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SIZE OF FRP LAMINATES TO STRENGTHEN 

REINFORCED CONCRETE SECTIONS IN FLEXURE 

by 

Dr A. F. Ashour, BSc, MSc, PhD, MACI 

ABSTRACT 

This paper presents an analytical method for estimating the flexural strength of 

reinforced concrete beams strengthened with externally bonded fibre reinforced 

polymer (FRP) laminates. The method is developed from the strain compatibility and 

equilibrium of forces. Based on the size of external FRP laminates, several flexural 

failure modes may be identified, namely tensile rupture of FRP laminates and concrete 

crushing before or after yielding of internal steel reinforcement. Upper and lower limits 

to the size of FRP laminates used are suggested to maintain ductile behaviour of 

strengthened reinforced concrete sections. Comparisons between the flexural strength 

obtained from the current method and experiments show good agreement. Design 

equations for calculating the size of FRP laminates externally bonded to reinforced 

concrete sections to enhance their flexural strength are proposed. 

 

Key words: Concrete structures, Codes of practice & standards, Buildings structure & 

design, Stress analysis. 

INTRODUCTION 

Although external plate bonding to the surface of existing reinforced concrete (RC) 

structures has been widely accepted as an effective technique of structural upgrading, 

there are little independent design guidelines
1,2

 and related code regulations. For 

example, there is no British Standard dealing specifically with the structural design of 

RC beams strengthened with FRP laminates. 

The experimental research carried out on RC beams strengthened in flexure by 

externally bonded FRP laminates
3-16

 identified two general mechanisms of failure, 

namely flexure and premature. The flexural mechanism of failure is usually due to 
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either the tensile rupture of FRP laminates or concrete crushing in compression before 

or after yielding of internal steel reinforcement. The premature failure is attributed to 

de-bonding or de-lamination of FRP plate ends and ripping off the concrete cover along 

the internal steel reinforcement level. Experimental tests
5,8,9,11,14

 indicated that 

increasing the anchorage length of the external sheets or using anchorage systems in the 

form of bonded U-shaped channels or jackets at the plate ends may inhibit the 

premature peeling failure. 

There have been extensive experimental investigations
3-16

 on RC beams strengthened 

with FRP laminates but very few theoretical studies have focused on such structures
16,17

. 

This paper presents an analytical method for estimating the bending capacity of RC 

sections strengthened with externally bonded FRP laminates. The method is based on 

the same principles as those adopted in the BS8110 provisions
18

 for flexural strength of 

conventional RC but extended here to account for externally bonded FRP laminates. 

CONSTITUTIVE MODELLING OF MATERIALS 

Concrete 

The stress-strain curve for concrete in compression shown in Figure 1(a) is used. This 

relation is the same as specified in BS8110
18

 for concrete. It may be written in the 

following form: 

 oc
2
c

o

c
ccc 2

E
E 


   (1(a)) 

 cucocuc f67.0    (1(b)) 

where c and c are the stress and strain in concrete, respectively,  fcu (N/mm
2
) is the 

cube compressive strength, Ec ( cuf5500 N/mm
2
) is the initial tangent modulus of 

concrete, o ( cuf00024.0 ) is the strain at the end of the parabolic part of the stress-

strain diagram and cu (=0.0035) is the ultimate strain of concrete as shown in Figure 

1(a). For the ultimate moment calculation, concrete is cracked in tension, therefore the 

tensile strength of concrete is ignored. 
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Steel reinforcement 

The steel reinforcing bars in both tension and compression are assumed to be elastic 

perfectly plastic as given below (see Figure 1(b)): 

 yssss E    (2(a)) 

 ysys f    (2(b)) 

where s and s are the stress and strain in the internal steel reinforcement, respectively, 

Es is the elastic modulus of steel and fy and y are the yield stress and strain of steel, 

respectively. 

FRP laminates 

The stress-strain relationship for uni-directional fibre laminates is linear elastic up to 

rupture. It is given by: 

 fuffff Ef    (3(a)) 

 fuff 0f    (3(b)) 

where ff and f  are the stress and strain in FRP laminates, respectively, Ef is the modulus 

of elasticity of FRP laminates, and ffu and fu are the ultimate strength and strain of FRP 

laminates, respectively as shown in Figure 1(c). 

FLEXURAL CAPACITY AND FAILURE MODES 

Figure 2(a) shows a concrete section having a width b and an overall depth h, reinforced 

with: 

 internal longitudinal tension steel bars of an area As at an effective depth d from the 

top face; 

 internal longitudinal compression steel bars of an area 
'
sA  at a depth 'd  from the 

top face; 

 externally bonded FRP laminates having an area Af  at a depth df from the top face. 

It is assumed that premature failure, such as peeling or separation of FRP laminates, is 

prevented and only flexural failure modes are studied. 
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Compatibility conditions 

Provided that plane section before bending remains plane after bending, the strain at any 

point across the section is linearly proportional to its distance from the neutral axis as 

shown in Figure 2(b) in which x represents the neutral axis depth. Considering similar 

triangles on the strain diagram shown in Figure 2(b) and assuming perfect bond between 

concrete and both internal steel reinforcement and external FRP laminates, strains s in 

the tension reinforcement, '
s  in the compression reinforcement and f in the FRP 

laminates are calculated in terms of c as: 

 cs x

xd



  (4(a)) 

 c

'
'
s x

dx



  (4(b)) 

 c
f

f x

xd



  (4(c)) 

At the instant of failure, either the concrete strain c at the extreme compression fibre or 

the FRP composite strain at the extreme tension fibre reaches the respective ultimate 

strain; i.e. c = cu = 0.0035 or f = fu. 

Equilibrium conditions 

Having determined strains in concrete, steel and FRP laminates, stresses c in concrete, 

s in tension reinforcement, 
'
s  in compression reinforcement and ff in FRP laminates 

are calculated using the respective stress-strain relationships (Eqs. (1, 2 and 3)) for 

different materials. The concrete compressive stress distribution shown in Figure 2(c) 

may be replaced by an equivalent rectangular stress block. This idealised rectangular 

block is expressed in terms of two parameters k1 and k2, where k1 is the ratio of the 

average compressive stress to the concrete cube strength fcu and k2 is the ratio of the 

depth of the idealised rectangular stress block to the neutral axis depth as shown in 

Figure 2(c). The values of k1 and k2 depend on the strain c at the extreme compression 

fibre and the concrete compressive strength fcu as given in Appendix I. The internal 

forces on the cross section can be calculated as (see Figure 2(c)): 
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 Compressive force C in concrete = bxfkk cu21  

 Compressive force Cs in steel bars above the neutral axis = '
s

'
sA   

 Tensile force Ts in steel bars below the neutral axis = ssA   

 Tensile force Tf in FRP laminates = ff fA  

Considering the equilibrium of forces, the following equation is obtained: 

 fss TTCC   

 ffss
'
s

'
scu21 fAAAbxfkk    (5) 

In the above Eqs. (1 to 5), the neutral axis depth x is in fact the only unknown. An 

iterative trail and error procedure is usually adopted to find the correct value. An initial 

value for x is assumed and the strains and hence stresses are then determined. If Eq. (5) 

is not satisfied, the value of x is adjusted and the procedure is repeated until sufficient 

accuracy is attained. However, the neutral axis depth x may be explicitly estimated in 

some special cases as explained below. The moment capacity Mu of the section is then 

calculated by taking moments of forces about any horizontal axis in the section; for 

instance, about the centroid of the FRP laminates: 

 )dd(A)dd(A
2

xk
dbxfkkM fss

'
f

'
s

'
s

2
fcu21u 








   (6) 

Mode I: Tensile rupture of FRP laminates 

If the area of FRP laminates externally bonded to the RC section is below a certain limit 

to be defined later, the FRP strain f reaches the ultimate strain value fu while the 

concrete strain c at the extreme compression fibre is still below the ultimate strain cu as 

shown in Figure 3(a). In such cases the failure is due to the tensile rupture of FRP 

laminates. When f = fu and c = cu simultaneously, the strain distribution is unique and 

the neutral axis depth xl is calculated using Eq. (4(c)) with f and c replaced by fu and 

0.0035, respectively: 

 
fu

fl 0035.0

0035.0
dx


  (7) 

The limiting area Afl of FRP laminates can readily be calculated from Eq. (5) with s 

and ff replaced by fy and ffu, respectively: 
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fu

ys
'
s

'
slcu21

fl f

fAAbxfkk
A





 (8) 

The stress '
s  in the compression reinforcement is obtained from Eq. (2), where '

s  is 

calculated using Eq. 4(b) with x and c replaced by xl and 0.0035, respectively. The area 

Afl of FRP laminates (given by Eq. (8)) forms a lower limit to the size of FRP laminates 

in order to avoid tensile plate rupture. Obviously, if the neutral axis depth of the 

unstrengthened RC section is greater than or equal to xl, the limiting area Afl of FRP 

laminates calculated from Eq. (8) is negative and this failure mode would not occur 

whatever the area of FRP laminates provided. The moment capacity Mul of a RC section 

strengthened by externally bonded FRP laminates of an area Afl is calculated using Eq. 

(6) as follows: 

 )dd(fA)dd(A
2

xk
dbxfkkM fys

'
f

'
s

'
s

l2
flcu21ul 








   (9) 

Mode II: Yielding of steel reinforcement followed by crushing of concrete (under-

reinforced case) 

This mode of failure is characterised by yielding of steel reinforcement followed by 

crushing of concrete (see Figure 3(b) for strain distribution). In this case, the area of 

FRP laminates is greater than Afl, therefore tensile rupture of FRP laminates would not 

occur. This case is similar to the under reinforced section of conventional RC beams
18

. 

The upper limit to the area of FRP laminates, Afu, is reached when strains c  in the 

extreme compression fibre of concrete and s in the tension reinforcement 

simultaneously reach cu  and y, respectively. By following similar calculations to those 

presented above, the neutral axis depth xu, the area Afu of FRP laminates and the 

moment capacity Muu corresponding to this upper limit of FRP size are calculated from: 

 
y

u 0035.0

0035.0
dx


  (10) 

 
f

ys
'
s

'
sucu21

fu f

fAAbxfkk
A





 (11) 
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 )dd(fA)dd(A
2

xk
dbxfkkM fys

'
f

'
s

'
s

u2
fucu21uu 








   (12) 

The neutral axis depth xu given by Eq. (10) is the same as that defines the balanced 

section for conventional RC beams without externally bonded FRP laminates
18

. The 

stress ff in the FRP laminates is calculated using Eq. 3(a) where f is determined from 

Eq. 4(c) with x and c replaced by xu and 0.0035, respectively. To ensure ductile flexural 

behaviour, the area of FRP laminates provided should be smaller than Afu given in Eq. 

(11) and the moment Muu is the maximum permissible moment capacity of a RC section 

with externally bonded FRP laminates. 

Mode III: Crushing of concrete before yielding of steel reinforcement (Over-

reinforced case) 

If the area of FRP laminates used is greater than Afu, the concrete strain c reaches the 

ultimate value cu before any yielding of tension reinforcement as shown in Figure 3(c). 

In this case, there is a large amount of internal and external reinforcements and the 

section is over reinforced. Such failure, often explosive, occurs with little warning, 

similar to that of conventional over RC beams. Table 1 summarises the range of 

different parameters for the three flexural failure modes presented. 

COMPARISONS WITH EXPERIMENTS 

Test results of 48 reinforced concrete beams strengthened with externally bonded FRP 

laminates published by other researchers are used to validate the proposed method. 

Table 2 compares the bending capacities from experiments against those from the 

current method. All the 48 beams were reported to have failed because of flexure, not 

peeling or debonding of the FRP laminates as given in Table 2. The average and 

standard deviation of the ratio between predicted and experimental bending capacities 

are 0.99 and 8.3%, respectively. In all beams considered, the predicted failure mode 

agrees with that observed in experiments. The predictions obtained from the current 

analysis are in good agreement with the experimental results. 
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EFFECT OF SIZE OF FRP LAMINATES ON BENDING CAPACITY 

Figure 4 presents the effect of the internal and external reinforcements on the 

normalised moment capacity  (= 2
f bd/M ): Figure 4(a) shows the variation of the 

normalised moment capacity  against the internal steel reinforcement ratio s 

(=100As/bd) and Figure 4(b) gives the variation of the normalised moment capacity  

against the external FRP laminates ratio f (=100Af /bd). The dotted lines in Figure 4 

represent the boundaries of different flexural failure modes. However, the use of 

externally bonded FRP laminates enhances the moment capacity of reinforced concrete 

sections, their effect is more pronounced for RC sections having less area of internal 

steel reinforcement. The increase in the normalised moment capacity  is insignificant 

when mode III dominates the flexural failure. Therefore, it is recommended that the size 

Afu (given by Eq. (11)) of FRP laminates forms the upper limit to the area of FRP 

laminates selected. The higher the size of FRP laminates, the less the rate of increase of 

the normalised moment capacity  for the same internal steel reinforcement ratio s. 

DESIGN GUIDELINES FOR FRP LAMINATE SIZE IN FLEXURE 

In the following, the area Af of FRP laminates to be externally bonded to a RC section is 

calculated in order to increase its moment capacity to Mf. It is always desirable that the 

internal reinforcing steel bars yield before crushing of concrete and tensile rupture of 

FRP laminates is avoided. In order to achieve this ductile behaviour (under reinforced 

case), the target moment capacity Mf of the RC section strengthened with externally 

bonded FRP laminates must satisfy the following constraints: 

 uuful MMM   (13) 

where Mul and Muu are the lower and upper limits to the moment capacity as given by 

Eqs. (9) and (12), respectively. In this case, the strain distribution shown in Figure 3(b) 

is valid. Substituting for s and 
'
s  into Eq. (6) with the yield strength of the tension 

and compression reinforcements produces: 

 )dd(fA)dd(fA
2

xk
dbxfkkM fys

'
fy

'
s

2
fcu21f 








  (14) 
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In the above equation, the compression steel reinforcement is assumed yielded, 

otherwise, the size of FRP laminates has to be iteratively determined. The neutral axis 

depth x may be expressed as: 

 
 

2

ff

k

Zd2
x


  (15) 

where Zf is the lever arm between the concrete compressive force C and tensile force Tf 

in the FRP laminates as shown in Figure 2(c). Substituting for x into Eq. (14) and re-

arranging: 

      fffcu1fys
'

fy
'
sf ZdbZfk2ddfAddfAM   (16) 

Assuming: 

    ddfAddfAMM fys
'

fy
'
sf

mod
1   (17) 

and 

 

cu
2
f

mod
1

mod
fbd

M
k   (18) 

Substituting for mod
1M  and kmod in Eq. (16) yields: 

 0
k2

k

d

Z

d

Z

1

mod

f

f

2

f

f















 (19) 

Solving the above quadratic equation gives: 

  















1

mod
ff k2

k
25.05.0dZ  (20) 

The above equation is similar to that given in BS8110
18

 to calculate the lever arm 

between the concrete compressive and steel tensile forces for conventional RC sections. 

Taking moments of forces shown in Figure 2(c) about the concrete compressive force C 

gives: 

 )dxk5.0(fAZfA)xk5.0d(fAM '
2y

'
sfff2ysf   (21) 

The required area Af of FRP laminates is: 

 
ff

mod
2

f Zf

M
A   (22) 
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where ff is the stress in the FRP laminates calculated using Eq. 3(a) where the strain f is 

determined by substituting for x (Eq. (15)) and c (=0.0035) in Eq. 4(c) and 

 )xk5.0d(fA)dxk5.0(fAMM 2ys
'

2y
'
sf

mod
2   (23) 

The area Af calculated above using Eq. (22) should satisfy the following condition: 

 fuffl AAA   (24) 

An example showing how to calculate the area of FRP laminates to enhance the moment 

capacity of a reinforced concrete section is given in Appendix II. 

CONCLUSIONS 

A simplified analytical method for predicting the bending capacity of RC sections with 

externally bonded FRP laminates has been introduced. Although the technique 

described in this paper was developed for rectangular sections, it is of general validity 

and could be extended for other section shapes. Comparisons between the flexural 

capacity and failure mode obtained from the current analysis and experiments show 

good agreement. 

Strengthening RC sections with externally bonded FRP laminates is particularly 

effective in case of a relatively low tensile steel reinforcement. The flexural failure 

mode is controlled by the size of FRP laminates. Minimum and maximum amount of 

FRP laminates are proposed in order to ensure ductile behaviour of the strengthened 

sections. Design equations for the area of FRP laminates used to increase the moment 

capacity of RC sections are developed. 
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APPENDIX I: FORMULAE FOR K1 AND K2 

In the previous analysis, the concrete compressive stress distribution was replaced with 

a fictitious rectangular block. The properties of the idealised block may be expressed in 

terms of two parameters k1 and k2. Comparing the idealised rectangular and actual 

concrete compressive stress blocks, the following formulae for k1 and k2 may be driven: 

Where c < o: 

 
 
 








4

3

f3

E
k

2

cu

cc
1  (25) 

 
 








32

4
k2  (26) 

and where c  o: 

 
 

)146(9

134
k

2

2

1








 (27) 

 
)13(2

146
k

2

2 







 (28) 

where  (=c / o) is the ratio of the extreme compressive concrete strain c (see Figure 

2(b)) to the strain o at the end of the parabolic part of the stress-strain diagram (see 
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Figure 1(a)). Ec, c, o and fcu have the same definition as given above. For design 

purposes, BS8110
18

 gives fixed values for k1 (= 0.67) and k2 (= 0.9), when c = cu = 

0.0035. 

APPENDIX II: NUMERICAL EXAMPLE 

The moment capacity of the unstrengthened reinforced concrete section shown in Figure 

5 is 225.0 kNm, calculated according to BS8110
18

 with all safety factors removed. It is 

required to determine the size Af of externally bonded FRP laminates to increase the 

moment capacity to 300 kNm (33% increase in the moment capacity). The ultimate 

strength ffu and modulus of elasticity Ef of the externally bonded FRP laminates are 

assumed to be 400 N/mm
2
 and 37000 N/mm

2
, respectively. Values of different 

parameters are estimated and presented in Table 3, below. 
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Table 1  Effect of size of FRP laminates on different parameters. 

Parameters 

Range of different parameters for the three failure modes 

Mode I Mode II Mode III 

Af Af Af1 Af1<Af Afu Af >Afu 

x xxl xl <x xu x>xu 

s s>y sy s<y 

'
c  increases as the size of external FRP increases 

f f=fu f<fu f<fu 

c c < 0.0035 c = 0.0035 c = 0.0035 

C
*
 C0.603fcubx C=0.603fcubx C=0.603fcubx 

T T=Asfy T=Asfy T<Asfy 

Tf Tf=Af ffu Tf<Af ffu Tf<Af ffu 

Mu MuMul Mul <MuMuu Muu <Mu 

*
 The compressive force C is calculated based on fixed values for k1 (=0.67) 

 and k2 (=0.9) as given by BS8110
18

. 



 

 15 

Table 2 Comparisons between the moment capacity from the current method and experiments 

Reference Beam No. 
As 

(mm
2
) 

Af 

(mm
2
) 

Bending capacity 

(kNm) B/A Failure mode 

A
*
 B

**
 

Andreou et al. (2000) 

Beam110 157.08 29.00 20.24 19.71 0.97 Concrete crushing 

Beam111 157.08 29.00 19.95 19.71 0.99 Concrete crushing 

Beam109 157.08 58.00 24.50 22.84 0.93 Concrete crushing 

Arduini et al. (1997) B2 398.00 51.00 96.30 101.66 1.06 FRP rupture 

Chajes et al. (1994) 

A2 71.00 132.08 3.00 2.70 0.90 Concrete crushing 

A3 71.00 132.08 3.43 2.70 0.79 Concrete crushing 

E1 71.00 180.34 3.11 3.01 0.97 FRP rupture 

E2 71.00 180.34 3.11 3.01 0.97 FRP rupture 

E3 71.00 180.34 3.13 3.01 0.96 FRP rupture 

G1 71.00 154.94 3.06 3.28 1.07 FRP rupture 

G2 71.00 154.94 3.46 3.28 0.95 FRP rupture 

G3 71.00 154.94 3.94 3.28 0.83 FRP rupture 

EL-Refaie et al. (2000) 
H2 100.50 25.74 32.82 33.06 1.01 FRP rupture 

H6 100.50 25.74 30.30 33.10 1.09 FRP rupture 
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Table 2 (Cont.) Comparisons between the moment capacity from the current method and experiments 

Reference Beam No. 
As 

(mm
2
) 

Af 

(mm
2
) 

Bending capacity 

(kNm) B/A Failure mode 

A
*
 B

**
 

Lamanna et al. (2001) 

F-21-S-102-1 258.00 326.40 11.90 13.32 1.12 Concrete crushing 

F-21-F-102-1 258.00 326.40 12.40 13.96 1.13 Concrete crushing 

F-21-H-102-1 258.00 326.40 13.30 15.69 1.18 Concrete crushing 

F-21-S-102-2 258.00 326.40 13.30 13.32 1.00 Concrete crushing 

F-21-S-102-2R 258.00 326.40 12.70 13.32 1.05 Concrete crushing 

F-21-S-51-1 258.00 163.20 11.90 11.71 0.98 Concrete crushing 

Mukhopadhyaya et al. (1998) FS2 942.00 525.00 91.85 89.31 0.97 Concrete crushing 

Nguyen et al. (2001) A1500 236.00 96.00 25.96 22.36 0.86 Concrete crushing 

Rahimi and Hutchinson (2001) 

C3 402.10 60.00 28.10 30.98 1.10 Concrete crushing 

C4 402.10 60.00 28.95 30.98 1.07 Concrete crushing 

C5 402.10 180.00 38.70 38.97 1.01 Concrete crushing 

C6 402.10 180.00 38.00 38.97 1.03 Concrete crushing 

C7 402.10 270.00 32.70 32.48 0.99 Concrete crushing 

C8 402.10 270.00 32.50 32.48 1.00 Concrete crushing 
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Table 2 (Cont.) Comparisons between the moment capacity from the current method and experiments 

Reference Beam No. 
As 

(mm
2
) 

Af 

(mm
2
) 

Bending capacity 

(kNm) B/A Failure mode 

A
*
 B

**
 

Ritchie et al. (1991) 

E 258.06 732.00 57.00 57.14 1.00 FRP rupture 

F 258.06 732.00 61.00 56.90 0.93 FRP rupture 

L 258.06 193.00 56.10 56.69 1.01 FRP rupture 

Ross et al. (1999) 

4B 568.00 90.30 49.20 53.17 1.08 Concrete crushing 

4C 568.00 90.30 47.80 53.17 1.11 Concrete crushing 

4D 568.00 90.30 50.80 53.17 1.05 Concrete crushing 

5B 774.00 90.30 67.10 58.80 0.88 Concrete crushing 

5C 774.00 90.30 67.10 58.80 0.88 Concrete crushing 

5D 774.00 90.30 66.50 58.80 0.88 Concrete crushing 

6B1 19.00 90.30 77.30 65.68 0.85 Concrete crushing 

6C1 19.00 90.30 70.00 65.68 0.94 Concrete crushing 

6D1 19.00 90.30 70.00 65.68 0.94 Concrete crushing 

Saadatmanesh & Ehsani (1991) A1 529.00 912.00 317.20 313.31 0.99 Concrete crushing 

 

 



 18 

Table 2 (Cont.) Comparisons between the moment capacity from the current method and experiments 

Reference Beam No. 
As 

(mm
2
) 

Af 

(mm
2
) 

Bending capacity 

(kNm) B/A Failure mode 

A
*
 B

**
 

Sharif et al. (1994) 

P1 157.10 150.00 13.20 13.15 1.00 FRP rupture 

P2BW 157.10 300.00 15.33 16.14 1.05 Concrete crushing 

P3J 157.10 300.00 16.11 16.18 1.00 Concrete crushing 

Swamy & Mukhopadhyaya (1999) 
B1 603.00 225.00 75.71 74.38 0.98 Concrete crushing 

B2 603.00 225.00 76.09 74.98 0.99 Concrete crushing 

Triantafillou & Plevris (1992) 
2 33.24 8.52 3.01 3.27 1.09 FRP rupture 

3 33.24 12.10 3.95 3.87 0.98 FRP rupture 

*
 A = Bending capacity from experiments 

**
 B = Bending capacity from current method 

Average 0.99 

Standard 

Deviation 
8.3% 
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Table 3 Values of different parameters for the example given in Appendix II. 

Parameters Value and Equation Notes 

 Calculations of the lower limit to the FRP, Af1, and the corresponding moment Mul 

xl 111.3 mm (Eq. (7)) Assuming df   h 

'
s  0.0018 (Eq. (4(b))) Compression reinforcement does not yield 

'
s  360 N/mm

2
 (Eq. (2(a)))  

Af1 -340.9 mm
2
 (Eq. (8)) FRP rupture would not occur whatever the size of 

FRP laminates; no need to calculate Mul  Mul -  (Eq. (9)) 

 Calculations of the upper limit to the FRP, Afu, and the corresponding moment Muu 

xu 242.2 mm (Eq. (10))  

'
s  0.0027 (Eq. (4(b))) Compression reinforcement yielded 

'
s  456 N/mm

2
(Eq. (2(b)))  

Afu 3070.0 mm
2
(Eq. (11))  

Muu 322.0 kNm (Eq. (12)) Mf (=300kNm) < Muu; under-reinforced case 

 Calculations of the lever arm Zf between the concrete compressive force and tensile 

force in FRP and neutral axis depth x 

M1
mod 

288.35 kNm (Eq. (17))  

kmod 0.226 (Eq. (18))  

Zf 357.0mm (Eq. (20))  

x 217.8mm (Eq. (15))  

 Calculations of stresses ff in FRP and required area Af of FRP to increase the moment 

capacity 

'
s  0.0026 (Eq. (4(b))) Compression steel yielded 

M2
mod 

92.36 kNm (Eq. (23))  

f 0.00381 (Eq. (4(c)))  

ff 141 N/mm
2
 (Eq. (3(a)))  

Af 1834.5mm
2
 (Eq. (22)) 

Af1 (=-340.9 mm
2
)< Af (=1834.5mm

2
)< Afu(=3070.0 

mm
2
); under reinforced case 

In this example, the compressive force C is calculated based on fixed values for k1 (=0.67) 

and k2 (=0.9) as given by BS8110
18

. 
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List of Captions: 

Fig. 1 Stress-strain relationships for materials 

Fig. 2 Strains, stresses and forces on RC section with externally bonded FRP laminates 
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Fig. 4 Effect of internal and external reinforcements on the normalised bending capacity 

Fig. 5 Details of RC section with FRP laminates 
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Fig. 3  Strain distribution for different sizes of FRP laminates at failure
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Fig. 4 Effect of internal and external reinforcements on the normalised bending capacity 
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Fig. 5 Details of RC section with FRP laminates
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