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Abstract 

Precise chronologies underpin all aspects of archaeological interpretation and, in addition to 

improvements in scientific dating methods themselves, one of the most exciting recent 

developments has been the use of Bayesian statistical analysis to reinterpret existing information. 

Such approaches allow the integration of scientific dates, stratigraphy and typological data to 

provide chronologies with improved precision. Settlement period sites in Iceland offer excellent 

opportunities to explore this approach, as many benefit from dated tephra layers and AMS 

radiocarbon dates. Whilst tephrochronology is widely used and can provide excellent chronological 

control, this method has limitations; the time span between tephra layers can be large and they are 

not always present. In order to investigate the improved precision available by integrating the 

scientific dates with the associated archaeological stratigraphy within a Bayesian framework, this 

research reanalyses the dating evidence from three recent large scale excavations of key Viking Age 

and medieval sites in Iceland; Aðalstræti, Hofstaðir and Sveigakot. The approach provides improved 

chronological precision for the dating of significant events within these sites, allowing a more 

nuanced understanding of occupation and abandonment. It also demonstrates the potential of 

incorporating dated typologies into chronological models and the use of models to propose 

sequences of activities where stratigraphic relationships are missing. Such outcomes have 

considerable potential in interpreting the archaeology of Iceland and can be applied more widely to 

sites with similar chronological constraints. 
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1. Introduction 

Recent developments in the understanding of scientific dating methods and their use in the 

construction of archaeological chronologies offer exciting opportunities to reassess and reinterpret 

the dates obtained from excavations, improving precision and allowing more detailed archaeological 

questions to be addressed. In Iceland, prior to the 1990s, typology, tephrochronology and 

radiocarbon determinations rarely allowed more precise dating of early sites than to the ‘Viking Age’ 

typically accepted to be AD 800e1050 (Eldjarn, 2000; Grímsdottir, 1997; Vilhjalmsson, 1991) but the 

wealth of new data, coupled with methodological advances, now make it possible to aim for much 

higher dating resolution within the Viking Age. In particular, Bayesian analysis allows a chronological 

framework to be developed that combines stratigraphy, tephrochronology, typology, historical dates 

and multiple radiocarbon dates (Bronk Ramsey, 2009). Such an analysis allows the maximum 

information to be generated from limited archaeological resources and is particularly relevant in 

Iceland, where recent excavations provide chronological information from a variety of sources. 

Reinterpretation of the existing archaeological information has the potential to produce a refined 

chronology, enabling more precision in dating specific archaeological contexts and events, and 



allowing an objective assessment of dates that do not appear to fit their stratigraphic position. This 

in turn enhances understanding of settlement processes within Iceland, for example the speed and 

pattern of initial settlement.  

In recent years a number of significant archaeological investigations in Iceland have illuminated 

many aspects of Viking Age settlement including the debate about first-peopling and colonization 

models (Vesteinsson and McGovern, 2012; Bolender et al., 2008, 2011); immigration patterns (Price 

and Gestsdottir, 2006; Vesteinsson and Gestsdottir, forthcoming); environmental reconstructions of 

the landscape (McGovern et al., 2007; Dugmore et al., 2007; Adderley et al., 2008) and activity 

within settlements (Milek, 2012; Milek and Roberts, 2013). Comprehensive open area excavations 

have been carried out (e.g. Hofstaðir: Lucas, 2009; Sveigakot: Vesteinsson, 2010; Vatnsfj€orður: 

Milek, 2010, 2011 and Hrísbrú: Zori et al., 2013; Zori and Byock, 2014) and intensive surveys have 

been employed to locate burials and settlements (Friðriksson, 2009; Friðriksson and Vesteinsson, 

2011). Increasingly the archaeological interpretations are supported by a framework of scientific 

dates, predominantly using radiocarbon dating of charred barley seeds and bone, and 

tephrochronology. 

The aim of this research was to ascertain the potential of reanalysis of existing dating evidence from 

recent, well-documented, large scale excavations and, in particular, the extent to which combining 

radiocarbon, tephra, stratigraphy and typological evidence within a Bayesian framework can aid in 

site-specific and broader interpretations. Three sites were selected as excellent examples of recent 

excavations of key Viking Age and medieval sites in Iceland e Aðalstræti, Hofstaðir and Sveigakot 

(Fig. 1). These excavations took place before Bayesian statistical analysis was a consideration in 

sampling strategies; this research allows discussion of the extent to which these developments 

might inform future sampling strategies. 

We begin with a review of the archaeological record in this period and the data available, and then 

give an overview of the analytical approach employed. The techniques are applied to the selected 

sites and the implications discussed.  

 

 

 

 

 

 

 

 

 

Fig. 1. Map of Iceland showing sites discussed in text. 



2. Materials and methods 

2.1. Archaeological context 

Eldjarn (1958, 2000) laid the foundations for modern research into Viking Age material culture in 

Iceland. His research was based on artefact typology from pre-Christian burials, which suggested 

tenth century dates for the majority of early finds. Hermanns-Auðardottir (1989, 1991) criticized this 

conclusion and claimed a seventh century colonization of Iceland, based on a number of apparently 

early radiocarbon dates. The charcoal samples yielding early dates all came from just above a tephra 

layer which underlies the earliest archaeological deposits in two-thirds of the island. The ensuing 

debate essentially hinged on the age of this layer, known as the Landnam tephra. Its dating to AD 

871 ± 2 (Gr€onvold et al., 1995) or AD 877 ± 4 (Zielinski et al., 1997) by reference to annual 

snowmelt in the Greenland icecap effectively demolished the early settlement hypothesis. 

Although there are pollen records suggesting earlier human presence and two sites with structural 

remains below the Landnam tephra, there are more than 100 sites with archaeological deposits just 

above the tephra (Schmid, forthcoming), suggesting that while people may have been present in 

Iceland for much of the ninth century, large scale settlement only commenced after AD 870. With 

increasing chronological clarity about the inception of settlement in Iceland, interest has shifted 

towards trying to refine understanding of developments during and after the colonization 

(Vesteinsson et al., 2002; Vesteinsson and McGovern, 2012). 

Recently, site specific chronologies of Viking age farmsteads have been attempted (e.g. Lucas, 2009: 

57). Iceland is ideal for constructing regional chronologies, with an abundance of dated in situ tephra 

layers below and above cultural remains, providing secure relative chronological frameworks. 

Tephrochronology has a major impact on temporal interpretation of settlement history; however 

the challenge remains of providing precise dates for events between tephra layers, or where tephra 

are absent. The chronological frameworks can be enhanced by multiple radiocarbon dates of short-

lived material, but these are restricted by the precision of calibrated radiocarbon dates. Combining 

these dates using archaeological stratigraphy and typology allows the information to be used to its 

full potential. 

Three sites in Iceland were selected in order to investigate the potential of this approach to provide 

greater chronological precision. All have stratigraphic sequences from recent well-recorded 

excavations, in situ tephra layers and radiocarbon dates from accelerator mass spectrometry (AMS). 

Additional information, such as typological data, was also used where applicable. One site in west 

Iceland was selected, Aðalstræti, a well-preserved hall in Reykjavík, and two sites in the north of 

Iceland in the vicinity of Lake Mývatn were also investigated; Hofstaðir, a high status site with the 

largest hall in Iceland, associated with an early church, and Sveigakot, a low-status farm which was 

already settled by the end of the ninth century. All three sites have a wealth of datable samples and 

can be used to address key questions of the date of first settlement, site development and 

abandonment. 

2.2. Tephrochronology 

A key feature of all the sites selected is the presence of dated tephra layers within the archaeological 

stratigraphy. Tephra layers are referred to by a letter denoting their volcanic origin, followed by the 



calendar year (AD) of the eruption; for instance H-1104 is tephra from the eruption of Hekla in AD 

1104. In cases where the date of the eruption can only be estimated, the ~symbol is used and for 

dates that have a quantifiable error value, the ±symbol is used. The volcanic systems are E: Eldgja, H: 

Hekla, K: Katla, R: Reykjaneshryggur, V: Veiðiv€otn. The following tephra layers are most frequently 

used in dating Viking and Medieval Age deposits in Iceland: 

V-871 ± 2 AD (Grönvold et al., 1995) and V-877 ± 4 AD (Zielinski et al., 1997). 

K ~ 920 AD (Hafliðason et al., 1992).  

E-934 ± 2 AD (Hammer et al., 1980) and E-938 ± 4 (Zielinski et al., 1995). 

V ~ 930-940 AD (Sigurgeirsson et al., 2013). 

H-1104 AD (þorarinsson, 1967). 

H-1158 AD (þorarinsson, 1967). 

R-1226 AD (Sigurgeirsson, 1995). 

K-1500 AD (Hafliðason et al., 1992). 

The presence of well-dated tephra within the archaeological stratigraphy is a major asset when 

building site chronologies. The tephras have different distributions, with the V-871 ± 2, H-1104 and 

K-1500 covering substantial parts of the country and appearing frequently at archaeological sites, 

while the others have a more limited distribution. 

2.3. Radiocarbon dating and reservoir considerations 

The selection of suitable material for radiocarbon dating is clearly crucial to the chronological 

interpretation. In the future it is hoped that Bayesian models will be used to inform sample selection 

(Bayliss, 2009) but in this case we had to rely on previously dated material. All radiocarbon dates 

considered were produced by AMS and obtained from known archaeological contexts within the 

stratigraphic sequence. Where possible, we prioritised short-lived, single-entity materials, such as 

single barley grains or human and animal bones, to avoid the possibility of mixed samples or the ‘old 

wood’ problem (Schiffer, 1986). There has been active debate about the validity of radiocarbon 

dates from birch charcoal, which has been shown to give consistently earlier dates than charred 

barley from the same context (Sveinbjörnsdottir et al., 2004). Given the uncertainties involved in 

interpreting dates from charcoal, this material was not used. 

Dates from human and animal bone need particular consideration. It is well known that diet can 

affect the resulting radiocarbon determinations (e.g. Arneborg et al., 1999; Barrett et al., 2000). 

Carbon in the marine environment is depleted in radiocarbon, relative to that in the 

contemporaneous terrestrial environment, because of the extended residence time in the ocean 

while separated from atmospheric contact, during which 14C undergoes radioactive decay. Hence, 

organisms in marine environments, such as marine fish, mammals and shellfish, will have an older 

apparent radiocarbon age. Inclusion of this material in human or animal diets can cause bones to 

appear several hundred years older than their true age. The extent of this effect can be assessed by 

using measurements of δ13C as an indication of the percentage of marine contribution in the diet, 



having established values that would be expected for 100% terrestrial diet and 100% marine diet 

and performing linear interpolation between the two extreme values. The end points can be arrived 

at by either using measurements of local flora and fauna, taking appropriate account of 

fractionation, or by values directly measured from human/animal collagen from skeletons within the 

study area with extreme diets (Dewar and Pfeiffer, 2010). This study calculated the percentage of 

non-terrestrial carbon within the bone samples using the linear regression calculation of Ascough et 

al., 2012 (y ¼ 270.67 + 13.333x where x is δ13C value and y is % marine contribution to diet). Which is 

based on δ13C values of 20.3 to 22.1‰ for cattle bone collagen and values of 20.8-22.0‰ for 

caprines as the terrestrial samples and 12.4 to 14.7‰ for marine material (fish and seal bone) from 

sites in northern Iceland, with an adjustment of + 1‰ for tropic level shift (Ascough et al., 2012). The 

uncertainties arising in this data are discussed in Ascough et al., 2012. 

When calibrating radiocarbon determinations where there has been a significant contribution from 

marine carbon, it is necessary to consider both the global average reservoir effect and site-specific 

deviations from it. The global average is provided by the calibration curve, in this case Marine13 

(Reimer et al., 2013) and delta-R quantifies the site-specific deviations (Reimer et al., 2002). Delta-R 

has been shown to vary both spatially and temporally (Ascough et al., 2006; Russell et al., 2010). This 

study used a delta-R value of 111 ± 1014C/year (Ascough et al., 2007) obtained from multiple paired 

measurements on terrestrial mammals and marine molluscs from Norse period archaeological 

deposits in northern Iceland. Both the selection of endpoints for marine and terrestrial diets and the 

value of delta-R are estimates made from the best available data, but further site-specific 

characterisation of these factors would be helpful. A further area of uncertainty in radiocarbon 

dating concerns the effects of freshwater reservoirs on bone collagen. It has been shown (Ascough 

et al., 2012) that human bone collagen can contain freshwater diet-derived carbon and that the 

freshwater radiocarbon reservoir effect in Iceland, partly arising from upwelling of geological age 

carbon from volcanic activity into freshwater lakes, can be both significant and variable (Ascough et 

al., 2011). It is not possible to correct for this effect with the data available at present, but it is 

important to recognise the potential complication. 

Radiocarbon determinations were calibrated using OxCal Version 4.2.4 (Bronk Ramsey, 2009), with 

the calibration data sets Intcal13 and Marine13 (Reimer et al., 2013). Calibrated dates were rounded 

outwards to the nearest 5 years to avoid the impression of spurious precision. 

2.4. The Bayesian approach 

Bayesian analysis of radiocarbon dates from archaeological sites is becoming a routine tool (e.g. 

Bayliss et al., 2007; Whittle et al., 2011) and offers a powerful method of interpreting site 

chronologies. The principles are discussed in a number of detailed publications (e.g. Buck et al., 

1991; Buck et al., 1994) and the reader is referred to these for further details. Bayesian statistical 

analysis derives posterior information by combining prior information, a likelihood function and the 

available data (Buck and Millard, 2004). In practical terms for most archaeological applications, this 

involves combining the probability distribution of radiocarbon determinations with archaeological 

information about their stratigraphic relationships or diagnostic artefacts to give more precise dates 

(Bayliss and Bronk Ramsey, 2004). 

There are clear advantages to a statistical approach that combines archaeological and scientific 

dating evidence, both in interpreting existing data and in planning sampling strategies. Whilst 



concerns have been expressed about the use of prior information (Steier and Rom, 2000), in the 

applications described here the process simply formalises the existing archaeological information in 

a format that allows a variety of models and interpretations to be tested. For this study, the models 

were constructed using the Bayesian statistical tools available in OxCal v4.2.4 with the prior 

knowledge relating to the stratigraphic information established from site reports and discussions 

with the excavators. All of the dates and modelled estimates are presented at the 95.4% confidence 

level. The reader is referred to the OxCal supporting documentation for detailed discussion of the 

functions available. Within this investigation the most widely used models are a Phase, or unordered 

group, which was used to refer to multiple dates from the same archaeological context or from 

contexts that were stratigraphically equivalent. Sequence, or ordered group, was used to model 

archaeological contexts that had clear stratigraphic relationships. The OxCal program allows the user 

to develop different models that take into account factors such as the rate of deposition of a deposit 

(Bronk Ramsey, 2008). However, in the cases discussed here, anthropogenic activity is highly likely to 

have altered the rate of accumulation and so the more conservative ‘Sequence’ function was used to 

assess the dates with no assumptions made about rates of deposition. 

The radiocarbon dates were incorporated into the models as RDates in their uncalibrated form. The 

tephra and, where relevant, artefact typological dates were introduced as calendar dates (CDates) 

with uncertainties as appropriate, plotted as a normally distributed range with a mean value and 

assessment of the error, cited at the 68% confidence level (1s) (Bronk Ramsey, 2012). Each Sequence 

was bracketed by a ‘Boundary’, which has often been cited as the most complicated aspect of 

Bayesian analysis, as the results are very sensitive to the assumed priors used for a Sequence (Steier 

and Rom, 2000; Steier et al., 2001; Bronk Ramsey, 2000). A conservative approach was employed 

with the use of Boundaries at points in the stratigraphy where the archaeological evidence 

suggested a hiatus in deposition, as discussed on a case by case basis. As suggested by Bronk Ramsey 

(2000) a number of Sequences were assessed for each dataset with a series of different Boundaries 

being applied in order to determine the potential sensitivity of a Sequence. If the results of the 

sensitivity analysis were similar for the different Sequences, it was concluded that the Sequences 

were robust. The assessment of the dates in Sequence resulted in a probability distribution that 

demonstrated how the age ranges were affected by the inclusion of the stratigraphic information; 

the resulting probability distribution is referred to as a posterior density estimate. The modelled 

estimates have been given in italics when discussed within the text to differentiate them from the 

raw calibrated age ranges. The ‘agreement index’ value (A-values) quantifies the degree to which the 

data support the proposed model and are calculated for the posterior distributions of each date in 

the model and for the overall model itself (Bronk Ramsey, 2000). The critical value defined for the 

agreement indices is set at 60%: values below this level were indicative of problems within the 

Sequence and may indicate the presence of residual or intrusive material or errors in the 

stratigraphic interpretation (Bronk Ramsey, 2012). If dates were highlighted as being anomalous, the 

security of the material and the context were reassessed using the site records. 

Inclusion of stratigraphic information can refine the resulting age ranges through the production of 

posterior density estimates, but it is important to note that the resulting age ranges are the result of 

a statistical model imposed on the data and the interpretation of the stratigraphy. They present one 

particular view of the past; any new information, such as additional dating evidence or changes in 

the interpretation of the stratigraphic record will produce different outcomes. 



3. Results 

3.1. Aðalstræti 

Archaeological excavations were carried out between 1971 and 1975 in the centre of Reykjavik 

(Nordahl, 1988). They revealed the remains of a number of structures, dating both to the settlement 

period and to the 18the19th centuries. The area was reinvestigated in 2001 and 2003 with improved 

excavation methods (Roberts et al., 2001, 2003; Snæsdottir, 2007). The new investigations 

uncovered exceptionally well-preserved remains of a Viking period hall, which was altered with an 

annexed hall to the south-west and with a porch on the eastern side of its northern end (Fig. 2a). 

Approximately four meters to the north-east of the hall, a fragmentary wall was found, abutted by 

the Landnam tephra in situ, representing the earliest known archaeological remains in Iceland. The 

dating of the construction and abandonment of this key early structure is significant in 

understanding the first settlement of Reykjavik and the specific research objective was to obtain 

precise dates for these events. 

 

Fig. 2. (a) Plan of Aðalstræti Hall after Roberts et al., 2003 and (b) photograph of central hearth from 

archive of FSI, Institute of Archaeology, Reykjavík. 

The stratigraphy of the site is straightforward. The bottom layer consists of an old sea-bed made of 

pebbles. The Landnam tephra is in situ overlying the pebbles, followed by a thin (1e8 cm) 

accumulation of soil, underlying the foundation of the hall. A sequence of three distinct floor layers 

are preserved in the middle of the hall and four deposits within the central hearth (Fig. 2b), all of 

which have provided samples for radiocarbon dating. Turf from the walls and roof are collapsed on 

top of the floor layers, followed by a ~57 cm thick fluvial/aeolian accumulation, which is sealed by 

the K-1500 tephra in situ. There are no traces of repair found within the hall; the only clear 



constructional phases are the later addition of the porch and annexed hall (Milek and Roberts, 

2013). Since secure radiocarbon dates have not been obtained from the added structures, nor from 

the fragmentary wall that is stratigraphically below the Landnam tephra, it is not possible to 

consider these elements.  

The accumulation of deposits below and above the cultural remains at Aðalstræti was measured by 

Roberts and Schmid in 2013 in order to date the occupation and abandonment of the site more 

precisely. The soil accumulation between the Landnam tephra in situ and foundations of the hall is 

between 1 and 3 cm on the eastern side and between 3 and 8 cm on the western side. The 

accumulation varies because the hall, facing NE, was constructed at the bottom of a steep slope 

starting on the western side of the hall; thus, the soil was deposited through fluvial processes and 

accumulated at a faster rate than aeolian deposits would do. In total 78 cm of soil was deposited 

between the Landnam and K-1500 tephra in situ. If we assume that soil accumulated at a constant 

rate, we have an average of 1.24 mm/year, suggesting that the time elapsed between the Landnam 

tephra and the construction of the hall could have been between 12 and 99 years with an average of 

37 years. However, the gap between the two tephra layers is large and we cannot assume that soil 

accumulated at a constant rate. Calculation of accumulation rates would be more easily justified if a 

tenth century tephra had been identified but unfortunately hardly any tenth century tephras survive 

in the Reykjavík area. Sediment accumulation rates have been calculated for sediments in the pond 

in Reykjavík centre, where Hallsdottir (1987) claims a yearly deposit of 1.3 mm, very similar to the 

rate obtained in this study. 

It has been suggested by Roberts that the use of the hall dates between the late ninth and the end 

of the tenth centuries, based on house typology and radiocarbon dates (Roberts et al., 2003). 

Focussing on the soil accumulation rates, especially the contrast with the meagre pre-871 

accumulation, Vesteinsson has argued for a start of occupation around or after AD 930 (2014: 

86e87). Artefactual evidence discussed by Milek and Roberts (2013) suggests a tenth century 

occupation of the hall, in particular based on datable artefacts from the floor of the house, including 

a polychrome glass bead (Callmer Type B610; Callmer, 1977) and a possible glass vessel fragment 

with ‘grape’ decoration, which have a late ninth to tenth century date range. 

The chronological model for Aðalstræti is based on seven AMS radiocarbon dates for barley seeds 

and the Landnam tephra (Table 1). The tephra provides a terminus post quem for the site and the 

main event of interest (Boundary Start occupation) occurs between this tephra and the floor and 

hearth sequences. Four stratigraphically related horizons within the long fire and three 

stratigraphically related floor layers form two Sequences above the tephra (Fig. 3). The exact 

relationship between the hearth and floor layers is not known; therefore the Sequences are placed 

into the same Phase. The K-1500 tephra is not incorporated in the model because it occurs 

significantly later than the other dated events, following major sediment deposition, and its 

inclusion does not affect the model outcomes. The model (Fig. 4a) appears consistent with the 

archaeological evidence, with an overall agreement index of 103% for the proposed model and all 

individual dates have agreement indices >60%. The modelled date for earliest occupation of the hall 

(Boundary Start occupation) is AD 865-890. The modelled date for the top of the Sequence 

(Boundary End occupation stage) is AD 890-1020. 

 



 

      

Archaeological  
structure/deposit & 
context 

Context 
number 

Context 
description 

Sample 
number 

Sample 
material 

Conventio

nal14C age 
(BP) 

δ13C Prior 2-σ 
cal range 

Modelled 2-
σ cal range 

        

Hall, long fire 793 Upper fill AAR-7611 Barley 1092 ± 39 -25.63 
780e1025 

890e990 

 
Hall, long fire 

 
795 

 
Lower-upper  
 
fill 

 
AAR-7612 

 
Barley 

 
1150 ± 36 

 
-23.94 
775e975 

 
885e965 

 
Hall, long fire 

 
802 

 
Upper-lower 
fill 

 
AAR-7613 

 
Barley 

 
σ1087 ± 
35 

 
-25    
890e1020 

 
875e950 

 
Hall, long fire 

 
831 

 
Bottom fill 

 
AAR-7614 

 
Barley 

 
1218 ± 40 

 
-25.90 
680e895 

 
865e935 

 
Hall, floor layer 

 
858 

 
Floor deposit 
north of long 
fire 

 
AAR-7615 

 
Barley 

 
1153 ± 36 

 
-25.21 
775e975 

 
885e975 

Hall, floor layer 864 Upper floor 

deposit 

west of long 

fire 

AAR-7616 Barley 1129 ± 35 -24.32 
775e990 

875e955 

Hall, floor layer 873 Lower floor 

deposit 

west of long 

fire 

AAR-7617 Barley 1152 ± 36 -23.42 
775e975 

870e935 

 

Table 1 - Radiocarbon dates from Aðalstræti floor and hearth sequence. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Sequence of deposits at Aðalstræti Hall showing relationship of AMS 14C samples. 



The constrained dates of the model propose that the hall was occupied by AD 890, indicating that 

construction was within a few years of the deposition of the Landnam tephra, making this hall one of 

the earliest dwelling sites in south-west Iceland. This would lend support to Roberts' early date for 

the first occupation (Roberts et al., 2003) and would suggest a rapid (c. 20 year) accumulation of soil 

between the Landnam tephra and the first occupation. Radiocarbon dates from within the soil 

accumulation would allow more detailed modelling of the rate of accumulation, as demonstrated in 

Eyjafjallahreppur, southern Iceland by Church et al. (2007). 

The abandonment of the site is more difficult to establish. If the uppermost dated archaeological 

horizons represent the last occupation of the site, this would suggest that the site was abandoned by 

AD 1020. This would also concur with the timescale proposed by Roberts (et al., 2003). However, 

caution must be exercised with this archaeological interpretation, as the radiocarbon samples are 

restricted to hearths and floor surfaces. It has been suggested by Milek that therewere steady 

accumulations of floor deposits within the house and therefore that floors were continuously 

shovelled out, leaving behind discontinuous floor sequences that cannot be used to infer the 

intensity or duration of the occupation of a building (Milek, 2012: 133). Thus, the radiocarbon dates 

may not capture the earliest deposits or the final phases of use. Conversely, context 831 might 

represent an early hearth deposit that had not been cleared out, with the later deposits coming 

from the final occupation. To capture the full lifetime of the building further radiocarbon samples 

are needed, particularly from the underlying soil accumulation and the porch and annexe. The 

constrained radiocarbon dates of the floor and hearth deposits at Aðalstræti suggest that the hall 

was in use for no more than 150 years and possibly considerably less. 

Bayesian models can also either incorporate established artefact typologies or be used to test them. 

At Aðalstræti there is a typologically distinctive polychrome glass bead (Callmer Type B610) in 

context 864, traditionally dated to AD 860- AD 950 AD (Callmer, 1977). This can be incorporated into 

the model as a C-Date (Fig. 4b). The date of the bead is in good agreement with the radiocarbon 

date from the same context (AAR-7616) and yields a slightly reduced date for the context of AD 

875e950. The inclusion of the bead on this occasion makes a slight improvement to the precision of 

the date of the first occupation; if the typological dates were more precise, or the other dating 

evidence was less constrained, the information provided by the bead would be more significant. It 

should be stressed that bead typology is problematic; there are no independent scientific dates and 

the typology is based on the co-occurrence of objects such as oval brooches decorated in Viking Age 

animal styles and datable coins. These dates provide a terminus post quem, however there is often 

no clear link between the date obtained and the bead in question and assumptions must be made 

about the period of possible circulation. Given these difficulties the fact that the typological date fits 

well within the chronological model is extremely interesting and lends some support to the reliability 

of the typological date. There is clear potential for the further investigation of bead typologies using 

these methods. 



 

Fig. 4. a Modelled calibrated dates from deposits within Aðalstræti Hall. Radiocarbon dates in black, 

tephra dates in green. b Modelled calibrated dates from deposits within Aðalstræti Hall including 

typologically dated bead. Radiocarbon dates in black, tephra dates in green, bead date in orange. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

3.2. Hofstaðir 

The site of Hofstaðir lies in the Laxa valley in the district of Mývatn in northern Iceland (Fig. 1). 

Comprehensive large-scale excavations were carried out between 1991 and 2002 (Lucas, 2009). A 

series of structures are dated to the Viking period (Fig. 5); a hall [AB] with a porch and three annexes 

[A2, C2 and D1], a pit house [G], two sunken floored buildings [A4, A5] and a latrine [E2]. Little 

activity in this part of the site is documented in the medieval and later periods. The stratigraphy at 

the site is complex; however, the dates are constrained as many of the cultural layers are located 

between two tephra layers: the recently dated V~930-940 (Sigurgeirsson et al., 2013) and H-1104 

(þorarinsson, 1967). The hall has at least two structural phases; the construction of the hall itself and 

the later addition of three annexes and a porch. It is suggested by Lucas (2009: 57) that the site can 

be divided into three phases of Viking age structures. The first phase includes the pit house [G], the 

hall [AB] and one sunken feature [A5]; the second phase includes the enlargement of the hall, its 

annexes [A2, C2, D1], another sunken feature [A4] and latrine [E2]; the third phase includes the 

collapse of the structures and some reuse as hay storage. Lucas's interpretation of the site 

development (Lucas, 2009: 57) suggests that the pit house [G] was abandoned before the hall and its 

annexes, and he dates the abandonment of the site between AD 1030 and 1070 (Lucas, 2009: 57, 

165). One key challenge to understanding the chronology of this site is that there are large, open 

spaces between most of the structures, and connecting layers are thin or discontinuous, particularly 

between the hall and pit house, making it difficult to establish a secure overall site stratigraphy. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Site plan of Hofstaðir showing structures and deposits discussed in text. After Lucas and 

McGovern, 2008; based on original drawing produced by Gavin Lucas/For-nleifafstofnun Islands. 

 

Hofstaðir represents a much more complex archaeological example than Aðalstræti, with several 

phases of activity. It has the advantage of multiple radiocarbon dates, but the drawback of complex 

and sometimes unresolved stratigraphic relationships. Given these considerations, the analysis in 

this study focussed on two particular groups of dates; those associated with the abandonment of the 

pit house [G] (Table 2a) and those associated with the abandonment of the hall [AB] and its annexe 

[A2] (Table 2b). Areas D1 and E2 could not be stratigraphically related and were excluded from the 

analysis.  

The chronological models for Hofstaðir are based on 23 AMS radiocarbon dates from animal bone 

collagen (Tables 2a and 2b) and the two tephra layers. Two of the radiocarbon dates (SUERC-3431 

and SUERC-8352) appear to show reservoir effects based on measurements of δ13C and appropriate 

corrections were applied as discussed above. Given that the dates were obtained from cattle and 

sheep/goat such values seem unusual, particularly the value of -15.7‰ for SUERC-8352. This may 

indicate a marine input into the animals' diet (Balasse et al., 2005). Although the site is far from the 

sea, isotopic work (Sayle et al., 2013) suggests that domestic animals from Mývatn may have been 

grazing on the coast. It is unlikely that the values are due to neonatal dietary effect, as such effects 

are usually much smaller but future measurements of nitrogen isotope values might clarify the 

situation further. 

The V ~ 930-940 tephra provides a terminus post quem of the pit house Sequence (Fig. 6a). A single 

date from a cattle bone (Beta-149404) is associated with the collapse of the pit house, overlain by a 



series of stratigraphically related midden accumulations (contexts 7a, 6n, 6g, 6d and 4). The 

stratigraphy provides a Sequence for the Bayesian model; multiple radiocarbon determinations 

within a single archaeological context were modelled as a Phase (Fig. 7a). There is one radiocarbon 

determination (SUERC-3431) which has a poor agreement with the proposed model, in the late 

midden deposit. This may represent later intrusive material, but it should be noted that this was one 

of the samples with an unusual δ13C value, which leads to uncertainty about the reliability of the 

determination. If this radiocarbon determination is omitted from analysis, the model is consistent 

with the archaeological evidence, with an overall agreement of 71%. SUERC-3433 and Beta-124004, 

both have individual agreement indices slightly <60%; however, repeating the model without them 

makes little difference to the overall outcomes. The variation may reflect the mixed nature of 

material within midden deposits. The specific event of interest is the abandonment of the pit house 

(context 8) and the date for this is constrained by the model to AD 925-945. The Bayesian model 

thus suggests that the pit house was only in use for a short time, between AD 930 (the earliest date 

for the underlying tephra) and AD 945 (the latest date for the overlying turf collapse). This is 

consistent with the archaeological evidence, but it should be noted that there is only one sample 

directly taken from the turf collapse. The model also shows that the early and late midden layers on 

top of the turf collapse accumulated before AD 1030 (Boundary End pit house infilling). 

Unfortunately there is no overlying tephra on this part of the site to constrain the later dates further. 

The stratigraphic sequence for hall AB is also underlain by the V ~ 930-940 tephra (Fig. 6b). Three 

radiocarbon dates are associated with the floor layers and a pit infill within hall AB (Table 2b). These 

have no stratigraphic relationship to each other and therefore comprise a Phase in the model. The 

hall was altered with an annexe [A2] added at a later stage and two dates derive from the immediate 

backfill of that annexe, overlain by a stratigraphically related sequence of peat and ash dumps. The 

H-1104 overlies the entire Sequence and a Boundary is inserted between the dates for the peat and 

ash dumps and this tephra, to allow for the possibility of a hiatus in deposition. There are two 

radiocarbon determinations that show poor agreement with the proposed model (Fig. 7b). SUERC-

8352 presents a similar case to SUERC-3431 discussed above and may be later intrusive material but 

also has an unusual δ13C value. SUERC-6397, a cattle bone, appears to be too early for its position 

within the stratigraphic sequence. This bone (along with SUERC-6398 and 6399) was within the turf 

collapse of A2 and could be residual; the same context [0159] contained both parts of an articulated 

sheep and weathered cattle skulls which are thought to have hung on the outside of the building, 

and the latter may have already been old when they were deposited in the abandoned building, 

possibly as a part of an abandonment ritual (Lucas, 2009: 236-52). If SUERC-8352 and SUERC-6397 

are omitted from the model, the model agreement is excellent, 117%. The archaeological event of 

interest in this case is the end of the abandonment of the complex (Boundary Abandonment) and 

this sequence of dates suggests that both the hall and annexe were abandoned by AD 1015-1095, in 

agreement with Lucas's proposed dates for abandonment of the site between AD 1030 and 1070 

(Lucas, 2009: 57, 165). The constrained dates allow for the possibility of abandonment of the hall as 

early as AD 1015 but other interpretations are possible. The latest date for the turf collapse of the 

annex A2 (context 159) is AD 1005 suggesting it was abandoned before the hall, supporting Lucas's 

interpretation of the site development (Lucas, 2009: 57). 

 

 



Table 2a 

Radiocarbon dates from Hofstaðir pit house G. Calibrated radiocarbon dates differ from those in 

Lucas (2009) as a more recent calibration curve is used and the full 95.4% confidence range is 

included. 

Archaeological 
structure/ 
deposit & 
context 

Context 
number 

Context 
description 

Sample 
number 

Sample 
material 

Conventional
14

C 
age (BP) 

δ
13

C  % Marine 
contribution 
to diet 

Prior 2-σ 
cal range 

Modelled 2-σ 
cal range 

Pit house G, 
midden 

4 Late infill Beta- 
149403 

Cow bone 1120 ± 40 -21.7  NA 775-1015 945-1015 

Pit house G, 
midden 

6d Late infill SUERC- 
3431 

Cow bone 
(neonatal) 

1045 ± 35 -18.8  20.1 990-1215 Omitted 

Pit house G, 
midden 

6d Late infill SUERC- 
3432 

Pig bone 
(adult) 

1040 ± 40 -21.5  NA 890-1120 940-1010 

Pit house G, 
midden 

6g Late infill SUERC- 
3433 

Cow bone 1030 ± 35 -21.1  NA 895-1150 940-1005 

Pit house G, 
midden 

6n Early infill SUERC- 
8624 

Cow bone 
(adult) 

1080 ± 35 -21.2  NA 890-1020 935-990 

Pit house G, 
midden 

6n Early infill SUERC- 
8618 

Cow bone 
(adult) 

1110 ± 40 -21.0  NA 775-1020 935-985 

Pit house G, 
midden 

6n Early infill SUERC- 
8619 

Cow bone 
(adult) 

1110 ± 30 -20.9  NA 875-1015 935-985 

Pit house G, 
midden 

6n Early infill SUERC- 
8623 

Cow bone 
(adult) 

1130 ± 35 -21.1  NA 775-990 935-980 

Pit house G, 
midden 

6n Early infill Beta- 
124004 

Cow bone 1170 ± 40 -21.4  NA 730-975 935-980 

Pit house G, 
midden 

7a Early infill SUERC- 
3429 

Cow bone 
(neonatal) 

1160 ± 35 -21.2  NA 770-970 930-960 

Pit house G, 
midden 

7a Early infill SUERC- 
3430 

Pig bone 
(adult) 

1170 ± 40 -20.8  NA 730-975 930-960 

Pit house G, 
collapse 

8 Primary 
collapse of 
pit house 

Beta- 
149404 

Cow bone 1130 ± 40 -21.5  NA 775-990 925-945 

 

The modelled dates are very similar to the archaeologically proposed ranges, so they offer support 

but little additional insight into the abandonment of the site. They do suggest a much tighter and 

decidedly early date for the abandonment of pit house [G]. For additional precision it would be 

helpful to be able to stratigraphically relate dated contexts from other parts of the site. It would also 

be useful to obtain dates for plant material within the middens to further explore issues of 

residuality and gain insight into the reservoir effects that may be affecting the dating of some animal 

bone. 

3.3. Sveigakot 

The farm at Sveigakot is close to Hofstaðir and Lake Mývatn in northern Iceland (Fig. 1). 

Comprehensive large scale excavations were carried out between 1998 and 2006 (Vesteinsson, 

2010). The farm is divided into several areas: M, P, S, T and intersections MT and MP (Fig. 8). There is 

one central midden area [M] with several structures to the north [P1-3, MP 1e3] and south-west 

[MT1-2, T]. Another midden deposit [T] accumulated within the abandoned pit house [T1]. North of 

the structures P1-3 is a byre [S7] with associated pavements [N] and [SP]. North of and above S7 a 

hall was built [S4] with an associated outdoor activity area [S6]. The site was briefly abandoned and 

then a smaller hall [S1] with annexes [S3, S5] was constructed above [S4]. 



Table 2b 

Radiocarbon dates from Hofstaðir Hall AB and Annexe A2. 

Archaeological 
structure/deposit 
& context 

Context 
number 

Context 
description 

Sample 
number 

Sample 
material 

Conventional
14

C 
age (BP) 

δ
13

C  % Marine 
contribution to 
diet 

Prior 
2-σ 
cal 
range 

Modelled 
2-σ cal 
range 

Hall, annexe A2, 
collapse 

159 Turf 
collapse 

SUERC- 
6399 

Cow bone 1015 ± 35 -
21.2 

NA 900-
1155 

1000-
1050 

Hall, annexe A2, 
collapse 

159 Turf 
collapse 

SUERC- 
6398 

Cow bone 1035 ± 35 -
21.2 

NA 895-
1120 

1000-
1040 

Hall, annexe A2, 
collapse 

159 Turf 
collapse 

SUERC- 
6397 

Cow bone 1110 ± 35 -
21.0 

NA 775-
1020 

Omitted 

Hall, annexe A2, 
midden 

170 Peat and 
ash dump 

SUERC- 
8360 

Sheep/caprine 
bone 

1050 ± 35 -
21.4 

NA 895-
1035 

995-1030 

Hall, annexe A2, 
midden 

213 Peat and 
ash dump 

SUERC- 
8352 

Sheep/caprine 
bone 

1035 ± 35 -
15.7 

61.4 1170-
1395 

Omitted 

Hall, annexe A2, 
midden 

233 Peat and 
ash dump 

SUERC- 
8353 

Sheep/caprine 
bone (adult) 

990 ± 35 -
21.6 

NA 985-
1155 

990-1025 

Hall, annexe A2, 
infill 

254 Backfill of 
barrel pit 

SUERC- 
8354 

Sheep/caprine 
bone (adult) 

1035 ± 35 -
21.4 

NA 895-
1120 

980-1020 

Hall, annexe A2, 
infill 

254 Backfill of 
barrel pit 

SUERC- 
8356 

Sheep bone 
(adult) 

1040 ± 35 -
21.8 

NA 895-
1040 

975-1020 

Hall AB, infill 2428 Pit infill SUERC- 
11541 

Caprine bone 
(adult) 

1030 ± 35 -
21.3 

NA 895-
1150 

945-1010 

Hall AB, floor 448 Lower 
floor layer 

SUERC- 
11542 

Sheep bone 
(adult) 

1040 ± 35 -
20.8 

NA 895-
1040 

940-1005 

Hall AB, floor 1480 Lower 
floor layer 

SUERC- 
11546 

Sheep bone 
(adult) 

1075 ± 35 -
20.9 

NA 890-
1020 

935-1000 

 

 

 

 

 

 

 

 

 

Fig. 6. a Sequence of deposits at pit house G at Hofstaðir showing relationship of AMS 14C samples. b 

Sequence of deposits for Hall AB and Annexe A2 at Hofstaðir showing relationship of AMS 14C 

samples.  

 

 

 



The stratigraphy at the site is complex and discontinuous, due to erosion of the substrata. This 

means that there are no overall linking deposits and it is not possible to create a site-wide 

stratigraphic sequence, despite comprehensive excavation. Tephra layers are the prime connection 

between different areas of the site and key to interpretation of the stratigraphy. There are two 

tephra layers in situ: the Landnam tephra and V ~ 930-940 tephra, no other tephra layers have been 

detected and even these two tephra are not present in every sequence. In area M, midden has 

accumulated below and above the in situ tenth century tephra. The Landnam tephra and V ~ 

930e940 tephra lie in situ under the turf wall on the south side of S4 giving the structure its terminus 

post quem (Vesteinsson, 2003: 18e19). After a brief period of abandonment and the partial collapse 

of the hall S4, a new hall S1 was built in its ruins, making use of some elements of the earlier 

building. S5 and S3 are interpreted as annexes to S1 but the stratigraphic relationships are 

ambiguous. Some structures (P1 and S7 in particular) are clearly built and abandoned before the 

deposition of the V ~ 930-940 tephra. Because of the relatively tight dating provided by the tephras 

these structures were not prioritized for selection of radiocarbon samples. Vesteinsson (2010; also 

Vesteinsson and McGovern, 2012: 211e212) has proposed that the site was occupied shortly after 

the deposition of the Landnam tephra, probably in the AD 880s; it was briefly abandoned in the 

eleventh century and, following possibly intermittent use as a shieling, the site was reoccupied for a 

while, possibly to as late as around AD1200. 

The discontinuous nature of the stratigraphic record makes it necessary to construct four short 

sequences (Fig. 9aed), reflecting the different areas of the site. As with the example of Hofstaðir, the 

complexity of the site stratigraphy makes it necessary to focus on specific questions. In this case 

focus is placed on the first occupation of the site and the date of the proposed brief period of 

abandonment associated with the disuse of the hall S4. 

 

 

 

 

 

 

 

 

 

Fig. 7. a Modelled calibrated dates from deposits associated with pit house G at Hofstaðir. 

Radiocarbon dates in black, tephra dates in green, anomalous result indicted in red. b Modelled 

calibrated dates from deposits associated with Hall AB and Annexe A2 at Hofstaðir. Radiocarbon 

dates in black, tephra dates in green, anomalous results indicted in red. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 



There are 21 relevant radiocarbon determinations, predominantly from animal bone (Table 3). In 

one case (Beta-134145) the d13C value of a sheep bone suggested a marine input into the diet and 

an appropriate correction was made for samples. Seven dates from three stratigraphically related 

structures (MT, T1 and T2) are shown in Fig. 10a, a short sequence of three dates from the midden 

deposits (area M) with two associated tephra are given in Fig. 10b. Five dates from MP1 and MP3 

are shown in Fig. 10c and six dates from structures S1, S4 and S5 are given in Fig. 10d. In all cases 

there is good agreement with the archaeological model but, because these are all short sequences 

with a small number of dates, the impact on calibrated date ranges is limited. 

The model including structures MT, T1 and T2 shows excellent agreement for all samples (Fig. 10a). 

This model indicates that the key date of the final infilling of the pit house T1 (Boundary End 1) is AD 

990e1080 with the start of T1 (Context 889) at AD 945-995 indicating a short period of occupation. 

The area M midden sequence (Fig. 10b) also fits the model well, including the reservoir-corrected 

sheep bone, giving confidence in the correction protocol. The middens date to between AD 875 and 

AD 1095. The boundary at the bottom of the sequence indicates that the earliest date for occupation 

of the site is AD 875, which matches well with the date proposed by Vesteinsson (2010). The 

sequence including MP1 and MP3 (Fig. 10c) shows good overall agreement. There is one date with a 

low agreement index (SUERC-28652) but, given that the deposit is a mixed fill which might contain 

material from a number of sources, all the data were retained within the model. Boundary End 1 

indicates that structure MP1 was out of use by AD 900-1045. Fig. 10d shows the modelled dates for 

structures S1, S4 and S5 and the earliest date in the sequence, the occupation of S4 (Context 989) is 

constrained to AD 940-1020, with the end of the occupation sequence being AD 1065-1355, which 

again matches well with the last occupation suggested by Vesteinsson (2010). There would appear 

to be a hiatus in occupation around AD 1020, again supporting the archaeological inferences of 

Vesteinsson. S1 and S5 would appear to be occupied contemporaneously, within the precision of the 

available dates. Unfortunately there are no radiocarbon dates from S3, making it impossible to 

incorporate it into the model. 

The sequences discussed provide some improved precision to the archaeological dating but their 

impact is reduced by the fact that the sequences are short and therefore the number of dates is 

small. However, rather than using the stratigraphic information to constrain the dates, it is also 

possible to postulate a number of models and use the statistical analysis to indicate which is the 

most likely sequence of events. For example, a key archaeological question is the relationship 

between the sequences in MP, the midden in T and the MT sequence. The radiocarbon dates 

suggest that MP1 (which is later than MP3) predates MT and T. When this possibility is modelled 

(Fig. 10e) the agreement with the model is excellent (108%), whereas if MP1 is modelled as coming 

after MT and T the agreement is very poor (5%), indicating that this is very unlikely. Hence, the 

model can be used to suggest that MP1 predates T and MT. If this model is correct then the levelling 

layer for pit house MT (Context 1602) dates to AD 915-970 rather than AD 900-995, as suggested by 

Fig. 10c. This would support the proposition that pit house MT was in use when the V~930-940 

tephra fell, explaining why the tephra was only found around the structure but not on top or below 

the deposits associated with it. The similarity of the archaeological dates means that the midden in T 

cannot be temporally separated from the midden inMor structures S1, S4 and S5. It is also not 

possible to identify which parts of the MP and MT sequences are contemporary with the upper and 

lower midden as the dates are too close. The dates suggest that the upper midden is contemporary 

with S4 and the last use of MT, within the precision of the dates available. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Site plan of Sveigakot showing structures and deposits discussed in text. 

 

 

 

 

 

 

 

 

 

 

Fig. 9. a Sequence of deposits associated with MT, T1 and T2 at Sveigakot showing relationship of 

AMS 14C samples. b Sequence of deposits associated with area M midden at Sveigakot showing 

relationship of AMS 14C samples. c Sequence of deposits associated with MP1 and MP3 at Sveigakot 

showing relationship of AMS 14C samples. d Sequence of deposits associated with S1, S4 and S5 at 

Sveigakot showing relationship of AMS 14C samples. 



Archaeological 
structure/deposit & 
context 

Context 
number 

Context 
description 

Sample 
number 

Sample 
material 

Conventional
14

C 
age (BP) 

δ
13

C  % Marine 
contribution 
to diet 

Prior 2-σ 
cal range 

Modelled 2-
σ cal range 

Pit house T, 
midden 

55 Upper fill 
of pit 
house 

Beta 
146583 

Cow 
bone 

1040 ± 40 -22.7 NA 890-
1120 

975-1030 

Pit house T, 
midden 

55 Upper fill 
of pit 
house 

Beta 
146584 

Cow 
bone 

1010 ± 40 -21.5 NA 900-
1155 

980-1040 

Pit house T 720 End of 
house I 

SUERC 
27399 

Cow 
bone 

1060 ± 30 -20.8 NA 895-
1025 

960-1015 

Pit house T 889 Start of 
house I 

SUERC 
27401 

Sheep 
bone 

1100 ± 30 -21.2 NA 885-
1015 

945-995 

Pit house T 744 Layer 
outside 
house II 

SUERC 
27402 

Cow 
bone 

1095 ± 30 -21.1 NA 890-
1015 

935-985 

Area M/T 1047 Wall of 
house II 

SUERC 
27403 

Caprine? 1015 ± 30 -20.9 NA 970-
1150 

970-1035 

Area M/T 1602 Levelling 
layer 

SUERC 
27404 

Cow 
bone? 

1110 ± 30 -21.2 NA 875-
1015 

900-975 

Midden M 2 Upper 
midden 

Beta 
134144 

Cow 
bone 

1120 ± 40 -21.0 NA 775-
1015 

935-1010 

Midden M 12 Upper 
midden 

Beta 
134145 

Sheep 
bone 

1090 ± 40 -19.3 13.4 885-
1160 

930-990 

Midden M 11 Lower 
midden 

Beta 
134146 

Cow 
bone 

1110 ± 40 -21.0 NA 775-
1020 

875-940 

Structure MP1, 
floor 

1610 Floor layer SUERC 
27395 

Cow 
bone 

1105 ± 30 -21.0 NA 880-
1015 

895-995 

Structure MP3, 
infill 

2859 Fill of 
structure 

SUERC 
28657 

Burnt 
bark 

1105 ± 35 -27.9 NA 775-
1020 

875-970 

Structure MP3, 
infill 

2859 Fill of 
structure 

SUERC 
27394 

Pig bone 1210 ± 35 -20.1 NA 685-940 865-945 

Structure MP3, 
infill 

2859 Fill of 
structure 

SUERC 
28652 

Cow 
bone 

1050 ± 35 -21.8 NA 895-
1035 

885-985 

Structure MP3, 
infill 

2859 Fill of 
structure 

SUERC 
28653 

Sheep 
bone 

1090 ± 35 -21.3 NA 885-
1020 

880-975 

Structure S5, 
midden 

767 Upper 
midden fill 

AA 
52496 

Cow 
bone 

920 ± 40 -21.5 NA 1025-
1210 

1055-
1215 

Structure S5, 
midden 

692 Upper 
midden fill 

AA 
52495 

Cow 
bone 

840 ± 45 -20.7 NA 1045-
1275 

1030-
1190 

Structure S1, floor 558 Upper 
floor layer 

Beta 
154784 

Cow 
bone 

840 ± 40 -21.1 NA 1045-
1270 

1040-
1255 

Structure S1, floor 558 Upper 
floor layer 

Beta 
154785 

Caprine 
bone 

930 ± 40 -21.4 NA 1020-
1190 

1020-
1175 

Structure S1, floor 558 Upper 
floor layer 

Beta 
154783 

Cow 
bone 

930 ± 40 -21.4 NA 1020-
1190 

1020-
1180 

Structure S4 989 Occupation 
deposit, 
southern 
doorway 

SUERC 
27400 

Cow 
bone 

1075 ± 30 -21.1 NA 890-
1020 

940-1020 

 



4. Discussion 

Integration of the stratigraphic data with existing AMS radiocarbon dates has allowed further 

detailed insights into the chronology of settlement in Iceland and the pattern of occupation and 

abandonment of three key sites. It has been particularly successful at Aðalstræti where the model 

has suggested that the earliest excavated hall in Iceland was occupied by AD 890, very shortly after 

the Landnam tephra deposition of AD 871 ± 2. The model also indicated that the hall was abandoned 

by AD 1020. This adds detail and precision to the timescale proposed by Roberts et al. (2003). 

Although secure initial floor deposits are missing, the date of the earliest occupation is constrained 

by the underlying tephra. The proposed length of occupation is around 150 years maximum, and 

although there could be later hearth deposits that have been cleared out and therefore not 

sampled, this is unlikely given the lack of repairs. It was also possible to test the incorporation of 

typologically dated artefacts into the chronological sequence, which provided improved precision of 

dates. 

The approach was also informative when applied to Hofstaðir, a site with a much more complex 

stratigraphy. On the evidence available it was not possible to reliably estimate the date of first 

occupation of the site but it was possible to propose a date for the use of the early pit house 

between AD 930 and AD 945, a much more precise date than previously obtained. It was also 

possible to identify that the site had been abandoned by AD 1015-1095, which concurs with the 

existing archaeological interpretation (cf. Lucas, 2009: 67, Table 3.1). Sveigakot presented a more 

challenging example as the archaeological record comprised a series of sequences which could not 

be stratigraphically related. Despite these limitations the models provided improved precision of the 

dating of key archaeological events. In addition the approach was used to investigate possible 

stratigraphic relationships and to identify which was most likely sequence of events, aiding the 

interpretation of the site. 

  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Fig. 10. a Modelled calibrated dates from deposits associated with MT, T1 and T2 at Sveigakot. 

Radiocarbon dates in black, tephra dates in green. b Modelled calibrated dates from deposits 

associated with area M midden at Sveigakot. Radiocarbon dates in black, reservoir corrected dates in 

blue, tephra dates in green. c Modelled calibrated dates from deposits associated with MP1 and 

MP3 at Sveigakot. Radiocarbon dates in black, tephra dates in green. d Modelled calibrated dates 

from deposits associated with S1, S4 and S5 at Sveigakot. Radiocarbon dates in black, tephra dates in 

green. e Modelled calibrated dates from deposits associated with MP1, MP3, MT and T at Sveigakot. 

Radiocarbon dates in black, tephra dates in green. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

The adjustments made for reservoir effects were largely successful in the sense that most changes 

produced calibrated dates that were in accordance with other dated material from the same 

context. However, there remain some examples where the adjustments based on the d13C values 

still give radiocarbon dates that are apparently anomalous when compared with samples from the 

same context, particularly two dates on cattle bones from Hofstaðir. A wider study of reservoir 

effects, ideally on paired plant and animal tissues, is needed to ascertain whether the discrepancy is 

caused by unquantified reservoir effects, mixing within the archaeological record or ambiguities 

within the archaeological stratigraphy. 

5. Conclusions 

Archaeologists in Iceland already have excellent chronological control provided by dated tephra 

layers but the approach outlined has been shown to have the potential to provide greater precision 

for dates between the tephras or where they are absent. It has been shown to refine key aspects of 

the previous chronologies at Aðalstræti, Hofstaðir and Sveigakot, and been particularly valuable in 

determining the lifespan of significant structures. The methods used also allowed the incorporation 

of typologically dated material into chronological models and the evaluation of possible relationships 

where stratigraphic evidence is absent. The approach is most informative where there are high-

quality AMS radiocarbon dates and tephra within a well-established stratigraphy, but still yielded 



valuable insights where the archaeological information was less ideal. There remains uncertainty 

about the interpretation of marine and freshwater reservoir effects, and the extent to which the 

proposed corrections are applicable in all situations. As awareness of the potential of such 

approaches increases, models can be produced in advance of dating programmes, to inform the 

selection of samples within the known stratigraphy, thus ensuring the most informative outcome 

within the resources available. Future application of these approaches would be greatly enhanced by 

selection of short-lived material with no reservoir effects for radiocarbon dating, modelling of 

possible outcomes before deciding which material to date and producing more scientific dates from 

throughout site sequences, even where there are tepra layers. 

The approaches taken here are particularly successful due to the precision provided by 

tephrochronology. However, their applicability is not restricted to sites with such controls; the same 

approaches can provide improved precision with combinations of stratigraphy, scientific dates, 

historical sources and typologies. The use of these analyses to reinterpret typological sequences 

shows great potential for systematic re-evaluation of typologically dated material and for the 

evaluation of chronological models in the absence of stratigraphic information. 
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