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Abstract: Propylene is one type of plastic that is widely used in our everyday life.  

This study focuses on the identification and justification of the optimum process 

parameters for polypropylene production in a novel pilot plant based fluidized bed reactor.  

This first-of-its-kind statistical modeling with experimental validation for the process 

parameters of polypropylene production was conducted by applying ANNOVA (Analysis 

of variance) method to Response Surface Methodology (RSM). Three important process 

variables i.e., reaction temperature, system pressure and hydrogen percentage were 

considered as the important input factors for the polypropylene production in the analysis 

performed. In order to examine the effect of process parameters and their interactions, the 

ANOVA method was utilized among a range of other statistical diagnostic tools such as the 

correlation between actual and predicted values, the residuals and predicted response, 

outlier t plot, 3D response surface and contour analysis plots. The statistical analysis 

showed that the proposed quadratic model had a good fit with the experimental results.  

At optimum conditions with temperature of 75 °C, system pressure of 25 bar and hydrogen 

percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence 

it is concluded that the developed experimental design and proposed model can be 

successfully employed with over a 95% confidence level for optimum polypropylene 
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production in a fluidized bed catalytic reactor (FBCR).  

Keywords: polypropylene; process parameter; optimization; fluidized bed reactor 

 

1. Introduction 

Polypropylene is a type of thermoplastic polymer resin and a superior quality polymer material that 

originates from olefins [1,2]. Polypropylene and its composites have been given priority over all other 

polymers by engineers due to its diversified applications [3] from household stuffs to a wide range of 

industrial appliances [4], as structural plastic or a fiber-type plastic. A number of conventional 

materials like steel, aluminum wood etc. have also been replaced by polypropylene and its composites 

since their superior physical and chemical properties such as their light weight, sophisticated structural 

stability, greater dielectric vitality, better mechanical strength, corrosion resistance capability and 

flexibility are superior to these traditional materials [5,6]. However, polypropylene and its composites 

hold only 20% share of the gross world polyolefin production [7] and hence an optimization study on 

polypropylene production is important from a scientific and economical point of view to enhance its 

usages and to improve its share of the market. For its production, fluidization is considered a  

well-established technology used in most cases. The capability to carry out a variety of chemical 

reactions, homogeneous particle mixing and extra ordinary mass and heat transfer characteristics are 

some of the major advantages of using Fluidized Bed Catalytic Reactors (FBCR) in industrial scale 

polypropylene production. Furthermore, the gas phase fluidization process has been recognized as an 

environmental friendly and convenient technology by a number of researchers [8–10]. Very important 

operating conditions like temperature, pressure and composition can influence significantly the process 

of polymer fluidization and these operating conditions are required to be controlled to produce 

different grades of polyolefin [11,12]. Being an exothermic reaction, propylene polymerization 

generates heat when the reaction starts, which principally influences the other operating factors and 

product quality. As a result of these mechanisms, proper process modeling to cater for these 

complicated reactions, hydrodynamic aspects as well as mass and heat transfer in the fluidized bed 

reactor, is necessary to engage engineers and scientists to design technically efficient and operationally 

feasible reactors for these facilities [13–15]. Furthermore, the optimization of these operating 

parameters also requires functional relationship among the process variables through available process 

modeling techniques. 

A classical model for the chemical engineering process which comprises chemical kinetics, physical 

property interactions, mass and energy balances is made up of a number of differential as well as 

algebraic equations for both dynamic and steady state processes [16,17]. Some researchers considered 

the polyolefin reactor as a well-mixed reactor and only proposed a purely mathematical model where 

the temperature and monomer concentration in the reactor were calculated [18–20]. On the basis of a 

mixing cell framework a comprehensive mathematical model has also been proposed for simulation of 

the transient behavior of a fluidized bed polypropylene reactor by using a steady state population 

balance equation coupled with the proposed dynamic model along with incorporation of multisite 

polymerization kinetics of multi-monomer [21]. Ibrehem et al. [22] recently proposed that emulsion 
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and solid phases are the stages where polymerization reactions take place during fluidization and 

report that alteration of catalyst particles with different porosity affects the rate of reaction and hence 

their model was obtained taking these effects into consideration. However, all these models generally 

take into account partial assumptions on reaction rates which do not cover all reaction conditions and 

circumstances and are normally not validated experimentally. Furthermore, it is also challenging to 

formulate precise mathematical models to take all these operation and design aspects into 

consideration for such a complex polymerization process [23]. 

Another feasible modeling approach is through statistical techniques that have been applied by a 

number of researchers with the purpose of predicting the optimum operating conditions in chemical 

processes to obtain the highest yield of desired product [24–26]. In fact, Response surface 

methodology (RSM) has been described as a very functional statistical tool for determination of 

optimum processes parameters for lab scale to industrial scale, as highlighted by various 

workers [27–29]. RSM covers experimental design, process optimization and empirical modeling 

where targeted response may fluctuate with numerous process variables (termed factors). RSM is 

principally appropriate for problems where the explanation of the process mechanism is inadequate 

and difficult to be characterized by first-principles mathematical models. Being contingent on definite 

objectives, in reality these RSM methods generally vary in the experimental design system, the 

selection of appropriate models and the mathematical equations of the optimization problem. Thus a 

precise design of experiment (DoE) is vital for a prolific experimental study [30]. Classical factorial 

and central composite designs can be utilized to investigate the interactions of process factors 

depending upon the polynomial models obtained in this method.  

However, from literature studies, no work has been reported so far for the optimization of process 

variables of propylene polymerization in a fluidized bed catalytic reactor (FBCR) by applying these 

statistical modeling techniques. Also very few works have been reported on studying a pilot scale 

catalytic reactor although this is extremely important for predicting and validating the set of 

appropriate significant process variables and parameters for industrial use [18,22,31]. Hence, the 

objective of our work was to investigate the relationship among various operating parameters and to 

find out the optimum process parameters for propylene polymerization in a pilot scale fluidized bed 

using RSM modeling and Central Composite Design (CCD) technique. This novel pilot plant is a 

prototype of an industrial scale polypropylene production plant which is now in operation under 

management of the National Petroleum Corporation, Malaysia. Another novelty of our plant is that 

sampling of the gases in the system was conducted with an online Refinery Gas Analyzer (RGA). This 

type of real time and sophisticated sampling facility is globally very rare even in an industrial scale set 

up, although being highly necessary. To the best of our knowledge, this is the first attempt to conduct 

research on polypropylene production applying RSM for process parameter optimization under various 

parameter interactions in an original designed FBCR pilot plant.  
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2. Experimental Studies  

2.1. Pilot Plant Description and Operation 

The pilot plant developed in our lab to produce polypropylene consists of a fluidized bed reactor 

zone and a disengagement zone designed for polymerization purposes, which is shown schematically 

in Figure 1 and its 3D figure shown in Figure 2. The inner diameter and height of the fluidized bed 

zones are 10 cm and 150 cm, respectively. The diameter is based upon the capacity of the production 

and the height of the reactor based on the fluid residence times. The disengagement zone has a diameter 

of 25 cm and a height of 25 cm. Catalyst particles were injected at 9 cm above the distributor plate 

located at the feed gas entrance point. In this polymerization reactor, the bubbling fluidized bed 

operates by the mixed gas fluidization process. Granulated polymer particle was used as the bed 

material because of its suitable mechanical stability. The operating temperature range in the center of 

the fluidized bed is maintained at about 70–80 °C. A heater was used to regulate the gas inlet 

temperature of the reactor for startup condition to reach the required reaction temperature. Unreacted 

gas mixture from the top of the reactor is recycled and cooled by a shell and tube heat exchanger. One 

cyclone and four filters were fitted at the top of the reactor to remove fines entrained from the reactor. 

A buffer vessel was installed to control the pressure fluctuations in the system.  

Figure 1. Schematic diagram of fluidization of the polypropylene production system. 

 

Propylene, hydrogen and nitrogen are used as the main input gases during the fluidization process 

which act as the medium of heat transfer as well as the reactants for the growing polymer particles 

during polypropylene production in the fluidized bed catalytic reactor. Continuous charging of catalyst 

and co-catalyst is carried out into the reactor which activates the reactants (propylene and hydrogen) to 

produce an outspread distribution of polymer particles. A co-catalyst is also used to keep the moisture 

below 2 ppm while activating the catalyst, which is the requirement for producing industrial grade 

polypropylene. After the bed has been fluidized, unreacted gases are separated in the disengaging 

section of the plant. The disengaged gases are recycled and mixed with fresh feed gases consisting of 

propylene, nitrogen and hydrogen This gas mixture passes through the heat exchanger in order to 
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remove excess heat and is recycled through the gas distributor. The finished product is collected from 

the adjacent collection cylinder, whose connecting line is positioned just above the distributor plate. 

Propylene can be converted to polypropylene as much as 2–3% per pass under fluidization conditions 

while the overall conversion can reach up to 98% [19,31]. The system is designed to run at a maximum 

pressure of 30 bar. 

Figure 2. Detailed experimental set up of a pilot scale fluidized bed catalytic reactor (3D). 

 

2.2. Pilot Plant Instrumentation 

Temperatures in the reactor were measured at six different vertical positions, starting at 16 cm 

above the distributor plate. A temperature controller was used to control the temperature of the 

recycled gas entering the reactor. The air driven piston compressor was used to compensate for the 

pressure drop through the system. A flow meter and control valves were added just before the gas 

enters the reactor to regulate and measure the flow rate and circulation flow through the reactor 

system. The flow of catalyst was adjusted by a measuring valve, which revolves at a constant speed 

and inserts the catalyst into the reactor. Pressure and differential pressure indicators were placed at 

different points to check the pressure changes in the system and excess pressure is avoided by placing 

a relief valve on the top of the reactor set at 30 bar. 

An online integrated Refinery Gas Analyzer (RGA) was used for analyzing the gas composition 

where wide-ranging automatic data recording devices and measuring equipment were employed in the 

pilot plant. The gas components consisting of hydrogen, nitrogen and propylene were analyzed online 

(with accuracy of ±0.03%) with a real time Refinery Gas Analyzer (RGA), a device of Perkin Elmer 

Clarus 580 series. The gas chromatography engineering software developed by Perkin Elmer was used 

for gas composition analysis which analyzes the multi component hydrocarbon and light gases. The 

three channel model in the data acquisition system provides a guaranteed analysis of the compositions 



Materials 2014, 7 6 

 

 

of hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide and propylene in approximately 

8.5 min using two thermal conductivity detectors (TCD/TCD) and a flame ionization detector (FID).  

2.3. Experimental Design and Optimization 

In this study, the statistical analysis of propylene polymerization was performed using the Stat-Ease 

software where the CCD (Center Composite Design) was applied to analyze the interactions among the 

process variables and to identify the optimum process condition [32–34]. After collection of 

experimental data along with the design procedures, an empirical model was developed according to 

the RSM procedure. In this work, the polynomial function was fitted with the data at the initial stage 

after which the factor values were identified to optimize the objective function. The accuracy of the 

polynomial model fitting was determined by the coefficient of determination R
2
 and R

2
adj in Equations 

(1) and (2) correspondingly: 

2 1 residual

mod residual

SSQ
R

SSQ +SSQ
   (1) 

 
2 1
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(2) 

The performance of the system was evaluated by analyzing the response of the percentage of 

propylene conversion per pass and the following is the mathematical equation related to the composite 

design, i.e., 

1
2

0

1 1 1 1

β β χ β χ β χ χ ε
k k k k

i i ii i ij i j

i i i j i

Y


    

        (3) 

where, Y is the response vector, taking into account the main, pure-quadratic, and two-factor 

interaction effects while ε is the error vector. Regression and graphical analysis of the experimental 

design data and evaluation of the statistical significance of the various equations obtained were carried 

out in this analysis. The optimum preparation conditions were estimated through regression analysis 

and three-dimensional response surface plots of the independent variables with each dependent 

variable. Furthermore, the p-value is considered as a feature to measure the level of significance of all 

independent variables which at the same time signify the interaction intensity between all independent 

variables where the smaller p-value indicates the higher level of significance of the related variable. 

The consequence of the second-order regression models was tested by the use of ANOVA and  

F-value analysis. This calculated F-value can be expressed from the following equation: 

RD

RG

MnS

MnS
F   (4) 

where the meaning of these terms can be referred to in the nomenclature section.  

The DgF based F distribution for residual and regression is applied to compute the F-value in the 

particular point of importance. From these analyses, regression coefficients are obtained based on their 

significances with respect to the p-value. 
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The coefficient of variation (CV) indicates the extent of error of any model which is measured as 

the percentage of standard deviation over mean value given as: 

CV= 100
SD

mean
  (5) 

If the CV of a model does not exceed 10%, the model can be rationally regarded as reproducible. 

3. Results and Discussion 

3.1. Verification on Statistical Models  

The independent variables considered important in this process are reaction temperature (A), system 

pressure (B) and hydrogen concentration (C). Reaction temperature refers to the temperature used 

during the initiation of the polymerization process, while system pressure refers to the required 

pressure of 20 bar process maintained at the starting point of reaction even though the system can be 

sustained at 30 bar. The range and coded level of the polymerization process variables studied are 

listed in Table 1. The independent variables were coded to the (−1, 1) interval where the low and high 

levels were coded as −1 and +1, respectively. According to the CCD, the total number of experiments 

required to be conducted is 20 runs. The polynomial equations were further used to plot three 

dimensional (3-D) surfaces and two-dimensional (2-D) contours to visualize the individual and 

interactive effects of the process factors on the response variables within their predefined ranges. 

Table 1. Coded levels for independent variables used in the experimental design. 

Factor Name Units Type Low Coded High Coded Low Actual High Actual 

A Temperature °C Numeric −1.000 1.000 70.00 80.00 

B Pressure bar Numeric −1.000 1.000 20.00 30.00 

C Hydrogen (%) % Numeric −1.000 1.000 2.00 10.00 

Batch experiments for 20 runs with different combinations of the process variables were carried out 

in the experiments. The percentage of polypropylene production was considered as the response.  

The proposed combination parameters for the experimental design and consequent results of the 

response using CCD are listed in Table 2. The Mean Square Error (MnSer) of the center point is 

0.00005, which shows the accuracy of the data points taken and justifies the use of these data to obtain 

the model coefficients in Equation (6). 

Experimental results showed that the polymer conversion ranged from 3.1%–5.82%.  

The maximum yield (5.82%) was found under the experimental conditions of A = 75 °C, B = 25 bar 

and C = 2% which shows that for achieving the perfect coordination of experimental parameters for 

propylene conversion, the observation of precise optimum process conditions is mandatory. 
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Table 2. Central Composite Design (CCD) experimental design and results of the  

response surface. 

Run 
Factor A, 

Temperature (°C) 

Factor B, pressure 

(bar) 

Factor C, Hydrogen 

(bar) 

Response, Y, Polymer 

conversion (%) 

(Experimental result) 

1 70 20 10 3.10 

2 70 20 2 5.20 

3 75 20 6 4.53 

4 80 20 10 3.32 

5 80 20 2 5.40 

6 75 25 10 3.86 

7 70 25 6 5.00 

8 75 25 6 5.20 

9 75 25 6 5.20 

10 75 25 6 5.21 

11 75 25 6 5.20 

12 75 25 6 5.21 

13 75 25 6 5.19 

14 75 25 2 5.82 

15 80 25 6 5.10 

16 70 30 2 5.38 

17 70 30 10 3.10 

18 75 30 6 5.00 

19 80 30 2 5.68 

20 80 30 10 3.57 

3.2. Model Fitting 

By the analysis of variance (ANOVA) method, the consequent F-value and p-value analysis were 

utilized. The summary of the Linear, Quadratic, 2FI (2 Factor Interaction) and Cubic model is shown 

in Table 3. The linear model represents the sequential sum of squares for the linear terms (A, B and C). 

The 2FI model implies the sequential sum of squares for the two-factor interaction terms (AB, BC and 

AC). The Quadratic model exhibits the sequential sum of squares for the quadratic (A
2
, B

2
 and C

2
.) 

terms. For all the above models small p-value (Prob >F) indicates that selected model terms can 

improve the model significance. The F-value is also associated with these models. The larger F-value 

indicates more of the variance can be explained by the model; a small number indicates the variance 

may be more due to noise.  

Table 3. Statistical parameters for sequential models. 

Source Sum of squares Degrees of freedom Mean square F-value p-value 

Linear 11.39 3 3.80 21.55 <0.0001 

2FI 0.025 3 8.446 × 10
−3 0.039 0.9891 

Quadratic 2.73 3 0.91 130.90 <0.0001 

Cubic 0.066 4 0.016 28.79 0.0005 

  



Materials 2014, 7 9 

 

 

It is observed from Table 3 that the quadratic model is the best fit model in terms of its significance 

and for this experimental design, the 2nd order model is suggested, as the p-value of this model is also 

smaller than that of other models.  

For the proposed quadratic equation, the independent variables matched were also tested for the 

integrity of fit. The suitability of the fitted model was assessed using numerous indicators and the 

outcomes are presented in Table 4. To evaluate the appropriateness of the model, the R
2
, the R

2
adj CV 

and F-value were used [35]. According to Table 4, the F-value of the model at 226.46 indicates the 

significance of this model, which also shows negligible tendency towards noise [36,37].  

The probability value was found to be extremely low (p-value <0.0001) since less than 0.0500 for the 

p-value indicates that the model terms chosen are considerably important. The value for the coefficient 

of determination, R
2
 can be used to judge the precision and accuracy of the proposed model. The 

acquired value at 0.9951 specifies that 99.51% of the variability in the dependent variable could be 

justified through the model, and only 0.49% of the overall variations cannot be clarified [11,38]. 

Furthermore, the obtained value of the adjusted determination coefficient (R
2

adj) is 0.9907, which 

shows a good relationship among the independent variables. In the current work, an incredibly low 

value of CV (1.75%) indicated a high level of accuracy and an excellent consistency of the model for 

the experimental results. The results shown in Table 4 prove that all the linear terms (A, B and C) and 

the quadratic terms (A
2
, B

2
 and C

2
) were important model terms due to their small p-value. 

Table 4. Statistical parameters for sequential models. 

Source Sum of Squares df Mean Square F-Value p-value (Prob >F) 

Model 14.14 9 1.57 226.46 <0.0001 

A-Tempeature 0.17 1 0.17 23.98 0.0006 

B-pressure 0.14 1 0.14 20.06 0.0012 

C-Hydrogen 11.09 1 11.09 1597.78 <0.0001 

AB 0.015 1 0.015 2.21 0.1683 

AC 4.513 × 10
−3 1 4.513 × 10

−3 0.65 0.4388 

BC 5.513 × 10
−3 1 5.513 × 10

−3 0.79 0.3937 

A
2 

0.038 1 0.038 5.49 0.0411 

B
2 

0.45 1 0.45 64.27 <0.0001 

C
2 

0.30 1 0.30 42.56 <0.0001 

Lack of Fit: 0.069; R-Squared: 0.9951; Adj. R-Squared: 0.9907; CV%: 1.75. 

In order to show the significance of the individual parameters on the response, another effective 

statistical tool, t-test, was carried out. The t-test can show the level of significance of every individual 

parameter. From Table 5 it can be observed that the p-value obtained from the t-test analysis is much 

lower than 0.05 for every individual factor (A, B, and C) which indicates that each of the factors 

(temperature, pressure and hydrogen [%]) taken into consideration is a highly significant factor for the 

polypropylene production process.  
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Table 5. t-Test result for testing the significance of individual parameters. 

One-Sample Test (Individual Parameter) 

Factor t DgF p-value 

Factor, A 92.466 19 0.00001 

Factor, B 30.822 19 0.00001 

Factor, C 9.247 19 0.00001 

The subsequent second order polynomial equation was established by the application of least squares 

method and multiple regression study on the obtained data and given by Equation (6) below i.e., 

Polymer conversion (%), Y = (0.13 × A) + (0.12 × B) − (1.05 × C) + (0.044 × A × B) +  

(0.024 × A × C) – (0.026 × B × C) − 0.12 × A
2
 − 0.40 × B

2
 − 0.33 × C

2
 + 5.19 

(6) 

where Y is the predicted percentage of polypropylene conversion, whilst A (temperature), B (pressure) and 

C (Hydrogen) are the coded form of independent variables of the model.  

Diagnostic Statistics for Model Adequacy 

Usually, it is essential to confirm first whether the fitted model provides an adequate approximation 

of the actual values or not. Even though the model explains an acceptable fit, further continuation of 

the analysis and optimization of the integrated response surface tends to prevent inadequate or 

misleading results. In this study, several diagnostic tools were used to check the adequacy and the 

process parameters. The appropriateness of the models was also estimated by the influence plots and 

the residuals (difference between the anticipated response value and the actual value) in order to 

determine the coefficient for the data obtained experimentally in this work. Residuals are usually 

considered as components of variations, imprecisely fitted to the model and subsequently it is 

predicted that they behave according to a normal distribution feature. For the evaluation of normality 

of the residuals, a graphical visualization of the normal probability plot is considered as the proper 

method. In Figure 3, the scrutinized residuals are plotted against the predicted values, where, they lie 

rationally close on a straight line and exhibit no digression of the variance. In this way, the normal 

distribution of data can be confirmed. Furthermore, the regression model was used to calculate the 

predicted values of the polypropylene production (%) which were compared with the experimental 

results shown in Figure 4. As demonstrated in Figure 4, there is a suitable relationship between the 

experimental values and the predicted values which are distributed comparatively adjacent to the 

straight line. This phenomenon proves that the presented regression equation used for fitting the data 

was appropriate, and the CCD model in conjunction with the experimental design is efficiently 

functional for optimization of the polypropylene conversion (%). 
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Figure 3. Normal probability plot. 

 

Figure 4. Linear correlation between actual and predicted values. 

 

Figure 5 shows the residuals and predicted polymerization capacity per pass of the batch reaction. 

The general trend is that the plot is scattered randomly, suggesting that the variance of the real findings 

is constant for every response value; the results indicate that the response variable does not require any 

modification since this result does not indicate any existence of large biased errors in the experiments 

performed. This can also be seen in the results of Table 2 

The outliers are cautiously tested in experimental design, since they may correspond to data 

acquisition error or rather more severe error [39]. The batch runs of polypropylene polymerization rate 

in percentage per pass are shown in the outlier t plot in Figure 6. The plot of outlier t is a calculation of 

the degree of the standard deviation i.e., intensity of deviation of actual value from the predicted value. 

Maximum standard residuals are required to be in the range of ±3.50 and any observed value alongside 
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a standardized residual beyond this value is not totally related to its experimental response [40]. In this 

study almost all values for outlier t are lower than the interval of ±3.50 which proves that the 

estimation of the fitted model against the response surface is justifiably good enough without biased 

unknown errors. Only one data point was found to be beyond this value which contributed to the lesser 

significant term of the model [41].  

Figure 5. The residuals and predicted response plot for propylene polymerization. 

 

Figure 6. Outlier t plot for propylene polymerization per pass. 

 

The perturbation diagram for the polypropylene production rate with respect to the three input 

process factors is shown in Figure 7 where the influence of a process variable around a specific point 

in the design range is illustrated by this perturbation plot. In this method the response (the value of Y) 

is plotted with respect to only one variable of the overall process, one at a time over its range 

considering the additional process variables as remaining constant at their center point. A steep slope 

or curvature in a factor shows that the response is sensitive to that factor and a flat line demonstrates 
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insensitivity to modification of that specific factor. The relative effects of every independent variable 

on the response (polypropylene production, %) can be seen in the perturbation plot of Figure 7.  

The sharp curvature of temperature (A), pressure (B) and hydrogen concentration (C) obtained, 

demonstrates that the propylene production (%) was responsive to all three process variables as 

expected. However, the perturbation analysis clearly shows that of the three parameters, hydrogen 

concentration (C) affects the value of Y more than the other two parameters as would be expected in 

such a process. This is also clearly shown for the value of coefficients as indicated in Equation (6). 

Figure 7. Deviation graph of process parameters. 

 

3.3. 3D Response Surfaces and Their Corresponding Analysis 

RSM provides several benefits for observing the effect of interaction within independent parameters 

and to recognize the effects of binary combination of linking two independent factors efficiently. 

However, it is easier to understand the interactions between factors graphically and the application of 

three-dimensional plots of the model is further useful for the graphical explanation of the interactions 

in this study [42]. Here the 3-D response surfaces were plotted by applying Equation (6) in order to 

show the polypropylene production rate which was affected by the various levels of other process 

variables. The interaction character between two process parameters can be explained by the response 

surfaces whilst the other process parameters remained constant at their center point. To identify the 

optimum levels of the process parameters, the 3D plot line can also be used to find the optimum 

response of polymer conversion yield at the highest point of the surfaces. In these figures, the color 

line levels indicate the various effects on the polypropylene production rate. 

The polypropylene production rises with the decrease of hydrogen percentage. It can be observed 

from Figure 8 that the hydrogen percentage showed a positive linear influence on the polypropylene 

production and the production increased notably in lower concentrated hydrogen regions. From the 3D 

graph of Figure 8 it is depicted that the combination of temperatures of 75 °C, pressure of 25 bar and 

hydrogen of 10% shows a 3.86% polypropylene production per pass whereas at a temperature of 75 °C 

and pressure of 25 bar with hydrogen of 6% and 2% the polypropylene production is shown at 5.2% 

and 5.82% respectively.  
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Figure 8. 3D Response surface and contour plot of hydrogen concentration vs. pressure on 

polypropylene production (%). 

 

Figure 8 shows the response surfaces of the combined effect of hydrogen concentration and 

pressure on polymer conversion. Hydrogen concentration and system pressure both showed a positive 

effect on polypropylene production. From the contour plot, it can be clearly seen that decrease of 

hydrogen concentration increases the polypropylene production percentage while the increase of 

pressure also speeds up polypropylene production. The red colour zone indicates the optimum results 

while the other colors shows the lower values of the response.  

Hydrogen is well recognized for its role as a chain transfer agent in industrial scale polypropylene 

production. The initial insertion of hydrogen decreases the molecular weight of polypropylene, which 

increases the diffusion rate of monomer on to the catalyst active site. It has also been reported that the 

nature of catalyst, monomer, and reaction conditions can also significantly affect the hydrogen effect 

on polypropylene production [43,44]. Researchers have also shown that the polypropylene 

polymerization rate significantly increases due to the increase in hydrogen concentration in the system 

up to a certain extent but a further increment of hydrogen concentration did not show any change in the 

polypropylene production rate [45]. The adsorption of hydrogen onto the catalyst surface was 

identified as the cause of this phenomenon. 

In the literature, the local bed pressure variation has been reported as one of the major parameters 

for olefin polymerization in gas phase catalytic fluidization [18,31,46]. The reason is that pressure 

fluctuations can influence the effect of the dynamic phenomena taking place in the fluidized bed, such 

as from gas turbulence, bubbles hydrodynamics, and bed operating conditions [18]. The effect of 

pressure can also significantly affect the fluidized bed polymerization through the minimum 

fluidization velocity and particle size [6–19]. Naturally a pressure increase raises the inlet gas 

momentum and reduces the bubble surface tension, which boosts the disengagement of the bubble. The 
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pressure intensification also enhances the fluid viscosity and reduces the buoyancy force, which slows 

down the detachment of the bubble from the particles [47].  

4. Conclusions 

The optimum experimental conditions for the production of polypropylene in a pilot scale fluidized 

bed catalytic reactor (FBCR) was verified by response surface methodology coupled with central 

composite design. The set of equations and predicted values from the statistical model were compared 

with experimental data. Independent variables, namely temperature, pressure and hydrogen 

concentration, were identified as the most important parameters that need to be determined to optimize 

the polypropylene production. The optimum condition for polypropylene production from this study 

was found to be at a temperature of 75 °C, pressure of 25 bar, and hydrogen concentration of 2%. The 

projected polypropylene production from the statistical model was found to be at 5.2%, whereas from 

the experimental data gave 5.82%. Correlation between system pressure and reaction initiation 

temperature shows interaction between them and the outcome of various statistical techniques applied 

in this study proved that the proposed model is an excellent alternative to conventional first principle 

models. Finally we can conclude that the excellent correlation coefficients obtained for the developed 

correlations for the three responses can be successfully used with over 95% confidence, for operation 

of the process to produce optimum polypropylene production in the real plant. This would in turn 

accelerate the global usage and availability of this versatile plastic which is inexpensive and an 

excellent alternative for many other materials in the market. 
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Notations 

SSQ sum of squares; 

SSQmod sum of squares of model; 

SSQresidual sum of squares of residual; 

p number of model parameters; 

n  number of experiments; 

ANOVA analysis of variance; 
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MnSRG mean of square regression; 

MnSRD mean of square residual; 

MnSer Mean Square Error; 

SRG sum of squares;  

SRD sum of residual;  

DgFmod degree of freedom of model; 

DgFresidual degree of freedom of residual; 

R
2
 determination coefficient;  

R
2

adj adjusted coefficient of determination; 

CV coefficients of variation;  

F-value model significance; 

SD Standard Deviation. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Tian, Z.; Xue-Ping, G.; Feng, L.-F.; Guo-Hua, H. A model for the structures of impact 

polypropylene copolymers produced by an atmosphere-switching polymerization process.  

Chem. Eng. Sci. 2013, 101, 686–698. 

2. Galli, P.; Vecellio, G. Polyolefins: The most promising large-volume materials for the 21st 

century. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 396–415. 

3. Arencón, D.; Velasco, J.I. Fracture toughness of polypropylene-based particulate composites. 

Materials 2009, 2, 2046–2094. 

4. Bikiaris, D. Microstructure and properties of polypropylene/carbon nanotube nanocomposites. 

Materials 2010, 3, 2884–2946. 

5. Kennedy, J.F.; Knill, C.J. Multicomponent Polymer Systems; Miles, I.S., Rostami, S., Eds.; 

Longman Scientific & Technical: Harlow, UK, 1992; p. 435. 

6. Glauß, B.; Steinmann, W.; Walter, S.; Beckers, M.; Seide, G.; Gries, T.; Roth, G. Spinnability and 

characteristics of Polyvinylidene Fluoride (PVDF)-based bicomponent fibers with a Carbon 

Nanotube (CNT) modified polypropylene core for piezoelectric applications. Materials 2013, 6, 

2642–2661. 

7. Balow, M.J. Handbook of Polypropylene and Polypropylene Composites; CRC Press: New York, 

NY, USA, 2003. 

8. Lesage, F.; Nedelec, D.; Descales, B.; Stephens, W.D. Dynamic modelling of a polypropylene 

production plant. In Computer Aided Chemical Engineering; Ian David Lockhart, B, Michael, F., 

Eds.; Elsevier: London, UK, 2012; Volume 30, pp. 1128–1132. 

9. Luo, Z.-H.; Su, P.-L.; Shi, D.-P.; Zheng, Z.-W. Steady-state and dynamic modeling of commercial 

bulk Polypropylene process of hypol technology. Chem. Eng. J. 2009, 149, 370–382. 



Materials 2014, 7 17 

 

 

10. Martinez Prata, D.; Schwaab, M.; Luis Lima, E.; Carlos Pinto, J. Simultaneous robust data 

reconciliation and gross error detection through particle swarm optimization for an industrial 

polypropylene reactor. Chem. Eng. Sci. 2010, 65, 4943–4954. 

11. Kumar, R.N.; Nagarajan, R.; Chee Fun, F.; Leng Seng, P. Effect of process variables on the 

exothermicity during the production of phenol–formaldehyde resins—Modeling by Response 

Surface Methodology. Eur. Polym. J. 2000, 36, 2491–2497. 

12. Prasetya, A.; Liu, L.; Litster, J.; Watanabe, F.; Mitsutani, K.; Ko, G.H. Dynamic model 

development for residence time distribution control in high-impact polypropylene copolymer 

process. Chem. Eng. Sci. 1999, 54, 3263–3271. 

13. Jang, H.T.; Park, T.S.; Cha, W.S. Mixing–segregation phenomena of binary system in a fluidized 

bed. J. Ind. Eng. Chem. 2010, 16, 390–394. 

14. Liu, B.; Wang, L.; Liu, Y.; Qian, B.; Jin, Y.-H. An effective hybrid particle swarm optimization 

for batch scheduling of Polypropylene processes. Comput. Chem. Eng. 2010, 34, 518–528. 

15. Khan, M.J. H.; Hussain. M.A.; Mansourpour,Z.; Mostoufi, N.; Ghasem, N.M.; Abdullah, E.C. 

CFD simulation of fluidized bed reactors for polyolefin production—A review. J. Ind. Eng. Chem. 

2014, doi:10.1016/j.jiec.2014.01.044. 

16. Villarreal–Marroquín, M.G.; Castro, J.M.; Chacón–Mondragón, Ó.L.; Cabrera–Ríos, M. 

Optimisation via simulation: A metamodelling–based method and a case study. Eur. J. Ind. Eng. 

2013, 7, 275–294. 

17. Jarullah, A.T.; Mujtaba, I.M.; Wood, A.S. Improving fuel quality by whole crude oil 

hydrotreating: A kinetic model for hydrodeasphaltenization in a trickle bed reactor. Appl. Energy 

2012, 94, 182–191. 

18. Shamiri, A.; Hussain, M.A.; Mjalli, F.S.; Mostoufi, N. Improved single phase modeling of 

propylene polymerization in a fluidized bed reactor. Comput. Chem. Eng. 2012, 36, 35–47. 

19. McAuley, K.B.; Talbot, J.P.; Harris, T.J. A comparison of two-phase and well-mixed models for 

fluidized-bed polyethylene reactors. Chem. Eng. Sci. 1994, 49, 2035–2045. 

20. Xie, T.; McAuley, K.B.; Hsu, J.C.C.; Bacon, D.W. Gas phase ethylene polymerization: 

Production processes, polymer properties, and reactor modeling. Ind. Eng. Chem. Res. 1994, 33, 

449–479. 

21. Harshe, Y.M.; Utikar, R.P.; Ranade, V.V. A computational model for predicting particle size 

distribution and performance of fluidized bed polypropylene reactor. Chem. Eng. Sci. 2004, 59, 

5145–5156. 

22. Ibrehem, A.S.; Hussain, M.A.; Ghasem, N.M. Modified mathematical model for gas phase olefin 

polymerization in fluidized-bed catalytic reactor. Chem. Eng. J. 2009, 149, 353–362. 

23. Sassi, K.M.; Mujtaba, I.M. MINLP based superstructure optimization for boron removal during 

desalination by reverse osmosis. J. Membr. Sci. 2013, 440, 29–39. 

24. Gonzalez-R, P.L.; Framinan, J.M.; Ruiz-Usano, R. A Response Surface Methodology for 

parameter setting in a dynamic conwip production control system. Int. J. Manuf. Technol. Manag. 

2011, 23, 16–33. 

25. Hafizi, A.; Ahmadpour, A.; Koolivand-Salooki, M.; Heravi, M.M.; Bamoharram, F.F. 

Comparison of rsm and ann for the investigation of linear alkylbenzene synthesis over  

H14[NaP5 W30O110]/SiO2 catalyst. J. Ind. Eng. Chem. 2013, 19, 1981–1989. 



Materials 2014, 7 18 

 

 

26. Basiri Parsa, J.; Merati, Z.; Abbasi, M. Modeling and optimizing of electrochemical oxidation of 

c.I. Reactive orange 7 on the Ti/Sb–SnO2 as anode via Response Surface Methodology. J. Ind. 

Eng. Chem. 2013, 19, 1350–1355. 

27. Kukreja, T.R.; Kumar, D.; Prasad, K.; Chauhan, R.C.; Choe, S.; Kundu, P.P. Optimisation of 

physical and mechanical properties of rubber compounds by Response Surface Methodology––Two 

component modelling using vegetable oil and carbon black. Eur. Polym. J. 2002, 38, 1417–1422. 

28. Rajković, K.M.; Avramović, J.M.; Milić, P.S.; Stamenković, O.S.; Veljković, V.B. Optimization 

of ultrasound-assisted base-catalyzed methanolysis of sunflower oil using response surface and 

artifical neural network methodologies. Chem. Eng. J. 2013, 215–216, 82–89. 

29. Srivastava, D. Optimization studies on the development of methylmethacrylate (MMA)-grafted 

nylon-6 fibers with high percentage grafting. J. Polym. Eng. 2002, 22, 457–471. 

30. Shuaeib, F.M.; Hamouda, A.M.S.; Wong, S.V.; Umar, R.S.R.; Ahmed, M.M.H.M. A new 

motorcycle helmet liner material: The finite element simulation and design of experiment 

optimization. Mater. Des. 2007, 28, 182–195. 

31. Shamiri, A.; Hussain, M.A.; Mjalli, F.S; Mostoufi, N.; Saleh Shafeeyan, M. Dynamic modeling of 

gas phase propylene homopolymerization in fluidized bed reactors. Chem. Eng. Sci. 2011, 66, 

1189–1199. 

32. Setiabudi, H.D.; Jalil, A.A.; Triwahyono, S.; Kamarudin, N.H.N.; Jusoh, R. Ir/Pt-HZSM5 for  

n-pentane isomerization: Effect of Si/Al ratio and reaction optimization by response surface 

methodology. Chem. Eng. J. 2013, 217, 300–309. 

33. Demim, S.; Drouiche, N.; Aouabed, A.; Benayad, T.; Couderchet, M.; Semsari, S. Study of  

heavy metal removal from heavy metal mixture using the ccd method. J. Ind. Eng. Chem. 2014, 

20, 512–520. 

34. Islam, M.A.; Hussein, I.A.; Atiqullah, M. Effects of branching characteristics and copolymer 

composition distribution on non-isothermal crystallization kinetics of metallocene LLDPEs.  

Eur. Polym. J. 2007, 43, 599–610. 

35. Chen, G.; Chen, J.; Srinivasakannan, C.; Peng, J. Application of Response Surface Methodology 

for optimization of the synthesis of synthetic rutile from titania slag. Appl. Surf. Sci. 2012, 258, 

3068–3073. 

36. Ayeni, A.O.; Hymore, F.K.; Mudliar, S.N.; Deshmukh, S.C.; Satpute, D.B.; Omoleye, J.A.; 

Pandey, R.A. Hydrogen peroxide and lime based oxidative pretreatment of wood waste to 

enhance enzymatic hydrolysis for a biorefinery: Process parameters optimization using Response 

Surface Methodology. Fuel 2013, 106, 187–194. 

37. Chatterjee, S.; Kumar, A.; Basu, S.; Dutta, S. Application of response surface methodology for 

methylene blue dye removal from aqueous solution using low cost adsorbent. Chem. Eng. J. 2012, 

181–182, 289–299. 

38. Dora, D.T.K.; Mohanty, Y.K.; Roy, G.K. Hydrodynamics of three-phase fluidization of a 

homogeneous ternary mixture of regular particles—experimental and statistical analysis.  

Powder Technol. 2013, 237, 594–601. 

39. Aktaş, N.; Boyacı, İ.H.; Mutlu, M.; Tanyolaç, A. Optimization of lactose utilization in 

deproteinated whey by kluyveromyces marxianus using response surface methodology (RSM). 

Bioresour. Technol. 2006, 97, 2252–2259. 



Materials 2014, 7 19 

 

 

40. Montgomery, D.C. Design and Analysis of Experiments; Wiley: New York, USA. 2006. 

Myers, R.H.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product 

Optimization Using Designed Experiments; Wiley: Hoboken, New Jersey, USA.2009; Volume 705. 

41. Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments: With 

Applications to Engineering and Science; Wiley: Hoboken, New Jersey, USA. 2003; Volume 474. 

42. Faldi, A.; Soares, J.B.P. Characterization of the combined molecular weight and composition 

distribution of industrial ethylene/α-olefin copolymers. Polymer 2001, 42, 3057–3066. 

43. Alshaiban, A.; Soares, J.B.P. Effect of hydrogen, electron donor, and polymerization temperature 

on poly(propylene) microstructure. Macromol. Symp. 2012, 312, 72–80. 

44. Guastalla, G.; Giannini, U. The influence of hydrogen on the polymerization of propylene and 

ethylene with an MgCl2 supported catalyst. Die Makromol. Chem. Rapid Commun. 1983, 4, 519–527. 

45. Sedighikamal, H.; Zarghami, R. Dynamic characteristics of bubbling fluidization through 

recurrence rate analysis of pressure fluctuations. Particuology 2013, 11, 282–287. 

46. Li, Y.; Yang, G.Q.; Zhang, J.P.; Fan, L.S. Numerical studies of bubble formation dynamics in 

gas–liquid–solid fluidization at high pressures. Powder Technol. 2001, 116, 246–260. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


