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Abstract 12 

The present work deals with the flow-induced multiple orientations and 13 

crystallization structure of polymer melts under a complex flow field. This complex 14 

flow field is characteristic of the consistent coupling of extensional “pulse” and 15 

closely followed shear flow in a narrow channel. Utilizing an ingenious combination 16 

of an advanced micro-injection device and long chain aliphatic polyamides (LCPA), 17 

the flow-induced crystallization morphology was well preserved for ex-situ 18 

http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn2
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn2
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn2
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn1
http://pubs.acs.org/doi/full/10.1021/ma800646s#afn2
mailto:xiadong@iccas.ac.cn


2 

 

synchrotron micro-focused wide angle X-ray scattering (μWAXS) as well as small 19 

angle X-ray scattering (SAXS). An inverted anisotropic crystallization structure was 20 

observed in two directions: perpendicular and parallel to the flow direction (FD). The 21 

novel anisotropic morphology implies the occurrence of wall slip and “global” 22 

fountain flow under the complex flow field. The mechanism of structure formation is 23 

elucidated in detail. The experimental results clearly indicate that the effect of 24 

extensional pulse on the polymer melt is restrained and further diminished due to 25 

either the transverse tumble of fountain flow or the rapid retraction of stretched high 26 

molecular weight tails. However, the residual shish-kebab structures in the core layer 27 

of the far-end of channel suggest that the effect of extensional pulse should be 28 

considered in the small-scaled geometries or under the high strain rate condition.  29 

1. Introduction 30 

Flow-induced crystallization (FIC) of polymer melts is a fundamental issue of 31 

polymer physics. It is of clear theoretical significance, and very important in practical 32 

applications. Developing specific flow condition by using delicate flow geometries is 33 

an important method through which the cause-effect relationship among 34 

polymer-surface interactions, melt flow behavior and subsequent crystallization can 35 

be investigated. However, most studies of experimental protocols reported in these 36 

literatures involve only shear [1-8] or extensional flow [9-13], rather than complex 37 

flow field. The main reason might be perceived experimental difficulties and a lack of 38 
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correlation between molecular orientation and non-Newtonian flow behavior under 39 

complex flow field. Although computer simulations provide many valuable 40 

information of system on a macroscopic scale [14], i.e. flow pattern, viscosity, stress 41 

profile, etc., there is still the need for probing the microscopic picture of flow 42 

behavior under complex flow field as well as its effect on crystallization of polymers.  43 

One of the most prominent industrial flow field is the consistent coupling of 44 

extensional “pulse” and closely following shear flow. For example, in 45 

injection-moulding processes, polymer melts usually experience short-term 46 

extensional effect caused by converging flow at the sprue entrance, then flow rapidly 47 

into the rather colder mould and solidify while subjected wall shear stress. Early 48 

experiments suggested that the transient extensional effect is important during the 49 

very early stage before the fully development of laminar shear flow [15]. Nevertheless, 50 

most researchers tend to consider that the FIC in filling channel is dominated by shear 51 

effect solely. While in some cases, the effect of so-called fountain flow, a two 52 

dimensional flow restricted to a small region of the flow front, is also suggested 53 

[16-18]. However, several phenomena in this widespread process have not been 54 

sufficiently recognized. First, if one wants to reproduce the condition that polymer 55 

experience during the industrial processes, how to deal with the non-isothermal nature 56 

of those complex flow geometries, especially the temperature gradient between two 57 

flow patterns, will become a very delicate task. Second, if converging flow is 58 
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generally referred to as a “strong” flow, which would generate considerable chain 59 

stretching conditions [19, 20], then why its contribution is not being valued. Indeed, 60 

the relaxation of oriented or stretched polymer chains might not allow the effect of 61 

extensional pulse to be observed in the final products. However, nowadays, the desire 62 

for high productivity in the industry makes the strain rate of processing grow by leaps 63 

and bounds. The effect of extensional pulse might not keep invisible anymore. Third, 64 

as the demand of micro or sub-micro components is rising rapidly, it is very necessary 65 

to consider the potential deviation of flow behavior from the typical shear field in 66 

those small-scaled geometries. 67 

To explore the crystallization of polymer melt in the extensional-shear-coupled 68 

flow filed, a simple case is studied in this work. Through a short entrance polymer 69 

melts are jetted into a thin and straight-walled channel, and subsequently crystallize 70 

under wall shear stress. An advanced micro-injection device was employed as a 71 

protocol to introduce this complex flow field. By applying the sprue-less design, the 72 

injection nozzle is in direct contact with a thin cavity. Flow visualization techniques 73 

showed that the transient extensional pulse occurs as the converging flow at the 74 

junction between the nozzle and the cavity, while the shear flow closely follows in the 75 

rest part of cavity [22]. As the cavity size decreases, several effects are promoted to 76 

help further understand FIC behavior under the complex flow field [21, 22]: (i) a 77 

considerably high strain rates can be imposed to secure the strong chain stretching 78 
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condition; (ii) the heat transfer becomes more efficient, thus an isothermal condition 79 

can be applied on the shear pureion; (iii) converging flow and shear flow are strongly 80 

coupled, since there is no room for radical free-surface flow (i.e. flow with zero 81 

lateral-stress).  82 

Another question is the applicable polymer system. To deal with the non-isothermal 83 

condition, it is very important to use a polymer which can respond quickly to the 84 

processing history it experiences. To preserve the effect of flow condition, it should 85 

also have rather slow relaxation dynamics. In addition, the chain stretching condition 86 

of this polymer should be able to be quantitatively described. Based on those 87 

considerations, long chain aliphatic polyamides (LCPA) are introduced. By 88 

incorporating long alkane segments − typically more than ten methylene groups and 89 

hence diluting the amide linkages, LCPA serve as the example of a polymer 90 

possessing intrinsic flexibility and strong intermolecular interaction simultaneously 91 

[23]. Generally, at temperatures well above the melting point, the hydrogen bonds 92 

between the molecules of LCPA are weakened (both in terms of individual bond 93 

strength and total number), which leads to the exhibition of flexibility. Rheological 94 

models, such as the Doi-Edwards model, are applicable in this case. On the other side, 95 

when LCPA are cooled back towards the melting point, the strong chain interaction 96 

reconstructs again to affect the relaxation behavior and, most importantly, fasten 97 

crystallization dynamics [24]. The efficient heat transfer of experimental protocols 98 
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and special feature of LCPA could result in well-recorded crystallization morphology. 99 

Hence, it is possible and convenient to ex-situ probe the flow-induced hierarchical 100 

crystallization structure. In this work, synchrotron micro-focused wide angle X-ray 101 

scattering (μWAXS) as well as small-angle X-ray scattering (SAXS) were used. The 102 

microscopic morphology can be spatially resolved directly using high-resolution 103 

scanning diffractometry of μWAXS [25, 26]. Those methods require little sample 104 

preparation and thus diminish the risk of introducing artifacts [26, 27]. In combination 105 

with vastly exiting information, FIC behavior under complex flow field can be 106 

understand more thoroughly. 107 

2. Experimental 108 

2.1 Materials and sample preparation 109 

The additive-free PA1012 was produced from bio-fermenting sources (Shandong 110 

Guangyin New Materials Co. Ltd, Zibo, China). The melting point was 189 ºC 111 

determined by differential scanning calorimeter with heating rate of 10 ºC/min. The 112 

melt flow index was 0.72 g/10min at 235 ºC using 2.16 kg as loading. Since PA1012 113 

has very similar molecular structure and physics properties to PA1212, the 114 

weight-average molecular weight (
wM ) of PA1012 was thus characterized by the 115 

empirical equation 2 0.70[ ] 6.54 10 wM    for polyamide 1212 as reference. The 116 

molecular weight 
wM of PA1012 was 265 kg/mol, where the intrinsic viscosity ([ ] ) 117 
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was 409.3 mL/g using m-cresol as the solvent. The molecular chain length of PA1012 118 

with this 
wM is long enough to form ordering structures. 119 

Fig. 1 shows how temperature exercises influence upon the relaxation behavior of 120 

PA1012 melts. At short relaxation times, G(t) changes little in a broad temperature 121 

range, which indicates the global configuration of the chain as well as stiffness of a 122 

single chain is less affected at temperature above the melting temperature, Tm. While 123 

at long times, G(t) is explored into the terminal relaxation regime above 230 ºC but 124 

into the plateau regime at 210 ºC and 190 ºC. The reconstruction and strength increase 125 

of hydrogen bonding at lower temperature give rise to a sudden leap of physical 126 

entanglement points leading to the slow relaxation dynamics of large motion units. 127 

 128 

Fig. 1. Apparent stress relaxation modulus, G(t) = σ(t)/γ, plotted logarithmically 129 

against time for PA1012 at different temperature. The value of strain γ is 10% for all 130 

experiments. 131 

The sprue-less micro-injection moulding device (Battenfeld Microsystem 50) was 132 

used to create the complex extensional-shear-coupled flow filed. The diameter of the 133 

nozzle was 5 mm. The dimension of followed straight-wall channel was 20.0×1.5×0.5 134 
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mm3 (length direction (LD) × width direction (WD) × thickness direction (TD)). 135 

Converging flow occurred at the junction between nozzle and cavity. Fig. 2 shows the 136 

sample for ex-situ investigation and the sites of the flow types adapted from 137 

computational fluid dynamics simulation result [22]. The color of sample represents 138 

the time scale of arrival flow front. The cavity temperature was set as 80 ºC attaining 139 

balance between processability and slow relaxation dynamics. The injection rate was 140 

100 mm/s. The whole mould filling process would be finished within sub-0.1s. This 141 

short processing time scale suggests the mould filling procedure is ahead of the 142 

complete solidification of PA1012 at the moulding temperature. The material was 143 

melted at 270 ºC initially by a rotating screw positioned at a 45º angle. It was pushed 144 

by the screw in a very accurate metering chamber. Then, the injection piston jetted the 145 

material through the barrel (270 ºC) and the sprue-less nozzle (250 ºC) into the cavity. 146 

Highly repeatable process control and accurate material dosing were observed during 147 

moulding by monitoring shot to shot variation of dosing performance and pressure 148 

curves. PA1012 granules were kept in a vacuum oven at 80 ºC for 24 h for drying 149 

before preparation. 150 

2.2 Micro-focus wide angle X-ray scattering scanning 151 
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 152 

Fig. 2. Sample for ex-situ probing and the supposed site of the flow types. The 153 

scheme of experimental geometry shows the procedure of μWAXS scanning and 154 

resultant diffraction patterns (thumbnails). Insert: the actual plaque-shaped sample. 155 

The X-ray source for diffractometry was BL15U, the hard X-ray micro-focused 156 

beamline at SSRF (Shanghai Synchrotron Radiation Facility). Using a Si/Rh coated 157 

K-B mirror-pair, the beam was focused on the sample with a 3×3 μm2 beam size at 158 

focal position. The sample was mounted on a three-axis motorized translation stage. A 159 

standardized line scanning program with the X-ray beam perpendicular to the WD-LD 160 

plane was carried out at three different equidistant positions (Fig. 2) marked as ‘gate’, 161 

‘center’ and ‘end’ to investigate the crystal structure and orientation changes both 162 

perpendicular and parallel to the flow direction (FD). The distance between the end 163 

position and the far-end of sample was 100 μm. The step size between each adjacent 164 

focus spot was 35 μm hence 43 individual diffraction patterns obained at Gate, Center 165 
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and End positions separately. Data was collected using a MARCCD detector with an 166 

average pixel size of 79×79 μm2. The photon energy was 18 KeV giving a wavelength 167 

of 0.688 Å with the sample-to-detector distance of 206.3 mm. The exposure time was 168 

1 s. Each diffraction pattern frame was denominated using the initials of scan position 169 

plus the number of scan sequence at this position, i.e., frame 1 at gate position would 170 

be G1, frame 2 at center position C2, frame 3 at end position E3, etc. Background 171 

reduction and automated batch-operation of μWAXS patterns were conducted using 172 

the Fit2D software package. Self-designed Matlab programs were used to give pattern 173 

visualization and plotting.  174 

The phase content for internal comparison within the batches is presented as 175 

crystallinity index (χc): 176 

c
c

c A

A

A A
 

  

 (1) 177 

where Ac is the integrated area of crystalline peaks belonging to a specific crystal 178 

phase and AA is the integrated area of amorphous halo.  179 

The peak deconvolution was performed with the constraint conditions (see 180 

Supporting Information) and these constraint conditions were necessary to 181 

determine the center of amorphous halo and each reflection separately because the 182 

amorphous halo and multiple phase signals were combined together in the origin 183 

testing data. To fulfill the description of the whole orientation state, the approach 184 
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derived from Wu and Schultz’s [28] was adopted to quantify the mesophase contents. 185 

The percentage of the mesophase (Pmeso) can be calculated as: 186 

meso cP POP    (2)  187 

2

b
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I s ds I d
POP

I s dsd





  

 



 

   (3)
 188 

where POP is the percentage of oriented phases; s is the scattering vector;  is the 189 

azimuthal angle; I(s,) is the background-corrected intensity from the diffraction 190 

pattern; Ib() is the baseline of the azimuthal intensity profile resulted solely from the 191 

integral over a domain S of I(s,), herein S is as the same scattering angular range as 192 

the one used in calculating χc. 193 

To manifestly demonstrate the crystallization structure, as shown in Fig. 3, the 194 

xy-coordinate pattern is transformed to polar coordinates with the scattering angle 195 

ranging from 8.0º to 11.4º and the azimuthal angle from 0 to 360º. 196 

 197 

Fig. 3. Demonstration of the regions used for generating the polar coordinate pattern 198 

from the xy-coordinate pattern. E and M represent the equatorial and meridian 199 

direction, respectively. The definition of azimuthal angle are also shown.   200 
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2.3 Small angle X-ray scattering 201 

SAXS data at gate, center and end position were collected on the BL16B beamline 202 

of SSRF. To mitigate against a resolution problem from simultaneous scattering from 203 

two different highly oriented layers, the skin layer was blocked (sides) or cut away 204 

(top/bottom) deliberately in the SAXS experiments. The focus spot size was 0.3×0.2 205 

mm2. A radiation wavelength of 1.24Å was applied with the data collected using the 206 

same type of MARCCD detector as used for the BL15U experiment. Two different 207 

sample-to-detector distances, 2074.7 mm and 5088.6 mm, were employed to explore 208 

lamellae reflection and central diffuse scattering signal, respectively. The exposure 209 

time was 60s and 20s, respectively. According to the reciprocal relationship in 210 

scattering, the central diffuse scattering signal from fibrils or shishes would be much 211 

larger and more intense in the case of long s-d distance. Thus, to avoid overexposure, 212 

shorter exposure time was used for longer s-d distance. In addition, the high vacuum 213 

optical path in BL16B ensures that the atmospheric scattering in both cases is greatly 214 

eliminated. All SAXS patterns were corrected for background and X-ray fluctuation. 215 

To obtain the 1D scattering profile, q=4π(sin θ)/λ was used, where q is the module of 216 

scattering vector; θ is one half the scattering angle; λ is the X-ray wavelength.  217 

3. Results and Discussion 218 

3.1 Determining flow regime of extensional pulse.  219 
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The dimensionless group Weissenberg number (Wi) is used to rheology characterize 220 

the strength of extensional pulse due to converging flow. In the case of extensional 221 

flow at channel entry, two Wi related to two different time scale can be expressed as 222 

[19, 29]: 223 

2

rep 3

4
, rep ln O

C C

R Q
Wi

R R




    
     
     

  (4) 224 

2

3

4
,s ln O

s

C C

R Q
Wi

R R




    
     
     

  (5) 225 

where τrep is the reptation time; τs is the time scale for faster chain retraction (Rouse 226 

relaxation time); RO is the radius of nozzle; RC is the equivalent radius of cavity and 227 

the RC of cavity is 0.455 mm calculated from Huebscher equation.; Q is the 228 

volumetric flow rate. The largest reptation time for high molecular weight (HMW) 229 

tails, 
HMW

rep  ,is the proper choice for τrep due to the crucial role of them in forming 230 

oriented structure [9, 19, 30] and is estimated as 6s at 250 ºC from the relaxation time 231 

spectrum (see Supporting Information). According to Doi−Edwards theory [31], the 232 

relation between above two relaxation time is τs = 
HMW

rep /3Z, where Z is the average 233 

number of entanglements and Z = Mw/Me. The molecular mass between 234 

entanglements Me, calculated from 0

e / NM RT G , is 21.7 kg/mol for PA1012 at 250 235 

ºC, resulting in a Z value of 12. For the rheological description, τrep and τs are regarded 236 

as orientation relaxation time and stretch relaxation time, respectively. In the flow 237 

regime Wi,rep, Wi,s > 1, a strain rate greater than 1/τrep and 1/τs indicates the fast flow 238 
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condition. As a result, chain sections are strongly oriented and the chain conformation 239 

becomes similar to that of the crystalline state. The calculated magnitude of Wi,rep is 240 

about 5.43×105. Such a large magnitude of Wi,rep guarantees the strong oriented 241 

courter path of polymer chains. Moreover, the magnitude of Wi,s following from τs is 242 

considerably larger than 1 (1.51×104), suggesting the polymer chain of HMW is 243 

strongly stretched. Hence, the strong extensional flow at nozzle entrance and relative 244 

low entanglement density ensure the sufficient stretch of the polymer chains or chain 245 

sections to fulfil the formation of oriented nuclei. It is also noticed that the calculated 246 

Z value is comparable to the simulation result Z ≤ 10 for which the G(t) shows no 247 

sign of plateau regime [32]. This is reconciled with the rheology data at 250 ºC and 248 

thus confirms the reliability of calculation of Wi,s. 249 

3.2 Analysis of crystallization structure  250 

Fig. 4a shows the first frame collected at the gate position (G1). This diffraction 251 

pattern is similar to that found in highly oriented polyamide samples [33]. The major 252 

difference between this pattern and the one of common highly oriented polyamide is 253 

the distinguishable coexistence of α-phase and β-phase crystals in the present case. 254 

Two signals superposed at the inner layer (2θ = 9.11º) are contributed from the 255 

diffraction of both α100 and β100 planes. Another two signals emerging at outer 256 

layers (2 = 9.95º and 10.43º, respectively) can be indexed to α010/110 and β020/120 257 

planes, respectively. Since the diffraction arcs are not fully separated, the β-phase is 258 
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inferred from the relatively greater outer arcing due to the presence of β020/120 259 

diffraction signals [35]. In addition, it can be observed that the reflection maximum 260 

shifts about 7 degree from the equatorial.  261 

 262 

Fig. 4. The wide angle X-ray reflection signals at (a) G1; (b) G2; (c) G3 and (d) G10 263 

in polar coordinates. The graphics to the right represent the corresponding azimuthal 264 

intensity profiles. The colored arrows indicate the specific reflection. The β020/120 265 

profiles marked * inevitably overlap with α010/110 profiles. Oriented β-phase can be 266 

observed from the peak around 180º.  267 

Next to the G1, G2 (Fig. 4b) shows that the α010/110 planes superposed in G1 have 268 

separated into four off-equatorial and intensity-unequal arcs. This pattern formation 269 



16 

 

nevertheless results from, statistically, precessional rotation of uniaxial oriented 270 

crystals. The peak position of α010 is split by ±30°and the α110 by ±18° about the 271 

equator. Using the unit cell for α-phase of PA1012 reported by Jones et al. [36] 272 

(a=0.459 nm, b=0.530 nm, c=2.98 nm, α=50º, β=77º, γ=64º), the ideal reciprocal 273 

space angles in the X-ray diffraction patterns from lamellar-crystal mats (taken with 274 

X-ray beam parallel to the lamellae surface) can be concluded as follows: the 100 275 

should be split by ±5°, the 010 by ±38° and the 110 by ±33° about the either side of 276 

equator. The implication of this difference, according to Dreyfuss and Keller’s 277 

observation in polyamide 66, 610 and 612, accounts for the partial randomization 278 

around the a-axis [37]. Because the a-axis is the direction of hydrogen bond 279 

progression corresponding with the fastest crystal growth, this pattern is favorably 280 

consistent with the structure of α-phase crystals as the incomplete twisting chain-fold 281 

lamellae [1, 38]. The separation of α010/110 reflections also makes the shadowed 282 

β020/120 signals more apparent in G2. Although the α-phase crystals lose orientation 283 

uniformity in at least in one direction, it seems that the orientation state of β-phase 284 

remains unchanged. 285 

G3 (Fig. 4c) shows very different formations. Two strong peaks at the equatorial are 286 

characteristic of β-phases present in both G1 and G2. However, in G3, sharp peaks 287 

cannot be found either from the inner layer or from the outer layers, which indicates 288 

that there is no β-phase present at this location. Moreover, the disorientation of the 289 
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α-phase can be observed from the relative larger spreads, particularly along the α100 290 

arcs. Comparing to X-ray diffraction patterns from lamellar-crystal mats, the intensity 291 

differences of α-phase signals (unequal arcs) also indicate the incomplete twisting of 292 

lamellae.  293 

 294 

Fig. 5. The wide angle X-ray reflection signals at (a) C22; (b) E22 and their intensity 295 

profiles. Colored arrows indicate the specific reflection. The β020/120 profiles 296 

marked * have the same meaning with those in Fig. 4. 297 

The β-phase crystals can be seen again at G8 located at about 245 μm from the edge 298 

of the sample and is present up to G38, which is located at almost the same distance 299 

from the opposite edge. Between those two frames, the diffraction patterns clearly 300 
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present a superposition of arcs from the α-phase and sharp equatorial reflections from 301 

the β-phase, as presented in Fig. 4d, and indicates that  while both α-phase and 302 

β-phase crystals are uniaxial oriented the β-phase exhibits a more highly oriented 303 

state.  304 

Crystallization structure changes within the WD at the center and end positions 305 

follow similar rules to those seen at the gate position. However, the strong meridian 306 

signals found in around the centerline of above two positions, such as C22 and E22 307 

(Fig. 5), are clear enough to indicate the evolution tendency of the flow field along the 308 

FD. Since the azimuthal intensity distributions of the α100 reflections and the β100 309 

reflections in samples C22 and E22 remain comparatively unchanged compared to G8, 310 

the appearance of the meridian signals cannot be simply interpreted as the ensemble 311 

rotation of crystals, but should be still considered as a consequence from a random 312 

orientation about the a-axis [1]. If the X-ray is vertical to the fiber axis, a uniformly 313 

twisting lamellae, which is equivalent to a completely random state around the a-axis, 314 

would generate a pattern with α010 reflections center on the meridian with spreads 315 

decreasing towards the equatorial and the α110 has the maxima between the meridian 316 

and equatorial with decreasing intensity to each direction [37]. Nevertheless the α100 317 

reflection should be less affected by this twisting structure. Similar oriented and 318 

twisting texture for α-phase crystals of polyamides can be found in some spherulites 319 

[34] and the transcrystallites growing epitaxially on fibers [39]. In addition, given that 320 
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β-phase crystals are highly oriented in both cases, the most possible morphology 321 

represented by C22 and E22 is that α-phase crystals, in a complete twisting mode, 322 

epitaxially grew on the long-range ordered β-phase crystals. 323 

3.3 Analysis of anisotropic structure  324 

The so-called skin-core morphology, an anisotropy perpendicular to the FD, is a 325 

typical inhomogeneous structure resulted by different regimes of shear flow [19, 40]. 326 

Fig. 5 shows the normalized azimuthal intensity scans of different reflections at three 327 

positions. The profile data are plotted to a color scale image with full azimuthal angle 328 

as the x-axis and real-space scan position as the y-axis. On this basis, three distinct 329 

structural layers are identified.  330 

 331 

Fig. 6. Normalized azimuthal intensity scans of different reflections (rows) at each 332 

position (columns). The rows from the top to the bottom represent the overlapped 333 
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α100/β100 reflections (a, d, g), the α010/110 reflections (b, e, h) and the β020/120 334 

reflections at gate position (c, f, i), respectively. The columns from the left to the right 335 

represent the reflections at gate (a, b, c), center (d, e, f) and end position (g, h, i), 336 

respectively. Note the unequal arcs (UA) and meridian signal (MS) emerging in the 337 

α010/110 reflections at different positions. The reduction of color contrast along the 338 

FD represents the decreasing of overall orientation. 339 

The skin layer is the strongest oriented layer containing both α-phase and β-phase 340 

crystals. The skin layer was only found in the first and last one or two frames. As can 341 

be inferred from the reflection maximum off-equatorial shifting, the crystals in this 342 

layer show a rotational tilting inward toward the cavity center. The next layer, termed 343 

“shell layer”, features larger spreads in α100 reflection (Fig. 6a-6c) and arcs with 344 

different splitting distance in α010/110 reflections (Fig. 6d-6f).This interesting texture 345 

can be attributed to the disorientation and, more prominently, twisting lamellae of the 346 

α-phase as mentioned above. Moreover, the most significant characterization of the 347 

shell layer can be made by considering the deficiency of β020/120 signals (Fig. 6g-6i). 348 

The thickening of the shell layer along the FD can be thus noticed. The core layer, 349 

differing markedly from the conventional parts originated from pure shear flow, is 350 

uniformly dominated by a highly oriented structure instead of the widely reported 351 

large or deformed spherulites. 352 
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Another important but often neglected inhomogeneous structure is the structural 353 

distribution along the FD. In our case, while the thickness of skin layers remain the 354 

same, the reflection signals with both α-phase and β-phase exhibit maxima on about 355 

±7º, ±6º and ±5º to equatorial for the gate, center and end position, respectively. 356 

This suggests a non-parallel and varying orientation direction with respect to the FD 357 

as mentioned before. The shell layers increase in depth along the LD while core layer 358 

narrows down. For those two inner layers, an expected reduction of overall degree of 359 

orientation at increasing distance from gate can be observed. However, as can be seen 360 

from the shift of reflection maxima (highlighted by white dash dot lines in Fig. 6d-6e 361 

and 6g-6h), the crystals of the two inner layers (especially for the shell layer), split by 362 

the centerline, tend to tilt outward toward the wall. Notably, this bending direction is 363 

totally different from that of skin layer. The maximum tilt degree increases with 364 

distance from gate to end but decreases with the distance away from the component 365 

surface.  366 

 367 

Fig. 7. The crystallinity index as a function of scanning sequence at (a) gate, (b) 368 

center, and (c) end. The crystallinity is identified as total (α+β) CI.  369 
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The change of phase contents (Fig. 7) again suggests above two anisotropies. The 370 

maximum crystallinity is always observed in the skin layer at each position but its 371 

magnitude is less obvious at the gate position. The changes of α-phase CI (χα) are 372 

complicated. For the gate and the center position, the χα in the skin layer is lower than 373 

that in the shell and core layers, but for the end position the results show the contrary 374 

is true. The β-phase CI (χβ) shows similar distribution through the WD at each 375 

position but dramatically decreases with distance from the gate towards the end. The 376 

change of mesophase basically follows the trend of the β-phase, which indicates that 377 

the β-phase were formed by crystallization of oriented melts and that relaxation of 378 

orientation certainly occurs in the shell layer or in the location away from the nozzle 379 

entrance. The sharp boundaries between skin-shell-core layers are contrasted by the 380 

abrupt changes of χβ and the percentage of mesophase.  381 

 382 

Fig. 8. (a) The SAXS pattern collected at the center position. The spread lamellae 383 

reflection was highlighted by the blue dash dot lines. (b) 1D scattering profile of 384 

lamellae reflection with integration sector demonstrated by dark dot lines. To exclude 385 
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equatorial streak, regions were integrated from -65º to -180º. The cartoon portrays the 386 

origin of lamellae reflection in SAXS patterns. 387 

3.4 Molecular origins of anisotropic structure 388 

The SAXS pattern collected at the center position (Fig. 8a) shows an azimuthally 389 

narrow equatorial streak and meridian blob-like lamellae reflection. This pattern 390 

generally indicates that the presence of oriented shish-kebab structure [27, 41, 42]. 391 

Except for those two parts, a rather spread and weak lamellae reflection occurred at 392 

larger q can be observed. Figure 8b shows the corresponding lamellae reflection 393 

profiles were best fitted by two overlapping peaks. The sharp peak at smaller q is 394 

from the lamellar stacks of kebabs [38, 42]. The weak peak belonging to the spread 395 

lamellae reflection might be assigned to the “row structure”-those lamellae stacks 396 

with smaller long periods and broader orientation distributions [1, 41].  397 

 398 

Fig. 9. (a) From left to right, the SAXS patterns at gate, center and end, respectively. 399 

(b)The average length of shish-kebabs (L) and integration breadth defining the 400 

disorientation degree (Beq) is calculated using
2 2 2 2 2

/2 eq( ) 1/q B q L q B   , where 401 

/2 ( )B q the integration breadth along azimuthal scan at specific is scattering angle.  402 
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Since the beam size used in SAXS experiments is much larger than that in μWAXS, 403 

the SAXS patterns should contain aggregated information from different layers. The 404 

crystallization morphology in the core layer is represented by shish-kebab structure. 405 

This suggestion is based on two above observations: first, the β-phase crystals in the 406 

core layer are oriented steadily parallel to the FD and form nuclei from strained melts, 407 

which, in smaller structural levels, accords with the fibrous morphology of shish; 408 

second, the kebabs themselves could be straight or twisted [38, 43] and possess some 409 

degree of freedom to orient with the FD [5], which is only observed in α-phase. It is 410 

most possible that the shish backbone consists of β-phase, while continued growth of 411 

α-phase forms kebab structures. Mechanically, this conclusion is reconciled when 412 

consider the β-phase crystals adopt a less organized alternative sheet stacking 413 

arrangement and thus kinetically promote the formation of shish nuclei from oriented 414 

melt, while the α-phase crystallize in all sheet stacking progressively, which 415 

thermodynamically favors folded-chain lamellae. On the other side, for the shell layer, 416 

it is prudent to relate the period system formed by incomplete twisting α-phase 417 

crystals to the so-called row structure. Considering the chains and lamellae normals of 418 

α-phase crystals are non-parallel, the formation of row structure would be more 419 

readily [1].  420 

Since an unexpected core layer structure was observed, it’s necessary to 421 

quantitatively demonstrate changes of shish-kebab structure in the core layer along 422 
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the FD. A larger sample-to-detector distance was used to investigate such behavior. 423 

Fig. 9a shows the SAXS patterns collected at gate, center and end. The length scale 424 

dimension and orientation state of the shish-kebabs are calculated by Ruland’s streak 425 

fitting method [43-45]. The results in Fig. 9b show that the average length of the 426 

shish-kebabs (L) at the gate is around 250 nm but drastically decreases to only 26 nm 427 

at the end position. The disorientation degree, represented by values of Beq, gradually 428 

increases along the FD. This observation suggests that the shish-kebabs are thin and 429 

long-range ordered at the gate while discrete and less oriented one at the end. The 430 

average length of shish-kebabs at the end is surprisingly small. However, it might 431 

make sense in the case of polyamides. Due to the large decrease in free energy on 432 

crystallization as a result of the hydrogen bonding, the long period and lamellae 433 

thickness for polyamides is only about 6 ~ 10 nm and 4 nm, respectively. The value of 434 

long period is significantly lower than that for polyethylene or polypropylene, which 435 

is in the range 18 to 30 nm depending on crystallization condition. The apparent long 436 

period at end position is about 10 nm. Morphologically, the scaffold feature of 437 

shish-kebab can be satisfied. In fact, the value of 26 nm is very close to the recent 438 

result in which the microshish in the initial stage of scaffold-network nuclei was about 439 

30 nm [42]. Considering the shish-kebab structures in end position formed under the 440 

extensive relaxation condition, the length value of shish would be reasonable. 441 
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In addition, two apparent phenomena should also be stressed. One is that the 442 

equatorial scattering intensity of center streaks drops faster with distance away from 443 

the nozzle entrance, which may be attributed to an increase in interference between 444 

the weakly correlated discrete shishes arising from imperfect orientation as well as 445 

limited length [46]. The other is that even though the long period of lamellae 446 

reflection wouldn’t change much, their scattering intensity decreases from gate to end. 447 

These two phenomena together indicate that the density of shish-kebabs in the core 448 

layer decreases along the FD, which can be confirmed by the WAXS data. Although 449 

the WAXS deconvolution results cannot fully represent the structural fraction of 450 

larger structures, the relative variations indeed reflect the relaxation of long-range 451 

order and loss in average orientation along the FD.  452 

 453 
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Fig. 10. Schematic illustrations of the crystallization morphology of the 454 

skin-shell-core layer structure at different positions within the component. Blue and 455 

green stacks represent α-phase crystals and β-phase crystals, respectively. The sheets 456 

in β-phase stacks are parallel to lamellae normal while those in straight α-phase stacks 457 

are not. The number inside indicate the position of layer border. The scale of lamellae 458 

between each layer is not exactly the same.  459 

These analyses declare the observation of novel anisotropic structures of PA1012 460 

under the extensional-shear-coupled flow field Fig. 10 shows the schematic 461 

illustration demonstrating the molecular origins of this skin-shell-core layer structure 462 

and its evolution along the FD. Nearing the cavity wall, the crystals in the skin layer 463 

show a fibrillar texture. The overall (α+β) crystallinity index remains constant along 464 

FD. High proportions of mesophase observed in this layer indicate a broad range of 465 

high orientation states. Typically, the molecular chain or lamellae normal lie parallel 466 

with the surface of the component in the skin layer and that skin layer will narrow 467 

down from the gate to end [47]. However, the preferred oriented axis in this case may 468 

bend inward to the inner parts at the gate position and become increasingly parallel to 469 

cavity surface away from gate position. Moreover, the obvious thinning of the skin 470 

layer in common components originated from pure shear geometry cannot be 471 

observed, instead, the orientation regularity of lamellae would further increase at the 472 

far-end.  473 
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Finding no trace of β-phase, the next layer, the shell layer, can thus be recognized. 474 

The α-phase crystals in the shell layer exhibit the so-called row structure. This texture 475 

can be represented by the relative larger spreads of α-phase reflections and the 476 

specific splitting angle of the overlapped α010/110 [39, 41]. Given the contrasts of 477 

azimuthal intensity in this layer are still recognizable even at the end position, the 478 

existence of isotropic spherulites is denied. The lowest mesophase contents are 479 

observed in the shell layer, which means a large number of stretched chains relaxed 480 

here. Another notable aspect is that it is observed at the center and end of the 481 

component, and that the preferred axis of row structures tends to tilt outward toward 482 

the wall (in contrast to the case in the skin layer). 483 

As discussed above, the core layer is characterized by the observation of 484 

shish-kebab morphology. The shish is composed of β-phase crystals and, necessarily, 485 

of mesophase [44, 48], while the α-phase crystals fall into kebab structures and 486 

change from untwisting to complete twisting. The μWAXS and SAXS data together 487 

suggest the shish-kebab entities in the core layer shorten in length scale and increase 488 

in distribution of orientation along the FD. The evolution of shish-kebabs from gate to 489 

end is consistent with the previous investigation [49]: the lower flow rate generates a 490 

lower shish density and would enhance the twisting growth of kebabs thereafter.  491 

3.5 Analysis of crystallization dynamics under the complex flow filed 492 
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Although the reduction of overall orientation along the FD is expected, it is still 493 

interesting to recognize two inverted anisotropic features compared to components 494 

originated from pure shear flow geometry. (i) For the skin layer, thinning or loss of 495 

orientation cannot be detected. The bending fibrils structure at the gate position 496 

gradually becomes parallel to the cavity wall along the FD. Moreover, the orientation 497 

regularity increases further at the far-end of the cavity. (ii) The intermediate layer 498 

(identified as “shell layer” in this case) is most often characterized by the fine-grained 499 

morphology or the shish-kebabs corresponding to different flow or pulse rate rates. 500 

While the core layer is isotropic or, at best, deformed spherulites either for macro or 501 

micro components [19, 27, 47, 50, 51]. Some special technologies, such as oscillation 502 

shear injection molding [50] and gas-assisted injection molding [52] may generate 503 

thicker oriented layers, but the regularity that orientation degree consecutively 504 

reduces from skin to core remains unchanged. However, a completely opposite is 505 

observed in this case: the core layer is dominated by high level of orientation structure 506 

whereas the shell layer is not. 507 

 508 

Fig. 11. Schematic illustration of flow condition and its effect on polymer chain 509 

sections. (a) Extensional pulse resulting in stretched of HMW tails. (b) Solidified skin 510 
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is dragged to deform before any debonding occurs. At the end position, strong wall 511 

slip results in huge increases in wall shear stress while at the gate position, weak slip 512 

only brings about affine deformation. (c) The instantaneous flow geometry of fountain 513 

flow in cavity and shear gradient based on previous studies [16-18, 53]. The active 514 

area of transverse flow locates near the slip wall where the shear flow emerges. The 515 

flow field is separated into two distinguished regions by the red dash lines: the 516 

transverse tumble dominant region and retraction dominant region.  517 

The unusual anisotropic crystallization morphology of PA1012 cannot be simply 518 

interpreted as the consequence of shear-induced crystallization in different flow 519 

regime. Due to the strong coupling between extensional flow and shear flow, the flow 520 

patterns deviated from pure shear flow. Most importantly, this deviation was recorded 521 

owing to the special combination of material and experimental protocol.  522 

As discussed before, HMW tails of PA1012 were strongly stretched due to the 523 

severe extension effect at the nozzle entrance (Fig. 11a). Once the melt entered into 524 

the cavity, considering the mould temperature, 80 ºC, which is close to the glass 525 

transition temperature of PA1012, fast solidification (Fig. 11b) would occur at the 526 

location near to the cavity wall [54]. However, crystallization was enhanced by the 527 

strong stretched polymer chains and, as such, a highly oriented fibrils structure was 528 

observed in the skin layer. In addition, because of the high adhesive energy provided 529 

by polar amide group, polymer chain of PA1012 would stick to the cavity wall, which 530 
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will result in wall slip behavior [55, 56]. The unusual variation trend of the skin layer 531 

can be attributed to a “strong-to-weak” wall slip effect [55]. Due to the wall slip effect, 532 

the thin skin, with one side being adsorbed to the wall, was dragged by the 533 

high-velocity flow elements in the center space of cavity. This effect resulted in 534 

bending fibrils structure at the gate, which is much like the affine deformation of a 535 

rubber network under an external shear field. A similar texture was observed in a 536 

study on gas-assisted injection moulding processing in which the central fluid was 537 

high pressure gas [52]. As for the end position, since the fluid elements at this 538 

position entered the cavity earlier, a larger magnitude of flow velocity would generate 539 

a more strong slip in consequence of debonding of polymer-wall interfacial region 540 

[55]. Therefore, more regular and less rotationally tilted fibril crystals were observed.  541 

Since the external characteristic lengths of geometries reduce enormously compared 542 

to the ideal condition, laminar flow would not fully develop after the rapidly 543 

extensional pulse. The implication is that the flow behavior would be more close to a 544 

“global” fountain flow. The fountain effect for polymer generates a localized 545 

hydrodynamic phenomenon demonstrated by the complex two-dimensional flow 546 

(axial and transverse) [16, 57, 58]. Question on whether fountain flow influences the 547 

molecular orientation still remains nowadays [59, 60]. Fig. 11c shows the 548 

instantaneous flow profile of the fountain flow at the end and gate positions in which 549 

fluid elements between the centerline and slip interface would decelerate in the 550 
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direction of flow and would acquire a transverse velocity spilling outward toward the 551 

wall [16, 53, 57]. According to the chain behavior proposed by Chu et al [38, 61, 62], 552 

this transverse velocity perpendicular to the flow could bring about hydrodynamic 553 

drag forces and tumble effect to coil the stretched chains at an intermediate region 554 

near to the wall, for which relaxation might be accelerated. It is most possible that the 555 

fast relaxation caused by tumble effect lead to the formation of twisting row structure 556 

in the shell layer, since this kind of period structure is favored under intermediate 557 

strain condition [1]. Referring to the thickness of shell layer, the transvers tumble 558 

dominant regions are identified. As highlighted by the red dotted line, the maximum 559 

transverse velocity located on the side nearing to slip wall and its active area would be 560 

largest at flow front [16, 57]. Considering that, it is convenient to understand the 561 

sharp shell-core layer border. The higher and wider-area transverse flow at the flow 562 

front results in the thicker and less oriented shell layer at end position, and notably, 563 

the larger tilt of crystals in the shell layer as well as part of the core layer at the far 564 

end will be observed.  565 

Although the magnitude of the transverse velocity is much smaller around the 566 

centerline, the stretch chains in this region would get through continuous retraction. 567 

However, in our case, reconstruction of hydrogen bonding between polymer chains 568 

slowed the retraction process of stretched HMW tails, which was enough for the 569 

development of shish nuclei in core layer. On the other side, the morphological 570 
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differences of kebab in core layer could clearly distinguish the different relaxation 571 

degree along the FD [38, 49]. One should notice that, even though extensional pulse 572 

was sufficiently strong and PA 1012 solidified rapidly, a dramatic decrease of density 573 

and length of shish at the center and end position could be observed. This suggests, 574 

for most cases, the effect of extensional pulse on the polymer melt would be 575 

restrained and further diminished along the FD. Hence, it is also very important to 576 

know that no observable trend of deformation and orientation phase in core layer 577 

means zero-stress boundary in the centerline of cavity but does not necessarily mean 578 

nothing happens there.  579 

4. Conclusions 580 

A special combination of experimental protocols and polymer system was presented 581 

for investigating the flow-induced crystallization of polymer melts under the complex 582 

flow field. The line-scan collections of synchrotron μWAXS at three different 583 

positions of final component provide a clue to comprehensively assess the 584 

crystallization textures and flow behavior of polymer melts. The crystallization 585 

structure, multiple orientation and phase contents together indicate a novel inverted 586 

anisotropic structure: along the FD, a skin layer showing more regular and less 587 

rotational tilted orientation at the far-end of the cavity; perpendicular to the flow, the 588 

shell layer showing less oriented twisting row structures consisted of α-phase crystals 589 

only, while the core layer showing shish-kebabs for which the complete twisting 590 
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α-phase lamellae epitaxially growing on the β-phase shish. These textures were 591 

confirmed by small-angle X-ray scattering. The inverted layer structure implies the 592 

wall slip and a global fountain flow happened under the complex flow field. Certain 593 

question was stressed on whether the fountain flow influences the molecular 594 

orientation. The answer seems to be that the fountain flow itself would not enhance 595 

the molecular orientation. On the contrary, if polymer chains are sufficiently extended, 596 

the transverse tumble of fountain flow would speed up the retraction of oriented 597 

chains in intermediate region between skin and core. The quantitative analysis on the 598 

shish-kebabs in the core layer suggests the effect of extensional pulse should be 599 

valued in the small-scaled geometries or under the high strain rate condition. 600 

Acknowledgements 601 

We would like to thank the generous financial support by following grants: R&D 602 

Program of the Ministry of Science and Technology (2013BAE02B02), National 603 

Natural Sciences Foundation of China (51173195) and Strategic Priority Research 604 

Program of the Chinese Academy of Sciences (XDA01020304). We also thank the 605 

beam times on BL15U, BL14B1 and BL16B1 in SSRF of China. 606 

 607 

References 608 

[1] Keller A, Machin MJ. J Macromol Sci Part B Phys 1967;1(1):41-91. 609 

[2] Kumaraswamy G, Issaian AM, Kornfield JA. Macromolecules 1999;32(22):7537-47. 610 

[3] Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, Balta-Calleja FJ, 611 

Ezquerra TA. Macromolecules 2000;33(25):9385-94. 612 



35 

 

[4] Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH. 613 

Macromolecules 2001;34(17):5902-09. 614 

[5] Li L, de Jeu W. Flow-induced mesophases in crystallizable polymers. Interphases and 615 

Mesophases in Polymer Crystallization II, vol. 181: Springer Berlin Heidelberg, 2005. 616 

pp. 75-120. 617 

[6] Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E. Int 618 

Polym Proc 1993;8(3):236-44. 619 

[7] Ratajski E, Janeschitz-Kriegl H. Polym Bull 2012;68(6):1723-30. 620 

[8] Duplay C, Monasse B, Haudin JM, Costa JL. J Mater Sci 2000;35(24):6093-103. 621 

[9] Cui K, Meng L, Ji Y, Li J, Zhu S, Li X, Tian N, Liu D, Li L. Macromolecules 622 

2014;47(2):677-86. 623 

[10] Cogswell FN. J Rheol 1972;16(3):383-403. 624 

[11] Bischoff White E, Henning Winter H, Rothstein J. Rheol Acta 2012;51(4):303-14. 625 

[12] Bushman AC, McHugh AJ. J Appl Polym Sci 1997;64(11):2165-76. 626 

[13] Stadlbauer M, Janeschitz-Kriegl H, Eder G, Ratajski E. J Rheol 2004;48(3):631-39. 627 

[14] Graham RS. Chem Commun 2014;50(27):3531-45. 628 

[15] Gogos CG, Huang C-F, Schmidt LR. Polym Eng Sci 1986;26(20):1457-66. 629 

[16] Mavridis H, Hrymak AN, Vlachopoulos J. J Rheol 1988;32(6):639-63. 630 

[17] Bensaad S, Jasse B, Noel C. Polymer 1999;40(26):7295-301. 631 

[18] Patham B, Papworth P, Jayaraman K, Shu C, Wolkowicz MD. J Appl Polym Sci 632 

2005;96(2):423-34. 633 

[19] van Meerveld J, Peters GM, Hütter M. Rheol Acta 2004;44(2):119-34. 634 

[20] Jeong J-H, Leonov AI. Polym Eng Sci 2008;48(12):2340-53. 635 

[21] Whiteside BR, Martyn MT, Coates PD, Greenway G, Allen P, Hornsby P. Plast 636 

Rubber Compos 2004;33(1):11-17. 637 

[22] Whiteside BR, Spares R, Brown EC, Norris K, Coates PD, Kobayashi M, Jen CK, 638 

Cheng CC. Plast Rubber Compos 2008;37(2-4):57-66. 639 

[23] Boussia AC, Vouyiouka SN, Porfiris AD, Papaspyrides CD. Macromol Mater Eng 640 

2010;295(9):812-21. 641 

[24] Seguela R. J Macromol Sc. Part C Poly R 2005;45(3):263-87. 642 

[25] Zafeiropoulos NE, Davies RJ, Roth SV, Burghammer M, Schneider K, Riekel C, 643 

Stamm M. Macromol Rapid Commun 2005;26(19):1547-51. 644 

[26] Davies RJ, Burghammer M, Riekel C. Macromolecules 2007;40(14):5038-46. 645 

[27] Schrauwen BAG, Breemen LCAv, Spoelstra AB, Govaert LE, Peters GWM, Meijer 646 

HEH. Macromolecules 2004;37(23):8618-33. 647 

[28] Wu J, Schultz JM. Polymer 2002;43(25):6695-700. 648 

[29] Dealy JM. Rheol Bull 2010;79(2):14-18. 649 

[30] Zhong Y, Fang H, Zhang Y, Wang Z, Yang J, Wang Z. ACS Sust Chem Eng 650 

2013;1(6):663-72. 651 

[31] Doi M, Edwards SF. The Theory of Polymer Dynamics: Clarendon Press: Oxford, 652 

1986. 653 



36 

 

[32] Hou J-X, Svaneborg C, Everaers R, Grest GS. Phys Rev Lett 2010;105(6):068301. 654 

[33] Hsiao BS, Kennedy AD, Leach RA, Chu B, Harney P. J Appl Crystallogr 655 

1997;30(6):1084-95. 656 

[34] Lotz, B, Cheng, SZD Polymer 2005; 46(3): 577-610. 657 

[35] Jones Na, Atkins EDT, Hill MJ, Cooper SJ, Franco L. Polymer 1997;38(11):2689-99. 658 

[36] Jones NA, Atkins EDT, Hill MJ, Cooper SJ, Franco L. Macromolecules 659 

1997;30(12):3569-78. 660 

[37] Dreyfuss P, Keller A. J Macromol Sci Part B 1970;4(4):811-35. 661 

[38] Somani RH, Yang L, Zhu L, Hsiao BS. Polymer 2005;46(20):8587-623. 662 

[39] Feldman AY, Fernanda Gonzalez M, Wachtel E, Moret MP, Marom G. Polymer 663 

2004;45(21):7239-45. 664 

[40] Jerschow P, Janeschitz-Kriegl H. Rheol Acta 1996;35(2):127-33. 665 

[41] Wu J, Schultz JM, Yeh F, Hsiao BS, Chu B. Macromolecules 2000;33(5):1765-77. 666 

[42] Liu D, Tian N, Cui K, Zhou W, Li X, Li L. Macromolecules 2013;46(9):3435-43. 667 

[43] Yang L, Somani RH, Sics I, Hsiao BS, Kolb R, Fruitwala H, Ong C. Macromolecules 668 

2004;37(13):4845-59. 669 

[44] Hsiao BS, Yang L, Somani RH, Avila-Orta CA, Zhu L. Phys Rev Lett 670 

2005;94(11):117802. 671 

[45] Thünemann AF, Ruland W. Macromolecules 2000;33(5):1848-52. 672 

[46] Murthy NS, Bednarczyk C, Moore RAF, Grubb DT. J Polym Sci Poly Phys 673 

1996;34(5):821-34. 674 

[47] Katti SS, Schultz M. Polym Eng Sci 1982;22(16):1001-17. 675 

[48] Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, 676 

Kornfield JA. Science 2007;316(5827):1014-17. 677 

[49] Keum JK, Burger C, Zuo F, Hsiao BS. Polymer 2007;48(15):4511-19. 678 

[50] Yang H-R, Lei J, Li L, Fu Q, Li Z-M. Macromolecules 2012;45(16):6600-10. 679 

[51] Lin X, Caton-Rose F, Ren D, Wang K, Coates P. J Polym Res 2013;20(4):1-12. 680 

[52] Wang L, Wang JH, Yang B, Wang Y, Zhang QP, Yang MB, Feng JM. Colloid Polym 681 

Sci 2013;291(6):1503-11. 682 

[53] Lee H-S. Polym Eng Sci 1997;37(3):559-67. 683 

[54] Fitchmun DR, Mencik Z. J Polym Sci Poly Phys 1973;11(5):951-71. 684 

[55] Joshi YM, Lele AK, Mashelkar RA. J Non-Newtonian Fluid Mech 2000;94(2–685 

3):135-49. 686 

[56] Boukany PE, Wang S-Q. Macromolecules 2009;42(6):2222-28. 687 

[57] Coyle DJ, Blake JW, Macosko CW. AlChE J 1987;33(7):1168-77. 688 

[58] Hsiung CM, Cakmak M, Ulcer Y. Polymer 1996;37(20):4555-71. 689 

[59] Nguyen-Chung T, Mennig G. Plast Rubber Compos 2006;35(10):418-24. 690 

[60] Kobayashi Y, Otsuki Y, Kanai T. Polym Eng Sci 2010;50(11):2182-89. 691 

[61] Somani RH, Yang L, Hsiao BS, Sun T, Pogodina NV, Lustiger A. Macromolecules 692 

2005;38(4):1244-55. 693 

[62] Smith DE, Babcock HP, Chu S. Science 1999;283(5408):1724-27 694 



37 

 

 695 


