
The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the

repository record for this item and our Policy Document available from the repository home

page for further information.

To see the final version of this work please visit the publisher’s website. Available access to

the published online version may require a subscription.

Link to publisher’s version: http://dx.doi.org/10.1177/1063293X16647434

Citation: Uddin A, Khan MK, Campean F and Masood M (2016) A Framework for Complex Product

Architecture Analysis using an Integrated Approach. Concurrent Engineering: Research and

Applications.24(3): 195-210.

Copyright statement: © 2016 The Authors. Full-text reproduced in accordance with the

publisher’s self-archiving policy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bradford Scholars

https://core.ac.uk/display/76945694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1177/1063293X16647434

1

A Framework for Complex Product Architecture Analysis
using an Integrated Approach

Abstract

Contemporary design decomposition and synthesis analytical tasks at the conceptual design stage

reply on functional and structural modelling approaches. There is a wide diversity of elements used by

various modelling approaches for information and representation of product architecture, which incurs

difficulties for multidisciplinary engineers working across different phases of design in capturing,

visualising, sharing and tracing consistent yet common knowledge and elements across the function

and structure domains. This prompts for fixation of detail and common modelling knowledge across

both functional and structural analytical approaches which is also critical from automatized software

perspective. A limitation of existing approaches is that they tend to focus more on ‘what’ and less on

‘how’ (and vice versa). This paper proposes an integrated conceptual product architecting approach

that combines and expands the functional and structural modelling approaches, enabling capturing and

tracing knowledge coherently through a common binding domain. This is underpinned by the view

that most interaction requirements amongst the physical components during structural modelling can

be derived from functional modelling. The proposed integrated approach is underpinned by the

critical analysis and synthesis of existing approaches in literature dealing with functional and

structural architecture analysis, integrated within a Multiple Domain Matrix (MDM) to fuse the

knowledge of both solution independent (functional) and dependent (structural) analyses. The

proposed framework is illustrated with a case study of solar robot toy, followed by discussion and

suggestions for future work.

Keywords
Product design, product architecture, functional modelling, structural modelling, and multiple domain

matrix

1. Introduction

In literature, many product architecting frameworks have been proposed and developed based on

multi-layers ranging from integration of new technology with existing product architecture (Ravn et

2

al, 2015) to optimising the product architecture via algebraic analysis based on structural composition

i.e. engineering components (Ko, 2013). The complexity in product development is inherent and

emerges from many domains of the design environment, particularly in the scheme of product

architecture. The definition of product architecture in literature varies and involves either a single or

multiple domains involvement. According to Ko (2013), product architecture is the scheme by which

decomposed components of a product are arranged in modules whereas Ulrich (1995) defines it as the

scheme by which “the function of a product is allocated to physical components”. The product is

usually complex in its requirements, functions, and components domains. Researchers often consider

many inter-related domains which are necessary and useful for the product design and architecture

analysis (Deubzer & Lindemann, 2009; Uddin et al., 2013). In practice, design engineers tend to deal

with product complexity by breaking down the complex problem into smaller problems (Chmara et

al., 2008; Pimmler & Eppinger, 1994). There are two major modelling approaches in engineering

design: functional modelling, also referred to as solution independent analysis, and structural

modelling, i.e. solution dependent analysis by decomposing the product into its sub-components

(Jarratt et. al., 2004). However, the product architecting approaches are still not well understood due

to a lack of simple visual representation, consistent, and detailed knowledge integration within and

across functional-structural domains. The present study focuses on this aspect.

In the functional modelling approach, the function of the product is decomposed into various sub-

functions so that design engineers can search concepts for each of the decomposed sub-function

(Pimmler & Eppinger, 1994; Pahl et al., 2007). From structural basis approach, Design Structure

Matrix (DSM) is readily available in literature and deals with the design of a product through

decomposing and integrating it on structural basis and handling interactions or dependencies between

the decomposed components, mainly via qualitative and quantitative schemes.

The information elements among available various functional and structural modelling domains are

diverse for analysing a product architecture. This causes difficulties with integrating the information

between functional and structural modelling tools due to which multidisciplinary engineers working

across different domains of design with different sets of tools suffer from capturing, visualising,

sharing, and tracing consistent set of knowledge. The design modelling knowledge is also critical

3

from automatized software perspective that often deliver innovative solutions based on algorithms but

first it requires fixation of detail among various problem solving tools on one abstraction level

(Deubzer & Lindemann, 2009). The present study also supports this aspect.

This paper proposes an integrated framework for product architecture definition and analysis that aims

to capture the information of both solution independent and dependent analyses in a structured

manner using a combination of existing tools by synthesising, expanding, and making them

compatible through a common linkage domain. The structure of the remainder of this paper is

organised as follows. Section 2 reviews significant contributions to the research area of product

models for representing complex product architectures from functional to physical domains. Then, the

problem is formulated based on critical analysis of existing models in Section 3. Section 4 presents

the proposed integrated approach steps and discuses information flow and knowledge representation

schemes in it. Section 5 illustrates implementation of approach via a multidisciplinary simple desktop

case study followed by discussion, and conclusions in the Sections 6 and 7.

2. Review of Product Modelling Frameworks

2.1 Definition of Product Architecture

Ulrich (1995) defines product architecture as ‘‘a scheme in which the function of a product is

allocated to physical components.’’ He elaborated it further as: “the arrangement of functional

elements; the mapping from functional elements to physical components; and the specification of the

interfaces among interacting physical components”. Ulrich presented a trailer example (shown in

Figure 1a) to discuss different architecture elements (i.e. functional element and structural element)

and types (i.e. modular and integral) of product architecture. In the modular architecture type, a

product’s components / modules are functionally self-contained (i.e. one-to-one mapping) whereas in

an integral architecture type components are functionally tightly coupled (i.e. one-to-many mapping)

(see Figure 1b). Referring to Ulrich’s architecture definition, contemporary products designs meet all

three requirements and fall into two architecture types. Many other elements (or building blocks) have

also been introduced between functions and components by researchers to define and analyse product

architecture. Following sections discuss such modelling approaches and their architecting elements

4

for product architecture in functional, functional to structural, and structural modelling domains.

Minimise air
drag

Support cargo
loads

Suspend trailer
structure

Transfer loads
to road

Protect cargo
from weather

Connect to
Vehicle

Environment Cargo

Vehicle

Road

External
Entity

Functional
element

Links indicate exchange of signals,
material, forces or energy

TRAILER

Function 1

Function 2

Component 1

Component 2

Function 1

Function 2

Component 1

Component 2

Modular Architecture

Integral Architecture
(a) (b)

Legend:

Figure 1. Product architecture elements and types (adapted from Ulrich, 1995)

2.2 Functional Modelling

A distinct step in function modelling approaches is the establishment of solution neutral function

structure, which is used as basis for the subsequent design tasks to define the physical components

and structure of the product in the early stage of design (Pahl et al., 2007; Ulrich & Eppinger, 1994).

The basic purpose of a function structure is to organize the functions of a product in a coherent

manner. The functional models have a variety of such function structures ranging from hierarchical

trees to flow oriented approaches (Pahl et al., 2007; Campean et al., 2013) as illustrated in Figures 2.

A hierarchical function structure is known as function tree which arranges functions from a product’s

top level overall function down to low level sub-functions which may be decomposed further or to

‘leaf’ functions that cannot be decomposed further as shown in Figure 2a. This function structure does

not arrange functions in a time sequence and lacks such visual representation. Furthermore, it

provides no information on mapping of flows on functions which is also critical. This limitation is

overcome by flow-oriented function structure, introduced by Pahl et al., (2007) shown in Figure 2b,

where the functions are arranged both in terms of flows between them: material (M), energy (E) and

information (I) and also in a time sequence. These flows are often referred as operands (Hubka and

Eder, 1996). However, the states and properties of the operands at input and output are not discussed

and specified in such function structure and lacks such visual representation. It is also essential to take

into account and specify the measurable attributes associated with operands as discussed by Hubka

and Eder (1996). To overcome this limitation, another type of function structure, system state flow

5

diagram (SSFD), is recently introduced by Campean et al., (2013) and Yildirim & Campean (2014),

shown in Figure 2c. This type of representation identifies and arranges the functions associated with

the transition of main and secondary flows from their input states to output states by a set of

measurable attributes. Thus, the SSFD tool is a comprehensive approach for functional modelling

that provides both visual clarity and detailed information.

F 1

F 1.1 F 1.2

F 1.2.2 F 1.2.1

F 1

F 1.1 F 1.2

F 1.2.1 F 1.2.2

Material
Energy
Signals

Material State 1
Attribute 1
Attribute n

Material State N
Attribute N’
Attribute n’F 1

Material State 1.0
Attribute 1
Attribute n

Material State 1.1
Attribute 1'
Attribute n’F 1.1

Material State N.0
Attribute N’
Attribute n’F 1.2

Energy State 1.1
Attribute 1
Attribute n

Main
Flow

Secondary
Flow Material State 1.1.0

Attribute 1'
Attribute n’

Material State 1.1.1

Attribute 1'
Attribute n’

Material State N

Attribute 1'
Attribute n’

F 1.3

(a) (b) (c)
 Figure 2. Representations of elements of functional models

2.3 Function to Structure Modelling

The function domain is often considered as the intermediary between requirement and structural

domains. In the Axiomatic Design (AD) methodology, a product is modelled hierarchically via a

zigzag procedure between functional requirements and design parameters of functional and physical

domains respectively (Suh, 1998). According to Suh (1998), design parameters may be physical parts,

parameters or assemblies. However, concrete decomposition operations on the product description

have not been explained (Chmarra et al., 2008; Komoto & Tomiyama, 2011). Several researchers

(Gero, 1990; Umeda et al., 1996), argued that function to structure domains mapping require

interpretation of physical behavioural elements in between functions and entities for conceptualising

the product architecture which are perceived in various ways by several researchers. In FBS

(Function-Behaviour State) model, behaviour is perceived as the ‘physical phenomenon’ that causes

the change of the ‘states’ of entities (components) of the system (Umeda et al, 1996), shown in Figure

3a. However, no information on operand is stated or visualised. In OPM (Object-Process

Methodology) model, behaviours describe the processes that cause the transition of ‘states’ of an

operand (i.e. flow) and also describe the operation performed by the entities (or objects) of the system

(Soderborg et al, 2002), as shown in Figure 3b. The graphical representation of both OPM and FBS

approaches is relatively complex and require learning of many building blocks (or notions) for

6

product modelling. A similar concept of working principle (i.e. physical principle) has also been

proposed by Pahl et al (2007) which supports for searching concepts via Morphologicaly Matrix/Chart

that could satisfy the developed function structure. Concept generation is an important modelling

activity that often provides various working solutions for a same function structure of a product. The

conventional morphological schemes are often based on abstract knowledge of functions, and

operands. Woldemichael & Hashim (2011) refer to working principles as concepts in their

morphological scheme. In their concept generation method, the input is the set of sub-functions along

with inputs and outputs operands’ descriptive information and on the basis of which the output is the

set of alternative concepts displayed on morphologicaly chart that can satisfy those sub-functions.

However, their concept generation scheme does not discuss information related to flowing operand’s

attributes and constraints. Constraints are often regarded as attributes on operands variables such as

parameter values, position, and orientation etc. (Cao & Fu, 2011) that help in minimising the solution

space. Constraints help in determining the accuracy, sufficiency, and completeness of design

decisions (Lin & Chen, 2002).

Function

Physical Feature

Function Function

Physical Feature

Entity 1

Entity 2Entity 3 Relation Relation

Physical Phenomenon 1 Physical Phenomenon 2

Entity 1 – State 2 zone Entity 1 – State 1 zone

Function Architecture

Operand (Flow)

Attribute

State 1 State 2

Process

Process Support Object

Designed Object

Agent Object

System

Operations (Op)

 States (St)

Physical Parts (Ph)

Fu
nc

tio
n Domain 1

Domain 2

Domain 3

Domain 1 Domain 2 Domain 2

Op Stout PhOp

Stin St Phin

PhOp Phout Ph

(a) (b)

(c)

Figures 3. Representations of function to structure modelling approaches

These function to structure modelling approaches involve many complex, overlapping and diverse

notions that engineers often find hard to grasp, implement, and integrate them. Also it is hard to

differentiate and visualise interactions within and across various domains separately via such

graphical approaches. To overcome such limitations, many matrix-based approaches, such as Design

7

Structure Matrix (DSM), Domain Mapping Matrices (DMM) and Multiple Domain Matrix (MDM)

(Deubzer & Lindemann, 2009; Lindemann et al., 2009) have also been developed for representing

product architecture due to their simple visual appeal and for managing interactions both within a

single and across multi-domains. Matrix based approaches have the ability to be generated through

functional models to maintain consistent design strategy (Duebzer & Lindemann, 2009).

The applications of MDM approach have continuously increased over the last few years in product

design (Lindemann et al., 2009). Among the existing MDM approaches, an inspiring framework is

introduced by Deubzar & Lindeman (2009) that supports product architecture analysis by using

operations, states, and physical components’ domains, shown in Figure 3c. They divorce function

description into operation (via verb) and operand state (via noun) domains and map interactions

between them. This framework supports in deriving solutions based on given requirements in

operations and state domains. However, the detail knowledge in terms of operands’ states and their

properties is not considered. The framework is visually simple and useful to accumulate the

knowledge of both solution independent and dependent analysis and can be integrated with functional

models. Due to such reasons, this framework is used in this paper.

2.4 Structural Modelling

A DSM approach is widely recognized for modelling the product in a structural domain. Looking at

the structural domain of a product, a DSM approach decomposes the product into its

components/parts/entities and represents its architecture by capturing interactions/relationships

between the components (Browning, 2001). Multiple types of interactions can be specified between

interacting entities as realized by researchers (Pimmler & Eppinger, 1994; Martin & Ishii, 2002;

Jarratt et al., 2004). Pimmler & Eppinger (1994) used static DSMs to identify and examine alternative

product architectures and described four types of interactions referred as spatial (S), material (M),

energy (E), and information (I) between the decomposed entities along with the quantification

scheme that facilitated weighing interactions amongst them, as shown in Figure 4a. Many researchers

(Otto & Wood, 2001; Rahmani & Thomson, 2012; Hamraz et al., 2013; Uddin et al, 2015) have

adopted and (Sosa et al., 2003; Jarratt et al, 2004) extended this four-interaction taxonomy. For

example, Sosa et al. (2003) extended the four-exchange taxonomy with an introduction of fifth type as

8

'structural' (P) that indicated the requirements related to transferring loads or containment between

two interfacing entities. Jarratt et al (2004), looking from an engineering change management

perspective, also used the concept of S/E/M/I interactions between two interacting components but

with an addition to multiple-type linkages definitions with steady and dynamic states, shown in Figure

4b. Martin & Ishii (2002) used the concept of specification flows in the product platform architecture.

In their component-based DSM, an interface is characterized by specification flows that seem to

represent a combination of flowing operands and parameteric constraints, shown in Figure 4c. As a

conclusion, a product is modelled via DSM on structural basis thereby representing three operands

based interactions (Energy, Material, Information) and also one to two physical based interactions

(Spatial, Structural).

Fan

Heat Sink

Pressure
curve
X dim
Z dim

Pressure
resistance

X dim
Z dim

Fa
n

H
ea

t S
in

k

Radiator

Engine
Fan

2 0

0 2

2 0

0 2

R
ad

ia
to

r

En
gi

ne

Fa
n

Cell
Legend
S E
I M

Cylinder
Head

Assembly

Ms. Md. Ts
Ed
5:8

Ms. Md .Ts
5:8

Ms: Mech.
Static

Md: Mech.
Dynamic

E: Electrical

Cylinder
Block

Assembly

Cylinder
Head

Assembly

Cylinder
Block

Assembly

(a) (b) (c)
Figures 4. Representations of structural models and their information elements

3. Contemporary Analysis and Critique

A number of product modelling approaches have been discussed in previous section in the context of

functional, function to structure mapping, and structural domains. There are a number of

commonalities in these modelling approaches. For instance, the concept of multiple flows or (or

interactions) i.e. E/M/I between functional and structural elements is quite distinct as discussed in

Section 2; however, following differences and issues are observed.

From design effort perspective, it is observed, for conceptualising the product architecture, theories

like AD, and OPM, on the one hand, support the product evolvement between different levels, whilst

knowledge-based (i.e. rule-based) approaches do not. On the other hand, cross domain matrix

9

approaches such as MDM support the product analysis but do not discuss design solutions search

activities based on functional domain.

From visualisation, domains separation, and detail knowledge perspectives; on one hand

methodologies like, OPM, and FBS analyse product architecture via dense graphical representations

with several behavioural elements and diverse notions between function and components but lack to

provide compact visual representation without showing the interactions or shared attributes both

within as well as across domains. On the other hand, matrix based approaches analyse product

architecture with compact and simple visual representation and identify interactions both with and

across function and component domains, lack to cover both detail and shared attributes knowledge in

between them. Both views are essential and have their pros and cons. Thus an integrated approach

that could separate and show binding elements common across both functional and structural domains

among different sets of tools will support product architecture analysis in a more appropriate and

consistent way.

The other central issue in existing approaches is the lack of clear discussion and representation on

common and detailed information link across both functional and structural domains with the

emphasis that how mostly interaction requirements between components can be derived from

functional elements. This is also critical from tools’ information integration and software automation

perspective.

This fact is formulated and elaborated below in typical knowledge rule format, and illustrated within

Figure 5;

IF an operand object E has input state (Esti) with measurable attributes

 (Ai) and constraints (Ci)

AND is an output of Function F2 but input to Function F3,

AND IF Function F2 is mapped/allocated to Component C1,

AND Function F3 is allocated to Component C3,

THEN there is an understood requirement that the interaction between Components C1 and

C3 will possess operand E with same state and measureable attributes at input-output.

10

The operand E can be a material, or an energy or information related.

C2

 State Domain

C1F 1 F 2

F 3 C3

Functional Domain Structural Domain

Esti
<Ai, Ci>

Esto
<Ao, Co>

Input/Output Flows’ States in
functional and structural domain

Inter-dependence from F
to C i.e. across domains

Intra-dependence
i.e. within a domain

Key:

Esti
<Ai, Ci>

Figure 5: Proposed structure and elements for functional to structural domains mapping

Therefore, looking at Figure 5, a product architecture definition is revised from Ulrich’s (1994)

definition and the following set of requirements to be met by any product architecting approach, are

extracted based on the existing literature.

• Req. 1: the arrangement of functional elements (as discussed in Section 2.1) but with

measurable attributes and specifications (or constraints) of input-output flows (as discussed in

Section 2.2)

• Req. 2: the mapping from functional elements to chosen physical components (as illustrated

in Section 2.1) but with clear intermediary domain (as discussed in Section 2.3) and,

• Req. 3: the specification of the interfaces among interacting physical components (discussed

briefly in Sections 2.1 and 2.4) but both form (P, S) and operands (E, M, I) related

interactions (as summarised in Section 2.4)

Furthermore, there is a need for an integrated approach that takes into account aforementioned central

issue, re-visited requirements, and consideration of the following issues for product architecture

analysis:

• Req. 4: To deliver a balanced architecting process for the design effort, both across solution

independent (what) and dependent (how) analysis.

• Req. 5: To support the consistent knowledge transferability between multidisciplinary

engineers dealing with different sets of tools

11

• Req. 6: To support both types of product architecture analysis, i.e. modular and integral

architectures.

4. Framing the Proposed Integrated Approach

The current authors have selected three key tools: SSFD, Morphologicaly Chart (MC) and MDM for

following reasons. For solution neutral analysis and function structure development, SSFD is the

comprehensive tool (as discussed in section 2) and thus meets Req. 1 (articulated in section 3). It

involves representation of functions and operands states knowledge except constraints elements and is

expanded in this aspect. The conventional MC helps in searching and guides in choosing potential

concepts for identified functions and operands and thus meets Req. 2. The conventional MC lacks

discussion and representation of constraints and is thus expanded in this aspect. The MDM fulfils

Req. 2 and Req.3 as it helps identifying, mapping and tracing interactions both within and across

domains. The analytical knowledge from SSFD, and MC based on constraints on operands’ states can

be transformed into MDM. The knowledge is defined and captured through graphical tools such as

SSFD and MC whilst dependencies and interactions are traced through matrix based tool MDM.

Identify the top level need

Identify operand states & sub-
functions

 Analyse state-function
domains dependencies

Search for concepts

 Analyse state-component
domains dependencies

Extended
SSFD

Function-
Sate MDM

Morphology
Chart

State-
Component

MDM

Function-
State-

Component
MDM

Integrate domains information
for whole product architecture

analysis

So
lu

tio
n

in
de

pe
nd

en
t

ph
as

e
So

lu
tio

n
de

pe
nd

en
t

ph
as

e

Figure 6. Proposed integrated approach - process steps and information flow in tools

The integrated approach process steps are presented, on the left side of Figure 6. It involves six key

steps: from the customer’s top level need to integrated product architecture analysis. The tools’

sequence and information flow for the integration of both phase analysis is shown, on the right side of

Figure 6.

12

4.1 Solution Independent Analysis Phase and Representation Elements

Referring to Figure 6, the solution independent phase is based on two key tools: System State Flow

Diagram (SSFD) and Function-State (FS) Multiple Domain Matrix (MDM).

4.1.1 System State Flow Diagram (SSFD)

A distinct feature of SSFD is its ability to show transitions in measurable attributes with main and

secondary operands’ input and output states based on graphical representation. The generic structure

of SSFD is shown in Figure 7 and follows the basic principles of state diagrams (Harel, 1987): a box

represents a flowing object’s (or operand’s) states and an arrow denotes the function required to

achieve the state transition. A flowing object or an operand can be material (e.g. bread, etc.), energy

(e.g. solar power, etc.) or information (digital or analog signal or data) related and can be represented

with attributes such as operand temperature, operand velocity etc. Authors extend box representation

by attaching constraints underneath attribute box as shown in Figure 8a. Originally, in SSFD, an

operand object is composed of attributes <An> shown in Figure 7. Now with extension of constraints

<Cn>, an operand object is composed of set <An, Cn>, as shown in Figure 8a. Three types of

constraints are adapted from literature (Cao and Fu, 2011); a constancy shows an operand stability,

track shows an operand movement direction and range (R) shows associated measuring minimum and

maximum values. For example, shown in Figure 8a, an operand ‘rotational energy’ at its input state is

composed of single attribute <Ai: angular velocity> and constraints <Ci: Constant, R, Clockwise>.

Operand
Input State 1 Function

Attribute 1
...

Attribute n

Operand
Output State 2

Attribute 1'
...

Attribute n'

Figure 7: SSFD representation (adapted from Yildirim & Campean, 2014)

Figure 8. is provided at the last page.

4.1.2 Function – State Multiple Domain Matrix (FS-MDM)

The knowledge is then transferred and traced by FS-MDM tool (shown in Figure 8b) comprising of

function domain DSM, operands’ state domain DSM and two function vs states’ FS-DMMs, driven

Formatted: Font color: Text 1

13

by SSFD. The purpose of FS-MDM is to divorce the functions from operands’ states in order to

visualise each domain separately along with analysing the interactions within and across the two

domains (which are usually represented in a unifying manner in SSFD and can be hard to visualise the

dependencies between and across domains). The FS-MDM groups states input-output pair knowledge

within a state domain as well as maps interactions across a functional domain.

4.2 Solution Dependent Analysis Phase and Representation Elements

In this phase, again two key tools are available to engineers: the morphologicaly chart (MC) and the

State-Component (SC)-MDM.

4.2.1 The Morphologicaly Chart (MC)

In this paper, the MC is incorporated with constraints elements, as shown in tabular format in Figure

8c. Their importance and consideration in MC are now discussed from concepts generation and design

decisions accuracy perspectives.

In conventional morphological y chart, a number of concepts (see column C5 in Figure 8c) are

searched and shortlisted based on functions description (column C1) and then input-output operands

description and attributes knowledge (column C2-C3) is used for decision making as shown in Figure

8c. However, at times such knowledge for decision making becomes insufficient, inaccurate, and

leads to same concepts. For example, a function description ‘change rotational energy’ (in Figure 8c)

can be used to search three concepts ‘pulley belt mechanism’ (row R2), ‘gear pair box’ (row R1), and

‘crank rocker’ (R3). Then input-output operands knowledge i.e. ‘rotational energy’ in and ‘rotational

energy’ out along with attributes ‘angular velocity’ again would shortlist same three concepts. But if

constraints (Column C4) on input and output operands’ attributes are specified then a desired concept

can be further shortlisted. For example, if a designer specifies constraints on angular velocity attribute

as <constant magnitude, clockwise direction> at input and also <variable magnitude, to-and-fro

direction> at output, then a single potential concept ‘crank rocker’ would be available, shown in

Figure 8c. It should be noted that this paper focuses on what kind of information can be used and

automated to search for a product solution within developed morphologicaly scheme and not on the

development of grammar rules for automation search mechanism. Designers can use functions and

14

states’ knowledge for obtaining solutions by providing relevant depth of information in the database

search engine to derive possible concepts.

4.2.2 State-Component Multiple Domain Matrix (SC-MDM)

Since the input-output flows’ pair knowledge (along with the function in the morphological y

charttable) is used to generate a product design solution, therefore the concepts that fulfil those

operands’ constraint information are then placed into State-Component MDM as shown in Figure 8d.

The state DSM knowledge remains the same, both across function and structure domains. The SC-

DSM helps in identifying and visualising that output of one solution (e.g. angular velocity from C1:

crank rocker) is the input to the other (e.g. angular velocity to C2) shown in Figure 8d. Similarly

other interaction operands related to material (M) and information (I) can be traced between C1 and

C2. The next step for design team in the same DSM is to identify and specify physical interactions

(P). Therefore, SC-MDM first divorces the components from operands’ states and then maps out the

relevant relationships between and across them. Consequently, the selected concepts in the component

DSM are represented via four types of interactions collectively i.e. P, M, E, I with their specifications.

4.3 Integrating Knowledge Across Analysis Phases

In the final step, the knowledge of both phases is integrated and visualised into a single framework

named as Function-State-Component (FSC) MDM and represents the whole product architecture in a

structured manner, shown in Figure 8e. This matrix also helps in mapping and tracing the

relationships between function, state and component domains. Although MDM analysis is conducted

on the modelling concepts and framework given by Deubzer and Lindemann (2009), however, the

representation of knowledge of functions, states, and components within FSC-MDM of proposed

integrated approach is different. For example, the interactions in Deubzer’s MDM are represented via

qualitative and quantitative schemes between the operation and states’ domains whereas the proposed

approach in FSC-MDM covers the input-output operands states’ specifications within state and

component domains. The state domain matrix also groups input-output states pair knowledge which is

not represented in similar fashion in the state domain of Deubzer and Lindemann’s (2009) MDM

framework.

15

5. A Multidisciplinary Case Study: Solar Robot Toy

A multi-disciplinary case study of a domestic scale Solar Robot Toy (SRT) was employed to illustrate

the proposed framework. A specific design problem in the SRT i.e. movement of arm or leg has been

considered to demonstrate the working of the proposed integrated approach. Solar energy powers the

solar board of the SRT and is absorbed via thermal collectors, and this energy is then used to drive

mechanical components. The SRT receives solar energy as an input and generates rotational energy to

rotate its arm/leg as an output. In order to keep the case study scope ‘brief’ for the purpose of

illustrating the approach, only the energy related operand is considered here.

5.1 Identifying the Top Level Need

At the desired abstract level, the top function of SRT is to ‘convert solar energy into rotational

energy’ in order to rotate the robot arm a full 3600. It is represented by using an extended-SSFD tool,

shown in Figure 9. The input operand is the ‘sunlight or solar energy’ (i.e. flowing object/operand)

whose measurable attribute is ‘solar power’ that has got multiple constraints and needs to be

converted into an output state of ‘rotational energy’ possessing attribute of ‘angular velocity’ with

desired constraint values. The constraints on the operands’ attributes help in establishing the desired

target values to be achieved by the designed product.

Operand State 1
Solar Energy

Function: Convert Solar
Energy into Rotational Energy

Attribute (Ai)
Solar Power (W/m2)

 Constraints (Ci)
 - Constant
 - 5 - 20
 - Crossflow

Operand State 2
Rotational Energy

Attribute (Ao)
Angular Velocity (rad/s)

 Constraints (Co)
 - Variable
 - 300 - 400
 - Anticlockwise

Figure 9. Solar Robot Toy (SRT) high level representation via extended SSFD

5.2 SSFD Tool: High Level Function Decomposition

The design team can decompose the high level function into sub-functions with the identification of

intermediate states via SSFD, as shown in Figure 10. The engineers at this stage may perform many

iterations for function structure development, thereby identifying requirements associated with

attributes and constraints on intermediate states of operands and corresponding sub-functions. For

16

example, the identified intermediate state ‘electrical energy’ may have two types of constraint e.g.

constancy constraint can be either of <constant magnitude> or of <variable magnitude>. In this case,

electrical energy state is defined with a constraint of <constant magnitude>.

Solar Energy Convert Solar Energy
into

Electrical EnergySolar Power (W/m2)

- Constant
 - 5 - 20

 - Crossflow

Electrical Energy

Electric Current (mA)

 - Constant
 - 50 - 100

 - Direct Current

Convert Electrical Energy
into

Rotational Energy

Rotational Energy

Angular Velocity (rad/s)

 - Constant
 - 200 - 400
 - Clockwise

Rotational Energy

Angular Velocity (rad/s)

 - Variable
 - 300 - 400

 - Anticlockwise

Change
Rotational Energy

 Figure 10. The main operand representation with sub-functions via SSFD

5.3 Knowledge Transformation into FS-MDM

The function structure obtained via the SSFD is then divided into function and state domains’

knowledge and relevant information is organised and placed into FS-MDM as shown in Figure 11.

Once the identified sub-functions and states are placed into FS-MDM, the dependency within each

domain and across domains is then mapped. For example, across domains (i.e. from function to state),

sub-function ‘convert S.E (solar energy) to E.E (electrical energy)’ has input state ‘solar energy’ and

output state ‘electrical energy’ so the relevant cells in state domains are shown by ‘I’ and ‘O’ symbols

respectively. Similarly, the same procedure is repeated for other sub-functions and states. Also within

a single domain, relevant mappings are performed e.g. in the function domain, ‘convert E.E (electrical

energy) to R.E (rotational energy)’ is dependent on ‘convert S.E to E.E’ whereas ‘change R.E

(rotational energy)’ is dependent on ‘convert E.E to R.E’ hence relevant cells are marked by ‘X’. The

same applies to the state domain, relevant input-output states pair knowledge is aggregated which

reveals a states’ transition information without function.

5.4 Morphologicaly Chart (MC)

The possible concepts and working solutions for the developed SRT function –structure are then

explored via MC. For example, designers can obtain two solutions of ‘DC-motor’ and ‘AC-motor’

using an information of function: ‘convert electrical energy into rotational energy’, and also

specifying ‘current’ as an attribute at input state and ‘angular velocity’ as an attribute at output state

(rows R5 & R6 shown in Figure 8c). After this, further information of constraints is specified on the

attributes then two different concepts filter down to one concept. For example, entering the constraints

17

information on input current attribute (constant, DC, and range values) and on output angular

velocity attribute (constant, clockwise, and range values) associated with function ‘convert electrical

energy into rotational energy’ would filter ‘DC motor’ concept only. Similarly, other concepts ‘Gear

Box’ and ‘Solar Board’ are explored for SRT’s sub-functions ‘change rotational energy’ and ‘convert

solar energy into electrical energy’ respectively and can then be grouped into a working solution i.e.

‘Solar Board + DC Motor + Gear Box’.

5.5 Knowledge Transformation into SC-MDM

The concepts obtained in previous step are then placed in SC-MDM shown in Figure 11. The SRT’s

SC-MDM shows engineers which concepts are responsible for which operands states’ transitions.

Furthermore, the SC-MDM shows that what sort of interaction operand exists between two

components and also that it is an output of one component but input to another. For example, ‘Solar

Board’ will deal with input (I) operand ‘solar power’ and will deliver ‘electric current’ as an output

attribute (O) shown in Figure 11. This output of ‘Solar Board’ becomes the input for ‘DC-Motor’.

Similarly, the design team can trace and visualise the interactions between other components rather

than brainstorming. After this, the physical specifications can be defined between components’

interfaces.

5.6 Unifying Knowledge in a Single Framework

The FS-MDM and SC-MDM analysis are then combined in the FSC-MDM which also helps in

tracing the relationships between functions and components domains as shown in Figure 11. For

example, ‘convert S.E into E.E’ is achieved via ‘Solar Board’ and the corresponding cell is mapped as

‘X’. It should be noted that the analysed problem in SRT is of modular architecture nature (referred

to Figure 1b) in which a single function is allocated to a single component which is observable in

Figure 11.

18

F3: Convert
Solar Energy
into Electrical
Energy

X

F3

I

S1: Solar
Energy

S1

S2:
Electrical
Energy

O

Solar Power
- Constant
- 5 – 20 W/m2

- Cross flow
Elect. Current
- Constant
- 50 – 100 mA
- DC

S2

O

F1: Convert
Solar Energy
into Electrical
Energy

F2: Convert
Electrical
Energy into
Rotational
Energy

F3: Change
Rotational
Energy

S1: Solar
Energy

S2:
Electrical
Energy

S3:
Rotational

Energy

S4:
Rotational
Energy @

Arm

C1: Solar
Board

C2: DC
Motor

F1: Convert
Solar Energy
into Electrical
Energy

F1

I

X

F2: Convert
Electrical
Energy into
Rotational
Energy

X

F2

I

X

C2: DC
Motor

X

I

(E)
Electric Current

C2

C3: Gear
Box

X

I

(E)
Angular Velocity

S3:
Rotational

Energy

O

Elect. Current
- Constant
- 50 – 100 mA
- DC
Angular Velocity
- Constant
- 200 – 400 rad/s
- Clockwise

S3

O

S4:
Rotational

Energy
@Arm

O

Angular Velocity
- Constant
- 200 – 400 rad/s
- Clockwise
Angular Velocity
- Variable
- 300 – 400 rad/s
- Anti-Clockwise

S4

C1: Solar
Board

X

I

C1

XC3: Gear
Box C3O

 (P)
-Operating Temperature
(20 - 50 oC)
- Operating Torque
(0.18 mNm)

(P)
- Size
(25 : 1)
- Operating Voltage
(4.5 V)

 (P)
-Operating Temperature
(20 - 50 oC)
- Operating Torque

(0.18 mNm)

 (P)
-Operating Voltage
(0.5 – 18 V)
- Unit Weight
(0.03 – 0.1 Kg)

The semi filled diamond of S4 in row shows the final state must provide by design and also that output rotational energy at arm is not used further as an
input. The semi filled diamond of S1 in column shows the initial state acquire by design and also that input solar energy is not generated as an output

FSC -
MDM

Figure 11. SRT architecture analysis via FSC-MDM for SRT

In most cases, a product can possess integral architecture nature i.e. a single component can perform

more than single function or inversely speaking a single function can be achieved by more than a

single component (recalled Figure 1b). According to Ulrich (1995), “an integral architecture includes

a complex (one-to-many) mapping from functional elements to physical components and/or coupled

interfaces between components”. If a modification to same existing design of the SRT (shown in

Figure 11) is required; for example, a robot arm of SRT should work when there is no sunlight, the

new functionalities such as ‘Store Energy’ are analysed via SSFD and solution is searched via MC

19

and then the updated information can be visualised via MDM shown in Figure 12 (with only relevant

information). This would reflect and provide the overview of whether the SRT product architecture is

of modular nature or integral design as can be seen from Figure 12 that more than one function is

allocated to a single component ‘Solar Board’.

Figure 12. SRT architecture analysis with an inclusion of different design problem

In a similar way, the approach can be applied depending upon the context of the defined problem for

the whole SRT and at any level of abstraction. Thus, the FSC-MDM framework has the ability to not

only manage multiple relationships with detailed information within and across functions, operands’

states, and components domains in consistent and structured manner but also support in analysing

both modular and integral architecture types of products and hence fulfil requirements Req. 4 to 6

(articulated in section 3).

6. Discussion: Benefits of Proposed Integrated Approach

The proposed approach shows consistent information flow in a way that functional and structural

elements share the same type of input-output states’ specifications. It also supports in deriving

physical components’ E/M/I interaction requirements which as a whole is visualised in the FSC-

MDM. The state domain is the key linkage, binding the function and component domains in a

S1: Solar
Energy

S1: Solar
Energy

C2: DC
Motor

F3: Convert
Solar Energy
into Electrical
Energy

X

X

F3

I

X

O

Solar Power
- Constant
- 5 – 20 W/m2

- Cross flow
Energy Load
- Periodically
- 2 – 3 mAh
...

S3:
Energy
Stored

O
Solar Power
- Constant
- 5 – 20 W/m2

- Cross flow
Elect. Current
- Constant
- 50 – 100 mA
- DC

F1: Receive
Solar Energy

F2: Store
Solar Energy

F3: Convert
Solar Energy
into Electrical
Energy

...

C1: Solar
Board

F1: Receive
Solar Energy

F1

X

F2: Store
Solar Energy

X

F2

X

X

X

X

I

C1

C1: Solar
Board

FSC -
MDM

S2: Solar
Energy

Received

S4:
Electrical
Energy

I

Solar Energy Receive
Solar EnergySolar Power (W/m2)

- Variable
 - [R]

 - Crossflow

Solar Energy Received

Solar Power (W/m2)

- Constant
 - 5 - 20

 - Crossflow

Convert Solar Energy into
Electrical Energy

Electrical Energy

Electric Current (mA)

 - Constant
 - 50 – 100

 - Direct Current

Convert
Electrical

Energy into
Rotational

Energy

 Energy Stored

Energy Load (mAh)

- Periodically
 - 2 - 3

 - Positive-Charge flow

Store
Solar Energy

Functional Domain

C1: Solar
Board

 Solar Power
(W/m2)

Energy Load (mAh)

 Electric Current
(mA)

Structural Domain

20

coherent and structured manner with detailed information. An application of the approach to the

Solar Robot Toy (SRT) is also discussed in following paragraphs from the perspectives of engineering

change management and generation of different architectures.

Design engineers working across different phases of design can trace the changes from top-down and

bottom-up in FSC-MDM. Firstly, from bottom-up perspective, the interactions between components

are based on functions and states information rather than brainstorming. For example, in the case

study, the DC-Motor and Solar Board share electric current (energy operand) in which the current is

an input to DC-Motor and output from Solar Board (see Figures 11 and 13). Secondly, the same

components based DSM shows that the DC Motor provides specifications information to Solar Board

and Gear Box or, inversely speaking, the Solar Board and Gear Box require the specific information

from the DC-Motor such as operating voltage, motor weight, and motor size (see Figure 13). This

managed information helps the designers to visualise that if they change or replace a DC-motor then

the specifications need to be carefully handled for other components. Any change in the DC-motor

will cause the Solar Board specifications to change to meet the DC-motor specifications; similarly this

will also impact on the corresponding functions and states all the way up. This distinct feature is

observable in Figure 11. Hence these two interactions specifications (i.e. operands and form related)

in components DSM not only help the final conceptual design but also the assembly design and/or

from change management perspective.

Solar Board DC Motor Gear BoxE

-Operating Temperature
(20 – 50 0C)

-Operating Torque
(0.18 mNm)

-Operating Voltage
(0.5 – 18 V)

-Unit Weight
(0.03 – 0.1kg)

-Operating Voltage
(4.5 V)
-Unit Size
(25:1)

P

Ang. VelocityElec. Current

E

Figure 13: Energy operand (E) and physical form (P) related specifications between DC Motor and

adjacent components of SRT

Secondly, from a top-down perspective, if any functional element is changed or updated at the top

level then it will also impact all the way down to component levels and the interactions information

21

may vary between them. For example, the product architecture solution based on Solar Board + DC-

Motor + Gear Box was selected for a defined problem. However, if the problem is changed, e.g.

assuming that specification for arm rotation is changed from ‘0-3600 rotation to 0-1800’ <i.e. Range>

and the arm should return back from 180-00 <i.e. Track> then the design team will need to look for

another solution; e.g. ‘Crank Rocker’ from the morphologicaly chart (see Figure 8c with row R3)

meets the same sub-functional and states requirement fitting with the new constraint conditions. In

that case, the product architecture solution would be Solar Board + DC-Motor + Crank Rocker and

will require the designers to manage the specifications and interactions between components

accordingly. This illustrates that the proposed integrated approach supports both engineering change

management and different product architectures generation activities.

7. Summary, Conclusions and Future Work

The main aim of this paper was to present an integrated and structured design approach for complex

product architecture in the context of solution independent and solution dependent analysis based on

tools that are currently in practice. The review of current methods’ and tools’ representational

elements and information for conceptualising the product architecture across functional and structural

modelling domains pointed out the gaps and the need for a novel approach. The novel approach is

built-upon the adaptations of principles of SSFD, MC and MDM tools available in literature. The

SSFD tool helps for functional decomposition, MC for searching solutions and MDM for design

architecture synthesis. The framework provides a systematic and balance procedure to perform both

solution independent (i.e. what) and solution dependent (i.e. how) analysis. A core binding linkage

between the function and structure domains is the state domain with measurable set of attribute and

constraints that helps in finding solutions, extracting the interaction requirements in structural

modelling from functional modelling and keeps the information in a structured way. A

multidisciplinary case study, i.e. Solar Robot Toy (SRT) was used to illustrate the proposed integrated

approach.

Although the proposed approach serves its primary objectives articulated in section 3, however it has

some limitations which are discussed and considered worthy for future work.

22

The proposed integrated approach has a systematic and consistent structure in terms of information

sharing between different domains and tools but is conceptually document based in current shape

which takes time and thus requires a software support to populate, automate and handle the

information among various tools. For example, the FS-MDM, SC-MDM, and FSC-MDM matrices

would be automatically generated based on information feed into SSFD and MC by design engineers.

In the future work, a set of software requirements will be formulated for embedding the integrated

approach into a software package.

Since, the approach involves a matrix based tool, the FSC-MDM results in establishing and

completion of large matrices which is also a common practice in engineering design. For example, the

matrix based approaches such as QFD (Quality-Function Deployment) are often applied in

engineering practice and frequently generate large matrices. It is no surprise that same applies to

FSC-MDM and hence, relatively large documents are expected while implementing the approach on

many industrial and real world complex products such as automotive engines, and aeroplanes etc. At

the moment framework mainly focuses on technical domains and internal structure of the product.

There are other matrix based approaches such as PRD model (Product Requirement Development) of

Bonev et al, (2013) that provide compact visual overview and insights on the internal relations of the

product as well as integrate business aspects along with the requirements coming from different

stakeholders thereby assessing the development tasks of a physical product from redesign or changes

perspective. In future, to allow for more comprehensive support, it would be explored how other

domains related to business and different stakeholders can be integrated into the proposed integrated

approach.

Though the approach has filled the gaps in using and extending the existing tools and integrating them

in a structured manner, however at the same time few compromises were made in certain tools. For

example, throughout the approach, the input-output operands’ states have been defined and

considered with only single attribute and its multiple constraints. According to SSFD (Yildirim &

Campean, 2014), a state is a generic object which can be described by a set of multiple measurable

attributes, rather than a single attribute (see Figure 7). For example, sunlight (solar energy) can

possess multiple attributes i.e. solar power, solar intensity or solar temperature etc. In the future, it

23

will be researched on how multiple attributes on both single and multiple operands along with

multiple constraints can be managed within the same approach and it will be assessed how this can

impact the integrity of the approach. This may change the structure of morphological chart since it

currently supports in identifying the concepts based on a function having one input-output states pair

information underpinning a single attribute but multiple constraints.

References
 Bonev, M, Wörösch, M, Hauksdóttir, D and Hvam, L. (2013) Extending Product Modeling
Methods for Integrated Product Development.” Proceedings of the 19th International Conference on
Engineering Design (ICED13) : Design for Harmonies. Seoul, Korea, Republic of: The Design
Society,
219–28.

Browning, T. R. (2001) Applying the design structure matrix to system decomposition and
integration problems a review and new directions. IEEE Transactions on Engg. Management, 48(3):
292-306.

Blackenfelt, M. (2001) Managing complexity by product modularisation. PhD Thesis, Royal
Institute of Technology, Stockholm, Sweden.

Campean, F., Henshall, E., & Rutter, B. (2013) Systems engineering excellence through
design an integrated approach based on failure mode avoidance SAE Int. J. Mater. Manf., 6(3):389-
401.

Campean, F., Henshall, E., Yildirim, U., Uddin, A., & Williams, H. (2013) A structured
approach for function based decomposition of complex multi-discipinary systems Proceedings of the
23th CIRP design conference. 113-123.

Cao, D.X., and Fu, M.W., 2011. A knowledge-based prototype system to support
product conceptual design. Computer Aided Design & Applications, 8(1), 129-147.

Chmarra, M.K, Cabrera, A.A.A, van Beek, T., D'Amelio, V., Erden, M.S., &Tomiyama, T.
(2008) Revisiting the Divide and Conquer Strategy to Deal with Complexity in Product
Design. Mechatronic and Embedded Systems and Applications, IEEE/ASME International
Conference: 393 – 398.

Deubzer, F. & Lindemann, U. (2009) Product architecture definition and analysis using
matrix-based multiple-domain approach. Proceedings of ASME IDETC/CIE. 1197-1205.

Gero, J. (1990) Design prototypes a knowledge representation scheme for design, AI
Magazine, 11(4): 26-36.

Hamraz, B., Hisarciklilar, O., Rahmani, K., Wynn, D.C., Thomson, V., & Clarkson, P.J.,
(2013) Change prediction using interface data. Concurrent Engineering: Research and Applications
21: 141–154.

Harel, D. (1987) Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8: 231-274.

Hubka V and Eder WE (1996) Design science: introduction to the needs, scope and
organisation of engineering design knowledge, London, Springer-Verlag.

Jarratt, T. A. W., Eckert, C., & Clarkson, P.J. (2004) Development of product model to
support engineering change management. Proceedings of TMCE April Switzerland

Ko, Y.T. (2013) Optimizing product architecture for complex design. Concurrent
Engineering: Research and Applications 21(2) 87–102.

Komoto, H., & Tomiyama, T. (2011) A theory of decomposition in system architecting.
International Conference on Engineering Design

Konig, C., Kreimeyer, M., & Braun, T. (2008) Multiple-domain matrix as a framework for
systematic process analysis. 10th Int. Design Structure Matrix Conf. November Stockholm Sweden

Lin, L and Chen, L-C. Constraints modelling in product design. Journal of Engineering
Design, 2002 13(3): 205-214.

24

Lindemann, U., Maurer, M., & Braun, T. (2009) Structural Complexity Management.
Springer Berlin Heidelberg.

Martin, M. V. and Ishii, K. (2002) Design for variety developing standardized and
modularized product platform architectures. Research in Engineering Design, 13: 213-235.

Otto, K., Wood, K (2001) Product Design: Techniques in Reverse Engineering and New
Product Development. Prentice-Hall, New Jersey.

Pimmler, T. U. & Eppinger, S. D. (1994) Integration analysis of product decompositions.
ASME Design Theory and Methodology Conference, September Minneapolis.

Pahl, G, Beitz, W., Feldhusen, J., & Grote, K.H. (2007) Engineering design a systematic
approach, Springer.

Rahmani, K., Thomson, V., (2012) Ontology based interface design and control methodology
for collaborative product development. Computer Aided Design, 44(5): 432–444.

Ravn, P. M., Gudlaugsson, T.V., Mortensen, N.H., (2015) A multi-layered approach to
product architecture modeling: Applied to technology prototypes. Concurrent Engineering: Research
and Applications 1–14.

Sosa, M.E., Eppinger, S.D., Rowles, C.M., (2003) Identifying modular and integrative
systems and their impact on design team interactions. Journal of Mechanical Design, 125: 240–252.

Suh, N. P. (1998) Axiomatic Design Theory for Systems. Research in Engineering Design,
189-209.

Uddin, A., Campean, F. & Khan, M.K. (2015) Development of interface analysis template for
system design analysis. International Conference on Engineering Design (ICED), Milan, Italy.

Uddin, A., Khan, M.K., & Campean, F. (2014) Function-based conceptual design expert
(CDE) systems. Applied Mechanics and Materials 564: 590-596.

Ulrich K (1995) The role of product architecture in the manufacturing firm. Research Policy
24(3): 419–440.

Ulrich, K. T. & Eppinger, S. D. (1994) Product design and development. McGraw Hill.
Umeda, Y., Ishii, M., Yoshika, M. & Tomiyama, T. (1996) Supporting conceptual design

based on the function-behaviour-state modeller. Artificial Intelligence for Engg Design, Analysis, and
Manuf. 10(4): 275-288

Yildirim, Y. & Campean, F. (2014) Development of a structured approach for decomposition
of complex systems on a functional basis. 27th International Conference on CADCAM, Robotics and
Factories of the Future, IOP Publishing.

Woldemichael, D. E., & Hashim, F. M. (2011) A framework for function-based conceptual
design support system. Journal of Engineering Design and Technology, 9(3), 250-272.

25

Function Domain

(Ai, Ci)

Angular Velocity
 - Constant
 - [R] rad/s
 - Clockwise
Angular Velocity
 - Variable
 - [R] rad/s
 - Anticlockwise

(Ao, Co)

I

I

OChange
Rotational
Energy

XF 1

F 2

F 1 F2 S 1 S 2

S 1

S 2

Fu
nc

tio
ns

St
at

es

State DomainFS-
MDM

Rotational Energy
 (S 1)

Rotational Energy
 (S 2)

 Angular Velocity rad/s
(Ao)

Change Rotational
Energy (F1)

Angular Velocity rad/s
(Ai)

 - Constant
 - Min < R < Max
 - Clockwise
 (Ci)

 - Variable
 - Min < R < Max
 - To-and-fro
 (Co)

Function (F2)...

(Ai, Ci)

Angular Velocity
 - Constant
 - [R] rad/s
 - Clockwise
Angular Velocity
 - Variable
 - [R] rad/s
 - Anticlockwise

(Ao, Co)

S 1 S 2

S 1

S 2

St
at

es

State DomainSC -
MDM

I

I

C 1 C 2

Component Domain

OC 1

C 2C
om

po
ne

nt
s Crank Rocker

C1

Angular Velocity output of
C1 but input to C2

...
C2

Physical (P) Specifications

(Ai, Ci)

Angular Velocity
 - Constant
 - [R] rad/s
 - Clockwise
Angular Velocity
 - Variable
 - [R] rad/s
 - Anticlockwise

(Ao, Co)

I

I

OChange
Rotational
Energy

XF 1

F 2

F 1 F2 S 1 S 2

S 1

S 2

FSC-
MDM

St
at

es
Fu

nc
tio

ns

State DomainFunction Domain

C
om

po
ne

nt
s OC 1

C 2

Crank Rocker
C1

Angular Velocity output of
C1 but input to C2

…
C2

Physical (P) Specifications

X

I

C 1 C 2

I

X

...

Component Domain

...F-DSM FS-DMM

FS-DMM

SC-DMM

C-DSMSC-DMM

F-DSM FS-DMM

S-DSMFS-DMM

SC-DMM C-DSM

SC-DMM

FC-DMM

FC-DMM

S-DSM

S-DSM

C1:

Functions

C2:
Operand

States

C3:
Attributes

 C4: Constraints

C5: Concepts Constancy Track Range

In Out Input Output Input Output Input Output In Out

R 1 Change Rotational Energy (R.E) R.E R.E Angular
Velocity

Angular
Velocity Constant Variable CW ACW [R] [R] Gear Pair Box

R 2 Change
Rotational Energy (R.E) R.E R.E Angular

Velocity
Angular
Velocity Constant Constant CW CW [R] [R] Pulley Belt

Mechanism
R 3 Change Rotational Energy (R.E) R.E R.E Angular

Velocity
Angular
Velocity Constant Variable CW To and

fro [R] [R] Crank Rocker

R 4 Change Rotational Energy (R.E) to
Translational Energy (T.E) R.E T.E Angular

Velocity
Linear
Velocity Variable Variable ACW Axial [R] [R] Screw

Mechanism
R 5 Convert Electrical Energy (E.E) to

Rotational Energy (R.E) E.E R.E Current

Angular
Velocity Constant Constant DC CW [R] [R] DC-Motor

R 6 Convert Electrical Energy (E.E) to
Rotational Energy (R.E) E.E R.E Current

Angular
Velocity Constant Variable AC CW [R] [R] AC-Motor

R 7 Change Electrical Energy (E.E) E.E E.E Current
 Current Constant Constant DC AC [R] [R] DC-AC Inverter

R 8 Convert Solar Energy (S.E) into
Electrical Energy (E.E) S.E E.E Solar

Power
Current
 Constant Constant Cross-

flow DC [R] [R] Solar Board

R 9
Convert S.E to E.E S.E E.E

Solar
Power

Current
 Constant Constant Cross-

flow DC [R] [R] Solar Board

R 10 Convert S.E to E.E S.E E.E Optical
Current

Current
 Variable Variable Radiate

d DC [R] [R] Solar Battery

Key: CW: Clockwise, ACW: Anticlockwise, DC: Direct Current, AC: Alternating Current, [R]: Range for minimum & maximum values

(a) (b) (e)

(c) (d)

Figure 8. Information flow between tools of proposed integrated approach

