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PURPOSE. We determined whether human ocular lens position is influenced by gravity.

METHODS. Anterior chamber depth (ACD) and lens thickness (LT) were determined with a
Haag-Streit Lenstar LS900 for right eyes of participants in two age groups, with a young group
of 13 participants aged 18 to 21 years (mean, 21 years; SD, 1 year) and an older group of 10
participants aged 50 to 63 years (mean, 58 years; SD, 4 years). There were two sessions for
each participant separated by at least 48 hours, with one session for the usual upright head
position and one session for a downwards head position. In a session, testing was done for
minimum accommodation followed by testing at maximum accommodation. A drop of 2%
pilocarpine nitrate was instilled, and testing was repeated after 30 minutes under minimum
and maximum accommodation conditions.

RESULTS. Gravity, manipulated through head posture, affected ACD for young adult and older
adult groups but mean effects were only small, ranging from 0.04 to 0.12 mm, and for the
older group required the instillation of an accommodation-stimulating drug. Gravity had a
weakly significant effect on LT for the young group without accommodation or a drug, but the
effect was small at 0.04 6 0.06 mm (mean 6 SD, P ¼ 0.04).

CONCLUSIONS. There is a small but real effect of gravity on crystalline lens position, manifested
as reduction in ACD at high levels of accommodative effort with the head in a downwards
position. This provides evidence of the ability of zonules to slacken during strong
accommodation.
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According to the theory of accommodation propounded by
Helmholtz in the 1850s,1 and as modified by Fincham,2

accommodation is achieved by the crystalline lens altering its
shape. In the unaccommodated form, corresponding to the
eye’s focus being at its far point, the lens is flattened by the
tension of the zonules connecting the lens to the ciliary body.
When the eye accommodates the lens changes shape, with
increase in surface curvatures, increase in center thickness and
decrease in equatorial diameter. This occurs because the ciliary
body moves forwards and inwards upon contraction of its
muscle, reducing the tension on the zonules, which in turn
reduces the tension on the lens, allowing it to become more
rounded under the influence of its elastic capsule. If the ciliary
contraction is considerable, the tension on the zonules is
reduced sufficiently so that they become slack.3,4

The Helmholtz theory has been challenged a number of
times, including in the last two decades. Schachar5 proposed
that contraction of the ciliary muscle increases tension on the
zonules and, hence, on the lens, so that the lens becomes more
spindle shaped on accommodation (increased surface curva-
tures in center but not in the periphery, and increased
diameter). Schachar et al.6–15 has presented a number of
papers and a book purporting to prove his theory. To do so, he
had to assign different functions to different parts of the
zonules6 and to different parts of the ciliary muscle.9 He
claimed that the anterior and posterior zonules reduce tension
upon accommodation, but have a stabilizing role at low levels

of accommodation rather than being responsible for accom-
modation. It is only the equatorial zonules, which Schachar
claims are not observable during accommodation,6 that are
responsible for accommodation and these increase in tension
upon accommodation.

Experimental evidence to distinguish between the two rival
theories can be provided by investigating the influence of
gravity on accommodation. The Helmholtz theory allows for
the zonules to slacken at high levels of accommodation,
provided that the mechanical limits of the lens and capsule
are overcome. The lens then would be free to move according
to gravity, although this may be reduced in the direction of the
posterior pole because of vitreous support.4,5 There are two
associated theories here which are themselves rivals.16 These
are the Hess-Gullstrand theory, which is that the amount of
ciliary muscle contraction required for a given change in
accommodation remains constant throughout life, and the
Duane-Fincham theory, which is that at any age the ciliary
muscle is contracted maximally once the amplitude of
accommodation has been achieved. The former predicts that
this movement would be more pronounced with increasing
age, while the latter predicts that the lens would move in the
direction of gravity only in young eyes. Schachar’s theory
predicts that, as the lens always is under tension, it will never
be free to move according to gravity.

There have been reports of the lens position being affected
by gravity during maximum accommodation and with the head
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in the downward position as compared to the head straight
ahead or facing upwards; that is, the anterior chamber depth
(ACD) is smaller for the downwards position for maximum
accommodation. From observing shadows cast on the retina of
his own eye by a small cataract, Hess17–19 estimated a
difference of approximately 0.3 mm between downwards
and upwards positions, increasing to 0.5 mm with the
application of the parasympathomimetic drug eserine (physo-
stigmine). Using a biomicroscope, Fincham2 determined a
difference of approximately 0.2 mm in one eye between
downwards and straight ahead positions. Using ultrasound and
the parasympathomimetic drug pilocarpine (6%), Lewis
(unpublished report, 1982) and Lewis and Oehrlein20 found
a difference of 1.0 mm in one participant. In addition to these
studies, Storey and Rabie21 cited Storey and Phillips22 using
ultrasonography to find the lens moving downwards when the
head was facing upwards.

Indirect support that lens position is influenced by gravity
in the accommodated state is provided by several studies of
subjective accommodation amplitude. The amplitude increases
when the eye turns down compared to when it turns up or is
directed straight ahead, due mainly or completely to changes in
the near point attributable to the forward movement of the
lens in the former case increasing ocular power. Hess17 found
increases in amplitude of accommodation on looking down-
wards of 0.3 to 0.5 diopters (D) in four people in their 20s and
early 30s, which his modeling indicated corresponded to lens
movements of 0.15 to 0.21 mm. Larger effects were found with
the instillation of the parasympathomimetic drug physostig-
mine. Fincham2 claimed to have found a closer near-point in
young participants for the head facing down equivalent to over
1 D accommodation. Ripple23 found considerable change in
amplitude of accommodation with change in direction of eye
gaze, amounting to as much as 3 D between 208 upgaze and
408 downgaze. Gallagher24 found difference in accommodation
between head facing upwards and facing downwards of a
mean 1.1 D in participants aged 8 to 42 years. Atchison et al.25

obtained a mean amplitude of 9.8 D in an 18- to 25-year age
group, averaged over a range of head and eye positions, with
the maximum mean difference between conditions being 1.1
D. The mean difference between the head down and head up
conditions was 0.3 D. The effect declined with increase in age,
and the investigators concluded that the data supported the
Duane-Gullstrand theory over the Hess-Gullstrand theory.

The one exception to the finding of variation in subjective
amplitude of accommodation with direction of eye gaze or
head position is the study of Schachar and Cudmore.11 They
measured amplitude of accommodation with participants
strapped to a board and rotated to face upwards or
downwards. Near points were measured relative to the board
behind the head. Using their data of the 27 participants whose
near points were measured with and without contact lenses,
estimates of amplitude were made. These showed surprising
little variation within a set of measurements or between the
head positions, with the maximum difference for the latter
being no more than 0.25 D, even for amplitudes up to 15 D.
The authors wrote that their results were consistent with three
other studies.26–28 However, in one of these studies Koster26

merely mentioned that he could not find changes in the near
point between upwards and downwards gaze, as had been
reported by his colleague Hess,17 for his own eye. Another
study had heads rotated by 308 upwards and downwards, but
did not involve accommodative effort.27 The third study
involved microgravity and is not relevant as there was not a
comparison with downwards and upwards head positions
under the influence of gravity.28

Although there already is evidence that the lens moves
under the influence of gravity in the accommodated

state,2,17,19–22,29 the studies involved had few participants,
and, most had little detail of method or were not published
prominently.20–22 Studies in recent decades used ultrasonogra-
phy and suffered from subject discomfort, lack of certainty
about eye orientation because the target was presented to the
nonmeasured eye, poor resolution of approximately 0.10 mm
and possibly ocular compression. A more extensive investiga-
tion of the influence of gravity on lens position is described
here to look for evidence to support or refute the rival theories
of accommodation mechanisms. This will involve the use of a
partial coherence interferometer, which has resolution of 0.01
mm, and there is no eye contact so that eye orientation can be
controlled.

METHODS

The study was conducted in accordance with the tenets of the
Declaration of Helsinki. Approval was obtained from the
Queensland University of Technology Human Research Ethics
Committee and all participants gave written consent.

We separated 23 participants with normal general and ocular
health into two age groups, with a young group of 13 participants
aged between 18 and 21 years (mean, 20.9 years; SD, 0.9 years)
and an older group of 10 participants aged between 50 and 63
years (mean, 58.3 years; SD, 4.3 years). Criteria for inclusion were
right eyes with corrected distance visual acuity of 6/6 or better,
spherical equivalent refraction between �3.0 and þ3.0 D, and
cylinder less than or equal to 0.5 D.

Participants’ left eyes were patched, and measurements of
anterior chamber depth (ACD) and lens thickness (LT) were
obtained on right eyes with a Lenstar LS900 (Haag-Streit,
Koeniz, Switzerland). There were two sessions for each
participant separated by at least 48 hours, with one session
for the upright head position and one session for the prone
head position. In a session, testing was done for minimum
accommodation followed by testing at maximum accommoda-
tion. A drop of 2% pilocarpine nitrate was instilled, and after 30
minutes the testing was repeated under minimum and
maximum accommodation conditions. For 9/13 young partic-
ipants and 8/10 older participants, the upright head position
session was conducted before the prone head position session.

A target consisted of a series of four fine circles, crossed by
eight lines at 458 intervals, with the inner circle subtending an
angle of 58. During measurements, it was ensured that the
instrument fixation axis was within the center circle. This was
back illuminated by a white light emitting diode and viewed
through a Badal system which intersected the path between
the eye and the Lenstar at a thin 458 angled beam splitter (Fig.
1a). The system enabled correction of refractive errors and
providing an accommodation stimulus without additional
lenses. Preliminary experiments showed that the beam splitter
did not affect readings. The Badal lens power used for most
people was þ13.3 D. For five of the young group, maximum
subjective amplitude of accommodation was not attained at the
highest possible stimulus level of�10.5 D and for these people
aþ16 D lens was used (range to �12 D).

For minimum accommodation, the target was placed at the
þ4 D position and moved in�0.5 D steps towards the Badal lens
until the participant reported that it appeared clear. A set of at
least five consistent readings was made and the average was
determined. For maximum accommodation, the target was
moved until the participant first reported the target to appear
blurry (the previous position was noted as the subjective limit of
clear vision). A series of measurements was taken. The target
was moved to more negative settings to push the participant to
the maximum accommodation as recognized by maximum LT
(Fig. 2).
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For upright vision, the Badal system was attached to the
instrument headrest. For the prone position the instrument
was turned on its back and the participants lay on a bed with
adjustable height and leaned forward into the headrest (Fig.
1b). There were no differences in measurements between
upright and prone positions for the model eye supplied with
the Lenstar.

The data were normally distributed and accordingly
parametric statistics were applied. Repeated measures ANOVAs
were conducted separately for each age group because of large
differences in amplitudes of accommodation between the
groups. Analyses were done for ACD and LT, with head position
(upright or prone), drug state (no drug or drug), and
accommodation state (minimum or maximum accommoda-
tion) as within-subject conditions. Paired t-tests were used to
determine the significance of differences between accommo-
dation states, head positions, and drug states. As there were 4
combinations for any one of these, for example comparison of
head positions for no drug/minimum accommodation, no
drug/accommodation, drug/minimum accommodation, and
drug/accommodation combinations, a Bonferroni correction
was applied to determine significance at P¼ 0.0125 as well as
at P ¼ 0.05.

RESULTS

Figures 3 and 4 show results for ACD and LT, respectively.
Figures 3a and 4a show head upright results for various
combinations of age, accommodation and drug state. Signifi-
cant differences between accommodation and drug states are
shown by asterisks. Figures 3b and 4b are similar to Figures 3a
and 4a, but show head prone results. Figures 3c and 4c show
differences between the head upright and prone positions for
various combinations of age, accommodation, and drug states.

Anterior Chamber Depth

For the young group, all within-subject factors were significant
(head position F1,12 ¼ 28.3, P < 0.001; drug F1,12 ¼ 172, P <
0.001; accommodation F1,12 ¼ 18.0, P ¼ 0.001) and there was
significant interaction between head position and drug state (P
¼ 0.01). For the older group, all factors were significant (head
position F1,9 ¼ 19.3, P ¼ 0.002; drug F1,9 ¼ 16.8, P ¼ 0.003;
accommodation F1,9¼9.9, P¼ 0.012) and there was significant
interaction between head position and accommodation (P ¼
0.045). Prone head position, drug instillation, and maximum
accommodation decreased ACD compared to upright head
position, no drug instillation, and minimum accommodation,
respectively.

The main finding for the young group is that head position
affected ACD for all drug state and accommodation combina-
tions (Fig. 3c), but mean effects were small at 0.04 to 0.07 mm
and much smaller than reported in the literature.2,17–20 The
main finding for the older group was that the head position
affected ACD only when the drug pilocarpine was being used,
with mean effects of only 0.10 to 0.12 mm (Fig. 3c).

Lens

For the young group, all within-subject factors were significant
(head position F1,12 ¼ 7.2, P ¼ 0.020; drug F1,12 ¼ 227.3, P <
0.001; accommodation F1,12¼ 15.5, P¼ 0.001) and there were
significant interactions between head position and drug state
(P ¼ 0.037) and between drug state and accommodation (P ¼
0.007). Prone head position, drug instillation and maximum
accommodation increased LT compared to upright head
position, minimum accommodation, and no drug instillation,
respectively. For the older group, drug state was significant
(F1,9 ¼ 11.9, P ¼ 0.007) with drug instillation increasing LT
compared to no drug instillation. Head position (P¼0.064) and
accommodation (P¼ 0.558) were not significant. There was a

FIGURE 1. (a) Diagram of experimental system with theþ13.3 D Badal lens. (b) Participant in prone position with the Lenstar ‘‘on its back.’’

FIGURE 2. Anterior chamber depth and LT as a function of
accommodation stimulus for one of the young participants. The
arrowhead indicates the 11 D stimulus at which maximum LT and
minimum ACD occurred. Error bars: Standard deviations.
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significant interaction between head position and drug state (P
¼ 0.042).

The main finding for the young group was that head
position affected LT for the no drug/minimum combination,
but the mean effect was small at 0.04 mm and significance
disappeared when a Bonferroni correction was applied (Fig.
4c). For the older group, as reported in the previous paragraph,
head position did not affect LT (Fig. 4c).

DISCUSSION

We found that gravity, manipulated through head posture,
affects ACD for young adult and older adult groups but the
mean effects were only 0.04 to 0.12 mm and for the older
group required the instillation of an accommodation stimulat-

ing drug. As it is expected that there would be little change in
lens shape between accommodation states in the older
group,30 due to lenticular sclerosis, the zonules might be
slackening in both states and allowing the lens to move
forward under the influence of gravity. Effects of gravity for LT
have not been reported previously; there was a weakly
significantly effect of gravity on LT for the young adult group
without accommodation or a drug, but the effect was small at
0.04 mm. Results are summarized in the Table; because of the
significantly weak effect mentioned above for the lens, the LT
was considered not to be affected by gravity.

The results can be used to assess the theories described in
the Introduction regarding the mechanism of accommodation.
The Hess-Gullstrand variant of Helmholtz accommodation
theory predicts that there is an excess of ciliary muscle
contraction beyond that needed to get the lens to its maximum

FIGURE 3. (a) Anterior chamber depth for the upright position for young and older groups for different combinations of drug and accommodation
states. (b) Anterior chamber depth for the prone position for young and older groups for different combinations of drug and accommodation states.
(c) Difference in ACD between prone and upright positions for young and older groups for different combinations of drug and accommodation
states. Single asterisks indicate significance at 0.05 probability criterion and double asterisks indicates significance at 0.0125 probability criterion.
Error bars indicate 98.75% confidence limits.
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shape, except possibly for very young eyes. As this excess
contraction will increase with age, the slackness of the zonules
at high accommodation effort should increase with age, and
allow the lens to move under the influence of gravity more in
the older group than in the young group. For the drug/
minimum accommodation condition, it is likely that the
accommodation resulting from the drug will be insufficient
for gravity to affect lens position in the younger group.
Predictions according to the theory are given in the Table, with
ticks and crosses to indicate whether they accord or do not
accord with study results, respectively.

The Duane-Fincham variant of Helmholtz accommodation
theory predicts that the lens will not move in the direction of
gravity in our age groups (Table). Schachar’s theory predicts
that, as the lens is under tension that will increase with
accommodation, it will never be free to move according to
gravity, and its predictions will be the same as those for the
Duane-Fincham theory.

For the influence of gravity on ACD, the Hess-Gullstrand
theory and Duane-Fincham/Schachar theories predicted the
results correctly in 5/8 and 1/8 situations, respectively. While
this favors the Hess-Gullstrand theory, we will again point out
that the effects were small (�0.12 mm). The Hess-Gullstrand
theory predicts correctly that influence of gravity in the
accommodated state should be greater for the older group than
for the young group, but again the effects were small (0.06
mm). The data presented in this study showed a small but real
effect of gravity on crystalline lens position, manifested as a
reduction in ACD, at high levels of ciliary muscle contraction
with the head in a prone position. This provided evidence of
the ability of the zonules to slacken during high levels of
accommodation effort.

The effects of gravity for ACD reported here (0.04–0.12
mm) are considerably smaller than those reported in the
literature of 0.2 to 1.0 mm.2,17–20 A possible reason is the lack
of a supine/looking up condition in this study as reported by

FIGURE 4. (a) Lens thickness for the upright position for young and older groups for different combinations of drug and accommodation states. (b)
Lens thickness for the prone position for young and older groups for different combinations of drug and accommodation states. (c) Difference in LT
between prone and upright positions for young and older groups for different combinations of drug and accommodation states. Single asterisks

indicate significance at 0.05 probability criterion and double asterisks indicates significance at 0.0125 probability criterion. Error bars indicate
98.75% confidence limits.
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some of the studies.17–20 It might be argued that pupil miosis
during accommodation will increase iris rigidity and support
the lens, but this does not prevent the ACD decreasing much
more than the vitreous chamber depth decreases in accom-
modation under upright conditions.31,32

Other possible reasons for the smaller effects of gravity
found here than in the literature are a weaker cholinergic
drug1,17,19 or a lower dose of pilocarpine for the drug
conditions,20 the indirect nature of the Hess determina-
tions,17–19 the almost anecdotal nature of the Fincham report,2

and the possibility that people not showing marked effects
were ignored in the Hess and Fincham studies.

In conclusion, the data presented here show that gravity has
a small but real effect on crystalline lens position; this being
manifest as a reduction in ACD with the head in a downwards
position and a concurrent high level of accommodation
response. We deduced from this that the zonules are able to
slacken sufficiently to allow the lens to move under the effect
of gravity.
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