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Abstract 

This work investigates how batch reactors can be optimized to increase 

the yield of a desired product coupling two appealing techniques for 

process control and optimization: the nonlinear model predictive control 

(NMPC) and the dynamic real-time optimization (D-RTO). The overall 

optimization problem is formulated and applied to calculate the optimal 

operating parameters of a selected case study and the numerical results 

are compared to the traditional control/optimization techniques. It has 

been demonstrated in our previous work (Pahija et al, Selecting the best 

control methodology to improve the efficiency of discontinuous reactors, 

Computer Aided Chemical Engineering, 32, 805-810, 2013) that the 

control strategy can significantly affect optimization results and that the 

appropriate selection of the control methodology is crucial to obtain the 

real operational optimum (with some percent of improved yield). In this 

context, coupling NMPC and D-RTO seems to be the ideal way to 

improve the process yield. The results presented in this work have been 

obtained by using gPROMS
®
 and MS C++ with algorithms of BzzMath 

library. 
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1. Introduction 

The growing competition and continuously more restricting regulations 

force improvement on chemical plants. Nowadays batch reactors play an 

important role in polymer, pharmaceutical productions, fine chemicals, 

and bioprocesses to quote a few. For instance, in the case of biofuels, 

discontinuous reactors are used for the deacidification of crude vegetable 

oils containing high amounts of free fatty acids (Boffito et al., 2013a, 

2013b; Pirola et al., 2010). Improving models, simulation and 

optimization of batch processes is more problematic than continuous 

processes for the intrinsic dynamic nature of discontinuous operations 

and, hence, for the need of dynamic models that are usually hard to 

develop and evenly difficult to solve. In fact, many batch processes are 

based on heuristic optimization, exploiting the run-to-run method. 

Nevertheless, batch processes are extensively used in several fields such 

as the production of fine chemicals (Le Lann et al., 1999) or in the 

biomass pretreatment and conversion (Ranzi et al., 2013), where volumes 

are small and/or residence times are long. This is the reason for which 

great attention has been given to the modeling and optimization of batch 

processes in the last decades especially at the laboratory scale (Simon et 

al., 2007; Lima et al., 2009; Abel and Marquardt, 2003) leading to 

nonlinear models and, thus, to multi-dimensional constrained nonlinear 

programming problems. Nowadays, the computational effort and the 

numerical techniques allow solution of these problems easily by opening 

the possibility to implement novel coupled control/optimization 

methodologies (Buzzi and Manenti, 2010) that go beyond the traditional 

dynamic optimization based on conventional control loops; the coupling 

of NMPC and D-RTO is becoming feasible. 



From this perspective, it is worth remarking that contrarily to the NMPC 

where manipulated variables are degrees of freedom of the optimization 

problems (Manenti, 2011) the dynamic optimization (D-RTO) has the 

setpoint trajectories as degrees of freedom. It implies that the control 

loops are open in the nonlinear model predictive control and the 

manipulated variables are the direct results of the (usually quadratic) 

optimization problems. On the other hand, the control loops are generally 

preserved (close) in dynamic optimization as they were originally 

conceived and they only receives new setpoints to be achieved for 

controlling and operating at best the discontinuous reactor (Bonvin, 

1998). This work is focused on the implementation study of a coupled 

two-level dynamic optimization of batch reactors that benefit from the 

use of nonlinear model predictive control (NMPC) techniques. Actually, 

it has been demonstrated in our prior works (Pahija et al., 2013a, 2013b) 

that the final results of dynamic optimization significantly depend on the 

control technique adapted to manage the process and the NMPC is the 

ideal control technique to further improve the production yield. Literature 

batch systems (Zhang and Smith, 2004; Rohman et al., 2011) are adopted 

as validation case. The work is organized as follows: section 2) 

mathematical formulation of batch and semi-batch reactor models and 

optimization problems; section 3) optimization of the batch and semi-

batch reactors (Rohman et al., 2011); section 4) assessment of different 

control techniques combined with dynamic optimization; and section 5) 

implementation of the combined NMPC and D-RTO technique. 

2. General Mathematical Formulation 

The optimization problem can be stated as follows: 



 Given: the kinetic parameters for each reaction and the initial 

concentration of reactants. 

 Determine: the optimal temperature profile for the batch reactors; 

the optimal temperature profile and the feed for the semi-batch 

reactor. 

 Maximize: yield of the desired product. 

 Subject to: reactant constraints and reactor model. 

The Optimization Problem (OP) for the generic batch reactor (Figure 1) 

is described mathematically as: 

Semi-Batch Reactor Batch Reactor 

OP 
Max
 T, F

 Yield 

s.t. ODE (model equations) 

 TL
   ≤ T ≤  TU

  ; FL
 ≤  F ≤  FU 

  FTOT ≤ FLIMIT 

[1] 

OP 
Max
 T

 Yield 

s.t. ODE (model equations) 

             TL
   ≤ T ≤  TU

  

  

[2] 

 

Fig. 1. Scheme of the batch reactor and the related control scheme. 

 



Lower and upper bounds for the temperature, TL and TU, and inflow, FL 

and FU, are usually assigned. Specifically for the batch case the feed flow 

rate bounds are not necessary since the feed flow rate is null during the 

operations. The total amount of reactant B supplied to the reactor, 

indicated with FTOT, must not exceed a specific threshold. Perfect mixing 

conditions are considered. Heat exchanges are neglected. Also the metal 

mass, which is often relevant in batch reactors with respect to the reactive 

volume, is neglected. The model equations (ODE system) are derived 

from the component continuity: 

dnj

dt
= Fj + V∑νij

Nr

i=1

ri                                                         [3] 

where j = 1, …, Nc; V is the volume of the reactor, Fj is the flow feed 

rate (null value for the batch case), νij is the stoichiometric coefficient of 

the compound j in the reaction i. Reaction rates ri are calculated as 

follows: 

ri = ki
0 exp (−

Ei
RT
)∏C

j

νij

Nc

j=1

                                             [4] 

where i = 1, …, Nr. T is the reactor temperature, Ei is the activation 

energy of the reaction i and Cj is the concentration of the compound j. 

Other equations shall be written introducing the control system, such as 

the energy balances for the reactor and for the jacket.  

Since the heat of reaction is negligible as well as the enthalpy related to 

the compound B fed to the reactor during the operations is rather small, 

the energy balance is reduced to: 

dT

dt
=

Qj

(Wr ∗ Cpr)
                                                          [5] 



where Qj is the heat exchanged with the jacket, Wr represents the total 

moles within the reactor, Cpr is the specific heat of the mixture inside the 

reactor. The energy balance for the jacket is: 

dTj

dt
=

−Qj

VjρjCpj
+
MjρjCpj(Tjsp − 𝑇𝑗)

VjρjCpj
                                        [6] 

where Tj, Vj are the temperature and the volume in the jacket 

respectively, while ρj, Cpj are the density and specific heat of the fluid 

inside the jacket; Mj is the flow of water in the jacket. Tjsp is the setpoint 

temperature for the jacket. To manage the reactor temperature, hot and 

cold fluids entering the jacket can be opportunely mixed and a linear 

relationship can be used to model it: 

{
xH + xC = 1

xHTH+xCTC = (xH + xC)Tj
                                             [7] 

where xH and xC are the fraction of hot and cold water respectively, used 

to obtain the desired temperature in the jacket. Specific heats are 

considered constant. The material balances were proposed and validated 

by Garcia et al. (1995). On the other hand, energy balances were 

suggested by Aziz et al. (2000). 

 

3. Control Methodologies 

Before presenting the analyzed case study, the control methodologies are 

illustrated below. The reactor temperature is controlled by means of 

Proportional (P), Proportional-Integral (PI), Proportional-Integral-

Derivative (PID) (Stephanopoulos,1984) and Generic Model Control 

(GMC) (Arpornwichanop et al., 2005) methodologies. Briefly, 

considering a process based on the following model equations: 

dx

dt
= f(x, p, t) +  g(x, t)u                                               [8] 



y = h(x)                                                                [9] 

where x is a vector of state variables, y is a vector of output variables, u 

is a vector of input variables, p is a vector of process parameters and f, g 

and h are generally nonlinear function vectors (Arpornwichanop et al., 

2005). As a general GMC controller the following algorithm is used: 

dy

dt
=  K1(ysp − y) + K2∫ (ysp − y)dt

t

0

                                    [10] 

Where y is the controlled variable, ysp is the set point of the controlled 

variable, K1 and K2 are tuning parameters and t is the cycle time. 

 

4. Case Study 

The case study analyzed is a parallel reaction scheme: 

 

A + B  C 

2 B  D 

 

where C is the desired product to be maximized. The reaction conditions 

and kinetic parameters to perform the simulations are given in Table 1. 

Table 1. Process conditions and kinetic parameters (Garcia et al.,1995). 

Kinetic parameters        𝑘1
0 = 7.55 𝑥 108   𝑚3 𝑘𝑚𝑜𝑙−1 𝑠−1     𝑘2

0 = 5.75 𝑥 1011   𝑚3 𝑘𝑚𝑜𝑙−1 𝑠−1                      

                      𝐸1 = 7.90 𝑥 104   𝑘𝐽 𝑘𝑚𝑜𝑙−1   𝐸2 = 9.80 𝑥 104   𝑘𝐽 𝑘𝑚𝑜𝑙−1 

Initial concentrations       𝐶𝐴
0 = 1.0 𝑘𝑚𝑜𝑙 𝑚−3    𝐶𝐵

0 = 1.0 𝑘𝑚𝑜𝑙 𝑚−3 

Reaction volume   V = 1.0 m3 

Reaction temperature bounds  313.15 K  ≤ T ≤ 393.15 K 

Batch cycle time             𝑡𝑠 = 3600 𝑠   

Global exchange coefficient [kJ/(s m2 °C)] U = 40.842  

Specific heats [kJ/(kmol/°C)] CpA = 75.31   CpB = 167.36   CpC = 217.57   CpD = 334.73 

Densities [kg/m3] ρ=1000                 ρj=1000  

Volume [m3] V = 1  

Molar weight [kg/kmol] MWA = 30   MWB = 100   MWC = 130   MWD = 160 

Temperatures [K] TH = 400.15             TC = 313.15 

Initial temperatures (reactor - jacket) [K] T0 = 350.15               Tj0 = 340 

 



Performing the D-RTO, the initial control tuning parameters are kc = 5, τI 

= 30 [s
-1

], τD = 20 [s], according to the conventional methodology P, PI 

and PID, respectively; tuning parameters for the GMC are K1 = 5  [s
-1

] 

and K2 = 1.0e-5 [s
-2

]. The batch cycle time of 3600 s is discretized into 5 

intervals of 720 s each. The SRQPD optimizer implemented in gPROMS 

and the BzzRobustMinimization optimizer implemented in BzzMath 

library are jointly used to handle the numerical problems. The initial 

reactor temperature is T = 350.15 K and the initial jacket temperature is 

Tj = 340 K. Tj is obtained mixing hot water (TH = 400.15 K) and cold 

water (TC =313.15 K). Runs 1 to 4 (simulation and optimization) are 

performed on both batch and semi-batch reactors, Run 5 (D-RTO) 

simulates only the batch reactor, while the last run that couples the 

NMPC and the D-RTO is applied to the semi-batch reactor only 

highlighting the effectiveness of the proposed approach. 

 

4.1. RUN 1: Process Simulation 

Fig. 2 shows the numerical results assuming constant temperature T = 

350.15 K for 5400 s (batch time), as proposed in the works of Garcia et 

al. (1994) and Zhang and Smith (2004). In the semi-batch case, the 

temperature is 393.15 K while the initial concentration of B is null and 

the compound is gradually fed during the operations for 3600 s, using a 

constant flow rate (FB = 2.778e-4 kmol/s). Fig. 3 shows the numerical 

results for the semi-batch case. Comparative results for the two 

configurations are given in Table 2 (RUN 1). The numerical results are 

also compared to the results previously obtained by Garcia et al. (1994) 

and Zhang-Smith (2004). It is worth noting that Jackson et al. (1971) 

have observed that for reaction schemes with two parallel reactions 

(considering the first reaction having activation energy E1 and the second 



reaction having activation energy E2), with reactant order m for the side-

reaction and yield maximization as target, two cases are possible: 

 E2/E1 < m, the reactant must be added gradually during the 

reaction, maintaining the temperature at its upper bound; 

 E2/E1 > m, the reactant must be added at the beginning of the 

batch, optimizing the temperature. 

For this particular reaction (RUN 1), m = 2, E2/E1 = 1.24. A comparison 

between the batch reactor (5400 s) and semi-batch-reactor (3600 s) 

shows that the semi-batch reactor works for 1800 s less than the batch 

reactor and the numerical results of RUN 1 reported in Table 2 highlight 

it as the best choice in this case, in good agreement with Jackson’s 

directives. 

Fig. 2 Batch (5400 s) concentrations.            
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 Fig. 3 Semi-batch (3600 s) concentrations. 

 

 

4.2. RUN 2: Optimization 

The batch reactor (batch cycle time 5400 s) and the semi-batch reactor 

(operation time 3600 s) studied in the Run 1 are optimized in this section. 

As optimization strategy, the reactor temperature profile is selected as 

degree of freedom for the batch case, whereas the temperature and the 

feed flow rate are selected as degrees of freedom for the semi-batch case. 

The systems are subject to the temperature bounds reported in Table 1. In 

addition, the semi-batch system is subject to the constraint of 1 kmol of 

B. The total batch cycle time is split into 10 intervals. Garcia et al. (1995) 

and Zhang and Smith (2004) have implemented a Generalized Reduced 

Gradient (GRG) method. In this paper, we adapted the SRQPD 

implemented in the gPROMS optimization tool improved by means of 

the very robust optimizers included in the BzzMath library (Buzzi-

Ferraris and Manenti, 2010, 2012; Manenti, 2011). The optimal profiles 

of the reactor temperatures are reported in Fig. 4; the optimal feed flow 

rate is shown in Fig. 5 for the semi-batch reactor. The optimization 

results are showed in Table 2. It is worth saying that selecting only 2 

discretization intervals for the optimization rather than the 10 intervals 
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selected here, the yield is still higher than 0.51. The yield in C is shown 

in Table 2 (RUN 2). 

  Fig. 4 Optimal temperature profiles.              

 

Fig. 5 Optimal feed rate. 

 

4.3. RUN 3 : Simulation and Optimisation 

This section is an extension of RUN 1 and RUN 2. Differently from the 

previews runs, where the batch cycle time was 5400 s while the semi-

batch cycle time was 3600 s, in this run the cycle time for the batch 

reactor is 3600 s, while the cycle time for the semi-batch reactor is 5400 

s. These runs were considered also by Garcia et al. and Zhang-Smith. The 

reaction and the parameters are the same used for RUN 1 and RUN 2. 

Looking at the results in Table 2 (RUN 3), increasing the operating time 
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leads to higher values of yield as expected. For this run, the component B 

is still a constrained value. 

 

Table 2. Yield of C (desired product) from B. (* Run 1 , ** Run 2, *** Run 3) 

  Yields by Simulation Yields by Optimization 

CASE Time (s) 

Garcia et 

al. 

Zhang - 

Smith This work 

Garcia et 

al. 

Zhang - 

Smith This work 

Batch 5400 0.4764* 0.491* 0.4744* - - 0.5361** 

Semi-

batch 3600 0.8109* 0.804* 0.8078* 0.8306** 0.822** 0.8293** 

Batch 3600 0.4602*** 0.473*** 0.4637*** - - 0.5197*** 

Semi-

batch 5400 0.8414*** 0.835*** 0.8383*** 0.8612*** 0.853*** 0.8617*** 

 

 

4.4. RUN 4 : Optimisation (improvement of RUN 2) 

The optimization of the semi-batch reactor in RUN 2 is constrained by 1 

kmol of B. Solving the semi-batch cases without constraints, it is possible 

to improve considerably the yield. For the 3600 s (semi-batch) case and 

5400 s (batch), optimizing temperature for both cases and feed rate 

without constraints, the yields obtained respectively are 0.9716 and 

0.9967. In the former case the total amount of B supplied is 1.77 kmol, 

whereas it is 2.33 kmol for the latter case. The unreacted A is reduced 

with respect to the constrained cases. For instance, using a cycle time of 

3600 s with constraint, the residual of A is 0.171 kmol; on the other hand, 

the unconstrained case leads to residual A equal to 0.029 kmol. The 

dimensions of the reactor increase so that it can accommodate a higher 

amount of B. The effective dimensions of the reactor will depend on the 

densities of the species inside it. 



 Fig. 6 Yields - batch case (5400s) Run 1 - Run 2. 

Fig. 7 Yield - semi-batch case (3600s) Run 1 - Run 2.  

 

Fig. 6 shows the difference between the variation of the yield (of the 

desired product from C) maintaining the constant value of temperature 

inside the reactor (that is a given parameter equal to 350.15 K) (Run 1) 

and optimizing it through a piecewise constant optimization criterion 

(Run 2). Note that the yield of the optimized reactor is almost 

everywhere lower than the yield obtained by the regular simulation. It 

means that the optimal temperature profile obtained through the 

optimization will change if we change the total batch time; for instance, it 

is unsuitable to maintain the same trend of temperature otherwise the 

system will not achieve any yield improvement. Conversely, Fig. 7 

shows the yield for the semi-batch case; the optimal yield (Run 2) is 

significantly higher than the yield obtained using a constant temperature 
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(Run 1) and a constant feed rate (that are given parameters equal to 

393.15 K and 2.778e-4 kmol/s). 

 

4.5. RUN 5 : D-RTO Control 

As already introduced, this run is applied only to the batch reactor (3600 

s) to make easier the discussion and highlight the benefits. Figs. 8 to 13 

shows the process dynamics of the batch reactor obtained applying the D-

RTO based on the aforementioned control methodologies. Specifically, 

the fractions of hot and cold water (manipulated variables) are reported in 

Fig. 8. The fraction of cold water decreases to let the reactor temperature 

progressively achieving higher values, as imposed by the dynamic 

optimizer that defines the reactor temperature optimal profile. Fig. 9 to 

13 report the responses of the system to perform the servomechanism 

problems imposed by the dynamic optimizer. It is important to say that 

the trends are rather close to each other since the tuning parameters are 

optimized for each single control methodology. Nevertheless, responses 

are different according to the control methodology. It unavoidably means 

that the optimization is performed accounting for the controller feedback 

and the results is not purely economic, as it happens in the real-time 

optimization, but it is spoiled by control actions. It is surprising that the P 

controller, which has certain well-known relevant lacks with respect to 

the other methodologies (i.e. the offset), has superior performances when 

it is coupled with a dynamic optimizer. Actually, the use of P control 

coordinated by a dynamic optimizer leads to the highest yield of C 

(51.38%) with respect to the performance of the GMC (51.36%), PID 

(51.30%) and PI (51.27%). To better understand this fact, Fig. 13 show 

this difference comparing the optimal setpoints according to the control 

methodology. The setpoints obtained with the dynamic optimizer (D-



RTO) using the P controls are far from the other ones especially in the 

first and the last periods. 

 

Fig. 8 Fractions of hot and cold water (xH, xC) with GMC and PI controls. 

Fig. 9 Temperature setpoint (Tsp-PI) and reactor temperature (T-PI) with PI control. 

Fig. 10 Temperature setpoint (Tsp-PID) and reactor temperature (T-PID) with PID control. 
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Fig. 11 Temperature setpoint (Tsp-GMC) and reactor temperature (T-GMC) with GMC control. 

 

Fig. 12 Temperature setpoint (Tsp-P) and reactor temperature (T-P) with P control. 

 

Fig. 13 Temperature setpoints for P, PI, PID amd GMC controllers. 
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This is due to the offset of the P controls. Nevertheless, whenever the P 

controller is coupled with an optimizer such as in the dynamic 

optimization, the offset is directly handled and compensated by the same 

optimizer, which calculates a setpoint trajectory intentionally spoiled by 

the offset of the P controller, therefore zeroing the gap with respect to the 

other control methodologies. By doing so, certain good properties of P 

controls are fully exploited. The theory is easily confirmed by 

introducing the tuning parameters of the PID control, opportunely 

bounded, as additional degrees of freedom of the aforementioned optimal 

problem. Integral and derivative times of PI and PID controls tend to 

their upper and lower bounds respectively and, hence, the PID control 

tends to the P control. The optimal tuning parameters obtained are 

[kc=2.73 (P)], [kc=9.61, τI=53.77 s
-1

 (PI)], [kc=19.93, τI=27.14 s
-1

, 

τD=7.97 s (PID)], [k1=3.99 s
-1

,  k2=2.82E-5 s
-2

 (GMC)]. 

 

4.6. RUN 6 : NMPC and D-RTO 

This run assesses the coupling of the NMPC with the D-RTO (Fig. 14). 

The semi-batch reactor is selected in this case (RUN 5, 3600 s). The 

setpoint profiles of the feed flowrate and the reactor temperature are 

obtained from the previous D-RTO. The optimization problem is 

formulated merging the economic target of D-RTO and the quadratic 

target of NMPC: 

max
𝑥𝑠𝑒𝑡

𝑐𝑦𝑖𝑒𝑙𝑑 



𝑠. 𝑡.         min
𝑢(𝑘)….𝑢(𝑘+ℎ𝑐−1)

{ ∑ 𝜔𝑗(�̅�𝑗 − 𝑥𝑗
𝑠𝑒𝑡)2

𝑘+ℎ𝑝

𝑗=𝑘+1

+ ∑ 𝜔1,𝑙(�̅�𝑙 − 𝑢𝑙
𝑡𝑎𝑟)2

𝑘+ℎ𝑝−1

𝑙=𝑘

+ ∑ 𝜔2,𝑙(�̅�𝑙 − 𝑢𝑙
(𝑖−1)

)2

𝑘+ℎ𝑝−1

𝑙=𝑘

} 

s.t 

{
 
 

 
 𝑥𝑗

𝑚𝑖𝑛 ≤ �̅�𝑗 ≤ 𝑥𝑗
𝑚𝑎𝑥

𝑢𝑙
𝑚𝑖𝑛 ≤ �̅�𝑙 ≤ 𝑢𝑙

𝑚𝑎𝑥

𝛥𝑢𝑙
(𝑖),𝑚𝑖𝑛 ≤ 𝛥𝑢̅̅̅̅ 𝑙

(𝑖) = �̅�𝑙
(𝑖) − �̅�𝑙

(𝑖−1) ≤ 𝛥𝑢𝑙
𝑚𝑎𝑥

𝑀𝑜𝑑𝑒𝑙

        

[11] 

 

where set is the setpoint; ul is the manipulated variable; �̅�𝑗 − 𝑥𝑗
𝑠𝑒𝑡 is the 

deviation between the control variable and its setpoint; �̅�𝑙 − 𝑢𝑙
𝑡𝑎𝑟 is the 

deviation between the manipulated variable and its steady-state target; 

�̅�𝑙 − 𝑢𝑙
(𝑖−1)

 is the incremental variation between ith and (i-1)th time 

intervals of the lth manipulated variable; and ω are the weighting factors. 

Several simulations have been performed; the one reported in Fig. 15 has 

been obtained with a discretization horizon (integration step) equal to 36 

s, the control horizon equal to 180 s and the prediction horizon equal to 

800 s. Control and prediction horizon are selected in accordance with 

heuristic methods reported in the literature (Manenti, 2011). As the batch 

time is smaller than the control and prediction horizons, they are 

progressively reduced up to the end of simulation. This coupled approach 

results in a more effective batch production; actually, the production 

yield is 0.813, which is larger than the yield of 0.806 obtained in the best 

previous case (proportional control combined with D-RTO – Run 5). 



 

Fig. 14 Scheme of the Semi-Batch reactor and the related coupled optimization strategy 

(NMPC+D-RTO). 

 

Fig. 15 The NMPC maintain the optimal trajectory received by the D-RTO. 
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The values of F [kmol/s] received 
by the D-RTO are: 

•  2.59E-4 

•  3.33E-4 

•  3.44E-4 

•  3.23E-4 

•  1.44E-4 



5. Conclusions 

Although the optimal conditions and setpoint trajectories to operate batch 

reactors are defined by means of dynamic optimization, they could be 

further improved by selecting the most appealing control technique. It 

was already demonstrated in our prior work (Pahija et al., 2013b) that the 

operations of batch systems can be improved simply considering the 

tuning parameters as degrees of freedom of the dynamic optimization 

problem. This paper has extended this concept by assessing different 

control techniques combined with dynamic optimization, showing that 

the proportional control is the most appealing one among the 

conventional control techniques and that its well-known offset issues are 

absorbed by the dynamic optimizer, making it very effective. At last, the 

preliminary results of coupling the dynamic optimization and nonlinear 

model predictive control for batch reactors have shown further potential. 
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