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Abstract 7 

This paper introduces a novel symbolic regression approach, namely biogeographical-based programming (BBP), 8 
for the prediction of elastic modulus of self-compacting concrete (SCC). The BBP model was constructed directly 9 
from a comprehensive dataset of experimental results of SCC available in the literature. For comparison purposes, 10 
another new symbolic regression model, namely artificial bee colony programming (ABCP), was also developed. 11 
Furthermore, several available formulas for predicting the elastic modulus of SCC were assessed using the collected 12 
database. 13 
The results show that the proposed BBP model provides slightly closer results to experiments than ABCP model and 14 
existing available formulas. A sensitivity analysis of BBP parameters also shows that the prediction by BBP model 15 
improves with the increase of habitat size, colony size and maximum tree depth. In addition, among all considered 16 
empirical and design code equations, Leemann and Hoffmann and ACI 318-08’s equations exhibit a reasonable 17 
performance but Persson and Felekoglu et al.’s equations are highly inaccurate for the prediction of SCC elastic 18 
modulus. 19 

Keywords: Self- compacting concrete; Elastic modulus; Symbolic regression; Artificial bee colony programming; 20 
Biogeographical-based programming. 21 

1. Introduction 22 

Self-compacting concrete (SCC), initially proposed by Okamura in 1986, has gained a wide 23 

acceptance in the construction industry [1-3]. SCC is characterized by the ability to flow under 24 
its own weight to adequately fill the formwork without any internal or external mechanical 25 

vibration [4,5]. SCC also possesses enough viscosity to be handled without segregation or 26 
bleeding [6-9]. 27 

SCC mixtures are usually designed with limiting aggregate contents, high volumes of paste, a 28 
low water-powder ratio, large quantities of mineral fillers and high range water reducing 29 

admixtures [10]. Consequently, the fresh and hardened properties of SCC are different from 30 
normally vibrated concrete (NVC) [11]. Several researchers have investigated SCC mix design 31 
[12], fresh and hardened properties of SCC [13] and structural performance of SCC members 32 
[14]. Due to the rapid growth of the use of SCC, determination of its mechanical properties 33 
compared with conventional concrete is essential in order to fulfill design requirements and 34 

codes. Elastic modulus of concrete is a crucial mechanical property in design and analysis of 35 

concrete structures, for example member deflections for serviceability requirements, seismic 36 
analysis, drift calculations, elastic shortening of concrete in pressstressed concrete design and 37 
creep losses [11]. Various relationships were proposed for predicting the elastic modulus of SCC 38 

and NVC, mostly from concrete  compressive strength [13,15-21]. 39 

Various researchers applied different branches of artificial intelligence for predicting the elastic 40 

modulus of different types of concrete. Demir [22,23] applied artificial neural network and fuzzy 41 
modeling for predicting the elastic modulus of both normal and high-strength concrete. Demir 42 
and Korkmas [24] presented a new approach for predicting the upper and lower bounds of elastic 43 
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modulus of high-strength concrete using fuzzy models. Yan and Shi [25] investigated the use of 44 

support vector machine (SVM) to predict the elastic modulus of normal and high-strength 45 
concretes from their compressive strengths. Ahmadi-Nedushan [26] applied an adaptive 46 
network-based fuzzy inference system (ANFIS) to predict the elastic modulus of normal and 47 

high-strength concrete. 48 

Symbolic regression, namely symbolic function identification, is a function discovery approach 49 
for analysis and modeling of numeric multivariate datasets. Unlike traditional linear and 50 

nonlinear regression methods that fit parameters to an equation of a given form, symbolic 51 
regression tries to form mathematical equations by searching the parameters and the form of 52 
equations [27; 28]. In other words, symbolic regression method searches nonlinear equation 53 
forms and its parameters simultaneously for an addressed modeling problem. It attempts to 54 
derive a mathematical function to describe the relationship between dependent and independent 55 

variables [28,29]. Different novel methods have been developed for symbolic function 56 
identification as briefly reviewed in the next paragraph.   57 

In recent years, a variety of evolutionary algorithms (EA) have been developed as feasible and 58 
effective methods for optimization problems [30-35].  Many EAs have been proposed, including 59 
genetic algorithms (GA), evolution strategies (ES), ant colony optimization (ACO), particle 60 

swarm optimization (PSO), differential evolution (DE), estimation of distribution algorithms 61 
(EDA), immune system optimization, artificial bee colony optimization (ABCO), and many 62 

others [36]. Inspired by GA, Genetic programming (GP), developed by Koza [37], is the most 63 
popular technique used in symbolic regression. Afterwards, some researchers introduced 64 
different improved versions of genetic programming, for example, linear genetic programming 65 

[38], cartesian genetic programming [39] and gene expression programming [40], etc. However, 66 
few researches on using other evolutionary based algorithms in symbolic regression or automatic 67 

programming were also developed. Musilek et al. [41] described Immune Programming (IP), 68 
inspired from the vertebrate immune system, as a paradigm in the field of evolutionary 69 

computing. Based on ant colony optimization (ACO) and using dynamically changing 70 
pheromone table, Shirakawa et al. [42] proposed Dynamic Ant Programming (DAP) for 71 

automatic construction of programs. Gan et al. [43] developed clone selection programming 72 
(CSP) for symbolic regression and applied clone selection principle as a search strategy. Inspired 73 
by artificial bee colony optimization (ABCO) algorithm, Karaboga et al. [28] introduced 74 

artificial bee colony programming (ABCP) as a new symbolic regression method and compared 75 
its performance with genetic programming (GP) approach on a large set of symbolic regression 76 
benchmark problems. They concluded that ABCP is very feasible and robust on the considered 77 

test problems of symbolic regression. 78 

Biogeography-based optimization (BBO), developed by Simon [44], is a relatively new 79 

evolutionary algorithm inspired by biogeography, which involves the study of the migration of 80 
biological species between habitats and successfully applied to different branches of engineering 81 
[44-64]. Motivated by BBO, biogeographical-based programming (BBP) as a novel symbolic 82 
regression model is proposed in this study for predicting the elastic modulus of self-compacting 83 

concrete. The results of the developed BBP model are also compared with artificial bee colony 84 
programming (ABCP) representing a recent symbolic regression model. The rest of this paper is 85 
organized as follows. Section 2 briefly introduces the mathematical model of ABCO and ABCP 86 
algorithms, while Section 3 presents  the BBO algorithm and the proposed BBP model for the 87 
prediction of SCC elastic modulus. In Section 5, the properties of gathered data for modeling the 88 
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elastic modulus of SCC are described, whereas section 5 presents the analysis and discussion of 89 

results, followed by the main conclusions in Section 6. 90 

2. Artificial bee colony programming 91 

2.1. Artificial bee colony optimization 92 

Artificial Bee Colony optimization (ABCO) algorithm, proposed by Karaboga et al. [65], is one 93 
of the most recently introduced swarm-based optimization algorithms. The artificial bees are 94 
classified into three groups, namely employed, onlooker and scout bees. Employed bees search 95 
the food around the food source in their memory. Meanwhile, they pass their food information to 96 
onlooker bees via a woggle dance on the dancing area in the hive. Onlooker bees tend to select 97 

good food sources from those found by the employed bees and then further search the foods 98 
around the selected food source. When the food sources of an employed bee become abandoned, 99 

such employed bee becomes a scout and starts searching for a new food source.  Similar to the 100 
other population-based algorithms, ABCO is an iterative technique, consisting of two main 101 
processes, namely, exploration and exploitation. Scout bees can be visualized as performing the 102 
job of exploration, whereas employed and onlooker bees are performing the job of exploitation 103 

[66,67]. 104 

In ABCO algorithm, each food source is a possible solution for the problem under consideration 105 
and the nectar amount of a food source represents the quality of the solution represented by the 106 
fitness value [68]. The number of food sources is the same as the number of employed bees and 107 

there is exactly one employed bee for every food source. For each ABC, a fitness value, 𝑓𝑖𝑡𝑖, can 108 

be assigned to the solution. For a minimization problem, the following equation proposed by 109 
Akay and Karaboga [30] may be used as a fitness function: 110 

𝑓𝑖𝑡𝑖 = {

1

1+𝑓𝑖
                          𝑖𝑓 𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖)              𝑖𝑓 𝑓𝑖 < 0
               (1) 111 

where fi is the cost value of the solution i. For maximization problems, the cost function can be 112 

directly used as a fitness function. An onlooker bee applies roulette wheel selection scheme and 113 
chooses a food source depending on the probability value pi associated with that food source 114 

[30]: 115 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑖=1

                  (2) 116 

where fiti is the fitness value of the solution i which is proportional to the nectar amount of food 117 
source i in the position i and SN is the number of food sources that is equal to the number of 118 
employed bees or onlooker bees. Obviously, the higher the fiti is, the more probability that the ith 119 
food source is selected [30].  120 

In order to create a candidate food position Vi = [vi,1, vi,2, . . . , vi,D] from the old one Xi = [xi,1, 121 
xi,2, . . . , xi,D] in memory, the ABCO produces a modification on the position of the old food 122 

source and finds a neighboring food source using the following expression [68]: 123 

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + ∅𝑖,𝑗(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗)                (3) 124 
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where j ∈ {1, 2, . . . , D} and k ∈ {1, 2, . . . , SN} are randomly chosen indexes, but k has to be 125 
different from i; D is the number of decision variables (problem dimension); Φi,j is a uniformly 126 
distributed real random number in the range [−1, 1]. 127 

After each candidate source position is produced and evaluated by the artificial bee, a greedy 128 
selection is applied and the performance of newly produced source position is compared with 129 
that of the old one. If the new food source is superior to that of the old source in terms of 130 

profitability, the old one is replaced by the new one. Otherwise, the old one is retained. If a 131 
position cannot be improved further through a predetermined number of cycles, then the food 132 
source is assumed to be abandoned. The value of a predetermined number of cycles, known as 133 
the “limit”, is an important control parameter of ABCO algorithm. Assume that the abandoned 134 
source is Xi, then the scout bees discover a new food source to replace Xi as below [68]: 135 

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗)              (4) 136 

where xmin,j and xmax,j are the minimum and maximum values of the jth decision variables, 137 
respectively and j is randomly selected between 1 and D [68].  138 

2.2. Development of artificial bee colony programming  139 

Artificial bee colony programming (ABCP) is a symbolic regression method that allows evolving 140 

expressions and constants in the same representation and automatically forming the 141 
mathematical functions. In ABCP, food sources’ positions correspond to randomly generated 142 

computer programs that are represented by tree structures. Computer programs are composed of 143 
terminals and functions such as arithmetic operations, mathematical functions, programming 144 
operations, logical functions, or domain-specific functions. Depending on the problem under 145 

consideration and applied functions, terminals may vary in constants or different type variables 146 

[28]. 147 
The quality of each food source is measured by evaluating the performance of each individual 148 
computer program, i.e. how the result of obtained function fits with the target one [28]. The root 149 

mean squared error (RMSE) can be used as a cost function which can be calculated as follows: 150 

𝑅𝑀𝑆𝐸 =
1

𝑃
∑ (𝑂𝑖 − 𝑡𝑖)

2𝑃
𝑖=1                 (5) 151 

where P, Oi and ti are the number of patterns, the output of each computer program and target 152 

value of ith pattern in the database, respectively. 153 
In ABCP, the ramped half-and-half method, a combination of full and grow methods, is used for 154 
creating a random initial colony avoiding duplicate computer programs. The steps of ABCP are 155 

summarized below [28]: 156 

 Initial colony generation and evaluation, 157 

 Creation and evaluation of new computer programs for employed bees, 158 

 Selection of computer programs depending on their quality, 159 

 Creation and evaluation of new ones by each onlooker bee. 160 

 After employed and onlooker bees phases, the unimproved computer programs are 161 
examined; if there is one of which the number of fail trials exceeds the limit value, a 162 
scout bee generates a new computer program to replace it with a grow method 163 
considering duplications. 164 
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These steps are iteratively performed until the termination criterion has been satisfied. The 165 

pseudo-code of the basic ABCP is shown in Fig. 1 [28].   166 
 167 

Fig. 1. The pseudo-code of the basic ABCP [28]. 168 

The main modification of the ABCO algorithm in adaptation to ABCP is on the neighborhood 169 

mechanism while producing candidate solutions, which is called an information sharing 170 
mechanism. Since the solutions’ structures are tree based on ABCP, the dimensions of the 171 
solutions’ strings are not of a fixed-length. Therefore, Eq. (3) cannot be used directly in ABCP. 172 

In generation of a candidate solution (vi) in ABCP, a tree node from a neighborhood solution (xk) 173 
is randomly chosen by either a computer program in the probability of Pip (set to 0.9) or a 174 

terminal in the probability of 1- Pip. This chosen node from the neighborhood solution (xk) 175 
determines which information and how much of it will be shared with the current solution. Then, 176 
a tree node in the current solution (xi), which determines how neighborhood information will be 177 
used, is also randomly chosen in Pip probability distribution. The candidate solution (vi) is 178 
produced by replacing the node from the current solution (xi) with the node from the 179 

neighborhood solution (xk). This sharing mechanism is shown in Fig. 2, where Figs. 2(a) and (b) 180 
demonstrate the current solution (xi) and the neighborhood solution (xk) respectively, the received 181 

information from the neighborhood is shown in Fig. 2(c) and the produced candidate solution is 182 
given in Fig. 2(d). As in ABCO algorithm, after the candidate solution is produced, a greedy 183 
selection process is applied between the current solution (xi) and the candidate solution (vi) [28]. 184 

1. Generate initial computer programs (Xi) with Ramped half-and-half method  

2. Evaluate the computer programs 

3. Set cycle to 1 

4. Repeat 

5. For each employed bee { 

Produce new computer programs vi by using information sharing mechanism 

Evaluate the computer programs by using Eqs. (1) and (5) 

Apply greedy selection process between xi and vi} 

6. Calculate the probability values pi for computer programs by Eq. (2) 

7.  For each onlooker bee { 

Select a computer program xi depending on pi probabilistically. 

Produce new computer program vi by using information sharing mechanism 

Evaluate the computer programs by using Eqs. (1) and (5) 

Apply greedy selection process between xi and vi} 

8. If there is an abandoned computer program 

then replace it with a new computer program generated by grow method by a scout 

9. Memorize the best solution so far 

10. cycle = cycle + 1 

11. until cycle = maximum cycle number 
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 185 

Fig. 2. The sharing example of ABCP [28]. 186 

3. Biogeographical-based programming (BBP) 187 

3.1. Biogeographical-based optimization (BBO) 188 

BBO, initially proposed by Simon [44], is a novel evolutionary optimization algorithm that is 189 

inspired by biogeography. This algorithm simulates the colonization and extinction of species 190 

between habitats in a multi-dimensional space [69]. In this algorithm, a set of biogeography 191 
habitats denotes a population of candidate solutions and habitat suitability index (HSI) 192 

corresponds to the goodness of each candidate solution. This corresponds to a geographical 193 
habitat that is well suited for hosting biological species. A good solution with high fitness value 194 
is analogous to a biological habitat with a high HSI. On the other hand, a poor solution is 195 

analogous to a habitat that is not well suited for hosting biological species. High fitness BBO 196 

solutions correspond to biological habitats with a large number of species, whereas low fitness 197 

BBO solutions indicate habitats with a small number of species [70]. Each candidate solution in 198 
BBO probabilistically shares decision variables with other candidate solutions to improve 199 
candidate solution fitness, similar to other evolutionary algorithms. This sharing process is 200 
analogous to migration in biogeography. That is, each candidate solution immigrates decision 201 
variables from other candidate solutions based on its immigration rate, and emigrates decision 202 

variables to other candidate solutions based on its emigration rate. BBO consists of two main 203 
steps: migration and mutation [71], as explained below. 204 
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Migration is a probabilistic operator that improves a habitat Hi. The migration rates of each 205 

habitat are used to probabilistically share features between habitats. For each habitat Hi, its 206 
immigration rate λi is used to probabilistically decide whether or not to immigrate. If migration is 207 
selected, then the emigrating habitat Hj is probabilistically selected based on emigration rate µj. 208 

Migration is defined by [71]: 209 

𝐻𝑖(𝑆𝐼𝑉) ← 𝐻𝑗(𝑆𝐼𝑉)                 (6) 210 

In biogeography, a suitability index variable (SIV) is a solution feature which determines the 211 
habitability of a habitat [44]. Immigration rates and emigration rates are based on migration 212 
curves. Several types of linear and non-linear immigration and emigration rates are shown in Fig. 213 
3, where the maximum immigration and emigration rates are equal to  I and E, respectively. The 214 

equations of different migration models are also given in Table 1 [36]. 215 

 216 
Model 1    Model 2 217 

 218 
Model 3    Model 4 219 

 220 
Model 5    Model 6 221 
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 222 
Model 7    Model 8 223 

Fig. 3. Eight migration models [71,72]. 224 

Table 1 

The formulas of migration models [71,72]. 

Models Description Immigration rate (λk) Emigration rate (µk) 

Model 1 Constant immigration and linear 

emigration model
* 

I

2
 E

k

n
 

Model 2 Linear immigration and constant 

emigration model I(1 −
k

n
) 

E

2
 

Model 3 Linear migration model I(1 −
k

n
) E

k

n
 

Model 4 Trapezoidal migration model
**

 {

I               , k ≤ i0

2I (1 −
k

n
)     , i0 < 𝑘 ≤ 𝑛

 {
2E
k

n
      , k ≤ i0

   E   , i0 < 𝑘 ≤ 𝑛
 

Model 5 Quadratic migration model  I(
k

n
− 1)2 E(

k

n
)2 

Model 6 Sinusoidal migration model 
I

2
(cos (

kπ

n
) + 1) 

E

2
(− cos (

kπ

n
) + 1) 

Model 7 Sinusoidal immigration and  

biquadratic emigration model 

I

2
(cos (

kπ

n
) + 1) E(

k

n
)4 

Model 8 Sinusoidal immigration and sixteenth 

degree emigration model  

I

2
(cos (

kπ

n
) + 1) E(

k

n
)16 

* k and n are the number and the maximum number of species in the habitat, respectively.  

** i0 is the smallest integer that is larger than or equal to 
(n+1)

2
, namely, io = ceil (

(n+1)

2
). 

Mutation is a probabilistic operator that randomly modifies a habitat’s SIV based on the 225 
habitat’s priori species count probability. The purpose of mutation is to increase the exploration 226 

of search space. Mutation gives low HSI solutions a chance of enhancing the quality of solutions, 227 
whereas improves high HSI solutions even more [70,72]. 228 

3.2. Development of biogeographical-based programming (BBP) 229 

Similar to other automatic programming algorithms, the proposed BBP aims at reaching at an 230 

explicit mathematical expression between one or more inputs and an output using mathematical 231 
functions, variables and constants. The process of programming is a subset of symbolic function 232 
identification and differs from conventional regression in that it does not calculate the 233 
coefficients of functions. Indeed, BBP finds equations by performing an extensive and structured 234 

search in an evolving search space. 235 
The proposed BBP continues the trend of dealing with the problem of representation in BBO by 236 
increasing the complexity of the structures undergoing adaptation. In particular, the structures 237 
undergoing adaptation in BBP are general, hierarchical computer programs of dynamically 238 
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varying size and shape. The proposed BBP is based on mathematical models of biogeography 239 

describing natural ways of distributing species, i.e., how species migrate, how they arise and 240 
become extinct. The BBP serves to provide a platform with operators such as random generation, 241 
mutation and migration that produce, alter and select habitats in population. The flowchart of 242 

BBP is given in Fig. 4 and the main steps of the proposed metaheuristic programming algorithm 243 
are explained in more details below. 244 

 245 

Fig. 4. The flowchart of BBP algorithm. 246 

- Create initial population (P0): 247 

It is composed of N initial habitats that are randomly generated. Each habitat presents a 248 
possible solution of the regression problem. It mathematically has an expression tree 249 

consisting of variables, functions and constants. From a population based programming 250 
viewpoint, the population of solutions refers to biogeography.    251 

- Evaluate the solutions: 252 
The goal of BBP is to find a habitat that performs well for all patterns in the database 253 
with least error. In the BBP, habitat suitability index (HSI) is used for evaluation of each 254 
solution. In the proposed algorithm, the term HSI is related to the root mean squared error 255 
(RMSE), presented in Eq. (5). Habitat with a high HSI has a low RMSE and tends to 256 

Start 

Create new solutions using mutation operator 

(P2) and evaluate their HSI 

Create initial solutions (P0) with N habitats 

Evaluate the solutions  

Determination of emigration and 

immigration rates of each habitat in P0 

Create new solutions using migration 

operator (P1) and evaluate their HSI 

Greedy selection among P0, P1 and P2 and 

overwrite the N best solutions on P0   

 

Stop 

Are the stopping 

criteria satisfied? 
No 

Yes 
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have a large number of species. RMSE minimization results in better expressions over the 257 

generations. The best expression with the largest HSI or least RMSE is chosen. 258 
- Determination of emigration and immigration rates: 259 

The immigration rate λ is assigned to control habitat immigration. The maximum 260 

immigration rate in a single habitat (I) occurs when there are no species in this habitat. As 261 
the number of species in a habitat increases, it becomes crowded, fewer species would be 262 
able to survive in this habitat and the immigration subsequently decreases. Emigration 263 
rate µ is another attribute of a habitat in BBP that controls habitat emigration. If there are 264 
no species in a habitat, its emigration is null. As the number of species increases, species 265 

are capable to leave their habitat in order to explore other and may be better residences. 266 
Maximum emigration rate (E) occurs in a single habitat when containing the maximum 267 
number of species it can support. 268 

- Create and evaluate new solutions using migration operator (P1): 269 

The migration operator is used to migrate species between two habitats according to their 270 
immigration and emigration rates. Similar to ABCP, the migration from one habitat to 271 

another one is done by swapping a part of one habitat with a part of the other. The 272 
migration operator used for the BBP proceeds by the following steps: 273 

- Choose two habitats based on their immigration and emigration rates. The habitat with 274 
high HSI is more probable to be selected for emigration and the chance of habitat with 275 
low HSI being selected for immigration is high. Indeed, the migration from a habitat with 276 

high HSI to a habitat with low HSI is more probable. The candidate habitats for 277 
emigration and immigration are named emigrated and immigrated habitats, respectively.  278 

-  Select a random subtree in emigrated and immigrated habitats. 279 
- Migrate the selected subtree of the emigrated habitat to the selected subtree of the 280 
immigrated habitat. The resulting tree is a new habitat where its depth should be checked.   281 

The process of migration operator is shown in Fig. 5, using two arbitrary simple 282 
expressions as emigrated and immigrated habitats. After the new habitat was created, its 283 

HSI is evaluated and saved in migrated population P1.    284 
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 285 

Fig. 5. Example of migration operator. 286 

- Create and evaluate new solutions using mutation operator (P2): 287 
The mutation operator introduces random changes in the structure of the habitats in the 288 

population P0. Mutation begins by selecting a random point within the tree structure of a 289 
random habitat, that is then replaced by a randomly generated subtree at that point. This 290 

operator is controlled by a parameter that specifies the maximum size of tree depth for 291 
the newly inserted subtree. This process is shown in Fig. 6, where an arbitrary simple 292 

habitat is mutated by replacing one of its subtrees with a random tree. After applying the 293 
mutation operator, the performance of the created habitat is evaluated and saved in 294 
mutated population P2.  295 

 296 

Fig. 6. Example of mutation operator. 297 
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- Greedy selection: 298 

In this step, the populations P0, P1 and P2 are merged. The N best habitats are selected 299 
based on greedy selection of habitats in the merged population. The old population P0 is 300 
then replaced by the new population.   301 

- Stopping criteria: 302 
Termination is the criterion by which BBP decides whether to continue or stop the 303 
searching process. Different types of stopping criteria may be considered, for example 304 

generation number, time period, fitness threshold, the number of node evaluations, etc. 305 
For fair comparison of the two developed BBP and ABCP models, the number of node 306 
evaluations considering all nodes in the tree structures of all solutions in the generated 307 
populations were considered as stopping criteria in this study. 308 

4. Experimental database 309 

4.1. Data description and preparation 310 

The efficiency of the prediction models depends on the quality of the gathered dataset. A final 311 
dataset of 413 samples was obtained from a comprehensive search of various sources in the 312 

literature. To test the reliability of the developed models, 82 samples were randomly selected as 313 
the test set, while the remaining 331 samples were used to train the models. The SCC database 314 
covers a wide range of pozzolanic materials including silica fume, fly ash and slag. . The 315 
frequency histograms of input and output records for training and testing data are shown in Fig. 316 
7, indicating that both the training and testing datasets cover the range of compressive strength 317 
and elastic modulus of SCC. 318 

 319 

 320 
Fig. 7. Frequency histograms of input and output records for training and testing data. 321 
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4.2. Development of ABCP and BBP models 322 

In this section, the development stages of the proposed BBP and ABCP algorithms for predicting 323 

the elastic modulus of SCC are explained. Because most of empirical models and design codes 324 
have related the elastic modulus of concrete to its compressive strength, it is also proposed in the 325 
current models to relate the elastic modulus of SCC with its compressive strength. Both of the 326 
developed models were coded in Matlab environment. In order to have a reliable and fair 327 
comparison, the same parameter values are chosen for both BBP and ABCP models. Problem 328 

specific parameters of ABCP and BBP algorithms are given in Table 2. As shown in this Table, a 329 
measure based on the number of function node evaluations to estimate the computational cost of 330 
both BBP and ABCP runs was adopted. By using the number of node evaluations, the additional 331 
computational effort of calculations used in both BBP and ABCP algorithms can be readily 332 
estimated. According to previous research investigations [28, 73], the number of node 333 

evaluations was set to 15×10
6
. The arithmetic operations (+, -, /, ×) and simple mathematical 334 

functions (x
2
,x

3
,√𝑥, √𝑥

3
) were also used to form the functions and the real input variable 𝑓𝑐

′  and 335 
the constant between [-10,10] with selection probability of 0.2 were used as terminals. 336 

Table 2  

Parameters of BBP and ABCP models. 

Parameters Value 

Functions  +, -, ×, /, x
2
, x

3
, √
2

, √
3

 

Variables  𝑓𝑐
′   

Number of node evaluations 15×10
6
 

Constants A random number between -10 and 10 

Probability of constant selection  0.2 

Cost function Root mean squared error 

Number of independent runs 10 independent runs 

The control parameters used for the two developed models are given in Table 3. Three levels 337 
were considered for population size, namely 100, 300 and 500 habitats for BBP and 100, 300 and 338 

500 employed and onlooker bees for ABCP. These three levels are to be adjusted before running 339 
of each experiment. The selection of a high depth tree may complicate the produced formula 340 

whereas a tree with low depth may result in an inefficient consequence. In this regard, three 341 
levels for the maximum depth of trees including 6, 8 and 10 were considered. In addition, eight 342 
migration curves, presented in Table 1, were investigated for BBP. Furthermore, three levels of 343 

limit values i.e. (0.5, 1, 2)×colony size were considered for ABCP. In addition, all experiments 344 
were independently conducted 10 times, and the average, best and standard deviation values of 345 
repetitions were recorded for comparison purposes. In total, 720 and 270 experiments were 346 
designed and implemented in Matlab environment for BBP and ABCP, respectively. 347 

Table 3 
Control parameters of BBP and ABCP models 

BBP   ABCP  

Parameter Value  Parameter Value 

Habitat size 100, 300, 500  Colony size 100, 300, 500 

The maximum tree depth  6, 8, 10
 

 The maximum tree depth  6, 8, 10 

Migration curves Curves 1, ..., Curves 8  Limit (0.5,1,2) × Colony size 

 348 
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5. Results and discussion 349 

The average of the best RMSE, mean RMSE and standard deviation values of different BBP and 350 

ABCP models with various parameters are given in Figs. 8 and 9, respectively. As illustrated in 351 
these figures, with increasing the habitat size, the average of the best RMSE, mean RMSEs and 352 
standard deviation values were decreased for training data. Therefore, increasing the habitat size 353 
could improve the learning capability of BBP. The average of mean RMSE and standard 354 
deviation values were also increased with increasing the habitat size for testing data. However, 355 

increasing the habitat size does not significantly affect the average of the best RMSE values for 356 
testing data.  357 
In the case of ABCP, increasing the colony size decreases the average of mean RMSE and 358 
standard deviation values for both training and testing data. In addition, the average of the best 359 
RMSE values increases, when the colony size increases for both training and testing data.       360 

 361 
Fig. 8. The results of developed BBP models with various habitat sizes. 362 

 363 

Fig. 9. The results of developed ABCP models with various colony sizes. 364 
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The effect of maximum tree depth on the results of BBP and ABCP models are shown in Figs. 365 

10 and 11, respectively. For BBP and ABCP models, the results of high maximum tree depth are 366 
more accurate for both training and testing datasets. The diversity of results for high tree depth 367 
models is also less than low tree depth model for both BBP and ABCP models.  368 

 369 

Fig. 10. The results of developed BBP models with various maximum tree depths. 370 

 371 
Fig. 11. The results of developed ABCP models with various maximum tree depths. 372 

Fig. 12 shows the effect of migration curves on the results of BBP. As illustrated in this figure, 373 
migration models 7 and 8 have the best performance among all other considered migration 374 

models for training and testing data, respectively. In addition, the migration models 2 and 1 are 375 
not suitable for training and testing data, respectively. 376 
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 377 
Fig. 12. The effect of migration curves on BBP results. 378 

Another parameter considered in this section is the effect of “limit” parameter value on the 379 
performance of ABCP model. The results of investigation of this parameter are presented in Fig. 380 

13. As shown in this figure, varying the "limit" parameter value does not significantly affect the 381 
results of ABCP model in predicting the elastic modulus of SCC. However, considering the 382 
"limit" value equal to (2×colony size) is slightly better than the two other considered "limit" 383 

values. 384 

 385 
Fig. 13. The effect of "limit" parameter value on ABCP results. 386 

Regardless of the mentioned average values, the formulations of the best BBP and ABCP models 387 
among 990 total runs are shown in Table 4, indicating that the proposed BBP model has a 388 
simpler formula than the best proposed ABCP model. Furthermore, both developed models have 389 
mainly related the elastic modulus of SCC to the square root of compressive strength. The 390 
expression tree of the proposed BBP model is shown in Appendix A. 391 
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 392 

Table 4 

The final BBP and ABCP equations for predicting the elastic modulus of SCC (SI units, MPa). 
BBP model 

Ec = 4906.45√f́c − 0.004f́c
3
+

366.68f́c

(125.89 − 2f́c)(130.94 − f́c − 4.91√f́c)

 

 

ABCP model  

Ec = 4758.36√f́c + 128.78√
|2f́c − 108.02|(f́c +

f́c + 7.92

−5.15 + √f́c
3

) −
(9.95√f́c + 8.05 − 77.23)(3.27f́c + √f́c − 28.44)

2.16 +
√f́c
3

92.78 − f́c

 

For comparison purposes, the results of the best BBP and ABCP models were compared with 393 
several empirical and design codes’ equations given in Table 5. In this regard, statistical 394 

parameters including root mean squared error (RMSE), mean absolute error (MAE), mean 395 
absolute percentage error (MAPE) and absolute fraction of variance (R

2
) were used. In order to 396 

consider the simultaneous effect of different statistical parameters, another parameter, namely 397 
OBJ, were also calculated [74]. The above mentioned parameters are defined below: 398 

MAE =
1

P
∑ |Oi − ti|
P
i=1                 (7) 399 

MAPE =
1

P
∑

|Oi−ti|

ti
× 100P

i=1                 (8) 400 

R2 = 1 − (
∑ (Oi−ti)

2P
i=1

∑ (Oi)
2P

i=1

)                (9) 401 

OBJ = (
No.Train−No.Test

No.Train+No.Test
)
RMSETrain+MAETrain

RTrain+1
+

2No.Test

No.Train+No.Test
×
RMSETest+MAETest

RTest+1
        (10) 402 

where P, Oi, ti, No.Train and No.Test are the total number of data points in each set of data, the 403 
predicted elastic modulus obtained from each model, the experimental elastic modulus of SCC of 404 

ith pattern in database, the number of training and testing data, respectively. The statistical 405 
parameters of different models for predicting the elastic modulus of SCC are given in Table 6. 406 
As shown in this table, the two proposed symbolic regression models, namely BBP and ABCP, 407 
have the best predictions among all other models considered. Among the empirical equations and 408 
design codes' relationships, Leemann and Hoffmann, ACI 318-08 and EC-2 equations show very 409 

close predictions to experimental results. Moreover, Persson and Felekoglu et al.'s equations give 410 

the worst predictions for the elastic modulus of SCC.  411 

 412 

 413 

 414 

 415 

 416 
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 417 

Table 5 
Empirical equations and design codes’ relationships for estimating the elastic modulus of SCC. 
References Estimating models of Ec for SCC (SI units, MPa) 
ACI 318-08 [15] 𝐸𝑐 = 4700(𝑓́𝑐)

0.5 

EC-2 [16] 𝐸𝑐 = 22000(𝑓́𝑐/10)
0.3 

NZS 3101 [17] 𝐸𝑐 = 3320(𝑓́𝑐)
0.5 + 6900 

CSA A23.3-04 [18] 𝐸𝑐 = 4500(𝑓́𝑐)
0.5 

Persson [13] 𝐸𝑐 = 3750(𝑓́𝑐)
0.5 

Leemann and Hoffmann [19] 𝐸𝑐 = 4740(𝑓́𝑐)
0.5 

Felekoglu et al. [20] 𝐸𝑐 = 1570(𝑓́𝑐)
0.8 

Dinakar et al. [21] 𝐸𝑐 = 4180(𝑓́𝑐)
0.5 

 418 

Table 6 
The statistical parameters values of different models. 

Models 

MAE MAPE RMSE R
2 

OBJ 

T
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A
ll

 d
at
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BBP 3.1308 3.4988 9.3646 10.5636 3.8246 4.2391 0.9881 0.9855 3.6450 

ABCP 3.1183 3.4904 9.3867 10.6160 3.8393 4.2564 0.9882 0.9856 3.6473 

ACI 318-08 [15] 3.3592 3.6548 9.7186 10.7992 4.1326 4.3518 0.9857 0.9842 3.8626 

EC-2 [16] 3.6003 3.9533 11.3966 12.7131 4.4262 4.8226 0.9851 0.9824 4.1788 

NZS 3101 [17] 4.6347 4.5177 12.5711 12.4962 5.5940 5.5132 0.9679 0.9689 5.1159 

CSA A23.3-04 [18] 3.7862 3.9728 10.6059 11.3253 4.5622 4.6146 0.9810 0.9806 4.2421 

Persson [13] 7.5965 7.1252 21.0185 19.6997 8.5630 8.2919 0.9035 0.9098 8.1282 

Leemann & Hoffmann [19] 3.3246 3.6234 9.6979 10.7870 4.1049 4.3574 0.9861 0.9844 3.8383 

Felekoglu et al. [20] 5.1237 5.2942 14.8223 16.0640 7.3701 7.2321 0.9646 0.9658 6.3089 

Dinakar et al. [21] 5.0518 4.8957 13.8384 13.4714 5.9818 5.8383 0.9621 0.9640 5.5090 

The comparisons between the experimental and predicted elastic modulus of SCC using the 419 
proposed BBP and ABCP are illustrated in Fig. 14. As shown in this figure, the training set 420 
results prove that the proposed models have clearly learned the non-linear relationship between 421 

the input and output variables with good correlation. Comparing the BBP and ABCP models' 422 
predictions with the experimental results for the testing dataset demonstrates a high 423 
generalization capability of the proposed models. 424 

 425 
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                      (a) Training dataset                                           (b) Testing dataset 426 
Fig. 14. Comparison of actual and predicted elastic modulus of SCC for training and testing data. 427 

In Fig. 15, the trend of the elastic modulus of SCC predicted by BBP and ABCP, and other 428 
existing models is plotted against the compressive strength. The figure also includes the 429 
experimental results for all data in the database. Figure 15 indicates that the predictions of BBP 430 

and ABCP models are compliance with each other in most cases. Furthermore, the trend of SCC 431 
elastic modulus obtained by BBP and ABCP is similar to that by most existing formula but 432 
closer to the experimental results. Moreover, the prediction of Felekoglu et al.’s equation is 433 
significantly different from the rest of the models and considerably larger than experiments, 434 
especially for compressive strength of SCC greater than 80MPa. Furthermore, most existing 435 

formulas, especially Persson’s equation, underestimate the elastic modulus of SCC. 436 

 437 
(a) Training dataset                                              (b) Testing dataset 438 

 439 

(c) All dataset  440 

Fig. 15. Relationship between the elastic modulus and compressive strength of SCC for different models.  441 

6. Conclusions 442 

In this paper, biogeographical-based programming (BBP) was employed to predict the elastic 443 
modulus of SCC. In order to compare the results of the proposed BBP model with other 444 
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symbolic regression programming models, a relatively new method, namely artificial bee colony 445 

programming (ABCP), was chosen. These two models were coded in Matlab environment and 446 
applied for predicting the elastic modulus of SCC. The results showed that the proposed BBP 447 
model has a simplified formula and slightly better performance compared to ABCP model and 448 

all other empirical and design codes' equations. The results of the BBP parametric study 449 
indicated that increasing the habitat size and the maximum tree depth could improve the 450 
performance of the BBP model. Furthermore, sinusoidal immigration and biquadratic emigration 451 
model and sinusoidal immigration and sixteenth degree migration model have the best 452 
performance whereas constant immigration and linear emigration model and linear immigration 453 

and constant emigration model have the worst performance among all considered migration 454 
curves. On the other hand, the results of the ABCP parametric study show that increasing the 455 
colony size and maximum tree depth decreases the error value of ABCP. In addition, varying the 456 
value of “limit” parameter from half of colony size to twice of colony size does not significantly 457 

affect on the results of ABCP model. However, considering the "limit" value equal to (2×colony 458 
size) is slightly better. In addition, among all considered empirical and design codes’ equations, 459 

Leemann and Hoffmann and ACI 318-08’s equations have suitable performances and Persson 460 
and Felekoglu et al.’s equations are not recommended for predicting the elastic modulus of SCC. 461 

The following are recommended for future study. Firstly, the overall dataset may be divided into 462 
three subsets with the additional dataset used for validation or n-fold cross validation is used to 463 
minimize chances of model overfitting. Secondly, inspired by evolutionary computations, 464 
variants of symbolic regression and hybrid models can be developed and their results can be 465 

compared with the developed BBP and ABCP models. Thirdly, other engineering applications 466 
can be modeled using the proposed symbolic regression BBP model. 467 
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Appendix A. Expression tree of the proposed BBP model. 659 
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