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Abstract.  In this work, machine learning algorithms are applied to explore the relation between 

significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO 

CMEs catalogue are processed to associate X and M-class flares with CMEs based on timing 

information. Automated systems are created to process and associate years of flares and CMEs data, 

which are later arranged in numerical training vectors and fed to machine learning algorithms to extract 

the embedded knowledge and provide learning rules that can be used for the automated prediction of 

CMEs. Different properties are extracted from all the associated (A) and not-associated (NA) flares 

representing the intensity, flare duration, duration of decline and duration of growth. Cascade 

Correlation Neural Networks (CCNN) are used in our work. The flare properties are converted to 

numerical formats that are suitable for CCNN. The CCNN will predict if a certain flare is likely to 

initiate a CME after input of its properties. Intensive experiments using the Jack-knife techniques are 

carried out and it is concluded that our system provides an accurate prediction rate of 65.3%. The 

prediction performance is analysed and recommendation for enhancing the performance are provided.  

1. Introduction 

The term "space weather" refers to adverse conditions on the Sun, in the solar wind, 

and in the Earth’s magnetosphere, ionosphere, and thermosphere that may affect 

space-borne or ground-based technological systems and can endanger human health 

or life Koskinen et al. (2001). The importance of space weather is increasing as more 

human activities take place in space and as we rely more and more on 

communications and power systems. 

The most dramatic solar events affecting the terrestrial environment are solar flares 

and Coronal Mass Ejections (CMEs) Pick et al. (2001). Flares and CMEs are two 

types of solar eruptions that can spew vast quantities of radiation and charged 

particles into space Lenz (2004). Earth environment and geomagnetic activity are 

affected by the ionized solar plasma, also known as the solar wind. Solar wind flows 

outward from the sun to form the heliosphere and it is affected by solar activity Pick 

et al. (2001) and carries with it the magnetic field of Sun. This interplanetary 

magnetic field (IMF) creates storms by injecting plasma into the Earth’s 

magnetosphere Yurchyshyn et al. (2003); Yevlashin and Maltsev (2003). 

Geomagnetic storms are correlated with CMEs Wilson and Hildner (1984) and 

predicting CMEs can be useful to forecasting space weather Webb (2000). Major 

solar flares can also seriously disrupt the ionosphere and in order to guarantee that 

humans can work safely and effectively in the space, the forecast for strong solar 

flares is also important Kurokawa (2002). 

Researchers dealing with solar data face many challenges, including the following. 

Firstly, there is a lack of clear definitions for solar features, which increases the 

difficulty of designing automated detection and processing systems. Secondly, data 

mailto:r.s.r.qahwaji@brad.ac.uk
mailto:t.colak@bradford.ac.uk


volumes will shortly increase by 1000 to 10,000 times because of the recent space 

missions (Hinode and STEREO). Extracting useful knowledge from this vast amount 

of data and trying to establish useful connections between data relating to different 

time periods is very challenging. Thirdly, large-scale and automated data mining and 

processing techniques that integrate advanced image processing and machine learning 

techniques are not fully exploited to find an accurate correlation between the 

occurrence of solar activities (e.g. flares and CMEs) and solar features observed in 

various wavelengths. 

Despite the recent advances in solar imaging, machine learning and data mining have 

not been widely applied to solar data. Very recently, several learning algorithms (i.e. 

neural networks (NN), support vector machines (SVM) and radial basis functions 

(RBF)) were optimised and then compared for the automated short-term prediction of 

solar flares Qahwaji and Colak (2007). The machine learning-based system accepts 

two sets of inputs: The McIntosh classification of sunspot groups and real-time 

simulation of the solar cycle. Fourteen years of data from the sunspots and flare 

catalogues of the National Geophysical Data Centre (NGDC) were explored to 

associate sunspots with their corresponding flares based on their timing and NOAA 

numbers. Borda et al. (2002) described a method for the automatic detection of solar 

flares using the multi-layer perceptron (MLP) with back-propagation training rule, 

where a supervised learning technique that required a large number of iterations was 

used.  The classification performance for features extracted from solar flares was 

compared by Qu et al. (2003) using RBF, SVM, and MLPF methods. Each flare is 

represented using nine features. However, these features provide no information about 

the position, size and verification of solar flares. Qahwaji and Colak (2006) used NN 

after image segmentation to verify the regions of interest as solar filaments.  

The aim of this paper is to provide a platform for large-scale analysis, association and 

knowledge extraction for CME and flare data. Data from the publicly available solar 

flare catalogue, which are provided by the National Geophysical Data Centre 

(NGDC)
1
, is used in our study. NGDC keeps records of data from several 

observatories around the world and holds one of the most comprehensive publicly 

available databases for solar features and activities. The CME data are obtained from 

the SOHO/LASCO CME catalogue, which is generated and maintained by the Center 

for Solar Physics and Space Weather at the Catholic University of America. This 

catalogue is developed using the SOHO data in cooperation with the Naval Research 

Laboratory and the Solar Data Analysis Center (SDAC) at the Goddard Space Flight 

Center.  

This paper is organised as follows: Section 2 explores the association between CMEs 

and other solar activities or features as reported in previous research. Section 3 

describes the design of the Hybrid system and its different components. The practical 

implementation and evaluation of this system is discussed in Section 4. The 

concluding remarks and recommendations for future work are presented in Section 5. 

2. CMEs and their Associations with Solar Activities and Features 

CMEs are bursts of plasma that are ejected from the sun. For years, solar flares were 

thought to be responsible for major interplanetary (IP) particle events and 

geomagnetic storms. However, space based chronographs have made us aware of 

CMEs Tousey (1973). Since then there have been many studies to find out how CMEs 

are initiated and triggered. The solar flare myth started by Gosling (1995), when it 
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was argued that CMEs, not flares, were the critical element for large geomagnetic 

storms, interplanetary shocks, and major solar energetic particle events. This 

contradicts the findings of Lin and Hudson (1976) where the flare accelerated 

particles in big flares are thought to provide the energy for all the activities that 

followed (i.e., CMEs and large energetic particles events). It is not clear whether there 

is a cause and effect situation between flares and CMEs and this assumption has 

driven most of the solar flare myth controversy Cliver and Hudson (2002). A 

summary of the research on CME associations to other solar features is given below. 

An early study was carried out by Munro et al. (1979), where 75 major Skylab CMEs 

from 1973 to 1974 associated with the solar activity reported at Solar Geophysical 

Data (SGD) are surveyed. It was found that 75% of the CMEs observed were 

associated with other forms of solar activity, 40% of the CMEs were associated with 

H-alpha flares, and 50% of the CMEs were associated with eruptive prominences.  

Poland et al. (1981) used the Naval Research Laboratory’s Earth orbiting coronagraph 

Solwind for observing CMEs. This study was based on white light coronal images 

from 1971 to 1974. It was concluded that half of the observed CMEs were associated 

with definite or probable flares or eruptive prominences.  

Webb and Hundhausen (1987) compared the CMEs observed in 1980 by the HAO 

Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite with other 

forms of solar activity (eruptive prominences (EP), H-alpha flares, soft X-ray events, 

and metric type II and IV radio bursts). It was found that 66% (38 of 58) of the CMEs 

were associated with the solar activities under consideration. Out of these CMEs, 68% 

were found to be associated with eruptive prominences, 37% were associated with H-

alpha flares, 76% were associated with X-ray events, and 32% were associated with 

Radio II, or IV events. 

St Cyr and Webb (1991) studied the SMM data from 1984 to 1986 and found that 

76% of the CMEs were associated with eruptive prominences, 26% were associated 

with H-alpha flares and 74% with X-ray events. 

Srivastava et al. (1997) studied 14 CMEs observed by SMM during the period from 

March to September 1980 and concluded that strong association existed between 

CMEs and coronal holes, EPs and current sheets. 

St Cyr et al. (1999) examined 141 CMEs using Mark III (MK3) K coronameter at 

Mauna Loa Solar Observatory between 1980 and 1989.They found that 55% of the 

CMEs were associated with active regions and 82% of the CMEs were associated 

with the eruption of prominences.   

Gilbert et al. (2000) examined 54 H-alpha events from February 1996 to June 1998. 

These prominence events were classified as eruptive prominences and active 

prominences based on their apparent maximum heights and differences in velocity 

and acceleration. It is worth mentioning that a variety of prominence classification 

schemes have been proposed before Gilbert et al. (2000), but these classification 

systems are not entirely compatible with one another. In Gilbert et al. (2000), the 

associations of eruptive prominences and active prominences with CMEs were 

studied using H-alpha observations that were obtained from Mauna Loa Solar 

Observatory (MLSO). It was found that 92% of the eruptive prominences and 46% of 

the active prominences were associated with CMEs. 

Subramanian and Dere (2001) studied the sources of 32 CMEs observed between 

January 1996 and May 1998 and compared them with MDI and several H-alpha 

images. It was found that 41% of the CMEs were associated with active regions 

without prominence eruptions, 44% were associated with eruptive prominences 



embedded in active regions, and 15% were associated with eruptive prominences that 

have taken place outside active regions. 

Hori and Culhane (2002) used microwave images from Nobeyama Radioheliograph, 

to examine 50 prominence eruptions near solar maximum between 1999 to 2000, and 

showed that 92% of the prominence eruptions were associated with CMEs. 

Zhou et al. (2003) examined the correlation between Halo CMEs and solar surface 

activity observed by SOHO/LASCO from 1997 to 2001. They concluded that 88% of 

halo CMEs were associated with flares and more than 94% were associated with 

eruptive prominences/filaments, while 79% of the CMEs were initiated from active 

regions. 

Moon et al. (2002) analysed 3217 CME events observed by SOHO/LASCO from 

1996 to 2000 and made a statistical study on their association with solar flares using 

GOES X-ray images and eruptive filaments using H-alpha images from BBSO. They 

found that the flares that were associated with CMEs had larger velocities. Macqueen 

and Fisher (1983) and Sheeley et al. (1999)drew similar conclusions that if no flare or 

only a weak flare occurs, then we would have the slowly-accelerating eruptive 

filament events but if a flare occurs, then an additional acceleration process might act 

on the CME. The key observation is the acceleration profile of the CME (or filament) 

during the flare. 

Gopalswamy et al. (2003) classified the prominence eruptions as radial and traverse 

depending on the direction of their movement (radial or horizontal). The associations 

with CMEs were investigated as well. Microwave images of 186 prominence 

eruptions from Nobeyama radioheliograph from 1 January 1996 to 31 December 

2001, covering the minimum and maximum periods of the current solar cycle 23 were 

used. It was found that 152 images (82%) of the prominence eruptions were 

dominantly radial events while only 34 images (18%) were traverse events and 134 

images (72%) of the prominence eruptions were found to be clearly associated with 

CMEs. They also found that 83% of the radial events were associated with CMEs. 

Pojoga and Huang (2003) studied the sudden disappearances (commonly called 

Disparition Brusque) of prominences/filaments identified from the H-alpha images of 

Praire View Solar Observatory and the spectroheliograms of Meudon Observatory for 

the period from January to April 2000 and their correlation with CMEs. According to 

this study 70% of the eruptive filaments were associated with CMEs, while the 

correlation was weaker for the quasi-eruptive and vanishing filaments. In this study, 

they used the term “vanishing” when referring to the thermal disappearances of 

prominences/filaments.  

Mouradian et al. (1995) analysed the DB of quiescent filaments/prominences in two 

classes; dynamic and thermal disappearances. They considered the dynamic DB to 

consist of an expansion and ejection of prominence plasma into the corona due to 

changes in the underlying magnetic field structure, like the emergence of new 

magnetic flux. On the other hand, the thermal DB consisted of the disappearance of 

prominences in H-alpha line due to an energy increase. This study showed that 

dynamic DBs were associated with CMEs, whereas thermal DBs were just local 

disturbances at the lower corona. 

Jing et al. (2004) performed a statistical study of 106 filament eruptions detected 

using H-alpha images from BBSO from 1999 to 2003 and their relations to flares and 

CMEs. According to their study 56% of the filament eruptions were associated with 

CMEs. They also classified filament eruptions as active region filament eruptions and 

quiescent filament eruptions and found that active region filament eruptions had 

higher flare association (95%) compared to quiescent filament eruptions (27%). They 



found that quiescent filament eruptions were mostly accompanied by CMEs rather 

than flares. They also suggested that the emergence of new flux played an important 

role in destabilising filaments. 

Not all researchers agree that strong relations exist between CMEs and 

filament/prominence eruptions. Yang and Wang (2001)made a statistical study of 431 

filament/prominence disappearances compiled from BBSO H-alpha images observed 

between January 1997 and June 1999 and found that a low association with CMEs 

existed (only 30%).  However, they stated that they didn’t make a distinction between 

thermal filament disappearances and filament eruptions. In addition, filament 

disappearances on disk might be associated with very weak halo CMEs which were 

difficult to detect. On the other hand, there are also many case studies on the solar 

origin of CMEs including Zhang and Wang (2001); Webb et al. (1998), which found 

associations between large CMEs and filament eruptions.  

In Green et al. (2003) flares were examined in nine active regions with CME 

signatures. It was indicated that the energy released by flaring from the magnetic field 

of an active region was greater anterior to the CME launch than after. The research of 

Zhang and Wang (2001) measured the CMEs initial evolution in the low corona and 

then explored the possible causes of CME initiation and acceleration in connection 

with flares. The kinematical evolution of CMEs is described in a three-phase scenario: 

the initiation phase, the impulsive acceleration phase, and the propagation phase. 

The changes associated with the magnetic topology for the X1.2 flare that occurred on 

30 September 2000 and was not associated with a CME were studied in Green et al. 

(2003). It was noted that the flare resulted from the interaction of two pre-existing 

loops low in the corona which produced a confined flare.  

In Andrews (2003), 311 M and X-class flares, which occurred during the years 1996 

to 1999, were investigated to find their associated CME candidates. The 

SOHO/LASCO CME data were used in this study.  Online catalogues were used to 

search for CME candidates for the 229 flares with good LASCO data coverage. It was 

found that about 40% of the M-class flares do not have associated CMEs.  

In Akiyama et al. (2006) the CME association rate for two flares, which were 

produced by two active regions, was examined. Active region 10039 produced three 

X- and eight M-class flares and the CME-Flare association rate was found to be 72%. 

The CMEs from this active region had an average speed of 1195 km/s speed and an 

average width of 246. On the other hand, active region 10044 produced 9 M-class 

flares, the association rate was found to be 13%, and CMEs from this region had an 

average speed of 282 km/s speed and an average width of 12. 

A statistical analysis of the latitudinal locations for the flares in northern and southern 

hemispheres for the period of 1986 to 2003 was conducted in Shrivastava and Singh 

(2005). It was found that flares with associated CMEs are equally distributed in the 

northern and southern hemispheres. It is noted that flares associated with northern 

hemisphere CMEs are more likely to produce a rapid decrease in the observed 

galactic cosmic ray (high-energy charged particles) intensity following a CME which 

is known as Forbush decrease. It occurs due to the magnetic field of the plasma solar 

wind sweeping some of the galactic cosmic rays away from Earth. 

There is also some research on the intensity of the solar flares and CMEs. Yashiro et 

al. (2005) examined the CME visibility (detection efficiency) for 1301 X-ray flare 

events above C3 level (49 X-class, 610 M-class, and 642 C-class flares) from 1996 to 

2001. It is assumed that all CMEs associated with limb flares are detectable by 

LASCO. Based on a statistical study of the properties of the flare-associated CMEs 

and a comparison with flare size and longitude it was found that the CME association 



rate increased with the flare size from 20% for C-class flares to 100% for huge X-

class flares. It was also concluded that CMEs associated with disk C-class flares were 

slower and narrower than those of CMEs associated with X-class flares. 

A discussion of the associations of CMEs with flare properties is presented in Yashiro 

et al. (2006). Properties such as peak X-ray intensity, total X-ray intensity, and the 

decay time for 1540 X-ray flares (M-class and above, including 50 huge flares above 

X1.8) were analyzed. It was found that CMEs associated with flares above X1.8 have 

CME association rate of 98% compared with only 40% for CMEs associated with 

flares between M1.0 and M1.7. Also it was concluded that a definite association 

between CMEs and flares exists if the decay time of the flare exceeds 90 min.  

3. Designing the Computer Platform for CMEs Prediction 

In the survey of section 2, it is clear that there has been no large-scale processing and 

analysis for all the available records of CMEs and flares to determine their 

association. Most of the available studies are carried out on a few years of data or on 

limited cases. In this work, we present a computer platform that analyses all the 

available years of data related to flare and CME catalogues to extract learning rules 

and then provide automated prediction for CMEs. Several different stages are 

involved in this system, as shown in Figure 1 and are explained in the following 

sections.  

3.1 ASSOCIATING FLARES AND CMES 

A C++ platform is created to automatically associate CMEs in the SOHO/LASCO 

CMEs catalogue with flares in the NGDC X-ray flares catalogue. The association is 

determined based on their timing information; the date and time for every CME is 

compared with date and time for every flare.   

Two criteria are used for comparison: 

 If there is not a CME recorded “α” minutes before or after a flare reach its 

peak time, then this flare is marked as not-associated (NA) otherwise it is 

marked as possibly-associated (PA). 

 If there is a CME recorded “β” minutes after a PA flare reaches its peak then 

this flare is marked as an associated (A) flare, other wise it is marked as NA.  

After finding all the associations, a numerical dataset is created for the machine 

learning algorithms using not-associated and associated flares. 

3.2 CREATING THE ASSOCIATED NUMERICAL DATA SET    

In this work, we have processed all the CME and flare data for the period from 

January 1996 until the end of December 2004. Our software has analyzed the data 

relating to 9297 CMEs and 19164 flares, which occurred during this period.  

To determine the NA flares the value of α was made equal to 150 minutes in all our 

experiments. It is easier to determine if a CME is not associated with any flares rather 

than determine the level of association between every CME with flares based on 

timing information. To explore the different levels of associations we have applied 

our association algorithm with different values of β, as shown in Table 1. As 

expected, more CMEs are associated with flares as the value of β increases. The rate 

of increase in the number of associations is maximum, when β increases to 60 from 

30 minutes. The rate of increase is equal to 85%, 33% and 23% when β increases to 

60 from 30, to 90 from 60 and to 120 from 90, respectively. Since the increase in the 

association rate drops from 85% to 33% after the 60 minutes difference, this makes β 

= 60 suitable for our experiments. 



In this paper, CMEs are associated with significant flares (i.e., X and M- class flares) 

only. X and M-class flares can have significant impacts on our life on Earth. In our 

previous work Qahwaji and Colak (2007) an automated machine-learning system that 

can provide short-term prediction for the occurrences of these significant flares is 

introduced. Our long-term goal is to determine the level of associations between 

CMEs and flares using machine learning so that a hybrid system that integrates both 

systems can be designed. Associating CMEs with significant flares seems to be 

supported by the findings of Yashiro et al. (2005), where it was found that all CMEs 

associated with X-class flares are detected by LASCO, while almost half the CMEs 

associated with C flares are invisible. They also concluded that the CME association 

rate increases with the increase of the x-ray brightness for flares starting from 20% for 

C-class flares (between C3 and C9 levels) to 100% for huge flares (above X3 level). 

In addition, they found that the CMEs that are faster (median 1556 km/s) and wider 

(median 244°) are associated with X-class flares compared to the CMEs associated 

with disk C-class flares (432 km/s, 68°). 

By applying our association algorithm we created an associated data set. This set 

consists of 985 flares with 581 A flares and 404 NA flares with α = 150 minutes and β 

= 60 minutes. Because machine learning algorithms deal mainly with numbers, it is 

essential that appropriate numerical representations for the A and NA flares is 

proposed and implemented. We can extract properties such as intensity, starting time, 

peak and ending time of the flares from the NGDC flares catalogue. However, we 

were hoping to include additional properties for flares location. Unfortunately a large 

number of the associated flares don’t have their location information in the NGDC 

catalogues. Hence, we decided to use the properties shown in Table II. Numerical 

representations are needed for these properties which are used later to construct 

different input parameters for the training and testing stages of the machine learning 

system. As we are not sure which properties are more important for machine learning 

and for the prediction of CMEs we decided to carry out extensive experiments in 

order to determine the significance of each property for our application. 

4. Practical Implementation and Results 

After creating the associated data set, the training and testing experiments for the 

machine learning algorithm was begun. These experiments and the prediction 

performance are explained below.      

4.1 TABOUT THE LEARNING ALGORITHMS AND TECHNIQUES 

For our study, we have compared the performance of Cascade Correlation Neural 

Network (CCNN) and Support Vector Machines (SVM) which have proven to be a 

very effective learning algorithm for similar applications Qahwaji and Colak (2007). 

More information on the theory and implementation of these learning algorithms are 

provided in Qahwaji and Colak (2007). All the machine learning/training and testing 

experiments are carried out with the aid of the Jack-knife technique Fukunaga (1990). 

This technique is usually implemented to provide a correct statistical evaluation for 

the performance of the classifier when implemented on a limited number of samples. 

This technique divides the total number of samples into two sets: a training set and a 

testing set. In practice, a random number generator is used to decide which samples 

are used for the training of the classifier and which are kept for testing it. The 

classification error depends mainly on the training and testing samples. For a finite 

number of samples, the error counting procedure can be used to estimate the 

performance of the Fukunaga (1990). In each experiment, 80% of the samples were 



randomly selected and used for training while the remaining 20% were used for 

testing. For every reported performance value to follow, this value is obtained by 

carrying out 10 Jack-Knife experiments and finding their average value.  

 

4.1 Optimising the learning algorithms 

The prediction performance of CCNN and SVM are compared to determine the 

machine learning algorithm that is more suitable for our application. However, these 

learning algorithms must be optimised before the actual comparison can take place. 

Learning algorithms are optimised to ensure that their best performances are achieved. 

In order to find the best parameters and/or topologies for the three learning algorithms 

initial training and testing experiments are applied using the Jack-Knife technique as 

explained previously. The results of these experiments are used to determine the 

optimum parameters and topology for every machine learning algorithm before it can 

be compared with the other learning algorithm. The optimisation process for the 

learning algorithms used in this work is described below: 

 

- For every learning algorithm apply the learning experiments with one, two and 

three inputs. 

- For each learning experiment determine the best topology using ROC analysis. 

- Determine the optimum classification threshold for the optimum topology 

using ROC curves. 

-  

Finding the optimum topology for CCNN is reached by determining the number of 

input features and  means determing the process for CCNN consists of finding the 

optimum topology, while the optimisation process for SVM consists of finding the 

correct values of gamma and degree for the Anova kernel. ROC analysis is applied in 

all these experiments.   

 

4.1.2 Optimising the CCNN 

In Qahwaji and Colak (2006b), it was proven that CCNN provides the optimum 

neural network performance for processing solar data in catalogues. However, many 

hidden nodes and just one hidden layer were used for training the network in Qahwaji 

and Colak (2006b). To simplify the topology of CCNN more experiments with two 

hidden layers are concluded in this work by changing the number of hidden nodes in 

each layer from one to ten.  At the end we managed to compare 100 different CCNN 

topologies based on the best CFP and CFTP. As can be seen from Figures 3 and 4, a 

CCNN with six hidden nodes in the first layer and four hidden nodes in the second 

layer gives the best results for CFP and CFTP. 

 

The CCNN that we have used consists of input, hidden and output layers. The output 

layer consists of one output node which has a numerical value of 0.9 if a CME is 

predicted to occur and 0.1 if not. To find the optimum topology that will provide the 

best learning performance we have carried out large number of experiments in a 

manner similar to Qahwaji and Colak (2007).  

The number of input parameters/nodes and the number of hidden nodes in each 

experiment were changed to find the best parameters and topologies for this learning 

algorithm. The number of input parameters/nodes was changed from one to four and 

the number of hidden nodes was changed from one to ten. For each topology we 

applied Jack-knife technique ten times and recorded the average of the testing results 

for correct prediction rate of CMEs.   



We started our experiments with one input node, which represented the numerical 

representation for property A. After changing number of hidden nodes from one to ten 

by applying the Jack-knife technique ten times for each new hidden node, a second 

input node representing property B was added and the experiments were repeated as 

explained before. The same procedure was repeated for property C and then for 

property D. Using this method we compared 40 (4 x 10) different neural network 

topologies by testing each topology ten times and recording the average correct CME 

prediction rate.  

We used the MATLAB neural network toolkit for our experiments.  We applied 788 

associated and not-associated flares for training, which are the 80% of the total 

number of associated cases. We have also used 197 associated and not-associated 

flares for testing, which are the 20% of the total number of associated cases. Figure 2 

shows the average of correct CME prediction rates for each neural network topology.  

4.2. COMPARING THE PREDICTION PERFORMANCES 

The results show that there is an increase in the prediction rate every time a new input 

parameter is added except for the case when the incline duration of flare (property D) 

is added. This shows that the time needed for a flare to reach its peak intensity is not 

very important in terms of CME predictions using machine learning. Also, we found 

that the decline duration for the flare (property C), is more important for CMEs 

prediction than the total flare duration (property B). This means that decline duration 

of the flare is very important for determining the probability of CME occurrence and 

this coincides with the findings of Yashiro et al. (2006), as explained in our survey 

section.  

We have concluded that the best topology for CME predictions using flares is to use a 

CCNN with three input nodes representing the intensity of flare, flare duration, and 

decline duration. The optimum topology consists also of ten hidden nodes. Using the 

optimum topology we have conducted ten experiments where for each the training set 

contains 80% randomly selected cases. The prediction rates are obtained by testing 

the learning system with the remaining 20% of the associated cases. This has lead to 

an average CMEs prediction rate of 65.3%.   

5. Conclusions and Future Research 

In this paper, a machine-learning based system that analyses years of flares and CMEs 

data is introduced. This system analyses all data records in the NGDC flares 

catalogues and the SOHO/LASCO CMEs catalogue and applies our association 

algorithm to associate flares with their corresponding CMEs based on timing 

information. In our work, we have used the CCNN because of its efficient knowledge 

extraction and generalisation performance for the processing of solar data Qahwaji 

and Colak (2007). To determine the optimum CCNN topology that delivers the best 

learning and then prediction performance, many experiments are carried out by 

changing the number of input and hidden nodes. It was found that a CCNN with three 

input nodes, ten hidden nodes and one output nodes provides the best prediction 

performance.  

We have investigated all the reported flares and CMEs between 01 January 1992 and 

31 December 2004. Our software has managed to associate 581 M and X soft X-ray 

flares with their corresponding CME groups and managed to highlight another 404 

significant flares as being not associated with any CMEs. These associations are for α 

= 150 minutes and β = 60 minutes. After carrying out many experiments using the 

Jack-knife technique, an average CMEs prediction rate of 65.3% was achieved. In its 



current version, our system can provide one hour prediction in advance, by analysing 

the latest flares data. 

 We believe that our work is the first to introduce a fully automated computer 

platform that could verify the association between significant flares and CMEs using 

machine learning. This work is a first step towards constructing a fully automated and 

web-compliant platform that would provide short-term prediction for the possible 

eruptions of CMEs. In this paper, we managed to extract the experts’ knowledge 

which is embedded in the CMEs and flares catalogues and managed to represent this 

knowledge using association and learning algorithms. However, our work is far from 

complete because of the following: 

1. We have managed to associate only a small percentage of CMEs with significant 

flares (M and X-class flares). However, the largest rate of association is for CMEs 

associated with C-class flares, as shown in Table 1. For our future work we will 

investigate the association for the C and B-class flares as well.  

2. The prediction performance is not as high as we would like it to be. We believe that 

this is caused by: 

a. From the survey section provided here, it is obvious that CMEs can be associated 

with either flares or erupting filaments/prominence. In this study, CMEs were 

associated with flares only and erupting filaments/prominence are not considered. 

To enhance the accuracy our predictions CMEs that are associated with eruptive 

filaments have to be considered. For example, on 21 March 1999 a filament 

erupted from the southern boundary of NOAA AR8494. The filament erupted 

between 12:35 and 14:30 UT. Its associated CME first appeared in the field of 

view of the LASCO C2 at 15:54UT, and later in the LASCO C3 at 17:42UT. This 

CME is not associated with any significant X-ray flare or H-alpha flare, as studied 

in Yun-Chun et al. (2006). This coincides with the results provided by our 

association algorithm, which highlights this CME as a not associated CME.   

b. The association between flares and CMEs in our work is carried out based on time 

analysis only. As explained in Yashiro et al. (2006) this may lead to false 

associations. There is a small difference in the visibility of CMEs between front 

side and backside CMEs, which makes it very hard to distinguish them using 

coronagraph observations only Yashiro et al. (2006). To overcome this situation 

we need to confirm that the CME originates from the front side by checking the 

lower corona images obtained by EIT and SXT. This will be investigated in our 

future work. 
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Figure 1: The hybrid prediction computer system. 

Figure 2: The prediction performance for CCNN. 

 

 

 

Table 1: The levels of associations based on the value of β 

Flares X M C B Total 

NA 15 389 5554 3355 9313 

PA(α=150) 89 926 6770 2066 9851 

Total 104 1315 12324 5421 19164 

A(β=30) 57 318 1181 246 1802 

A(β=60) 71 510 2229 526 3336 

A(β=90) 77 592 3016 764 4449 

A(β=120) 78 654 3757 1018 5507 

 

 

Table 2: Description of each property that is used as input node in CCNN. 

 Name Description 

A Intensity The normalized numerical value of intensity of the flare (Intensity × 1000).  

B 

Flare 

Duration 

The normalized numerical value of the time difference in minutes between the 

ending and the starting time of the flare (Difference/120).    

C 

Decline 

Duration 

The normalized numerical value of the time difference in minutes between the 

ending and the peak time of the flare (Difference/120).    

D 

Incline 

Duration 

The normalized numerical value of the time difference in minutes between the peak 

and the starting time of the flare (Difference/120).    

 

 

 

 


