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ABSTRACT 

Cutaneous science has seen considerable development in the last 25 years, in part due to the        

-Omics revolution, and the appreciation that this organ is hardwired into the body’s key neuro-

immuno-endocrine axes. Moreover, there is greater appreciation of how stratification of skin 

disorders will permit more targeted and more effective treatments. Against this has been how 

the remarkable extension in the average human life-span, though in the West at least, this 

parallels worrying increases in lifestyle-associated conditions like diabetes, skin cancer etc. These 

demographic trends bring greater urgency to finding clinical solutions for numerous age-related 

deficits in skin function caused by extrinsic and intrinsic factors. Mechanisms for aging skin 

include the actions of reactive oxygen species (ROS), mtDNA mutations, and telomere 

shortening, as well as hormonal changes.  

We have also significantly improved our understanding of how to harness the skin’s considerable 

regenerative capacity e.g., via its remarkable investment of stem cell subpopulations. In this way we 

hope to develop new strategies to selectively target the skin’s capacity to undergo optimal wound 

repair and regeneration. Here, the unsung hero of the skin regenerative power may be the humble 

hair follicle, replete with its compliment of epithelial, mesenchymal, neural and other stem cells. This 

review introduces the topic of human skin aging, with a focus on how maintenance of function in 

this complex multi-cell type organ is key for retaining quality of life into old age.   
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INTRODUCTION TO SKIN AGING 

INTRODUCTION 

   Skin, our largest organ by weight and extent, can be viewed as a sensor of the body’s periphery, a veritable 

‘brain on the outside’1. While the question of ‘what is the function of skin’ is a daunting one, the best single 

discussion on the function of skin can, in my view, be found in the multi-author discussion review ‘What is the 

'true' function of skin?2 The skin organ is truly a biologic universe, as it incorporates all the body’s major sup-

port systems; of blood, innervation, muscle, as well as its immuno-competence, psycho-emotion reactivity, ul-

traviolet radiation sensing, endocrine functions etc. Together, these participate in the homeostasis of skin and 

its appendages, and in this way are important for the homeostasis of the entire mammalian body. While not 

always the case, this view now appears self-evident, given that the skin occupies such a strategic location be-

tween the noxious external and biochemically-active internal environments. For all its perfection, in terms of 

evolutionary adaptation to life on an ultraviolet radiation (UVR)-drenched terrestrial planet, skin conditions still 

rank 4th in the leading causes of nonfatal disease burden3. This burden is likely to rise further as we age4 given 

our lifestyle choices of inactivity, sugar, tobacco, alcohol etc.  

Recent insights into the skin’s remarkable stress-sensing capacity, much of which is communicated via the 

skin’s equivalent of the hypothalamic-pituitary-adrenal (and thyroid) axis, allow us to assess how age may af-

fect these key axes. Perhaps counterintuitive, it is important to note upfront that well-nourished and UVR-

protected skin exhibits truly remarkable resilience to chronological (or intrinsic) aging, and much if not most of 

what we refer to skin aging is due to the structural changes to the skin that are a consequence of so-called ex-

trinsic aging (e.g., UVR, trauma, chemicals etc.).  

The harbingers of our lost youth can be most readily seen in our skin as we age; including skin wrinkling (rides), 

hair graying (canities) and for most men and some women the tendency for scalp hair thinning/baldness. These 

changes may confer only small losses in function, but as our expectations for the extension of optimal function-

ing continue to grow well into our 70s, 80s and beyond, these changes are unwelcome. This is perhaps reason-

able, as life expectancy in western countries is expected to be 100 years in the next decade.5 The implications 

of this unprecedented change for human history will be greatest for women, as they will soon spend as much 

as 50% of their lives post-menopause, where low estrogen levels will adversely affect skin function. The market 

is responding by developing sophisticated cosmetic/cosmoseuticals, pharmaceuticals and surgeries to provide 

options to assuage not only our vanity but also to aid our increasingly dry/itchy,6 infection-prone,7 vascular, 

immune-unstabl8 skin.   

Given its strategic location at the body’s interface, the skin is subjected to intrinsic (chronologic) aging that are 

generally under genetic and hormonal influence and extrinsic aging caused by environmental factors, principal-

ly UV radiation (UVR), smoking, diet, chemicals, trauma etc. UVR effects on skin are so powerful that these are 

designated separately as photo-aging. Both types of aging have their distinct and overlapping features.9 Im-

portantly, skin aging traits (e.g., perceived age, pigmented age spots, skin wrinkles and sun-damage) appear to 

be equally influenced by genetic and environmental factors10.11.  

 

INTRINSIC AGING  

Intrinsic aging of skin is imperceptibly slow moving, and shows significant variation between populations, indi-

viduals of the same ethnicity, and different sites on the same person. Essentially intrinsic skin aging can only be 

seen in quite old age and is characterized by unblemished, smooth, pale(r), drier, less elastic skin with fine 

wrinkles12,13. Additional subcutaneous changes in the face also lead to somewhat exaggerated expression lines. 

Intrinsic aging occurs within the tissue itself, via reductions in dermal mast cells, fibroblasts, collagen produc-

tion, flattening of dermal-epidermal junction/loss of rete ridges, as well as being caused by how aging in other 

organs affect the skin. From a form-function perspective, the flattening of the previously undulating epidermis 
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is a most striking change caused by a loss of the rete ridges and their reciprocal inter-digitation with capillary-

rich dermal papillae. A likely consequence of this is reduced nutrient support to the avascular epidermis by the 

vascularized dermis. From a mechanistic point of view, intrinsically-aged epidermis is also controlled by pro-

gressive telomere shortening, exacerbated by low-grade oxidative damage to telomeres and other cellular con-

stituents.14,15  

 

EXTRINSIC AGING 

While interventions for intrinsic aging are difficult, except perhaps via hormone supplementation etc., the pre-

vention and treatment of extrinsic aging-associated changes to skin structure and appearance is the subject of 

much attention. However, the impact of extrinsic-aging drivers cannot be completely separated from how skin 

responds to chronologic aging. Exogenous factors will impact skin physiology permanently (e.g., pro-oxidant 

and antioxidant influences on cell turnover via neuro-endocrine-immune biological response modifiers). By far 

the greatest source of extrinsic aging is accumulated and unprotected sun exposure (i.e., photo-aging). This is 

largely confined to the face, neck, hands, and less so lower arms and legs. Over 80% of facial skin aging is due 

to low-grade chronic UVR exposure, although exposure can also cause sunburn, tanning, inflammation, immu-

nosuppression, and damage to dermal connective tissue.16,17 The characteristics of extrinsically-aged skin 

(mostly UVR-induced) include coarse wrinkling, rough texture, sallow complexion with mottled pigmentation, 

and loss of skin elasticity.  

Photo-aging is caused by sunlight, which at the earth’s surface consists mostly of infrared (52-55%), visible 

(44%) and 3% UV light. The vast majority of the sun's UVR (400-10 nm) is blocked by the earth’s atmosphere 

such that UVR reaching our planet’s surface consists of >95% UVA (400-315 nm) and ~5% UVB (315-280 nm). 

UVC (280-100 nm), which is extremely hazardous to skin, is completely absorbed by the ozone layer and at-

mosphere. The ratio of UVA to UVB reaching our skin depends on latitude, season and time and in the real-

world is 25. Alas, most studies have used solar-simulated radiation with a UVA:UVB ratio of <18 as a proxy for 

noon summer sun on a clear day18. 

Deeply-penetrating UVA damages connective tissue in the dermis and also increases risk for skin cancer, while 

UVB penetrates only as far as the epidermis where it can cause sunburn, tanning, and photocarcinogenesis.19 

UVB is the major cause for direct DNA damage and induces inflammation and immunosuppressio20, while UVA 

may have a greater role in skin photo-aging, given its greater amount in sunlight and the fact that both dermis 

and epidermis are irradiated.20 First signs of extrinsic aging (on exposed sites) can be seen as early as 15 years 

of age in pale-skinned Caucasians21, whereas changes to non-exposed sites are not apparent until age 30 

years.22 The high priority in Western culture of a golden tan23 is associated alas, with ever-rising rates of skin 

cancer and prematurely-aged skin. Photo-aged skin is characterized by deep wrinkles, laxity, roughness, a sal-

low or yellow color, increased fragility, purpura formation, mottled pigmentary changes, telangiectasia, im-

paired wound healing, and benign and malignant growths. The degree of accumulated sun exposure deter-

mines the magnitude of these changes. Mechanisms of UVR-induced and accelerated aging are discussed later 

in this review. The second most important driver of extrinsic aging is cigarette smoking24-28.  

 

Skin type 

The level of eumelanin in skin helps protect against the cumulative effects of photo-aging. Typically, skin pho-

totype is described using the Fitzpatrick classification I-VI (ranging from ‘always burn never tan’ to ‘always tan 

and never burns’). When phototypes were compared it was found that skin of type VI individuals (i.e., black) 

shows little difference between exposed and unexposed sites.29 Moreover, the much higher rates of skin can-

cer among Caucasians compared with black African-Americans reflects the significant protection from UVR 

damage that eumelanin provides (up to 500-fold level).30 Furthermore, the appearance of photo-damaged skin 
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differs for those with skin types I and II (red hair/freckles/burns easily) and those with skin types III and IV 

(darker skin, tans easily), whereby the former tend to show atrophic skin changes, but with fewer wrinkles, and 

focal depigmentation (guttate hypomelanosis) and dysplastic changes, such as actinic keratoses and epidermal 

malignancies. In contrast, those with III/IV skin develop hypertrophic responses, such as deep wrinkling, 

coarseness, a leather-like appearance, and lentigines.20 Basal cell and squamous cell carcinomas occur almost 

exclusively on sun-exposed skin of light-skinned people.  

Skin has been report to increase in thickness in chronologic and photo-aging. However, while both increases 

and decreases in skin thickness can be seen in different body sites, there was no general relationship between 

skin thickness and with age.30, 31  Thus, it appears that the epidermis thins with age at some body sites, such as 

the upper inner arm32,33 and back of the upper arm,34 but remains constant at others, such as the buttock, dorsal 

forearm, and shoulder35 - a variation not explained by sun or environmental exposure alone.30 Although epider-

mal thickness appears to remain largely constant with advancing age, there is some variability in keratinocyte 

shape and size with age, specifically that these cells become shorter and flatter in contrasts to an increase in cor-

neocyte size potentially as a result decreased epidermal cell turnover with age.13  Wrinkling in Asian skin has 

been documented to occur later and with less severity than in white Causasians.22  

EPIDERMIS 

The epidermis is composed of an outer nonviable layer called the stratum corneum, with more proximal layers 

making up the viable epidermis consists primarily of keratinocytes (90-95% of cells). Smaller populations of 

Langerhans cells (2%), melanocytes (3% and Merkel cells (0.5%) can also be found in the epidermis.1 

The stratum corneum provides the body’s main barrier to the environment, and is key to maintaining optimal cu-

taneous hydration36. Simplistically, its structure has been described by a “bricks and mortar” model with protein-

rich corneocytes (bricks) embedded in a matrix (mortar) of ceramides, cholesterol, and fatty acids.30 It is generally 

agreed that the thickness of the stratum corneum does not change significantly with age37. However, certain fea-

tures of aging skin do indicate an abnormal skin barrier, namely the extreme skin dryness (xerosis) and increased 

susceptibility to irritant dermatitis. There is also evidence of altered permeability to chemical substances38 and re-

duced trans-epidermal water flux in aged skin.30 Despite these,  the baseline skin barrier function is relatively unaf-

fected by age,37 and  substances recoverable from the skin surface (sebum, sweat, components of natural moistur-

izing factor, and corneocyte debris) were neither affected by age nor by ethnicity and gender.39 

The barrier function in aged skin (>80 years) is more readily disrupted by sequential tape stripping than is young 

skin (20 to 30 years), as was barrier recovery.37
 It appears that there is a global reduction in stratum corneum lipids, 

which may affect the “mortar” that binds the corneocytes together. In moderately aged (50 to 80 years) individu-

als, abnormal stratum corneum acidification results in delayed lipid processing, delayed permeability barrier recov-

ery, and abnormal stratum corneum integrity, ion transport and turnover.40-43
 
 

Flattening of the dermo-epidermal junction at sites that were highly corrugated in youth is the most consistent 

change found in aged skin44 and is due primarily to a retraction of the rete ridges.30 This reduced interdigitation 

between epidermis and dermis results is less resistance to shearing forces13,22 as well as a reduced supply of nu-

trients and oxygen.8 This effect is likely to be influenced by solar elastosis changes in the papillary dermis (see 

below).45  Even with minimal photo-aging one can appreciate loss of fibrillin-rich microfibrils in the dermal-

epidermal junction - an early marker of photoaging.46,47,48 There is general agreement that epidermal cell turn-

over halves between the third and seventh decades of life,49,50 and this concurs with the observed deterioration 

in wound healing capacity in old age.51 

Keratinocytes 

Keratinocytes in the basal layer of the epidermis exhibit increasing atypia with age.33 In addition, basal 

keratinocytes downregulate expression of some β1-integrins,52 suggesting that proliferation and adhesion of 

keratinocytes in photo-damaged aged skin are abnormal. 
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Melanocytes  

 The number of functional (i.e. tyrosinase-positive/active) melanocytes decline by up to 20% per decade in the 

basal layer of the human epidermis,53 although paradoxically there is often an increase in melanocyte number 

in photo-damaged skin.54 This is further reflected by a reduction in melanocytic nevi in old age.55 Less melano-

cytes is associated with melanin production, which means less protection against the harmful effects of UVR.56  

There are also changes to melanocyte function in the aging/graying hair follicle (see below).57 Aged skin of most 

ethnicities show an increase in solar lentigo lesions (age spots), and these  contribute more to perceived age 

than wrinkling for those of mongoloid Asian ethnicity. Age spots exhibit major histological changes to the basal 

layer of the epidermis, especially the elongation of epidermal rete ridges (note epidermal flattening seen in 

general skin aging). The number of tyrosinase-positive melanocytes per length of dermal/epidermal interface 

may increase in the spot versus the unaffected skin.5 though other studies only report increased melanocyte 

size, dendrite elongation and alterations in melanosomes and their organization. Endothelin-1 and stem cell 

factor may be key regulators of hyperpigmentation in solar lentigo.59 

DERMIS 

The dermis consists predominantly of connective tissue (e.g., collagen and elastin), but also contains append-

ages including sweat glands and pilosebaceous units as well as blood vessels, and nerves. Its main role is to 

provide a tough and flexible layer that supports the epidermis and binds to the subcutis, the fatty layer deep to 

the dermis. Collagen fibers give the skin its tensile strength, whereas elastin fibers contribute to elasticity and 

resilience.60 Although aging changes in elderly dermis with severe damage may exhibit thinning,61 it remains diffi-

cult to define the effects of aging on skin thickness due to considerable inter-individual and inter-body site varia-

tions and because of differences in methodology between different studies.30 While the mechanism of wrinkle 

formation is not entirely understood,44 there is general atrophy of the extracellular matrix, accompanied by 

fewer fibroblasts, and with reduced synthetic abilty.62,63  Photo-aged skin exhibit histological features of chronic 

inflammation without significant evidence of clinical or molecular abnormalities.64-66  

 Collagen is the body’s most abundant protein. As the principle structural component of the dermis it confers 

strength and support to human skin. Alterations in collagen play an integral role in the skin aging process.56 

Dermal collagen bundles are well-organized in young adults, where they are arranged to facilitate an extension 

that returns to resting state via interwoven elastic fibers.44 In aging skin however, there is an increase in density 

of collagen bundles67 but they lose their extensible configuration, instead becoming fragmented, disorganized, 

and less soluble.65,68 Collagen-degrading enzymes (e.g., matrix metalloproteinases (MMPs)) are upregulated 

during both photoaging and intrinsic aging, mainly via the production of reactive oxygen species (ROS). 69 Colla-

gen synthesis decreases70 resulting in a shift in the balance between synthesis and degradation.8,13 Specifically, 

in young skin collagen I comprises 80% of dermal collagen and type III makes up 15%.However, with age there 

is a decrease in collagen I with a resultant increase in the ratio of type III to type I collagen.68,71 There are also 

changes to levels of collagen IV and VII. Importantly, collagen IV, which is an integral part of the dermo-

epidermal junction, provides a structural framework for other molecules and plays a key role in maintaining 

mechanical stability.59 Lower levels of collagen IV and collagen VII exist at the base of wrinkles, suggesting the-

se collagens contribute to wrinkle formation.72  

Human skin is uniquely rich in elastic fibers with regional variation in their density. Elastin exhibits numerous 

age-related changes, and UVR triggers remodeling/degradation of elastic fibers mostly regulated by MMPs73-,75 

and abnormal localization of elastin in the upper dermis of photo-damaged skin.30 Solar elastosis is, histologi-

cally, a most striking features of photo-damaged skin and represents a tangled mass of degraded elastic fibers, 

disorganized tropoelastin and fibrillin located in the upper dermis including adjacent to the dermis-epidermis 

junction.20 Most elastin fibers appear abnormal over 70 years of age, including in sun-protected sites66,76 This 

abnormal elastotic material confers no elasticity nor resilience to skin. While recovery from mechanical depres-

sion takes only minutes in young skin, this can extend to >24hrs in the elderly. 
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Counterintuitively, the level of glycosaminoglycans (GAGs) increases in photo-aged skin77,78 but while young 

skin is well-hydrated (as most of the water is bound to proteins79,80  there is a shift toward ‘tetrahedron water’ 

in aged skin. This has poor hydration and turgor capacity and contributes to the dry (xerotic) appearance of 

photo-aged skin.30 There is an overall reduction in subcutaneous fat volume in aged skin, despite the fact that 

total body fat (e.g., thighs, waist, abdomen) can continue to increase until around 70 years of age. Greatest fat 

loss is seen in the face, feet and hands.80,55   

Nerves and sensation 

Skin enervation is little affected by aging, though some studies report a decrease in sensory perception and an 

increase in pain threshold with age.81,82 There is some loss of nerve support in bald scalp, but this is likely driven 

by hair follicle miniaturization than by skin aging per se.82
  

 

Dermal vasculature 

Skin aging may be associated with decreased cutaneous perfusion, especially in photo-exposed areas.30,83 This 

reduction in vascularity is especially detectable in superficial papillary dermis, where there is loss of the vertical 

capillary loops previously associated with the now absent rete ridges. Reduced vascularity results in skin pallor, 

depleted nutrient exchange, and disturbed thermoregulation.56,30 Dermal vessels in severely photo-damaged 

skin show thin and dilated walls, presenting as telangiectasia.20 

SKIN APPENDAGES  

Eccrine and Apocrine sweat glands 

The reduction in eccrine sweat glands84 and their output85 in skin with increasing age impacts whole body 

thermoregulation. While the response to epinephrine is reduced in men and women in old age, there is a 

greater decrease in response to acetylcholine in men than in women.85.86Apocrine gland activity is also dimin-

ished with age, probably as a consequence of declining testosterone levels with consequent reduction in body 

odor.87 

Nails 

   Nail growth increases until about the age of 25 years, thereafter it starts to decrease.44 Until the age of 70, 

nail growth is greater in men than women, after which the situation appears to be reversed.88 Nails become 

more brittle in the elderly and develop beaded ridging due to a reduction in lipophilic sterols and free fatty ac-

ids.89 

Pilo-sebaceous Unit  

The pilo-sebaceous unit, including both the hair follicle as its associated sebaceous glands, exhibits perhaps 

the most profound age-associated changes. During puberty there is a striking transformation of low sebum-

secreting, fine and near-invisible vellus fibers to high sebum-secreting pigmented, coarse terminal hairs. Par-

adoxically, there may be a miniaturization of hair follicles during age-related male pattern alopecia. These 

anatomic changes in the hair follicle (enlargement and miniaturization) results in a significant remodeling of 

the dermis in the adjacent interfollicular skin, as highlighted by the significant reduction in subcutaneous fat 

layer of bald scalp increased the likelihood of cuts and bruising in this area.90  While age does not significant-

ly alter the absolute number of pilo-sebaceous units per unit area on the scalp, their sebaceous glands may 

become hyperplastic and larger.91 Despite this increase in size, there is a 50% reduction in sebum produc-

tion,92 suggesting reduction in holocrine sebocyte turnover, which contributes to xerosis of aged skin. This 

may be due to decreased levels of testosterone.93 Sebum secretion and type is also significantly reduced in 

post-menopausal women, suggesting these glands are also estrogen sensitive.94
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Hair 

Powerful evolutionary selection ensures that the hair follicle is, in the main, hardwired against significant aging-

related loss of function, even after 12 or more decades of life.
90

 Processes underlying aging in general, e.g., oxi-

dative damage, telomere shortening, age-relating deficiencies related to nuclear/mitochondrial DNA damage 

and repair as well as age-related reductions in the cells’ energy supply, will all impact on whether some follicu-

lar cell subpopulations will enter cellular senescence. Chest, axillary, and pubic hair all decrease in density with 

age; however, in men there is often increased hair growth vigor in other body site like the eyebrows, around 

the external auditory meati, and in nostrils, and this may reflect the maintenance of high testosterone levels in 

males into the 70s.
44

 In elderly women there is a similar conversion of vellus to coarse terminal hairs on the 

chin and moustache, which is thought to reflect an unmasking of testosterone’s influence in the context of now 

diminished estrogen balance. 

Aside from intrinsic aging, a principal influence on hair with age is androgenetic alopecia. This is a distinct en-

tity from the more aging-related hair thinning recently described as ‘senescent’ alopecia95 as androgenetic 

alopecia (or common male pattern baldness) can manifest very early on, even in the late teenage years. Mi-

croarray analysis has now shown that androgenetic and senescent alopecia differ significantly in gene expres-

sion, such that these two types of age-related alopecia show two distinct profiles. While the former is the re-

sult of dihydro-testosterone action on so-called androgen-sensitive hair follicles96, senescent alopecia may not 

accurately represent true aging effects on the hair follicle. By contrast, so-called female patterned alopecia 

may be truly ‘androgenetic’ for only a small number of women with thinning hair, and so other age-associated 

alopecias in women are likely to have other causes.97 Regardless of cause, age-related alopecia affects at least 

50% of men by the age of 50 years and 50% of women by the age of 60 years.98  

White hair was thicker on average, showed more medulla99,100 and grew faster than pigmented hair. Interest-

ingly, these researchers have also described an age-related reduction in hair growth rate, but that this was 

broadly limited to pigmented hairs. Thus, the implication is that, counter-intuitively, the apparently more 

‘aged’ white hairs may be partially spared these aging changes. The tensile strength of hair also decreases with 

age, having increased from birth to the second decade. Changes in hair color and density are very visible indica-

tors of age and are the target of endless manipulation to maintain a youthful appearance. Hair graying appears 

to be a consequence of an overall and specific depletion of hair bulb melanocytes, and less so in the outer root 

sheath and sebaceous gland basal layer.101-103 The mechanism for this steady depletion remains uncertain, but 

appears to involve the stability and survival of melanocyte stem cells and bulbar melanocytes , especially in the 

context of their relative sensitivity to an increasingly friable oxidant/anti-oxidant protection status.104,105  

Immune function 

   The skin (excluding an immune-privileged transient portion of anagen hair follicles) is a potent immune-

competent tissue. The density of antigen-presenting Langerhans cells in the skin decreases greatly in the elder-

ly even in sun-protected sites.106,107 These cells also have reduced ability to migrate from the epidermis in re-

sponse to cytokines like tumor necrosis factor-α.108 Similarly, T lymphocytes are reduced in number and be-

come less responsive to specific antigens.42,109 Aging skin also appears to have a reduced ability to produce cer-

tain cytokines (e.g., interleukin-2,110), while the production of others (e.g., interleukin-4) is increased.110  The 

consequence of these changes is a reduced intensity to delayed hypersensitivity reactions8 and increased sus-

ceptibility to photo-carcinogenesis and chronic skin infections.49 

Women 

Reduced estrogen levels in post-menopausal women contributes to wrinkling, dryness, atrophy, laxity, poor 

wound healing, and vulvar atrophy,111 and loss of collagen appears to bemore closely related to post-

menopausal age than chronologic age.112,113 Estrogen therapy (HRT) may prevent collagen loss  and can stimu-

late synthesis of collagen in those that have lower initial collagen levels.114,115 There is also a relationship be-

tween estrogen deprivation and degenerative changes of dermal elastic tissue.116,117 There is some evidence 
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that HRT improves skin dryness118 and wound healing,119 and increases skin surface lipids.120,12,122 

Mechanism 

There are several proposed modes of aging in terms of their cellular and molecular biologic mechanism(s), alt-

hough it is not at all clear whether they adequately address the primary cause(s) of aging. The production of 

reactive oxygen species (ROS) or free radicals, through UVR, smoking, pollution, and normal endogenous met-

abolic processes, is thought to contribute to the process of aging in the skin. ROS induces gene expression 

pathways result in increased degradation of collagen and accumulation of elastin.123 ROS not only directly de-

stroys interstitial collagen, but also inactivates tissue inhibitors of matrix-metalloproteases and induces the 

synthesis and activation of matrix degrading metalloproteases.123 Hormones have also been shown to play a 

role as post-menopausal hormone changes are responsible for a rapid worsening of skin structure and func-

tions, and these can be at least partially repaired by HRT or local estrogen treatment.113,124 

Mitochondrial DNA incurs regular DNA damage due to repeated constitutional oxidative stress, and in particu-

lar deletion of a specific length of DNA called common deletion that is 10 times more common in photo-

damaged than in sun-protected skin. The deletion results in further accumulation of ROS, with additional dam-

age to the cell’s ability to generate energy. The extent of mtDNA damage in photo-damaged skin does not cor-

relate with the chronologic age however, but rather with photo-damage severity.20 UVR can also accelerate 

telomere shortening, and results in the activation of DNA damage response proteins such as p53, a tumor sup-

pressor protein. The latter can inducing proliferative senescence or apoptosis, depending on the cell type.14,125 

CONCLUSION 

Skin is subject to a complex blend of intrinsic and extrinsic aging processes and given its strategic location as an 

interface organ is particularly vulnerable to environmental insults (e.g., UVR). Although there are numerous 

defense mechanisms to protect the skin from damage, the efficacy of these diminishes over time, resulting in 

the clinical features associated with aging and the development of skin cancers.  
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