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Abstract 

The present study explored a novel oxidative desulfurization (ODS) method of light 

gas oil fuel, which combines a catalytic oxidation step of the dibenzothiophene 

compound directly in the presence of molecular air as oxidant to obtain high quality 

fuel for light gas oil. 

In chemical industries and industrial research, catalysis play a significant role. 

Heightened concerns for cleaner air together with stricter environmental legislations 

on sulphur content in addition to fulfill economic have created a driving force for the 

improvement of  more  efficient  technologies and motivating an intensive research on 

new oxidative catalysts. As the lower quality fuel  becomes more abundant, additional 

challenges arise such as more severe operation conditions leading to higher corrosion 

of the refinery installations, catalyst deactivation and poisoning. Therefore, among the 

technologies to face these challenges is to develop catalysts that can be applied 

economically under moderate conditions.  

The objective of this work is to design a suitable synthetic catalyst for oxidative 

desulfurization (ODS) of light gas oil (LGO) containing model sulphur compound 
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(dibenzothiophene (DBT)) using air as oxidant and operating under different but 

moderate operating conditions. The impregnation method is used to characterize two 

homemade catalysts, cobalt oxide (Co3O4/γ-Al2O3) and manganese oxide (MnO2/γ-

Al2O3). The prepared catalysts showed that the manganese oxide has a good 

impregnation (MnO2=13%), good pore size distribution and larger surface area.  A set 

of experiments related to ODS of dibenzothiophene has been carried out in a 

continuous flow isothermal trickle bed reactor using light gas oil as a feedstock 

utilizing both catalysts prepared in-house. At constant pressure of 2 bar and with  

different initial concentration of sulphur within dibenzothiophene, the temperature of 

the process was varied from 403K to 473K and the liquid hourly space velocity 

from(LHSV) was varied from 1 to 3 hr
-1

. The results showed that an increase in 

reaction temperature and decreasing in LHSV, higher conversion was obtained.  

Although both catalysts showed excellent catalytic performance on the removal of 

molecule sulphur compound from light gas oil, the catalyst MnO2 catalyst exhibited 

higher conversion than Co3O4 catalyst at the same process operating conditions.   

 

 Key words  

ODS, light gas oil, Trickle bed reactor, Cobalt oxide catalyst, Manganese oxide 

catalyst. 

 

1. Introduction 

Sulphur types (benzothiophene, dibenzothiophene and its derivatives) are the most 

notorious and undesirable petroleum contaminants and a large portion of those 

compounds can be transferred to diesel oil during refining of crude oil [1]. Major 

portions of the crude oils are used as transportation fuels such as gasoline, diesel and 
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jet fuel. However, such crudes contain sulphur, typically in the form of organic 

sulphur compounds. Increasing the sulfur compounds lead to a significant impact 

upon the quality of crude oil in addition to the harm they can cause.  The sulphur 

content and American Petroleum Institute (API) gravity are two main properties, 

which have a great influence upon the value of the crude oil [2]. 

A vast variety of sulphur compounds are present in light gas oil (LGO). These sulphur 

compounds can be classified into four main groups: mercaptans, sulfides, disulfides 

and thiophenes. Environmental concerns have driven the need to remove sulphur-

containing compounds from LGO. Sulphur-containing compounds are of particular 

interest because of their tendencies to produce precursors to acid rain and airborne 

particulate material[3]. 

Oxidative desulfurization(ODS) process has been considered a promising method for 

deep desulfurization technology because it can be carried out under mild conditions 

(temperature and pressure), such as relatively low temperature, approach constant 

pressure and cost of operation when it is compared with hydrodesulfurization(HDS) 

process [4-7].   

Various studies on the ODS process have used different oxidizing agents and 

catalysts, such as H2O2/acetic acid [8], ozone/heterogeneous catalysts [9], and 

O2/aldehyde/cobalt catalysts [10]. The ODS process is usually carried out under mild 

conditions that present competitiveness over the conventional HDS process [11]. The 

oxidation of mercaptans present in different fuels is carried out in trickle bed reactors 

using air as oxidant, and UVKO-2 catalyst (commercial catalyst) and caustic as co- 

catalyst [12].   

The deep desulphurization of fuel has drawn increasing attention due to new 

regulations and it is difficult or very costly to use hydrodesulphurization(HDS) 
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process for reducing the sulphur in the fuels to less than 10 ppm. Also, depending on 

the feed and level of the desulfurization, the required operating conditions for HDS 

reactor are very high(573-723K and 35-270 bar) [11].  

Most of the sulphur contamination in diesel can be traced to the dibenzothiophene 

derivatives. In order to remove these compounds by HDS, it would require more 

hydrogen capacity and maintenance of high temperature, pressure and high contact 

time. This would increase operating costs leading to enhanced likelihood that 

complete saturation of olefins and aromatics will occur resulting in losses of 

hydrocarbons. Thus, it is likely that HDS processing has reached a stage where 

increasing temperature and pressure are not economically justified to remove the 

residual sulphur without affecting the yield of diesel fuel from hydrotreatment 

processes[13]. Also, this process will increase the volume of hydrogen sulfide(H2S). 

Although HDS processes have dominated desulphurization of petroleum in the past, 

their cost and the requirements of strict fuel specifications motivate to the 

development of innovative new technologies.    

Oxidative desulphurization is based on the removal of heavy sulphides, usually in the 

form of polynuclear aromatics where one ring is a thiophene structure. In ODS, these 

compounds are oxidized by adding one or two oxygen atoms to the sulphur without 

breaking any carbon-sulphur bonds, yielding the sulfoxide and sulphones, 

respectively. These oxidized compounds can then be effectively extracted or adsorbed 

from downstream processing. 

This work contributes to a growing understanding of light gas oil ODS. The oxidation 

by air of light gas oil using two catalysts (cobalt oxide (Co3O4/γ-Al2O3) and 

manganese oxide (MnO2/γ-Al2O3)) prepared experimentally in-house, is studied to 
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determine the extent of dibenzothiophene removal as well as to highlight operating 

issues that must be resolved in order to develop an industrially viable process.  

 

2. Material used in Experimental Work with Catalysts Preparation 

2.1 Materials Used  

 Dibenzothiophene(DBT) 

One type of model sulphur compound is selected to evaluate the reactivity of sulphur 

in an oxidation reaction. The dibenzothiophene (DBT) purchased from Aldrich 

Company with purity of 99%.  

 Light Gas Oil (LGO) 

The feedstock used in this study is the hydrotreated light gas oil (DBT concentration 

= 2 ppm, and sulphur content 7.8 ppm) that has been obtained from North Refineries 

Company in Iraq. The physical properties of feedstock illustrated in Table 1. 

 Air 

Air gas is used as oxidizing agent to oxidize sulphur compound to sulfoxide and 

sulphones. 

 

2.2 Catalysts 

Incipient Wetness Impregnation (IWI) method is a widely used method for catalyst 

design and characterization.  It involves contacting a solid with a liquid containing the 

components to be deposited on the surface. The type of products depends on the 

nature of both reactants (the liquid and the solid surface) and the reaction conditions. 

In the Incipient Wetness Impregnation process (IWI), the active metal precursor with 

thermally unstable anions (nitrates, chloride, carbonates, and hydroxides) is used. 

Then the metal containing solution is added to a catalyst support having the same pore 

volume as the volume of solution that was added under precisely defined conditions 
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(concentration, mixing, temperature, time) [14]. One of the best-known methods for 

producing catalysts is the impregnation of porous support materials with solutions of 

active components. Especially catalysts with expensive active components such as 

noble metals are employed as supported catalysts. After impregnation the catalyst 

particles are dried and calcinated to get rid of remained solvent and acquiring catalyst 

the physical and chemical properties[15].   

Several chemical compounds are used for catalyst preparation:- 

2.2.1 Active component 

The active component used in preparation of the catalyst types are the cobalt nitrate 

(Co(NO3)2.6H2O with purity of 99.5%) using active component purchased from 

Alpha chemika Company, and the manganese acetate (Mn(CH3COO)2.4H2O with 

purity of 99%) using active component purchased from Sigma. Active component 

dissolved in deionized water that has been obtained from Samarra Company. 

2.2.2 Support (Aluminum oxide (γ-Al2O3)) 

A commercial spherical shape aluminum oxide (γ-alumina) has been used as a carrier 

in manufacturing of the catalyst ,its specification is shown in Table 2. 

2.3 Catalyst used in the Experimental Work 

2.3.1. Preparation of Alumina Supported Cobalt Oxide and Alumina Supported 

Manganese Oxide:- 

The prepared (CAT-1) cobalt oxide over gamma alumina catalyst (2% Co3O4/γ-

Al2O3) is as following: the gamma alumina is put in the flask under condition of 

evacuation (using vacuum pump) in order to remove the gases out of the support 

pores, then the solution prepared is added to the gamma alumina at a rate of (15-20) 

drop per minute with continuous stirring where all the solution is impregnated (Figure 
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1). The temperature is kept constant at 373 K using bath water. Manganese oxide 

(CAT-2) is prepared by using same procedure (13%MnO2/γ-Al2O3). The dried 

catalyst is calcinated for 5 hours in the oven at 823 K under laminar flow of air. The 

purpose of this step is that the most of the metal salts loaded on the γ-Al2O3 converted 

into their corresponding metal oxides leading to deposit of active metal oxide over the 

catalyst support in addition to acquiring the physical and chemical properties of the 

catalyst. Calcination step has been carried out in state company of Fertilizer/Northern 

Area - Baiji-Iraq[16]. Figure 2 shows the flow chart of preparation steps. 

 

2.4 Oxidation Experiments in a Trickle Bed Reactor 

2.4.1 Apparatus and Procedure 

 The experiments of this work were conducted at moderate temperature, moderate 

pressure trickle bed system in chemical engineering department/college of 

engineering/Tikrit University. Process flow diagram of this system is presented in 

Figure 3. The continuous oxidation process of LGO is carried out in a trickle bed 

reactor (TBR) with co-currently down-flow. The fixed bed reactor consists of a 

stainless steel 310 tubular reactor, 77 cm long, and 1.6 cm inner diameter and 

controlled automatically by four sections of 15 cm height steel-jacket 

heaters(Electrical coil). The LGO is stored in a feed tank, which is connected to a 

high-pressure dosing pump that can dispense flow rates from 0.0 to 1.65 litter/hr of 

LGO at pressure up to 20 bar. The oxidant gas (air gas) flows from a high-pressure air 

compressor equipped with pressure regulator to maintain constant operating pressure. 

Gas flow meter coupled with a high precision valve and control gas flow rate is used. 

The light gas oil (DBT concentration) and air gas streams are mixed before introduced 

to the reactor at the required temperature when dibenzothiophene are oxidized to 

sulphones. The outlet stream flows to a heat exchanger (shell and tube(sour tubes) 
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stainless steel) at 293K then to high pressure gas-liquid separator in order to separate 

excess air from the treated LGO.  

2.4.2 Experimental Procedure (Preparation of Trickle Bed Reactor) 

2.4.2.1 Operation Conditions 

 In this work, various experiments were conducted with the following moderate 

operating conditions:-  

 Initial concentration of DBT: 500, 800 and 1000 ppm.  

 Temperature: 403, 443 and 473K.  

 Liquid hour space velocity: 1, 2, and 3h
-1

.  

 Catalyst-types:CAT-1= Co3O4/γ-Al2O3 and CAT-2= MnO2/γ-Al2O3. 

 

2.4.2.2 Catalyst Loading 

 A complete catalyst bed is made up of three main parts; two parts of ceramic balls 

and a part of the catalyst is loaded in between them. The purpose of the diluents as 

well as the ceramic balls is to provide complete catalyst wetting and to reduce radial 

dispersion and the bed porosity leading to minimization of any diffusion effects and 

thus providing plug flow conditions for isothermal reactions. The optimal percent of 

inert layers (ceramic balls) in the catalyst bed is ranged to be between 30 to 35 % vol. 

[17]. In this work, the catalyst bed (58 cm
3
) loaded with (40% Co3O4/γ-Al2O3) 

between two layers of (30% ceramic balls) is considered (as shown in Figure 4 5).  

 

2.4.3 Running of Experiments 

After loading the catalyst inside the reactor and securing the lower and upper flanges 

carefully, the following steps are performed to prepare and run the experiments:- 

 Flow the air gas through the reactor at 2-bar pressure.  
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 Set the temperature controller to the feed injection temperature (it is lower 

than steady state operating temperature), then temperature raise with the rate 

293 K per hour.  

 Turn on of dosing pump at a certain of light gas oil flow rate when 

temperature of air reaches feed injection temperature.  

 Raise the temperature at rate of 293K per hour until reach steady state 

temperature.  

 When the system reaches steady state condition, samples are collected.  

 Turn off light gas oil dosing pump and keeping air gas flowing to back wash 

of remains light gas oil, then close air valve and allow the nitrogen to flow 

inside the system to remove air.  

 

2.4.4 DBT Analysis (GC-capillary Chromatography) 

Dibenzothiophene content in feedstock and product are analyzed according to GC-

capillary chromatography. These are as follows: 

 Colum                     :  CP-Sil 8 CB fused silica WCOT 

                                   30 m x 0.25 mm , df = 0.25 µm 

                                   Cat. No. CP8751 

 Temperature            :  313K(2 min) →  553K, 283K/min 

 Carrier gas               :  He, 39 cm/s, 128 KPa (1.28 bar, 18.6 psi) 

 Injector                    :  Splitless, 

                                 : T = 523K 

 Detector                   :  FID, 

                                 :  T = 573K     

 Sample size                : 2 µm  

 Concentration range   : 10 ppm 
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 The determination of the outlet concentration of dibenzothiophene unreacted can be 

accomplished by reading the value from the computer. 

2.5 Characterization of the Catalyst Prepared  

2.5.1 Activity 

After preparing the catalyst, its performance should be checked and its reliability 

towards oxidation of dibenzothiophene as well. These issues were performed in a lab 

scale apparatus. Throughout  the catalyst  development,  activity is a key parameter in 

design, selection and optimization. Comparison was made between the homemade 

prepared catalysts (CAT-1=Co3O4/γ-Al2O3) and (CAT-2=MnO2/γ-Al2O3 ). 

2.5.2 Bulk Density (Packing Density) 

 Bulk density is the ratio of the weight of the catalyst particle to the bed volume 

occupied by the catalyst particle. This property was determined by randomly placing 

50 cm
3
 of dried catalyst in the cylinder. The weight difference between the  cylinder  

filled with catalyst (namely, W2) and the empty on (namely as, W1), represents the 

catalyst weight therefore, bulk density is determined as follows:  

𝜌𝐵 =
𝑊2−𝑊1

𝑉
                       ……………………………...……………………...………(1) 

 

2.5.3 Pore Volume 

A direct simple method for determining the total volume of pores is by measuring the 

increase in weight when pores are filled with liquid. This should preferably be of low 

molecular weight so that fine pores are filled (e.g. water or various hydrocarbons may 

be used). A general procedure is the liquid impregnation method[18]. This is 

commenced when a sample of dry catalyst of known weight (W3) is immersed in 
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boiled water. The entire sample should then be transferred to a damp cloth, rolled to 

remove excess water and weighted (W4). Hence, the total pores volume was 

calculated as follows:-  

𝑉𝑃 =
𝑊4−𝑊3

𝑊3 𝜌𝐵
                                    …….………………………………………...…...…(2) 

Table 6 showed the characteristic of the prepared catalysts. 

Regarding to this Table, it can be seen that after impregnation with active component, 

the surface area and pore volume are reduced significantly for different catalysts 

because the active component occupies some space and increases the bulk density of 

the samples. 

3. Results and Discussions 

3.1 Effect of Operating Variables on the Oxidation Processes   

The experimental runs were carried out in a trickle bed reactor using cobalt oxide and 

manganese oxide as catalyst. The effects of catalysts type, LHSV, temperature, and 

dibenzothiophene concentrations are discussed here. 

 

3.1.1 Determination of the Most Active Catalyst and the Optimum Condition 

 Figure 5 and 6 presents a comparison of the activities of the prepared catalysts. Both 

catalysts showed similar behavior. The differences between the catalysts can be 

attributed to their differences in physical and/or chemical properties. Regarding the 

results of using CAT-1. and CAT-2. it seems that the activity of these catalysts is 

related to the metal dispersion, BET surface area, porosity, and bulk density. Based on 

the results presented in these Figures, the catalysts can be ranked as follows in terms 

of activity in dibenzothiophene oxidation. 
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CAT-2 > CAT-1 

Also, it is clearly observed that the best conversion is obtained at the following 

operating conditions:-  

 The best temperature is (473K). 

 The best LHSV is 1 hr
-1

. 

 The initial concentration of dibenzothiophene  of (1000 ppm).  

 The best catalyst is CAT-2. 

The effects of metal loading and reaction temperature were investigated in this 

process. Where, below 403K, the oxidation reaction was not observed and there was a 

significant difference in conversions for the oxidation of model diesel for catalyzed by 

either CAT-2 and 403, 443, 473K at 1, 2, 3 hr
-1

 and high conversion from CAT-1is 

found. 

3.1.2 Effect of Temperature on the Process Conversion 

For the influence of temperature upon the conversion of dibenzothiophene oxidation 

to sulphone, the experimental data are tabulated in Tables 4-9. 

Figure 7 shows that at 1 hr
-1

 and 473K, dibenzothiophene conversion is 81.2%, while 

at 443K and 403K, dibenzothiophene conversions are 53.4 % and 32.7 % respectively 

for CAT-2. The general behavior is, higher conversion is achieved at higher 

temperature due to the fact that at high temperature, kinetic constant (reaction rate 

constant) is favorably affected resulting in increasing in dibenzothiophene 

conversion[16]. The maximum conversion obtained in this study compared with 

higher conversion reported in the literature can be attributed to the moderate operating 

conditions (for safety purposes) used here in addition to the use of air as oxidant (for 
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economic issues) containing oxidant percentage of 21% leading to incomplete 

conversion (100%).  

Also, increasing in temperature will contribute to an increase of magnitudes of some 

important physical properties such as Henry’s constant and diffusivity, and decreasing 

of viscosity and surface tension. However, the increase in temperature levels will raise 

the absorption rate of molecular air in liquid and the diffusion rate of 

dibenzothiophene and the rate of dissolved air inside catalyst pores, which reach the 

active sites when oxidation reaction occurs[19], as show in Figure 7 and 8.  

3.1.3 Influence of Liquid Hour Space Velocity 

The effect of LHSV on dibenzothiophene removal rate is shown in Tables 4-9. As can 

be seen, increasing LHSV has an adverse impact on dibenzothiophene conversion, 

Figure 9 and 10 depicts the effect of liquid flow rate on dibenzothiophene conversion. 

As clearly noted from Figure 10, dibenzothiophene conversion at 473K of 81.2% is 

achieved at LHSV=1 hr
-1

. At LHSV of 2 and 3 hr
-1

, dibenzothiophene conversion were 

60.9% and 51.1% respectively. Actually, increasing liquid flow rate reduces the 

residence time of the reactant thus reducing the time of reaction of dibenzothiophene 

with air (gas reactant). Moreover, higher liquid flow rates give greater liquid holdup, 

which evidently decrease the contact of liquid and gas reactants at the catalyst active 

site, by increasing film thickness. The results reported in the literature were confirm 

such behavior [20,21]. 

3.1.4 Impact of Initial Dibenzothiophene Concentration 

The influence of initial concentration of dibenzothiophene is studied at 500 ppm, 800 

ppm, and 1000 ppm. In the range of these experiments, dibenzothiophene conversion 

decreases by decreasing inlet dibenzothiophene concentration as illustrated in Figure 
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11. It has also been noticed that dibenzothiophene conversion decreases from 78 to 

69.2% at 1 hr
-1

 for CAT-1, when dibenzothiophene concentration decreases from 

1000 to 500 ppm. This can be attributed to the fact that decrease dibenzothiophene 

molecules coverage the active site over the catalyst surface and/or proves that catalyst 

deactivation take place. This also suggested that when the reaction is carried out with 

proper air and dibenzothiophene loads oxides, catalyst deactivation can be 

avoided[22]. 

Figure 11 and 12 and Tables 4-9 mentioned previously showed that the conversion 

has been affected by the initial concentration of dibenzothiophene(direct proportion), 

but the change in the conversion by changing the initial concentration of 

dibenzothiophene was approximately little compared with CAT-1. This is due to high 

active metal (manganese oxide) toward dibenzothiophene oxidation beside alumina 

supported from cobalt oxide, which characterizes as a good adsorbent for 

dibenzothiophene. Hence, the catalyst CAT-2 has high capability of 

adsorption/oxidation dibenzothiophene species at high and low initial 

dibenzothiophene concentration. It is also observed that dibenzothiophene conversion 

decreases from 81.2 to 73.5% at 1 hr
-1

 for CAT-2, when dibenzothiophene 

concentration decreases from 1000 to 500 ppm. 

3.2 Influence of Oxidation Process on Physical Properties of Feedstock 

The physical properties and ASTM distillation of feedstock and product at optimum 

operating condition (CAT-2, temperature = 473K, LHSV=1 hr
-1

, dibenzothiophene 

initial concentration=1000 ppm) is shown in Table 10 and plotted in Figure 13. 

Generally, it is obvious from Table 10 and Figure 13 that there is no high difference 

in physical properties and ASTM distillation between feedstock and product at the 

optimum operating condition. This attributes to the following reasons:- 
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 Density, viscosity, and boiling range are approximately the same before and 

after oxidation reaction because there was no high change in the components 

of the hydrotreated light gas oil.  

 Reid vapor pressure (RVP) decrease slightly due to reaction of some of the 

volatile compounds.  

 Aniline points (AN) and research octane number (RON) are approximately 

same before and after oxidation reaction due to the aromatic compounds not 

being involved in the oxidation reaction, so that they are not broken or 

saturated as in hydrodesulphurization process. 

 

4. Conclusions 

This study aimed at designing a suitable synthetic catalyst which can be applied to 

an oxidative desulphurization (ODS) of light gas oil. The impregnation method is 

used to characterize two homemade catalysts: cobalt oxide (Co3O4/γ-Al2O3) and 

manganese oxide (MnO2/γ-Al2O3). Using both catalysts, a set of experiments 

related to ODS process have been carried out in a continuous flow isothermal 

trickle bed reactor using light gas oil as a feedstock and air as oxidant under 

different operating conditions. The following observations are made from this 

study:- 

 The two catalyst classes studied here is found to be more selective (Co3O4/γ-

Al2O3 and MnO2/γ-Al2O3) to the oxidation reaction of dibenzothiophene based 

on the experimental results. 

 Among the two catalysts, the manganese oxide showed a good impregnation 

(MnO2=13%), compared to cobalt oxide (2% CO3O4).  Although the catalytic 
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performance of both catalysts in terms of the removal of sulphur compound 

from, the catalyst MnO2 catalyst outperforms Co3O4 catalyst at the same 

process operating conditions. 

 The most difficult sulphur products to be removed by hydrotreatment in diesel, 

can be fully oxidized using an air as oxidant and cobalt oxide and manganese 

oxide materials as catalysts in the absence of any solvent. 

 The achievement of very low levels of sulphur required in transportation fuels 

in the near future which will be difficult and/or will be highly costly by current 

hydrodesulphurization process (HDS). Several alternative strategies to HDS 

process are currently being explored, amongst them is the oxidative 

desulphurization techniques (ODS) that do not require the use of expensive 

hydrogen. 

 Yields of oxidation reaction is normally affected very much by severity of 

increasing in operation conditions such as (temperature, liquid hour space 

velocity and initial concentration) as well as the type of the catalyst used.  

 The oxidative desulfurization process has two advantages compared with other 

reported oxidative desulfurization processes. The first one is that the reaction 

can be carried out at middle temperature and within a very short reaction time. 

The second is that air can be used as an efficient oxidant compared to costly 

oxidants, such as H2O2, ozone and TBHP, which were reported in the 

literatures for the oxidative desulfurization processes.  

 It has also been observed that temperature is the most important factor 

effecting on the oxidation reactions. Liquid hourly space velocity (LHSV) has 

also a significant impact on the oxidation reactions owing to the effect of 
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contact time between feed and catalyst. As well as, active component has an 

important influence upon the oxidation reaction. 
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Table Captions 

Table 1:  Properties of light gas oil (LGO). 

Table 2:  Aluminum oxide (γ-Al2O3) specification. 

Table 3:  The characteristic of the prepared catalysts. 

Table 4: Experimental results obtained for CAT-1at (Initial dibenzothiophene 

concentration CA = 1000 ppm). 

Table 5: Experimental results obtained for CAT-1 at (Initial dibenzothiophene   

concentration CB = 800 ppm ). 

Table 6: Experimental results obtained for CAT-1 at (Initial dibenzothiophene 

concentration CC=500 ppm). 

Table 7: Experimental results obtained for CAT-2 at (Initial dibenzothiophene 

concentration CA = 1000 ppm). 

Table 8: Experimental results obtained for CAT-2 at (Initial Dibenzothiophene 

concentration CB = 800 ppm). 

Table 9:  Experimental results obtained for CAT-2 at (Initial dibenzothiophene       

concentration CC=500 ppm). 

Table 10: Physical properties of feedstock (light gas oil)  before and after oxidation   

     process 
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Figure Captions 

Figure 1:  Catalyst preparation apparatus. 

Figure 2:   Flow chart of preparation steps. 

Figure 3:   Process flow diagram of trickle bed reactor. 

Figure 4:  Schematic diagram of the catalyst loading in the reactor. 

Figure 5:   Comparison of the activities of the catalysts. Reaction conditions    

(Concentration of dibenzothiophene 1000 ppm, and T=473 K). 

Figure 6:   Comparison of the activities of the catalysts. Reaction conditions 

(Concentration of dibenzothiophene 500 ppm, and LHSV =1hr-1). 

Figure 7:   Effect of temperature on oxidation process of dibenzothiophene   

                   conversion (CAT-2, initial dibenzothiophene concentration = 1000 ppm). 

Figure 8:   Effect of temperature on oxidation process of dibenzothiophene   

                   conversion (CAT-1, initial dibenzothiophene concentration= 800 ppm). 

Figure 9:  Effect of temperature on oxidation process of dibenzothiophene   

                   conversion (CAT-1, dibenzothiophene concentration =1000 ppm). 

Figure 10: Effect of LHSV on oxidation process of dibenzothiophene   

                   conversion (CAT-2, dibenzothiophene concentration =1000 ppm). 

Figure 11: Effect of initial concentration on oxidation process of dibenzothiophene   

                   conversion (CAT-1, LHSV=1 hr-1). 

Figure 12: Effect of LHSV on oxidation process of dibenzothiophene   

                   Conversion (CAT-2, at 443K). 

Figure 13: ASTM of light gas oil treated before oxidation and after oxidation         

                     process. 
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Table 1: Properties of light gas oil (LGO). 

LGO Physical property 

0.851 Specific gravity 

4.9 Viscosity (cSt) at (293K) 

55 Flash point,(
o
C) 

9.8 Total sulphur, (ppm) 

52 Cetane index 

0.5 Colour 

-39 Pour point,(
o
C) 

34.8 API gravity 

 

 

Table 2:  Aluminum oxide (γ-Al2O3) specification. 

Catalyst γ-Al2O3 

Pore volume, (cm
3
/g) 0.5367 

Bulk density,( g/cm
3
) 0.671 

Surface area, (m
2
/g) 289 

Particle diameter, (mm) 1.6 

Particle shape Sphere 
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Table 3: The characteristic of the prepared catalysts. 

Catalyst issues γ-Al2O3 Co3O4/γ-Al2O3 MnO2/γ-Al2O3 

Active phase Co(NO3)2.6H2O% - 
2 - 

Active phase Mn (CH3COO)2.4H2O, % - - 13 

Support - γ-Al2O3 γ-Al2O3 

Calcinations temperature, K - 823 823 

Pore volume (𝑽𝒈), cm
3
/g 0.5367 0.5021 0.476 

Bulk density (𝝆𝑩), g/cm
3
 0.671 0.692 0.7188 

Surface area (𝑺𝒈), m
2
/g 289  

250 

 

212 

Particle diameter (𝒅𝒑),  mm 1.6 1.6 1.6 

Particle shape  

Sphere 

 

Sphere 

 

Sphere 
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Table 4: Experimental results obtained for CAT-1 at (Initial dibenzothiophene  

concentration CA = 1000 ppm). 

DBT conversion DBT 

concentration 

(ppm)    

LHSV 

hr
-1

)) 

Temperature 

(K) 

0.298 701.760 1 403  

0.240 760.230 2 403  

0.123 877.190 3 403  

0.539 460.640 1 443   

0.385 614.968 2 443  

0.278 722.470 3 443  

0.780 220.000 1 473  

0.592 408.000 2 473  

0.498 501.790 3 473  
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Table 5: Experimental results obtained for CAT-1 at (Initial dibenzothiophene 

concentration CB = 800 ppm ). 

DBT 

conversion 

DBT concentration 

(ppm)    

LHSV 

hr
-1

)) 

Temperature 

K)) 

0.267 586.809 1 403  

0.207 634.657 2 403  

0.104 717.110 3 403  

0.487 410.598 1 443  

0.362 510.600 2 443  

0.209 635.286 3 443  

0.751 199.546 1 473  

0.559 352.270 2 473  

0.437 450.436 3 473  

 

 

 

 

 

  



28 
 

Table 6: Experimental results obtained for CAT-1 at (Initial dibenzothiophene  

concentration CC=500 ppm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

DBT 

conversion 

DBT 

concentration 

ppm)   ) 

LHSV 

hr
-1

)) 

Temperature 

K)) 

0.241 379.577 1 403 

0.185 407.661 2 403 

0.082 458.840 3 403 

0.454 272.823 1 443 

0.314 342.989 2 443 

0.170 414.986 3 443 

0.692 153.926 1 473 

0.526 236.946 2 473 

0.421 289.723 3 473 
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Table 7: Experimental results obtained for CAT-2   at (Initial dibenzothiophene 

concentration CA = 1000 ppm). 

DBT 

conversion 

DBT 

concentration 

ppm)   ) 

LHSV 

hr
-1

)) 

Temperature 

(K) 

0.327 672.653 1 403 

0.252 748.324 2 403 

0.149 850.625 3 403 

0.534 465.768 1 443 

0.376 624.368 2 443 

0.285 715.296 3 443 

0.812 188.123 1 473 

0.609 390.826 2 473 

0.511 488.758 3 473 
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Table 8: Experimental results obtained for CAT-2   at (Initial dibenzothiophene  

concentration CB = 800 ppm). 

DBT 

conversion 

DBT concentration 

(ppm)    

LHSV 

(hr
-1

) 

Temperature 

K)) 

0.299 560.267 1 403  

0.224 620.625 2 403  

0.117 706.357 3 403  

0.509 392.985 1 443  

0.360 512.303 2 443  

0.213 629.267 3 443  

0.781 175.278 1 473  

0.588 329.986 2 473  

0.456 435.463 3 473  
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Table 9: Experimental results obtained for CAT-2 at (Initial dibenzothiophene  

concentration CC=500 ppm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: Physical properties of feedstock (light gas oil)  before and after oxidation 

process 

LGO After ODS  LGO Before ODS Specification 

15.8 16.3 RVP psig   (312 K)  

4.7 4.9 Viscosity cst ( 293 K) 

0.8423 0.851 Density (gm/cm3) 

36.4 34.8 °API 

416 412 AP ( K)                     

87 83 RON 

 

  

DBT 

conversion 

DBT 

concentration 

(ppm)    

LHSV 

hr
-1

)) 

Temperature 

K)) 

0.281 359.672 1 403 

0.214 392.762 2 403 

0.103 448.652 3 403 

0.479 260.268 1 443 

0.320 339.869 2 443 

0.183 408.687 3 443 

0.735 132.532 1 473 

0.565 217.472 2 473 

0.456 271.989 3 473 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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