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Abstract 

The main purpose of this paper is to assess moment redistribution in continuous concrete 

beams reinforced with fibre reinforced polymer (FRP) bars. A numerical technique based 

on equilibrium of forces and full compatibility of strains has been developed to evaluate 

the moment-curvature relationships and moment capacities of FRP and steel reinforced 

concrete sections. Moment redistribution has then been assessed by comparing elastic and 

experimental moments at failure, and moment capacity at critical sections of continuous 

FRP reinforced concrete beams reported on the literature. 

The curvature of under reinforced FRP sections was large at FRP rupture but failure was 

sudden, that would not allow any moment redistribution. On the other hand, FRP over 

reinforced sections experienced higher curvature at failure than steel over reinforced 

sections owing to the lower FRP modulus of elasticity. Although the experimental and 

elastic bending moment distributions at failure are significantly different for many beams 

tested elsewhere, in particular CFRP reinforced concrete beams, the experimental 

bending moment over the middle support at failure was far lower than the corresponding 

moment capacity owing to the de-bonding of FRP bars from concrete in the middle 

support region. Furthermore, the hogging moment redistribution over the middle support 

is always larger than that at mid-span by around 66%. It was also shown that the load 
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capacity prediction of continuous FRP reinforced concrete beams using the de-bonding 

moment at the middle support section was the closest to the experimental failure load. 

 

1. Introduction 

Corrosion of steel reinforcement in concrete structures gives rise to cracking and spalling 

of concrete, resulting in costly maintenance and repair. The use of fibre reinforced 

polymer (FRP) as an alternative reinforcement in concrete structures has emerged as an 

innovative solution to such problems. In addition to their noncorrosive properties, FRPs 

have high strength-to-weight ratios and non-magnetic properties, making them attractive 

as reinforcement for concrete structures in severe environments and situations where 

magnetic transparency is required. 

Moment redistribution in continuous members allows more flexibility in structural 

design. It is usually carried out by reducing the hogging moments over supports, with 

corresponding changes in the sagging moments to satisfy equilibrium. Accordingly, 

reinforcement congestion at beam to column joints in hogging zone regions may be 

avoided. Alternatively, when moment redistribution is employed in different load 

combinations, both hogging and sagging moments may be reduced, achieving economic 

design. 

The ability of members to redistribute moments, when a critical section reaches its 

moment of resistance, is mainly attributed to the assumption that members possess 

sufficient ductility for plastic deformation to occur. As FRP reinforcing bars exhibit a 

linear elastic stress-strain relationship up to failure without any yielding, new ways based 

on deformation and energy [1, 2] were proposed in the literature to evaluate the ductility 
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index of FRP reinforced concrete members. On the other hand, few suggestions were 

recently introduced to improve the ductility of FRP reinforced concrete members. Wu [3] 

proposed the concept of compression yielding using ductile material or mechanism at the 

compression zone of a plastic hinge in FRP reinforced concrete members. In another 

investigation [4], it was shown that the presence of sufficient stirrups increased the 

concrete confinement in critical zones and, consequently, enhanced the concrete 

compression ductility. Wang and Belarbi [5] and Issa et al. [6] observed that the addition 

of randomly distributed polypropylene fibres to the concrete mix has improved the 

ductility of FRP reinforced concrete beams. A hybrid system consisting of both FRP and 

steel reinforcement was also introduced to improve reinforced concrete element ductility 

[7]. 

In the last two decades, several studies [8-14] investigated the flexural behaviour of 

simply supported FRP reinforced concrete beams. However very few, though important 

studies, investigated the behaviour of continuous concrete beams reinforced with FRP 

bars [4, 15, 16-19]. Based on testing of continuously supported T-section concrete beams 

reinforced with FRP and steel reinforcement, Grace et al. [16] concluded that beams with 

different FRP reinforcement arrangements demonstrated the same load capacity as steel 

reinforced concrete beams but the ductility and failure modes were different. Ashour and 

Habeeb [17, 18] presented test results of continuous FRP reinforced concrete beams with 

different combinations of reinforcement ratios at mid-span and over middle support. The 

research concluded that continuously supported FRP reinforced concrete beams did not 

demonstrate any remarkable moment redistribution and bottom reinforcement is a key 

factor in controlling the behaviour of beams tested. On the other hand, Mostafa et al. [15, 
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19] observed that the moment redistribution in continuous FRP reinforced concrete 

beams is possible if the reinforcement configuration is properly selected. 

In the present study, moment-curvature relationships and moment capacities of steel and 

FRP reinforced concrete sections have been predicted using a numerical technique able to 

capture various feature of material modelling. Moment redistribution and load capacity of 

continuous FRP reinforced concrete beams reported in the literature have been evaluated 

by considering different possibilities based on the beam ductility level. 

 

2. Moment-curvature relationship of reinforced concrete sections 

In the present study, moment-curvature relationships of FRP and steel reinforced concrete 

beams have been obtained by the numerical technique developed by Kara and Ashour 

[20] as summarized below. The moment-curvature relationships predicted are compared 

with these from experimental results for FRP and steel reinforced concrete beams. The 

main features of moment-curvature relationships are also identified for under and over 

steel and FRP reinforced concrete beams. 

 

2.1 Analysis of reinforced concrete sections under bending 

The cross-section of reinforced concrete members is divided into a number of concrete 

segments. For a particular curvature value, strains in each segment and reinforcing bars 

are calculated and stresses in each material are, hence, obtained from the respective 

stress-strain relationships. Equilibrium of forces and moments are eventually considered 

as explained below. 
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The stress-strain relationships of concrete, steel and FRP reinforcements implemented in 

this investigation are shown in Figure 1. However, the numerical technique proposed can 

accommodate other material models. The CEB-FIP [21] model is adopted for concrete 

stress-strain relationship in compression as shown in Figure 1(a). This model can be 

represented by the following equations: 

 coc

co

c

co

c
cc ff 

































2

2'  (1(a)) 

 cuccocc ff   '  (1(b)) 

where fc and c are the compressive stress and strain in concrete, respectively, '
cf  is the 

cylinder compressive strength of concrete, co (=0.002) is the strain in concrete at 

maximum stress and cu (=0.0035) is the ultimate strain of concrete as shown in Figure 

1(a). 

A bi-linear stress-strain relationship is adopted to model concrete in tension as shown in 

Figure 1(b) and given below: 

 cttttt Ef    ((2(a)) 
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where ft and t are the tensile stress and strain in concrete, respectively, ftu )f0.62( '
c

 

and ct are the tensile strength and corresponding tensile strain of concrete, respectively, 

Et is the tensile modulus of concrete, assumed to be the same as the initial tangent 
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modulus Ec )/2f( co
'
c   of concrete in compression and =(tu-ct)/ct) is a factor 

controlling the rate of tensile strength decay, tu is the ultimate tensile strain taken as 

=5ct. The tension stiffening effect is represented in the above model to account for 

concrete between cracks as it has a significant effect on member stiffness. 

Reinforcing steel is modelled as an elastic-plastic material with yield stress fy as shown in 

Figure 1(c). The stress-strain relationship of FRP bars is linear elastic up to rupture and 

given by: 

 fuffff Ef    (3) 

where ff and f  are the stress and strain in FRP bars, respectively, Ef is the modulus of 

elasticity of FRP bars, and ffu and fu are the ultimate strength and strain of FRP bars, 

respectively, as shown in Figure 1(d). 

Figure 2 presents a concrete section reinforced with tensile and compressive reinforcing 

bars (FRP or steel), that is divided into a number of segments, n. The numerical analysis 

starts by assuming a small value of strain at the concrete extreme compression fiber (or 

tensile reinforcement). For each strain c at the top level of concrete section (or strain f in 

the tensile reinforcement), the neutral axis depth, x, is initially assumed and the correct 

value is iteratively obtained when equilibrium of forces is satisfied. According to the 

assumption that plane sections before bending remain plane and normal to the mid-

surface after bending, the strain in each concrete segment is linearly proportional to its 

distance from the neutral axis (Figure 2(b)) as expressed below: 

 c
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where εc is the strain at the top compression level of the reinforced concrete section and εi 

is the concrete compressive or tensile strain at mid-depth of i-th segment. 

Assuming perfect bond between concrete and reinforcing bars, strains in tensile and 

compressive reinforcing bars can also be obtained from: 

 cf ε
x

dx '
' 
  (5)
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where f  and 
'

f  indicate the strains in tensile and compressive reinforcing bars, 

respectively, and d and d' are the tensile and compressive FRP reinforcement depths, 

respectively. 

The corresponding stresses in each concrete segment, and tensile and compressive 

reinforcements can be calculated from the respective stress-strain relationships of 

concrete and reinforcing bars presented in Figure 1. The total concrete force including the 

contribution of compressive and tensile forces is calculated using Eqs. (7) below: 

 bhfF i

n

i

cic 

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 (7) 

where fci is the concrete compressive or tensile stress at the centroid of the i-th segment, 

hi (=h/n) is the thickness of the i-th segment and b is the beam width. This summation 

extends over all compressive and tensile segments of concrete section. The forces in 

tensile and compressive reinforcing bars are estimated from: 

 ffff EAT   (8) 
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'''

ffff EAC   (9) 

where Tf, Af and Ef are the force, area, and modulus of elasticity of tensile reinforcing 

bars, respectively, whereas Cf, 
'

fA  and 
'

fE  are the corresponding values of compressive 

reinforcement. Eqs. (8) and (9) are valid for different types of FRP bars, i.e., GFRP, 

AFRP and CFRP, provided that the appropriate modulus of elasticity, Ef, and tensile 

rupture, ffu, are used. The current analysis is also developed for compressive and tensile 

steel reinforcement. In such case, the modulus of elasticity or the yield strength of 

compressive and tensile steel reinforcements is used in calculating the forces Cf and Tf, 

respectively. Considering equilibrium of forces, the following equation is obtained: 

 ffc  = T+CF  

 ffffffi
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i
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 (10) 

In the above Eq. (10), the neutral axis depth x is the only unknown. The value of x is 

iteratively adjusted using the bi-section method and the procedure is repeated until 

sufficient equilibrium accuracy is attained, for example: 

 810
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c
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The curvature φ of the member can also be determined from the strain distribution as 

follows (see Figure 2(b)): 
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The applied moment Mf of the section is then calculated by taking moments of internal 

forces about any horizontal axis, for instance about the neutral axis 

 )()()( '
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 (13) 

where Fci (=fcihib) is the concrete compressive or tensile force at the centroid of the i-th 

segment. 

The strain in the extreme concrete compression fibre (or in the tensile reinforcement) is 

incrementally increased and the above procedure is iteratively repeated for each strain 

value. The analysis is terminated when either the strain in the tensile FRP reinforcement 

reaches the tensile rupture strain of FRP bars (f = fu) or the concrete strain c in the 

extreme compression fibre equals to the ultimate compressive strain cu of concrete 

(concrete crushing). In the case of steel reinforcement, section failure is characterised by 

crushing of concrete (εc in the extreme concrete compression fibre = εcu) before or after 

yielding of tensile steel reinforcement. The section moment capacity Mfu is, therefore, the 

highest moment attained by the section for various increments considered until failure. 

Based on the aforementioned procedure, a computer program has been developed for the 

moment-curvature relationships and moment capacities of FRP and steel reinforced 

concrete sections. 

 

2.2 Validation of the predicted moment-curvature relationship against experiments 

The moment-curvature relationships predicted from the above technique are compared 

with the experimental results of the steel and FRP reinforced concrete simply supported 

beams tested by Thiagarajan [22] and Srikanth et al. [23] as presented in Figure 3(a) for 
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steel and Figure 3(b) for FRP reinforcement. Geometrical dimensions, reinforcement 

details and material properties of the beams considered in Figure 3 are given in Table 1. 

The numerical results obtained from the present technique compare well with the test 

results for both steel and FRP reinforced concrete beams as depicted in Figure 3. The 

numerical technique is also able to accurately predict various features of the moment-

curvature relationships including the first cracking load, yielding of steel, post yielding, 

rupture of FRP bars and concrete crushing. In addition, the moment capacities of both 

steel and FRP reinforced concrete beams are reasonably predicted by the proposed 

technique. 

The validity of the above technique is further examined by considering the effect of 

tensile strength and tension stiffening of concrete on the moment curvature relationships 

of beams B4 and B9 (Figure 4(a) and (b)) and also the effect of the number of section 

segments on their moment capacities (Figure 4(c)). Figures 4(a) and (b) indicate that the 

tensile strength has a large effect on the initial stiffness before the first crack occurrence 

but, at higher moments, the predictions are almost identical for all the cases considered 

(with and without tensile strength and/or tension stiffening). Figure 4(c) also shows that 

the number of the beam section segments between 10 and 100 has a negligible effect on 

the moment capacities of beams B4 and B9. 

 

2.3 Effect of reinforcement type on moment-curvature relationship 

The present numerical technique has been employed to study the effect of type of 

reinforcement (FRP or steel) on the moment-curvature relationship of concrete beams as 

predicted in Figure 5: Figure 5(a) for under reinforced and Figure 5(b) for over reinforced 
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sections. The dimensions and concrete properties are the same for all sections considered 

in Figure 5; b = 200mm, h = 300mm and '
cf  = 30N/mm

2
. The amount of steel and FRP 

reinforcement in each case was selected to achieve the same tensile capacity; i.e. Af ffu for 

GFRP or CFRP = Asfy for steel (=173 kN for under-reinforced or 777 kN for over-

reinforced section); where Af and As are the area of tensile FRP and steel reinforcement, 

respectively; ffu is the ultimate strength of FRP and fy is the yield strength of steel. Figure 

5(a) shows that all the three beams have a similar behaviour at early stages of loading. 

However, the first cracking loads were slightly different owing to the variation in the 

modulus of elasticity of reinforcing bars. After the first crack had occurred, some stress 

redistribution took place as more loads were suddenly transferred from cracked concrete 

to the reinforcing bars and consequently, the influence of the modulus of elasticity of 

reinforcing bars became more apparent as each reinforced concrete section showed 

significantly different flexural stiffness. However, all sections exhibited the same 

moment of resistance as all reinforcements have the same axial tensile capacity. Figure 

5(a) also indicates that, although the steel reinforced concrete section yielded at a 

relatively small curvature, the ductility of steel reinforcement allowed significant 

curvature increase at the same moment capacity and consequently, larger rotational 

capacity at failure. On the other hand, the curvature at FRP rupture was large but sudden 

(see Figure 5(a)), that would not allow any moment to be redistributed to other sections 

along the beam. For over reinforced sections, all sections exhibited brittle failure mode 

and different moment capacities as failure is controlled by concrete crushing and elastic 

modulus of reinforcing bars. However, FRP reinforced concrete sections experienced 

higher curvature at failure owing to their lower modulus of elasticity. After the first 
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crack, the flexural stiffness is highest for steel, then CFRP, followed by GFRP, 

depending on their respective modulus of elasticity. 

 

3. Moment redistribution in continuous reinforced concrete beams 

Generally, steel under-reinforced continuous beams have the ability to redistribute 

bending moment at failure between critical sections due to yielding of steel reinforcement 

as depicted in Figure 5(a). However, the brittle nature of FRP reinforcements raises 

concerns about their ability to redistribute moments in continuous members. 

In this section, the moment redistribution in FRP reinforced concrete continuous beams 

available in the literature [4, 15-19] is investigated. Geometrical dimensions, 

reinforcement details and material properties of FRP reinforced concrete continuous 

beams considered are given in Table 1. Each continuous beam consisted of two equal 

spans, was loaded by a single point load at the middle of each span and was reinforced 

with different combinations of either GFRP or CFRP bars at the top and bottom layers. 

The reinforcement arrangement has affected the mode, load and location of beam failure 

as reported in different experimental investigations [4, 15-19]. 

For the two span beams reported in the literature, the elastic bending moments at the 

critical sections are 0.156Pl at mid-span and 0.188Pl over the middle support, where P 

and l are the mid-span applied load and beam span, respectively, as shown in Figure 6. It 

is to be noted that the above bending moment values are calculated based on a uniform 

flexural stiffness along the beam span. However, occurrence of concrete cracks at 

different load levels reduces the beam flexural stiffness at different locations and, 

consequently, the bending moment distribution changes too. When the magnitude of the 
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applied load is increased enough for the moment at either mid-span or middle support 

section to reach the section moment capacity, there are three different possibilities based 

on the beam ductility level as explained below: 

 For a fully ductile beam, a plastic hinge develops at a critical section to activate the 

plastic moment of resistance. As the load P is further increased, the moments at other 

critical sections also increase until eventually reach the plastic moments of 

resistance, causing the beam to collapse. The flexural load capacity in such case is 

based on a collapse mechanism with plastic hinges at mid-span and central support 

sections. Thus, the flexural load capacity Pu on each span would be calculated from: 

 )2(
2

usuhu MM
l

P   (14) 

where Mus and Muh are the moment capacities at mid-span and middle support 

sections, respectively. 

 For a brittle elastic material, the beam is suddenly failed when either the mid-span or 

middle support section reaches the moment of resistance. Thus, the flexural load 

capacity Pu on each span is the smaller of Mus/0.156l and Muh/0.188l and no moment 

redistribution is possible. 

 For a semi-ductile beam, a limited moment redistribution occurs depending on the 

moment-curvature relationship of materials. The flexural load capacity Pu on each 

span can be calculated from Eq. (14) above with either Mus or Muh replaced with the 

corresponding moment of resistance and the other with the limited moment of 

resistance at failure. For example, where de-bonding between FRP reinforcement and 

concrete occurred as reported in CFRP reinforced concrete continuous beam tests 
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[15, 17, 19], a limited moment of resistance over the middle support, at which de-

bonding occurs, should be used in Eq. (14). 

Moment redistribution is assessed by comparing elastic and experimental moments at 

failure, and moment capacity at critical sections of FRP reinforced concrete continuous 

beams reported in the literature. The moment redistribution factor, MR, from one critical 

section to another can be obtained from: 

 100% 



e

ue

M

MM
MR  (15) 

where Me and Mu are the critical section elastic and ultimate moments at failure. 

The predicted moments of resistance, experimental moment at failure and moment 

redistribution factor obtained from Eq. (15) at failure for both mid-span and middle 

support critical sections are presented in Table 2. The predicted moment of resistance and 

experimental moment at failure as well as the elastic moment calculated for the 

experimental failure load are also plotted in Figure 7(a) for GFRP reinforced concrete 

beams and Figure 7(b) for CFRP reinforced concrete beams. The experimental and elastic 

bending moments at both middle support and mid-span sections were calculated from the 

support reaction and mid-span applied load measured at failure in each test. 

Table 2 indicates that the moment redistribution factor, MR, at middle support sections is 

always larger than that of mid-span sections. This observation is investigated further 

below. Although Eq. (14) is expressed at the beam failure, this is a generic equilibrium 

relationship that is valid at any applied load between zero and failure. It can also be re-

stated in terms of increments of load and moment as follows: 
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where Mh and Ms are moment increments at mid-span and middle support sections due 

to a mid-span point load P. Considering moment redistribution at a given section under 

a given magnitude of load, then the load increment P =0 and therefore, the relation 

between  M h and sM  can be written in the following form: 

 

sh M2-  M               (17) 

 

The hogging and sagging moment redistributions can be written as )Pl./ M( h 1880  and 

)Pl./ M( h 1560 , respectively. Considering Eq. (17), thus, the ratio  of hogging to 

sagging moment redistributions can be evaluated as: 
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Eq. (18) indicates that the hogging moment redistribution should always be 66% more 

than the negative of the sagging moment redistribution provided that the ratio between 

hogging and sagging bending moments is the same as that obtained from elastic analysis 

assuming constant flexural stiffness throughout the beam length. The results of  

presented in Table 2 for beams considered do indeed very nearly satisfy this relationship, 

except for the results of GSu-10d/2p (76% more) and GGu-10d/2p (60% more). This may 
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be attributed to the ratio between the hogging and sagging bending moments at failure for 

these two beams. 

In most cases, the mid-span sections have reached or were close to achieving their 

predicted moment of resistance as indicated in Table 2; the ratio between the 

experimental moment at failure, Mexp, and predicted moment of resistance, Mpred, ranged 

from 0.81 to 1.19. On the other hand, the majority of middle support sections in CFRP 

reinforced concrete beams were far from achieving their moment of resistance (Mexp/Mpred 

range = 0.18-0.85) due to the apparent de-bonding of CFRP bars and concrete as reported 

in the experimental testing [15, 17-19]. However, middle support sections in GFRP 

reinforced concrete beams achieved a relatively closer moment at failure to their 

predicted moment of resistance (Mexp/Mpred range=0.55-1.02). Figure 7 indicates that the 

experimental bending moment distribution at failure is significantly different from that 

obtained from linear elastic analysis for the failure load for many beams, especially 

CFRP beams as depicted in Figure 7(b). Furthermore, redistribution of moment from the 

middle support section to the mid-span section occurred for all CFRP reinforced concrete 

beams. However, redistribution of moment from the mid-span section took place in only 

two GFRP reinforced concrete beams, namely GcOU and GS2. In all cases considered, 

no middle support section reached its predicted moment of resistance as also given in 

Table 2. This is mainly attributed to the early wide cracks developed at the middle 

support section of these beams owing to the slippage between top reinforcement and 

surrounding concrete as reported in the experimental investigations [15, 17, 19]. The 

above results indicate that when the middle support section reached the de-bonding 

moment, the continuous beam did not fail until the mid-span section also failed. 
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The moment redistribution is further assessed by comparing the experimental load 

capacity against the calculated load capacities based on the above three assumptions as 

presented in Table 3. The three load capacities are calculated from Eq. (14) using the 

moments of resistance of mid-span and middle support sections, from Eq. (14) using the 

moment of resistance of the mid-span section and the de-bonding moment at failure at the 

middle support section, and the lower load that would achieve the moment of resistance 

at either the mid-span or middle support section. The de-bonding moment at failure used 

in Eq. (14) is obtained from the experimental results at failure in each test. As shown in 

Table 3, the theoretical failure load obtained from Eq. (14) using the de-bonding moment 

at the middle support gives the closest result for both GFRP and CFRP beams to the 

experimental failure loads, with an average and standard deviation between the 

experimental and predicted load capacities of 0.996 and 7.6%, respectively. However, the 

load capacity calculated based on the moment capacities at mid-span and middle support 

sections overestimated the experimental failure load, especially for CFRP continuous 

beams; the average and standard deviation between the experimental and predicted load 

capacities for all beams are 0.894 and 10.1%, respectively. On the other hand, the load 

capacity calculated based on elastic brittle material slightly underestimated the 

experimental failure load with an average and standard deviation between the 

experimental and predicted load capacities of 1.086 and 20.3%, respectively. Although 

the experimental and elastic moments at failure are significantly different in few cases 

indicating major moment redistribution, the experimental failure load was lower than that 

predicted using the mid-span and middle support moments of resistance, for example, a 

significant moment redistribution from the middle support sections in beams C-C-3, C-C-
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4 and C-C-5 as shown in Figure 7(b) but the ratios of the experimental and predicted 

failure loads assuming the moment of resistance at both mid-span and middle support 

sections for the three beams are 0.73, 0.83 and 0.73, respectively. As the de-bonding 

moment is not easily predicted with high accuracy, the load capacity prediction based on 

achieving moment capacity at either mid-span or middle support section is closer to the 

experimental load capacity and also safer than that from assuming moments of resistance 

at both mid-span and middle support sections. 

 

4. Conclusions 

Moment redistribution of FRP reinforced concrete continuous beams has been assessed 

by comparing elastic and experimental moments at failure, and moment capacity at 

critical sections of FRP reinforced concrete continuous beams reported in the literature. 

Moment-curvature relationships for various steel and FRP reinforced concrete sections 

have been developed from equilibrium of forces and full compatibility of strains. The 

following conclusions may be drawn: 

 The curvature of under reinforced FRP sections was large at FRP rupture but 

failure was sudden, which would not allow any moment redistribution. 

 Over reinforced steel and FRP sections exhibited similar brittle failure. However, 

FRP over reinforced sections experienced higher curvature at failure owing to the 

lower FRP modulus of elasticity than that of steel reinforcement. 

 Although the experimental bending moment distribution at failure is different 

from that obtained by elastic analysis for many beams, especially CFRP beams, 
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the experimental bending moment at failure over the middle support was far lower 

than the predicted moment of resistance. 

 Hogging moment redistribution over the middle support is always larger than that 

at the mid-span by around 66%. 

 Load capacity predictions for the two-span FRP reinforced concrete beams 

reported in the literature using the de-bonding moment at the middle support 

section was the closest to the experimental failure load. Furthermore, load 

capacity prediction using moment of resistance at either mid-span or middle 

support section is closer to the experimental load at failure, and safer than using 

moments of resistance at both critical sections. 

 Continuous FRP reinforced concrete beams demonstrated moment redistribution 

when cracking and de-bonding between FRP and concrete occurred. However, no 

moment redistribution occurred when either the mid-span or middle support 

section reached their respective moment capacity owing to the brittle nature of 

FRP reinforcement rupture or concrete crushing. 
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Fig. 1 FRP, steel and concrete stress–strain relationships. 
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Fig. 2 Strains, stresses and forces of a reinforced concrete section 



 

(a) Steel reinforced concrete beams 

 

(b) FRP reinforced concrete beams 

Fig. 3 Comparison of predicted and experimental moment–curvature relationships of 

simply supported reinforced concrete beams.



 
(a) Effect of tensile strength 

 
(b) Effect of tension steffening 



 
(c) Effect of cross sectional segments 

Fig. 4 Effect of concrete modelling in tension and section segments number on the 

technique prediction 



 
(a) Under reinforced beam sections 

 
(b) Over reinforced beam sections 

Fig. 5 Moment-curvature relationships of under and over FRP and steel reinforced    

concrete sections 
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Fig. 6 Elastic bending moment distribution assuming constant flexural stiffness. 
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Fig. 7(a-b) Experimental and elastic bending moment distributions at failure, 

and moments of resistance at critical sections of beams tested in the literature. 
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Table 1 Details of the simply and continuously supported reinforced concrete beams tested in the literature. 

 

Note: b, h and l = width, depth and span of beams, respectively, Ef is the modulus of elasticity of longitudinal reinforcement and 'cf  is the cylinder compressive 

strength. SS and CS indicate simply and continuosly supported beams, respectively. 

Reference Beam notation 
Supporting 

condition 
Loading type b (mm) h (mm) l (mm) 

Reinforcing bars (mm) Ef (kN/mm
2
) 

'cf  
(N/mm

2
) Top Bottom 

[22] B4 SS Two point 152.4 152.4 1524 2Φ12.7 (Steel) 2Φ6.35 (CFRP) 140 51.7 

[22] B9 SS Two point 152.4 152.4 1524 2Φ12.7 (Steel) 2Φ7.94 (CFRP) 140 53.3 

[23] U1 SS Two point 150 200 1800 2Φ4 (Steel) 2Φ12 (Steel) 200 (Steel) 42.5 

[23] U3 SS Two point 150 200 1800 2Φ4 (Steel) 2Φ16 (Steel) 200 (Steel) 47.9 

[18] GcUO CS Mid-span 200 300 2750 3Φ12.7 (GFRP) 6Φ15.9 (GFRP) 
38.7(for Φ15.9) 

44.2(for Φ12.7) 
29.0 

[18] GcOO CS Mid-span 200 300 2750 6Φ15.9 (GFRP) 6Φ15.9 (GFRP) 38.7 25.0 

[18] GcOU CS Mid-span 200 300 2750 6Φ15.9 (GFRP) 3Φ12.7 (GFRP) 
38.7(for Φ15.9) 

44.2(for Φ12.7) 
29.0 

[17] C-C-3 CS Mid-span 200 300 2750 2Φ12 (CFRP) 2Φ7.5 (CFRP) 200 23.6 

[17] C-C-4 CS Mid-span 200 300 2750 2Φ7.5 (CFRP) 2Φ12 (CFRP) 200 27.2 

[17] C-C-5 CS Mid-span 200 300 2750 2Φ12 (CFRP) 2Φ12 (CFRP) 200 28.0 

[15] GS1 CS Mid-span 200 300 2800 2Φ16 (GFRP) 3Φ16 (GFRP) 46.0 28.0 

[15] GS2 CS Mid-span 200 300 2800 3Φ16 (GFRP) 2Φ16 (GFRP) 46.0 26.0 

[19] GSu-8d/3p CS Mid-span 200 300 2800 2Φ16 (GFRP) 3Φ16 (GFRP) 46.0 32.0 

[19] GSu-10d/2p CS Mid-span 200 300 2800 2Φ16 (GFRP) 3Φ16 (GFRP) 46.0 33.0 

[19] GGu-10d/2p CS Mid-span 200 300 2800 2Φ16 (GFRP) 3Φ16 (GFRP) 46.0 27.0 

[19] GGu-10d/3p CS Mid-span 200 300 2800 2Φ16 (GFRP) 3Φ16 (GFRP) 46.0 32.0 

[19] GSs-10d/2p CS Mid-span 200 300 2800 4Φ16 (GFRP) 7Φ16 (GFRP) 46.0 33.0 

[15] CS1 CS Mid-span 200 300 2800 4Φ10 (CFRP) 3Φ10 (CFRP) 116 27.0 

[19] CSu-8d/2e CS Mid-span 200 300 2800 2Φ10 (CFRP) 3Φ10 (CFRP) 116 26.0 



 

 

Table 2 Experimental bending moment at failure, predicted moment capacity and moment redistribution factor at failure of the 

continuous FRP reinforced concrete beams tested in the literature. 

 
Beam 

Notation 

Experimental moment at 

failure (kNm) 

Predicted moment 

capacity (kNm) 

Experimental/Predicted 

moment ratio 

Moment redistribution 

(MR%) (Eq. 15) 
 = 

MR(hogging)/ 

MR(sagging) Midspan Middle 

support 

Midspan Middle 

support 

Midspan Middle 

support 

Mid-span Middle 

support 

GcOU 60.5 78.5 56.3 88.2 1.08 0.89 3.51 -5.78 -1.65 
GcOO 86.9 55.1 86.2 86.2 1.01 0.64 -20.7 35.3 -1.70 
GcUO 97.6 30.8 88.2 56.3 1.10 0.55 -37.5 63.3 -1.69 
GS1 60.2 49.0 64.9 54.8 0.93 0.89 -14.0 23.0 -1.64 
GS2 46.3 63.4 52.6 62.3 0.88 1.02 4.90 -8.00 -1.63 

GSu-8d/3p 74.9 46.9 70.1 58.9 1.07 0.80 -22.4 36.4 -1.62 
GSu-10d/2p 72.0 50.0 71.6 59.9 1.01 0.84 -18.0 31.7 -1.76 
GGu-10d/2p 57.3 41.2 63.6 53.7 0.91 0.77 -18.1 29.0 -1.60 
GGu-10d/3p 66.0 47.2 70.1 58.8 0.94 0.80 -17.9 30.0 -1.68 
GSs-10d/2p 105 70.8 88.8 77.4 1.19 0.91 -19.3 33.0 -1.71 

CS1 51.8 29.0 60.7 45.2 0.85 0.64 -25.1 41.8 -1.67 
CSu-8d/2e 51.8 60.2 63.4 70.6 0.81 0.85 -1.37 2.27 -1.66 

CC3 44.8 14.0 42.5 56.2 1.05 0.25 -37.9 63.7 -1.68 
CC4 60.7 7.89 56.7 42.8 1.07 0.18 -49.5 83.5 -1.69 
CC5 56.0 12.1 56.9 56.9 0.99 0.21 -43.7 73.8 -1.69 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3 Experimental and predicted failure loads of the continuous FRP reinforced concrete beams tested in the literature 

 
Beam 

Notation 

Experimental 

failure load, Pexp 

(kN) 

Predicted failure load (kN) Experimental/Predicted failure load ratio 

Pfd Psd Pbem Pexp/Pfd Pexp/Psm Pexp/Pbem 

GcOU 145.0
 

146.0 138.9 131.1 0.99 1.04 1.11 

GcOO 166.5
 

188.0 165.4 168.7 0.89 1.00 0.99 

GcUO 164.4
 

169.2 150.7 108.8 0.97 1.09 1.51 
GS1 121.0

 
131.9 127.8 123.4 0.92 0.95 0.98 

GS2 111.5 119.7 120.5 118.3 0.93 0.93 0.94 

GSu-8d/3p 140.0 142.2 133.7 111.9 0.98 1.05 1.25 

GSu-10d/2p 139.0 145.0 138.0 113.6 0.96 1.00 1.22 

GGu-10d/2p 111.0
 

129.2 120.3 102.0 0.86 0.92 1.09 

GGu-10d/3p 128.0 142.2 133.9 111.7 0.90 0.96 1.15 

GSs-10d/2p 201.0 182.1 177.4 147.1 1.10 1.13 1.37 
CS1 94.7

 
119.0 107.4 85.9 0.80 0.88 1.10 

CSu-8d/2e 117.0
 

141.0 133.5 134.2 0.83 0.88 0.87 

CC3 75.3
 

102.7 72.0 99.2 0.73 1.05 0.76 

CC4 94.0
 

113.6 88.2 82.8 0.83 1.07 1.13 

CC5 90.3
 

124.0 91.5 110.0 0.73 0.99 0.82 

Average     0.894 0.996 1.086 

Standard 

Deviation 

    10.1% 7.6% 20.3% 

 

Pfd, Psd and Pbem  are predicted failure loads based on fully ductile, semi-ductile using de-bonding moment at the middle support and 

brittle elastic materials, respectively. 

 


