimental results for inlet feed flow rate of (𝐹𝑏(0) =2.33E-4m³/sec) 

 

Cb(L)E+3 

(Kmol/m³) 
%Error 

Cp(av)E+3 

(Kmol/m³) 
%Error 

% 𝑅𝑒𝑗𝑎𝑣 

%Error 

Fb(L)E+4 (m³/sec) 

%Error 

No 
Pb(0),       
atm 

Tb(0),     
°C 

Cb(0)E+3     
(Kmol/m³) 

Exp. Model Exp. Model Exp. Model Exp. Model 

1 5.83 30 0.778 0.856 0.844 1.42 0.375 0.393 -4.80 56.2 53.4 4.98 1.957 2.057 -5.10 

2 7.77 30 0.778 0.890 0.882 0.92 0.373 0.3718 0.32 58.1 57.83 0.46 1.86 1.922 -3.33 

3 9.71 30 0.778 0.937 0.923 1.49 0.372 0.3687 0.88 60.3 60.04 0.43 1.742 1.788 -2.64 

4 11.64 30 0.778 0.984 0.967 1.73 0.37 0.373 -0.81 62.4 61.41 1.58 1.639 1.655 -0.97 

5 13.58 30 0.778 1.033 1.014 1.91 0.367 0.3813 -3.89 64.5 62.42 3.22 1.542 1.524 1.16 

6 5.83 32 1.556 1.703 1.708 -0.26 0.632 0.698 -10.44 62.9 59.11 6.02 2.01 2.063 -2.63 

7 7.77 32 1.556 1.765 1.8 -1.95 0.625 0.628 -0.48 64.6 65.11 -0.78 1.894 1.93 -1.90 

8 9.71 32 1.556 1.839 1.903 -3.46 0.618 0.6017 2.63 66.4 68.39 -2.99 1.794 1.799 -0.27 

9 11.64 32 1.556 1.926 2.018 -4.73 0.605 0.5938 1.85 68.6 70.58 -2.88 1.684 1.668 0.95 

10 13.58 32 1.556 2.023 2.148 -6.14 0.599 0.595 0.66 70.4 72.26 -2.64 1.594 1.538 3.51 

11 5.83 31 2.335 2.568 2.54 1.11 0.804 0.853 -6.09 68.7 66.45 3.27 2.022 2.078 -2.81 

12 7.77 31 2.335 2.673 2.67 0.12 0.802 0.76 5.23 70 71.35 -1.92 1.907 1.952 -2.35 

13 9.71 31 2.335 2.783 2.815 -1.14 0.796 0.732 8.04 71.4 73.98 -3.61 1.815 1.826 -0.60 

14 11.64 31 2.335 2.900 2.973 -2.50 0.786 0.722 8.14 72.9 75.7 -3.84 1.707 1.702 0.29 

15 13.58 31 2.335 3.035 3.15 -3.78 0.777 0.725 6.69 74.4 76.97 -3.45 1.591 1.579 0.75 

16 5.83 31 6.226 6.768 6.71 0.86 1.726 1.82 -5.44 74.5 72.76 2.33 2.082 2.117 -1.68 

17 7.77 31 6.226 7.029 7.03 0.00 1.645 1.582 3.82 76.6 77.24 -0.84 1.987 2.004 -0.85 

18 9.71 31 6.226 7.287 7.392 -1.43 1.472 1.471 0.06 79.8 80.1 -0.37 1.902 1.89 0.63 

19 11.64 31 6.226 7.622 7.787 -2.16 1.433 1.418 1.04 81.2 81.79 -0.72 1.815 1.778 2.03 

20 13.58 31 6.226 7.971 8.225 -3.17 1.419 1.395 1.69 82.2 83.02 -0.99 1.734 1.667 3.86 

 

 

 

 

 

 



15 
 

 

 

 

Table 4 

Model validation with experimental results for inlet feed flow rate of (𝐹𝑏(0) =2.583E-4m³/sec) 

 

Cb(L)E+3 

(Kmol/m³) 
%Error 

Cp(av)E+3 

(Kmol/m³) 
%Error 

% 𝑅𝑒𝑗𝑎𝑣 

%Error 

Fb(L)E+4 (m³/sec) 

%Error 

No 
Pb(0),       
atm 

Tb(0),     
°C 

Cb(0)E+3     
(Kmol/m³) 

Exp. Model Exp. Model Exp. Model Exp. Model 

1 5.83 29.5 0.778 0.850 0.835 1.84 0.359 0.407 -13.37 57.8 51.21 11.40 2.2 2.317 -5.31 

2 7.77 29.5 0.778 0.893 0.867 2.95 0.352 0.380 -8.12 60.6 56.14 7.35 2.075 2.182 -5.15 

3 9.71 29.5 0.778 0.932 0.9027 3.21 0.347 0.375 -8.06 62.8 58.44 6.94 1.953 2.048 -4.86 

4 11.64 29.5 0.778 0.960 0.9398 2.17 0.343 0.377 -10.11 64.3 59.8 6.99 1.838 1.915 -4.18 

5 13.58 29.5 0.778 1.008 0.9795 2.91 0.34 0.384 -12.94 66.3 60.74 8.38 1.72 1.783 -3.66 

6 5.83 31 1.556 1.698 1.68 1.07 0.591 0.634 -7.27 65.2 62.25 4.52 2.262 2.327 -2.87 

7 7.77 31 1.556 1.76 1.756 0.22 0.572 0.564 1.39 67.5 66.86 0.94 2.148 2.196 -2.23 

8 9.71 31 1.556 1.825 1.839 -0.76 0.553 0.539 2.53 69.7 70.67 -1.39 2.042 2.065 -1.14 

9 11.64 31 1.556 1.909 1.93 -1.06 0.55 0.532 3.25 71.2 72.43 -1.72 1.947 1.936 0.56 

10 13.58 31 1.556 1.996 2.031 -1.73 0.549 0.534 2.73 72.5 73.7 -1.65 1.85 1.807 2.32 

11 5.83 31 2.335 2.548 2.518 1.18 0.767 0.863 -12.51 69.9 65.73 5.96 2.29 2.337 -2.052 

12 7.77 31 2.335 2.657 2.633 0.91 0.752 0.757 -0.69 71.7 71.24 0.64 2.173 2.209 -1.69 

13 9.71 31 2.335 2.735 2.759 -0.87 0.744 0.715 3.83 72.8 74.07 -1.74 2.08 2.083 -0.14 

14 11.64 31 2.335 2.841 2.898 -2.00 0.733 0.699 4.54 74.2 75.85 -2.22 1.97 1.957 0.65 

15 13.58 31 2.335 2.987 3.051 -2.12 0.726 0.697 3.99 75.7 77.15 -1.91 1.868 1.833 1.87 

16 5.83 32 3.891 xx 4.204 xx xx 1.43 xx xx 65.98 xx xx 2.347 xx 

17 7.77 32 3.891 xx 4.403 xx xx 1.218 xx xx 72.33 xx xx 2.223 xx 

18 9.71 32 3.891 4.504 4.625 -2.68 1.126 1.123 0.26 75 75.71 -0.94 2.113 2.099 0.66 

19 11.64 32 3.891 4.635 4.869 -5.02 1.108 1.076 2.88 76.1 77.9 -2.36 2.07 1.976 4.54 

20 13.58 32 3.891 4.831 5.141 -6.39 1.092 1.054 3.47 77.4 79.5 -2.71 1.972 1.854 5.98 

21 5.83 31 6.226 6.733 6.655 1.16 1.845 1.854 -0.48 72.6 72.15 0.61 2.337 2.374 -1.60 

22 7.77 31 6.226 6.977 6.943 0.49 1.549 1.57 -1.35 77.8 77.38 0.53 2.253 2.26 -0.31 

23 9.71 31 6.226 7.213 7.261 -0.65 1.486 1.441 3.02 79.4 80.14 -0.93 2.17 2.145 1.15 

24 11.64 31 6.226 7.497 7.608 -1.47 1.387 1.377 0.72 81.5 81.9 -0.49 2.09 2.031 2.78 

25 13.58 31 6.226 7.794 7.991 -2.52 1.325 1.345 -1.50 83 83.17 -0.20 2.012 1.918 4.67 

                           Note: (xx) means the experimental data have not been reported 
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6. The effect of operating parameters on the performance of membrane 

6.1 The inlet feed flow rate 

In this section, the model validated in section 5 is used to investigate the effect of a number 

of operating parameters on the performance of the process at steady state conditions. 

In particular, the feed flow rate is reduced along the membrane channel as can be viewed in 

Fig. 2 and this can be attributed to the permeated water passing through the membrane which 

reduces the velocity of feed and increases the brine concentration along the membrane (Fig. 

3). It seems that the concentration of feed progresses in the subsequent sub-sections of feed 

channel since the solute is retained in the wall with the diffusion of water through the 

membrane. In addition, increasing feed flow rate results in increasing the mass transfer 

coefficient and decreasing the concentration polarization. This will decrease the solute 

concentration gradient along the membrane (Fig. 3). A similar trend was observed for all the 

sets of inlet feed flow rates by Sundaramoorthy et al. (2011b). 

 

Fig. 2: Steadystate feed flow rate along the membrane length ofdifferent inlet feed flow rates (inlet feed conditions,2.335E-

3kmol/m³,7.77 atmand 32°C) 

 

 

Fig. 3: Steadystate feed concentration along the membrane length of different inlet feed flow rates (inlet feed 

conditions,2.335E-3kmol/m³, 7.77atmand 32 °C) 
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In general, the pressure decreases along the membrane due to friction along the channel 

length, which decreases the net pressure driving force(∆𝑃𝑏 − ∆𝜋) and brings down the 

diffusion rate of water through the membrane as can be seen in Fig. 4. Also, according to Eq. 

(2) which describes the water flux, increasing feed pressure increases the permeated water by 

raising up the trans-membrane pressure ∆𝑃𝑏 above the osmotic pressure ∆𝜋. 

 

 

Fig.4: Steadystate water flux along the membrane length ofdifferent inlet feed pressures (inlet feed conditions, 2.583E-

4m³/sec,6.226E-3Kmol/m³and 31°C) 

 

It is usual expectation that increasing inlet feed flow rate would increase the total permeated 

water, since this would reduce the concentration polarization impact. Surprisingly, at any 

inlet pressure, increasing feed flow rate has a little influence on the total permeated flow rate 

(Fig. 5) and no reasonable decrease of water flux (Fig.6). In general, Fig. 6 can be used to 

better assess the impact of increasing feed flow rate on reducing the concentration 

polarization (especially in the inlet region of the membrane) which somehow enhances the 

water flux through the membrane. However, this impact reduces from the middle to the end 

of the membrane. In addition, %total water recovery along the membrane length decreases as 

the level of inlet feed flow rates increases (Fig. 7). This event can be attributed to high 

frictional pressure drop which outweighed the gain of osmotic pressure reduction in each 

point along the membrane length. Hence, it will create a low driving force and decrease the 

residence time of feed inside the unit for the flow of fresh water. For this reason, %total water 

recovery will slightly decrease with increasing inlet feed flow rate under approximately 

constant total permeated flow rate. Similar results were confirmed by Lee et al. (2010). 
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Fig.5: Steadystate total permeated flow rateversusinlet feed flow rateofdifferent inlet feed pressures (inlet feed conditions, 

6.226E-3Kmol/m3and 31°C) 

 

 

Fig.6: Steadystate water flux along the membrane length of different inlet feed flow rates (inlet feed conditions, 13.58 atm, 

6.226E-3Kmol/m3and 31°C) 

 

 

Fig. 7: Steadystate %total water recovery along the membrane length ofdifferent inlet feed flow rates (inlet feed conditions, 

6.226E-3Kmol/m3, 13.58 atmand  31°C) 
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On the other hand, increasing inlet feed flow rate reduces the permeate concentration in spite 

of a slight change inthe permeated water. The reason for this phenomenon is that increasing 

feed flow rate results in increasing the mass transfer coefficient and decreasing the 

concentration polarization which is followed by decreasing brine concentration along the 

membrane. This will lead to a reduction in solute flux,reduction in permeate concentration 

and increase in %solute rejection (Fig. 8). Furthermore, increasing applied pressure reduces 

the concentration of the permeated water by increasing water flux. 

According to Fig. 8, it can be ascertained that the trend of incline for %solute rejection at 

high velocities and high pressures conditions is slightly more obvious than at low velocities 

and low pressures. Thus is because at high velocities, it appears that there is a dispute 

between the operating variables. Firstly, the mass transfer coefficient increases and the 

impact of concentration polarization decreases. The greater feed flow rate reduces the wall 

membrane concentration and causes a decrease of osmotic pressure. However, at the same 

time, water flux is somewhat decreasing with increasing friction which reduces the quantity 

of water flux. Consequently, %solute rejection increases as a result of increasing of inlet feed 

flow rate. In contrast, the trend of %solute rejection at low concentrations (𝐶𝑏 = 1.556E-3 

Kmol/m³)(Fig. 9) is more obvious than at high concentrations (𝐶𝑏 = 6.226E-3 Kmol/m³) (Fig. 

8). This may be attributed to lower impact of concentration polarization at low feed 

concentrations which increases the mass transfer coefficient and the total permeated water. 

These observations are in line with the experimental data of Sundaramoorthy et al. (2011b). 

 

 

Fig. 8: Steadystate %solute rejection versus inlet feed flow ratesof different inlet feed pressures (inlet feed conditions, 

6.226E-3Kmol/m3and 31°C) 
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Fig. 9: Steadystate %solute rejection versus inlet feed flow ratesof different inlet feed pressures (inlet feed 

conditions,1.556E-3Kmol/m3and 32°C) 

 

More often than not, an increment in the feed flow rate causes a specific impact on the wall 

membrane concentration by decreasing the amount of accumulated salt on the membrane 

wall. Simultaneously, increasing applied pressure for the same inlet feed flow rate will 

increase the accumulated salt on the membrane by the increase of the permeated water 

through the membrane. 

 

6.2 The inlet feed pressure 

In steady state mode, the pressure decreases along the membrane channel due to pressure 

drop caused by the friction. As a result, the pressure gradient is at its maximum point at the 

entrance of membrane and at its minimum point at the end of the unit. In effect, the water 

flux and %total water recovery increase due to increase in operating pressure (Fig. 10).Also, 

the feed pressure has a substantial impact on %solute rejection (Fig. 9) by enhancing the 

quality of permeate and reducing the solute permeate concentration (Fig. 11). On the other 

hand, increasing inlet feed concentration for any inlet feed flow rate can cause a reduction in 

%total water recovery (Fig. 10). This can be attributed to increase in the osmotic pressure that 

decreases the driving force of water flux and reduces the total permeated water through the 

membrane.  
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Fig. 10: Steady state %total water recovery versus inlet feed pressures of different inlet feed concentrations (inlet feed 

conditions,2.583E-4m³/secand 32°C) 

 

 

Fig. 11: Steady state average permeate concentrationversus inlet feed pressures of different inlet feed concentrations (inlet 

feed conditions 2.583E-4m³/secand 32°C) 

 

 

6.3The inlet feed temperature 

Feed water temperature plays an important role in RO process performance. Increasing inlet 

feed temperature will decrease the viscosity of brine (Eq. 44), which accelerates the flux of 

water through the membrane and increases %total recovery and %solute rejection in 

consequence. Another explanation for this trend is that by increasing the feed temperature, 

the water flux will increase due to the variation of pore size of the polymeric membrane in 

addition to increase in water diffusivity through the membrane. This fact can be pictured in 

Fig. 12 for three different feed pressures. According to this figure, it is easy to realize that the 

temperature has a significant impact on %solute rejection. A similar trend of results has been 

observed by Mattheus et al. (2002). 
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Fig.12: Steadystate %solute rejection versusinlet feed temperaturesof different inlet feed pressures (inlet feed conditions, 

2.335E-3Kmol/m3and 2.166E-4m³/sec) 

 

 

6.4 The inlet feed concentration 

The effect of inlet feed concentration on the whole unit can be distinguished through the 

simulation study. Fig.13 depicts the reduction of water flux along the membrane for 

increasing inlet feed concentration. This case can be attributed to increase in the osmotic 

pressure due to increase in the inlet feed concentration which reduces the driving force 

(∆𝑃𝑏 − ∆𝜋) for mass transfer and then reduces the water flux along the membrane. As a 

result, %total water recovery of the whole unit will slightly decrease. These results are 

consistent with the findings of Kim et al. (2009).  

However, %solute rejection increases due to increase in the inlet feed concentration and this 

may be due to increase in the membrane solute isolation intensity. The membrane %solute 

rejection intensity defined in Eq. (56) along the membrane channel shows this fact (Fig. 14). 

% Solute Rejection Intensity =
𝐶𝑏(𝑥)−𝐶𝑝(𝑥)

𝐶𝑏(𝑥)
 𝑥100    (56) 

The %solute isolation intensity is at its maximum value at the beginning of the membrane 

and at its minimum at the end of the membrane. Likewise, the drop of wall membrane 

concentration along the membrane can reinforce this case. Finally, all these reasons may 

explain the effect of inlet feed concentration on %solute rejection (Fig. 15). In addition, 

increasing operating pressure results in increased %solute rejection. The same results have 

been confirmed by Avlonitis et al. (1993). 
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Fig. 13: Steadystate water flux along the membrane length ofdifferent inlet feed concentrations (inlet feed conditions, 

2.166E-4m³/sec, 11.64atmand 31°C) 

 

 

Fig.14: Steadystate membrane %solute rejection intensity versusinlet feed concentrationsofdifferent points along the 

membrane length (inlet feed conditions,2.166E-4m³/sec, 11.64atmand 32°C) 

 

 

Fig. 15: Steadystate %solute rejection versus inlet feed concentrationsof different inlet feed pressures (inlet feed conditions, 

2.166E-4m³/sec and 31°C) 
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7. Dynamic simulation 

Here, the dynamic model is used to simulate the process and to see the sensitivity of the 

model to different process parameters. The degree of freedom analysis is presented in 

appendix A and the input data is shown in Table A.3.  

 

7.1 Effect of inlet feed pressure 

The simulation of the dynamic model is carried out by implementing step changes in various 

parameters.Figs. 16 and 17 show the effectof step change in the inlet feed pressure on the 

average permeate concentration and %solute rejection for two different initial feed flow rates 

with fixed inlet feed concentration and temperature. Up to t = 1800 sec the inlet feed pressure 

was 5.83 atm and at t = 1800 sec, the inlet feed pressure is changed to 13.58 atm.  

Fig. 16 shows that increasing inlet feed pressure for both inlet feed flow rates (𝐹𝑏(0) =

2.33𝐸 − 4 and𝐹𝑏(0) = 4𝐸 − 4 𝑚3/sec ) results in decreasing average permeate concentration 

due to increase in water flux through the membrane. In fact, pressure increase leads to a 

higher permeate flux which causes an increase in retentate concentration and decrease in the 

permeate concentration. Also, the reduction of average permeate concentration is greater for 

high feed flow rate than the lower ones. This is due to the fact that higher inlet feed flow rate 

together with higher applied pressure reduce the impact of concentration polarization.Figs. 16 

and 17 show that the system becomes stable within (300 – 400sec) for the two feed flow 

rates. 

In Fig. 16, note that the setting time for higher feed flow rate is a bit longer than the lower 

feed flow rate (before and after the step change in pressure) and this is due to fact that higher 

feed flow rate tends to lower the residence time (for a given volume) and vice versa. 
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Fig. 16: Impact of step change in inlet feed pressure change on average permeate concentration of different inlet feed flow 

rates (inlet feed conditions, 6.226E-3kmol/m³and 31°C) 

 

 

Fig. 17: Impact of step change in inlet feed pressure change on %solute rejection of different inlet feed flow rates (inlet feed 

conditions, 6.226E-3kmol/m³and 31°C) 

 

For the start-up period (t = 0 to t = 1800 sec), %solute rejection starts at its maximum value 

when the system works with no concentration polarization. However, the performance of the 

membrane is retarded due to retained solute along the membrane wall.  

Also, Fig. 17 shows that the reduction in %solute rejection for higher inlet feed flow rate is 

more compared to lower feed flow rate at low pressure step. This is due to increase in the 

reduction of water flux at higher flow rate that increases the average permeate concentration. 

However, increasing operating pressure from (5.83 to 13.58 atm) for the two feed flow rates 

has a similar trend of increasing %solute rejection. Also, it seems that this increase has a 

significant impact on %solute rejection for the higher feed flow rate in comparison to that by 

lower feed flow rate. This is due to the fact that higher inlet feed flow rate along with higher 

applied pressure will improve water flux in comparison to using lower feed flow rate and 

higher pressure. As a result, %solute rejection of higher feed flow rate will be slightly more 

than the lower feed flow rate and shows a bigger overshoot.  

Additionally, %solute rejection transient response of higher feed flow rate to step change in 

pressure is insignificant in comparison to lower feed flow rate. This is due to the impact of 

high pressure and high flow rate conditions which reduces the impact of disturbance in the 

feed concentration response and reduces the period of feed concentration to arrive at steady 

state (Fig. 18). Consequently, %solute rejection will be affected by solute concentration 

response. Also, there is a relatively little overshoot and undershoot in %solute rejection 
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response to step change in feed pressure at lower feed flow rate before arriving at steady 

state.  

To analyze this behavior, it is crucial to review the dynamic equations of feed and permeate 

solute concentrations (Eqs. 21 and 22). It can be mentioned that the feed concentration 

equation has a disturbance variable (feed flow rate) in comparison to output variable 

(permeated flow rate) in the average permeate concentration equation. It is expected that, 

increasing inlet feed pressure, temperature and feed flow rate at steady state will affect the 

feed flow rate directly. Subsequently, the feed concentration will respond to this situation 

with a fluctuation for a period of time until getting to a new steady value as can be shown in 

Fig. 20. In contrast, the average permeate concentration response will not be directly affected 

by this step change     (Fig. 16). However, %solute rejection behavior at the transient time 

will be somewhat similar to feed concentration trajectory since it comprises the feed and 

permeate concentrations at channels concurrently (Eq. 30). 

 

 

Fig. 18: Impact of step changes in inlet feed pressure on outlet brine concentrationof different inlet feed flow rates (inlet feed 

conditions, 6.226E-3 kmol/m³ and 31 °C) 

 

7.2 Effect of inlet feed flow rate  

Figs. 19 and 20 show the effect of step change in inlet feed flow rate on the average permeate 

concentration and %solute rejection for two different initial feed pressures with fixed inlet 

concentration and temperature. For step change 1, up to t = 1000 sec, the inlet feed flow rate 

was 2.33E-4 m³/sec and at t = 1000 sec, the inlet feed flow rate is changed to 2.583E-4 

m³/sec. While, for step change 2, up to t = 1500sec the inlet feed flow rate was 2.583E-4 

m³/sec and at t = 1500sec, the inlet feed flow rate is changed to 4.0E-4 m³/sec. 



27 
 

It is clearly noticed that the system has settled within (250 – 350 sec) in case of inlet feed 

flow rate step changes. Fig. 19 confirms that the reduction of permeate concentration is 

inversely comparable between low and high inlet feed pressures. 

 

 

Fig. 19: Impact of step changes in inlet feed flow rate on average permeate concentration of different inlet feed pressures 

(inlet feed conditions, 6.226E-3 kmol/m³ and 31 °C) 

 

At low inlet pressure, higher inlet flow rates (step change 2) will clearly increase the 

permeate concentration (Fig. 19). This can be due to the decrease in the residence time in 

such case, in addition to using low applied pressure (𝑃𝑏 = 7.7 𝑎𝑡𝑚). Secondly, increasing 

inlet feed flow rate results in increasing the frictional pressure drop and thus reducing the 

gain of osmotic pressure reduction, which finally decreases the quantity of water flux and 

increases the average permeate concentration. Consequently, %solute rejection will decrease 

as can be shown in Fig. 20. 

In contrast, at high inlet pressure, high inlet feed flow rates (step change 2) result in decrease 

in the average permeate concentration (Fig. 19). Moreover, the system takes longer time to 

reach steady state with high inlet feed flow rate in step change 2 in comparison to step change 

1. This might be attributed to the increase in the degree of instability during the second step 

change. 
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Fig. 20: Impact of step changes in inlet feed flow rate on %solute rejection of different inlet feed pressures (inlet feed 

conditions, 6.226E-3 kmol/m³ and 31 °C) 

 

 

Once again, the model predicts that the chlorophenol outlet concentration decreases as a 

result of increase in the inlet feed flow rate for the two step changes. This is due to decrease 

in the concentration polarization and increase in the mass transfer coefficient with increasing 

feed flow rate. Finally, this will decrease the solute concentration along the membrane (Fig. 

21). 

 

 

Fig. 21: Impact of step changes in inlet feed flow rate on outlet brine concentration of different inlet feed pressures (inlet 

feed conditions, 6.226E-3 kmol/m³ and 31 °C) 

 

Fig. 21 shows that the outlet brine concentration undergoes a rapid increase followed by an 

immediate sharp reduction before getting a new steady state after about 150 sec as a response 

to the step change in feed flow rate. However, the response is sharper and more rapid 

(pronounced) for the second step change. It is worthy to mention that the feed concentration 
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at any point along x-axis has the same transient response compared to the transient response 

of the solute concentration at the permeate channel. Moreover, it can be concluded that the 

average permeate concentration transient response is much slower than the response of the 

outlet brine concentration. 

 

7.3 Effect of inlet feed concentration 

Figs. 22 and 23 show the effectof step change in the inlet feed concentration on the average 

permeate concentration and %solute rejection  for two different initial feed pressures with 

fixed inlet feed flow rate temperature. For the step change 1, up to t = 1000 sec, the inlet feed 

concentration was 0.778E-3 Kmol/m³ and at t = 1000 sec, the inlet feed concentration is 

changed to 2.335E-3 Kmol/m³. While, for the step change 2, up to t = 2000 sec, the inlet feed 

concentration was 2.335E-3 Kmol/m³ and at t = 2000 sec, the inlet feed concentration is 

changed to 6.226E-3 Kmol/m³. 

As expected, increasing inlet feed concentration results in increase in the outlet brine 

concentration. While, the average permeate concentration increases due to increase in the 

inlet feed concentration which increases the osmotic pressure (Fig. 22).  

Seemingly, the system needs somehow less time to settle in case of high inlet feed pressures 

in comparison to low feed pressure. Figs. 22 and 23 show that the system needs (500 – 600 

sec) to reach a new steady state in the case of using low inlet pressure in both the two step 

changes. However, the steady state for the high inlet pressure is shorter (300 – 400 sec). This 

can be attributed to increaseinthe degree of permeation which occurred inside the permeate 

channel in case of using high pressure.As a result, the water flux increases and reduces the 

constant average permeate concentration quicker than that obtained using lower values of 

pressure. 
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Fig. 22: Impact of step changes in inlet feed concentration on average permeate concentration of different inlet feed 

pressures (inlet feed conditions, 2.583E-4 m³/sec and 31 °C) 

 

In contrast, %solute rejection increases as result of increasing in the inlet feed concentration 

due to increase in the intensity of membrane rejection (Fig. 23). 

 

 

Fig. 23: Impact of step changes in inlet feed concentration on %solute rejection of different inlet feed pressures (inlet feed 

conditions, 2.583E-4 m³/sec and 31 °C) 

 

Once again, Fig. 23 shows a little undershoot and clear overshoot for the response of %solute 

rejection for step changes in feed concentration. The longer shoots can be seen at the first 

response in comparison to the second response since the first step change is bigger than the 

second step change. Also, it is expected that these shoots occurred as a consequence of the 

response of solute concentration on the feed channel (Fig. 21).Moreover, Fig. 23 shows 

higher %solute rejection with slight undershoot for high pressure in comparison to that by 

lower pressure. This is due to increase in the water flux as a result of increasing in the applied 

pressure which lifts up %solute rejection. 

 

7.4 Effect of inlet feed temperature 

To investigate the effect of the inlet feed temperature on the performance of the unit, Figs. 24 

and 25show the effect of step change in inlet feed temperature on the average permeate 

concentration and %solute rejection for two different initial feed pressures with fixed inlet 

feed flow rate and concentration. For the step change 1, up to t = 1000 sec, the inlet feed 

temperature was 27 °C and at t = 1000 sec, the inlet feed temperature is changed to 35 °C. 

While, for the step change 2, up to t = 2000 sec the inlet feed temperature was 35 °C and at t 

= 2000 sec, the inlet feed temperature is changed to 43 °C. 
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As expected,increasing inlet feed temperature results inincrease in the solvent viscosity which 

decreasesthe concentration polarization and increases the water flux. That in turn, will 

decrease the average permeate concentration (Fig. 24).  

It is clearly noted that the system needs (500 – 600 sec) to attend steadystate for the two step 

changes in case of using low inlet feed pressures in comparison to high inlet feed pressure 

(300 – 400) sec.  

 

 

 

Fig. 24:  Impact of step changes in inlet feed temperature on average permeate concentration of different inlet feed pressures 

(inlet feed conditions, 6.226E-3 kmol/m³ and 2.583E-4 m³/sec) 

 

As can be shown in Fig. 25 , the %chlorophenol rejection varies  from (74 to 88%) when feed 

temperature increases from (27 to 35°C) and then increases to 95% at 43°C with 13.58 atm 

inlet feed pressure.   

 

Fig. 25: Impact of step changes in inlet feed temperature on %solute rejection of different inlet feed pressures (inlet feed 

conditions, 6.226E-3 kmol/m³ and 2.583E-4 m³/sec) 
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8. Conclusions 

A mathematical one dimensional steady and dynamic model applicable for dilute binary 

aqueous solution in a spiral-wound reverse osmosis process has been suggested with a 

wastewater simulation study. The model can predict the flow rate, concentration, pressure 

and temperature in each point along the two sides of the membrane length with regard to 

operating time. Besides, this model can predict the dynamic behavior of water flux, solute 

flux and solute concentration on the wall of the membrane. A number of explicit differential 

equations have been suggested for calculating the concentration, pressure, flow rate, 

temperature with spatial dimensions. Also, the model looks at the impact of concentration, 

pressure and temperature on the physical properties of the solution resulting in variable mass 

transfer coefficient and concentration polarization. The model has been validated at steady 

state conditions against an experimental data of chlorophenol removal and shows accepted 

relative errors between the theoretical and experimental results for most operating 

parameters. The model is then used for further simulation to study the impact of various 

process parameters under steady state and dynamic conditions. 

 

Nomenclature 

𝐴𝑤: Solvent transport coefficient, (m/atm sec) 

𝑏  : Feed and permeate channels friction parameter, (atm sec/m
4
) 

𝐵𝑠: Solute transport coefficient, (m/sec) 

𝐶𝑏: Brine solute concentration in the feed channel, (Kmol/m³) 

𝐶𝑝: Permeate solute concentration in the permeate channel, (Kmol/m³) 

𝐶𝑚 : Dimensionless solute concentration 

𝐶𝑤 : Solute concentration at the membrane wall, (Kmol/m³) 

𝐷𝑏: Diffusivity of feed, (m²/sec) 

𝐷𝑝: Diffusivity of permeate, (m²/sec) 

𝑑𝑒𝑝 : Equivalent diameter of feed channel, (m) 

𝑑𝑒𝑓 : Equivalent diameter of permeate channel, (m) 

𝐹𝑏: Feed flow rate, (m³/sec) 

𝐹𝑝: Permeate flow rate, (m³/sec) 

𝐹𝑠: Solute molar flux in x-axis, (Kmol/m² sec) 
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𝐽𝑠: Solute molar flux through the membrane, (Kmol/m² sec) 

𝐽𝑤: Water flux, (m/sec) 

𝑘: Mass transfer coefficient, (m/sec) 

𝐿  : Length of the membrane, (m) 

𝑀𝑤𝑏 : Molecular weight of brine water, (Kg/Kmol) 

𝑃𝑏: Feed pressure, (atm) 

𝑃𝑝: Permeate pressure, (atm) 

𝑅: Gas low constant, (𝑅 = 0.082
𝑎𝑡𝑚 𝑚³

𝐾 𝐾𝑚𝑜𝑙
) 

𝑅𝑒𝑐 : Water recovery coefficient, (dimensionless) 

𝑅𝑒𝑐(𝑇𝑜𝑡𝑎𝑙) : Total water recovery for the whole unit, (dimensionless) 

𝑅𝑒𝑗: Solute rejection coefficient, (dimensionless) 

𝑅𝑒𝑗(𝑎𝑣) : Average solute rejection coefficient, (dimensionless) 

𝑅𝑒𝑏 : Feed Reynolds number, (dimensionless) 

𝑅𝑒𝑝 : Permeate Reynolds number, (dimensionless) 

𝑇𝑏: Feed temperature, (C) 

𝑡𝑓 : Feed spacer thickness, (mm) 

𝑇𝑝 : Permeate temperature, (C) 

𝑡𝑝: Permeate spacer thickness, (mm) 

𝑊: Width of the membrane, (m) 

∆𝑥: Length of sub-section, (m) 

𝜇𝑏: Feed viscosity, (Kg/m sec) 

𝜇𝑝 : Permeate viscosity, (Kg/m sec) 

𝜌𝑏 : Feed density, (Kg/m³) 

𝜌𝑝 : Permeate density, (Kg/m³) 

𝜌𝑤 : Molal density of water, (55.56 Kmol/m³) 
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Appendix (A) 

      Table A.1 

The dynamic model equations 
No Title The Mathematical Expression Eq. 

 

1 

Dynamic axial water flux, 

m/sec² 

𝑑𝐽𝑤(𝑥)

𝑑𝑡
= {(𝐴𝑤 ((𝑃𝑏(𝑥) − 𝑃𝑝) − 𝑅𝑇𝑏(𝑥)(𝐶𝑤(𝑥) − 𝐶𝑝(𝑥)))) − 𝐽𝑤(𝑥)} (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊 ∆𝑥
) 

25 

2 Dynamic axial solute flux, Kmol/m² sec² 𝑑𝐽𝑠(𝑥)

𝑑𝑡
= {(𝐵𝑠𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
) (𝐶𝑏(𝑥) − 𝐶𝑝(𝑥))) − 𝐽𝑠(𝑥)} (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊 ∆𝑥
) 

6 

3 

 

Dynamic axial membrane wall 

concentration, Kmol/m³ sec 
𝑑𝐶𝑤(𝑥)

𝑑𝑡
= {(𝐶𝑝(𝑥)+𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
) (𝐶𝑏(𝑥) − 𝐶𝑝(𝑥))) − 𝐶𝑤(𝑥)} (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊 ∆𝑥
) 

27 

4 Pressure difference along the membrane, atm ∆𝑃𝑏(𝑥)
= (𝑃𝑏(𝑥) − 𝑃𝑝) 4 

5 Dynamic axial feed 
flow rate, m²/sec² 

𝑑𝐹𝑏(𝑥)

𝑑𝑡
= ⟦{−𝑊 (𝐴𝑤 ((𝑃𝑏(𝑥) − 𝑃𝑝) − 𝑅 𝑇𝑏(𝑥) 𝑒𝑥𝑝 (

𝐽𝑤(𝑥)

𝑘(𝑥)
) (𝐶𝑏(𝑥) − 𝐶𝑝(𝑥))))} −

𝑑𝐹𝑏(𝑥)

𝑑𝑥
⟧ ( 

𝐹𝑏(𝑥)

𝑡𝑓 𝑊
) 

23 

6 Dynamic axial feed pressure, atm/sec 𝑑𝑃𝑏(𝑥)

𝑑𝑡
= [−𝑏 𝐹𝑏(𝑥) −

𝑑𝑃𝑏(𝑥)

𝑑𝑥
] (

𝐹𝑏(𝑥)

𝑡𝑓 𝑊
) 

24 

7 Axial permeated flow rate, m³/sec 𝐹𝑝(𝑥) = 𝐽𝑤(𝑥) 𝑊 ∆𝑥 15 

8 

 

Dynamic axial molar flux of 

feed, Kmol/m³ sec 

𝑑𝐶𝑏(𝑥)

𝑑𝑡
= −

𝐶𝑏(𝑥)

𝑡𝑓  𝑊

𝑑𝐹𝑏(𝑥)

𝑑𝑥
−

𝐹𝑏(𝑥)

𝑡𝑓 𝑊

𝑑𝐶𝑏(𝑥)

𝑑𝑥
+

𝑑

𝑑𝑥
[𝐷𝑏(𝑥)

𝑑𝐶𝑏(𝑥)

𝑑𝑥
] −

𝐽𝑤(𝑥)𝐶𝑝(𝑥)

𝑡𝑓

 
21 

9 Dynamic axial molar flux of 

permeate, Kmol/m³ sec 

𝑑𝐶𝑝(𝑥)

𝑑𝑡
= −

𝐶𝑝(𝑥)

𝑡𝑝  𝑊

𝑑𝐹𝑝(𝑥)

𝑑𝑥
−

𝐹𝑝(𝑥)

𝑡𝑝 𝑊

𝑑𝐶𝑝(𝑥)

𝑑𝑥
+

𝑑

𝑑𝑥
[𝐷𝑝(𝑥)

𝑑𝐶𝑝(𝑥)

𝑑𝑥
] +

𝐽𝑤(𝑥)𝐶𝑝(𝑥)

𝑡𝑓

 
22 

10 Dynamic axial feed temperature, ºC/sec 𝑑𝑇𝑏(𝑥)

𝑑𝑡
= [

𝐹𝑏(𝑥)(𝑇𝑏(0) − 𝑇𝑏(𝑥))

𝑡𝑓 𝑊 ∆𝑥
] − [

𝐽𝑤(𝑥)(𝑇𝑏(𝑥) − 𝑇𝑝(𝑥))

𝑡𝑓

] 
28 

11 Dynamic axial permeated temperature, °C/sec 𝑑𝑇𝑝(𝑥)

𝑑𝑡
= [

𝐽𝑤(𝑥)(𝑇𝑏(𝑥) − 𝑇𝑝(𝑥))

𝑡𝑓

] 
29 

12 Total permeated flow rate, m³/sec 𝐹𝑝(𝑇𝑜𝑡𝑎𝑙) = ⅀𝐹𝑝(𝑥) 34 

13 Total recovery, dimensionless 
,            𝑅𝑒𝑐(𝑇𝑜𝑡𝑎𝑙) =

𝐹𝑝(𝑇𝑜𝑡𝑎𝑙)

𝐹𝑏(0)

 𝑋100 
33 

14 Average solute rejection, dimensionless 
𝑅𝑒𝑗(𝑎𝑣) =

𝐶𝑏(𝑋=𝐿) − 𝐶𝑝(𝑎𝑣)

𝐶𝑏(𝑋=𝐿)

𝑋100 
30 

15 Average permeated concentration, Kmol/m³ 𝐶𝑝(𝑎𝑣) = ⅀𝐶𝑝(𝑥) 31 

16 Axial mass transfer coefficient, m/sec 𝑘(𝑥)𝑑𝑒𝑏 = 147.4 𝐷𝑏(𝑥)  𝑅𝑒𝑏(𝑥)
0.13𝑅𝑒𝑝(𝑥)

0.739𝐶𝑚(𝑥)
0.135 54 

17 Axial Dimensionless solute concentration, dimensionless 
𝐶𝑚(𝑥) =

𝐶𝑏(𝑥)

𝜌𝑤

 
55 

18 Axial feed diffusivity, m²/sec 
𝐷𝑏(𝑥) = 6.725𝐸 − 6 𝑒𝑥𝑝 {0.1546𝐸 − 3 𝐶𝑏(𝑥) 𝑥18.01253 −

2513

𝑇𝑏(𝑥) + 273.15
} 

42 

19 Axial permeated diffusivity, 

m²/sec 𝐷𝑝(𝑥) = 6.725𝐸 − 6 𝑒𝑥𝑝 {0.1546𝐸 − 3 𝐶𝑝(𝑥) 𝑥18.01253 −
2513

𝑇𝑝(𝑥) + 273.15
} 

43 

20 Axial feed viscosity, Kg /m sec 
𝜇𝑏(𝑥) = 1.234𝐸 − 6 𝑒𝑥𝑝 {0.0212𝐸 − 3 𝐶𝑏(𝑥) 𝑥18.0153 +

1965

𝑇𝑏(𝑥) + 273.15
} 

44 

21 Axial permeated viscosity, Kg 
/m sec 𝜇𝑝(𝑥) = 1.234𝐸 − 6 𝑒𝑥𝑝 {0.0212𝐸 − 3  𝐶𝑝(𝑥) 𝑥18.0153 +

1965

𝑇𝑝(𝑥) + 273.15
} 

45 

22 Axial feed density, Kg/m³ 
𝜌𝑏(𝑥) = 498.4 𝑚𝑓(𝑥) + √[248400 𝑚𝑓(𝑥)

2 + 752.4 𝑚𝑓(𝑥)𝐶𝑏(𝑥) 𝑥18.0153] 
46 

23 Axial permeated density, Kg/m³ 
𝜌𝑝(𝑥) = 498.4 𝑚𝑝(𝑥) + √[248400 𝑚𝑝(𝑥)

2 + 752.4 𝑚𝑝(𝑥)𝐶𝑝(𝑥) 𝑥18.0153] 
47 

24 Axial variable in Equation 45 𝑚𝑓(𝑥) = 1.0069 − 2.757𝐸 − 4 𝑇𝑏(𝑥) 48 

25 Axial variable in Equation 46 𝑚𝑝(𝑥) = 1.0069 − 2.757𝐸 − 4 𝑇𝑝(𝑥) 49 

26 Axial feed channel Reynolds number, dimensionless 
𝑅𝑒𝑏(𝑥) =

𝜌𝑏(𝑥)𝑑𝑒𝑏𝐹𝑏(𝑥)

𝑡𝑓 𝑊  𝜇𝑏(𝑥)
 

50 

27 Axial permeate channel Reynolds number, dimensionless 
𝑅𝑒𝑝(𝑥) =

𝜌𝑝(𝑥)𝑑𝑒𝑝𝐽𝑤(𝑥)

𝜇𝑝(𝑥)
 

51 

28 The equivalent diameter of feed channel, m 𝑑𝑒𝑏 = 2𝑡𝑓  52 

29 The equivalent diameter of permeated channel, m 𝑑𝑒𝑝 = 2𝑡𝑝     53 

          Total number of equation is 29 
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  Table A.2 

Specifications of variables 
 Total 

Variables: 

𝐽𝑤(𝑥), 𝐽𝑠(𝑥), 𝑃𝑝(𝑥), 𝑇𝑏(𝑥), 𝑇𝑝(𝑥), 𝐶𝑤(𝑥), 𝐶𝑏(𝑥), 𝐶𝑝(𝑥), 𝐹𝑏(𝑥), 𝐹𝑝(𝑥), 𝑘(𝑥), 𝐹𝑝(𝑇𝑜𝑡𝑎𝑙), 𝑅𝑒𝑐(𝑇𝑜𝑡𝑎𝑙), 𝑅𝑒𝑗(𝑎𝑣), 𝐶𝑝(𝑎𝑣), 

𝑑𝑒𝑏 , 𝑑𝑒𝑝, 𝐶𝑚(𝑥), 𝐷𝑏(𝑥), 𝐷𝑝(𝑥), 𝜇𝑏(𝑥), 𝜇𝑝(𝑥), 𝜌𝑏(𝑥), 𝜌𝑝(𝑥), 𝑚𝑓(𝑥), 𝑚𝑝(𝑥), 𝑅𝑒𝑏(𝑥), 𝑅𝑒𝑝(𝑥), ∆𝑃𝑏(𝑥)
, 𝐴𝑤 , 𝐵𝑠, 𝐿, 𝑊, 𝜌𝑤 , 𝑏, 𝑃𝑝, 𝑡𝑓 , 𝑡𝑝 and 𝜌𝑤 

 
39 

 

Differential variables at t=0: 

𝑑𝐽𝑤(𝑥)

𝑑𝑡
,
𝑑𝐽𝑠(𝑥)

𝑑𝑡
,
𝑑𝐶𝑤(𝑥)

𝑑𝑡
,
𝑑𝐹𝑏(𝑥)

𝑑𝑡
,
𝑑𝑃𝑏(𝑥)

𝑑𝑡
,
𝑑𝐶𝑏(𝑥)

𝑑𝑡
,
𝑑𝐶𝑝(𝑥)

𝑑𝑡
,
𝑑𝑇𝑏(𝑥)

𝑑𝑡
and

𝑑𝑇𝑝(𝑥)

𝑑𝑡
 

9 

t is independent variable 1 

Total 49 

 

The specification of the dynamic model (Table A.2) shows that the total number of variables is 49, while the 

number of equations is 29 as can be seen in Table A.1, so: 

D.F. = Total number of variables – Total number of equations 

D.F. = 49 – 29 = 20 

The number of parameters is 10 (Table A.3) and assigned initial values of differential variables at t=0 are 9 

(Table A.2) and independent variable =1, (time, t). So, this specification counts 20 variables.  

 

Table A.3  

Specifications of constant parameters and differential variables at t=0 
Parameter Value 

Feed spacer thickness (𝑡𝑓) 0.8 mm 

Permeate channel thickness (𝑡𝑝) 0.5 mm 

Module length (𝐿) 0.934 m 

Module width (𝑊) 8.4 m 

Molal density of water, (𝜌𝑤) 55.56 Kmol/m³ 

Gas law constant, (𝑅) 0.082 (atm m³/°K Kmol) 

Permeate pressure (𝑃𝑝) 1 atm 

Feed channel friction parameter,  (𝑏) 8529.45 (
𝑎𝑡𝑚.𝑠𝑒𝑐

𝑚4
) 

Solvent transport coefficient, (𝐴𝑤) 9.5188x10-7(
𝑚

𝑎𝑡𝑚.𝑠𝑒𝑐
) 

Solute transport coefficient, (𝐵𝑠) 
(chlorophenol) 

8.468x10-8(
𝑚

𝑠𝑒𝑐
) 

Differential variables at t=0 

𝐽𝑤(0) = 𝐴𝑤 ((𝑃𝑏(0) − 𝑃𝑝) − 𝑅𝑇𝑏(0)(𝐶𝑤(0) − 𝐶𝑝(0))) 

𝐽𝑠(0) = 𝐵𝑠 𝑒𝑥𝑝 (
𝐽𝑤(0)

𝑘(0)

) (𝐶𝑏(0) − 𝐶𝑝(0)) 

(𝐶𝑤(0) − 𝐶𝑝(0))

(𝐶𝑏(0) − 𝐶𝑝(0))
= 𝑒𝑥𝑝 (

𝐽𝑤(0)

𝑘(0)

) 

Assigned variables at t=0: 

𝐶𝑏(0), 𝐹𝑏(0), 𝐶𝑝(0), 𝐹𝑝(0), 𝑇𝑏(0) and 𝑇𝑝(0) [ These are same as x=0] 

 

 

 

 


