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ABSTRACT 

A simplified strut-and-tie model including size effect based on the crack band theory of fracture 

mechanics is proposed to evaluate the shear capacity of deep beams. Concrete struts are idealised as 

uniformly tapered prismatic members having a stress relief strip, whereas horizontal and vertical 
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shear reinforcement is assumed to be an internally statically indeterminate system. The shear 

transfer mechanism of concrete and shear reinforcement is then driven using the energy equilibrium 

in the stress relief strip and crack band zone of concrete struts. The unknown coefficients of the 

proposed model are determined by regression analysis of an extensive database including 637 

simple deep beam specimens failed in shear. The shear capacity predictions of deep beams obtained 

from the present models are in better agreement with test results than those determined from strut-

and-tie models proposed by ACI 318-05, EC 2, and Tan and Cheng. The mean, standard deviation, 

and coefficient of variation of the ratio between predicted using the present model and measured 

shear capacities of deep beams are 1.002, 0.250 and 0.250, respectively. In addition, the trend of the 

shear capacity of deep beams against different parameters as predicted by the present models has a 

consistent agreement with that observed from experimental results. In particular, the present model 

shows the normalized shear capacity of deep beams is proportional to   25.0
h , where h  is the 

section overall depth. 

 

Keywords: size effect, deep beams, shear capacity, strut-and-tie model, fracture mechanics. 

 

INTRODUCTION 

Reinforced concrete deep beams are commonly classified as a discontinuity region (D-region), 

where the strain distribution over their cross-section depth is nonlinear, even in the elastic stage.
1
 In 

addition, extraordinarily high concentric top loads applied to deep beams are directly transferred to 

supports through concrete struts. As a result, the increase of shear capacity according to the decrease 

of shear span-to-depth ratio is more significant in deep beams than slender beams. It has been also 

pointed out
2, 3

 that the empirical shear provisions of ACI 318-99
4
 based on diagonal cracking shear 

strength of slender beams fail to provide a rational approach to explain the shear transfer 
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mechanisms of concrete web and shear reinforcement, which lead to unconservative shear design of 

deep beams. 

Strut-and-tie models (STM) have been generally recognized as a good design tool for D-region 

members including deep beams.
5-8

 In addition, most current design codes
3, 9, 10

 have recommended 

the STM approach as a design tool for deep beams. However, shear capacity of deep beams 

evaluated from STMs is strongly dependent on the effectiveness factor of concrete.
11

 Foster and 

Malik
12

 evaluated different effectiveness factor formulae used in STMs of nonflexural members 

such as deep beams, corbels and nibs. They concluded that effectiveness factor models based 

primarily on concrete strength are found to have poor correlation with test results of 135 nonflexural 

structural elements. In addition, most of STMs proposed for deep beams disregard the size effect. 

Tan and Cheng
13

 also showed that size effect has to be considered in the effective strength of 

concrete struts to reasonably evaluate the shear capacity of deep beams with large sections. 

Horizontal and vertical shear reinforcements in deep beams are provided to control the diagonal 

crack width and enhance the shear capacity and ductility of concrete struts.
2, 3

 Although most codes 

of practice
3, 9

 recommend the use of a minimum amount of shear reinforcement in two orthogonal 

directions in each face for bottle-shape strut, no specific guidelines on the shear transfer mechanism 

of shear reinforcement are provided. 

The present study proposes a size effect based STM to predict shear capacity of deep beams. The 

shear transfer capacities of concrete struts and reinforcing steel bars are modelled following the 

concept of the crack band theory
15

 of fracture mechanics. The basic formulas identifying the shear 

transfer mechanism of concrete and shear reinforcement are driven using the energy equilibrium in 

the stress relief strip and crack band zone of concrete struts. An extensive database for deep beams 

established by Yang et al.
16, 17

 is used to determine the experimental constants and unknown 

coefficients in the proposed STM. Statistical distributions of predictions obtained from the proposed 

STM are compared with those determined from STMs recommended by ACI 318-05
3
, EC 2

9
 and 
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Tan and Cheng
13

. In addition, a parametric study is carried out to verify whether the critical 

variables are suitably modelled in the STM. 

 

RESEARCH SIGNIFICANCE 

Although the size effect in deep beams is more prominent than slender beams, it is commonly 

disregarded in most of the existing STMs. In addition, few, if any, specific guideline on the shear 

transfer capacity of horizontal and vertical shear reinforcements by truss action is available in the 

literature. The crack band theory-based STM proposed in the present study identifies the shear 

transfer mechanisms of concrete struts and reinforcing bars considering size effect. This study also 

examines the applicability of STMs recommended by ACI 318-05
3
, EC 2

9
, and Tan and Cheng

13
 

using an extensive database of deep beams. 

 

STRUT-AND-TIE MODEL FOR SIMPLY SUPPORTED DEEP BEAMS 

Main shear transfer systems in STMs are struts representing compression stress fields in concrete 

and tie action of longitudinal reinforcement having one or several layers. Concrete struts in deep 

beams commonly considered as bottle-shaped struts, which can be idealized schematically as 

prismatic or uniformly tapered members within shear spans.
3, 7

 Axial forces in struts and ties 

intersect at nodes. Applied forces are transferred from the inclined struts to other struts, to ties and 

to reactions through nodal zones representing concrete around a node. Therefore, the schematic 

STM for simple deep beams can be generally idealized as shown in Fig. 1. 

 

Crack band theory background 

In the crack band model proposed by Bažant
18

, a crack is simulated by a fracture band of a fixed 

thickness, which is idealized as a continuum having a uniform strain distribution across the band. It 
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is also considered that fracture of concrete is caused by a crack band formed from a number of 

micro-cracks rather than a single line crack. A stress-strain relation with softening is associated with 

a certain width of the crack band, which represents a reference width and is related to a material 

property. To simply apply the crack band model to concrete members failed in high brittleness such 

as shear fracture, the prepeak region of stress-strain relation of concrete is generally regarded as a 

linear equation, and postpeak region of that is neglected as the area of postpeak region at failure, 

representing the extra energy supply required to break a unit volume of material in the crack band, is 

very small. 

Basic assumption 

Modes of deep beam failure are generally classified into four groups: compressive failure of 

concrete struts, yielding or anchorage failure of longitudinal reinforcement ties, and bearing failure 

of nodal zones. Among these modes of failure, compressive failure of concrete struts is the most 

common
1
 and accordingly it is only considered here. The following assumptions are made in the 

developed STM: 

▪ Stress relief strips in concrete struts concentrate along diagonal cracks as shown in Fig. 2. 

▪ Crack band with a number of axial splitting micro-cracks progresses to a certain limit, which 

eventually leads to failure of deep beams. 

▪ Reinforcing bars are perfectly bonded to concrete and their dowel action is ignored. 

▪ Stresses in reinforcing bars at beam failure are less than their own yield strength. In general, 

longitudinal reinforcement keeps within the elastic state when the structural failure of deep beams 

are governed by compressive crushing of concrete struts.
19

 In addition, many investigations
2, 11, 16 

 

showed that vertical and horizontal shear reinforcements do not commonly reach the yield strength 

when shear span-to-overall depth ratio is less than approximately 1.0 and more than 1.0, 

respectively. 
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▪ Shear capacity, nV , of deep beams is the sum of shear transfer capacity of concrete and 

longitudinal reinforcement, cV , and shear transfer capacity of shear reinforcement, sV ,  as below: 

scn VVV              (1) 

Shear transfer capacity by strut-and-tie action 

According to fracture mechanics, the propagation of crack band dissipates the strain energy stored 

in concrete struts and longitudinal reinforcement. Therefore, the loss of strain energy, cU , in a 

deep beam without shear reinforcement due to stress relief during the formation of the crack band 

can be approximately obtained from elastic theory as
15

: 







sin
2
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2
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where wb = width of beam section, fw = width of stress relief strip, jd = depth between top and 

bottom nodes,  = angle between concrete struts and longitudinal axis, cE  and sE  = moduli of 

elasticity of concrete and reinforcing steel bars, respectively, and sA = area of longitudinal 

reinforcement. It should be noted that the minus sign in Eq. (2) indicates an energy loss. Axial 

stresses in concrete strut, N , and longitudinal reinforcement, s , of simple deep beams can be 

expressed in the following form: 

sw

N
wb

V 


sin/
            (3) 

s

s
A

V 


tan/
             (4) 

where V = external shear force applied to deep beams, and sw = width of concrete strut. The loss of 

strain energy of concrete struts and longitudinal reinforcement is dependent on fw  as given in Eq. 

(2). Hence, the energy release rate,  , per unit width of beam due to the growth of the crack band at 

the stress relief strip is obtained from the basic theory of fracture mechanics
15

 as below:  
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where cs EEn / = modular ratio. The number of axial splitting micro-cracks in a crack band can be 

expressed as cf sw / , where cs  = average spacing of micro-cracks. Hence, the total energy W  

dissipated in the crack band is obtained from: 

ffw

c

f
Ghb

s

w
W            (6) 

where fh = length of the crack band (see Fig. 2) and fG  = fracture energy of concrete. 

Differentiating W  with respect to fw , the energy,  , dissipated in the crack band per unit length of 

the band and unit width of the beam can be expressed by the following form
15

: 
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The energy dissipated,  , in Eq. (7) above indicates a crack growth resistance. From the energy 

equilibrium,  , the shear stress, v , of deep beams without shear reinforcement required for the  

propagation of the crack band can be derived as follows: 
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where 
db

A

w

s
s  = longitudinal reinforcement ratio, and h  and d = overall depth and effective 

depth of deep beam section, respectively. Bažant and Planas
15

 showed that the crack band length fh  

at the beam failure can be represented by the following relation: 

0
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where 0h = a certain characteristic value representing the final length of the crack band, and 0w = a 

positive constant. Substituting Eq. (9) into Eq. (8), the ultimate shear stress, cv , of deep beams 

without shear reinforcement due to compressive failure of concrete strut can be expressed as below: 
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Shear transfer contribution of shear reinforcement 

One of several benefits of shear reinforcement in deep beams is that cracks are forced to 

redistribute at a closer spacing and over a wider area in concrete struts. Stresses in concrete struts 

are consequently redistributed and the width of concrete crushing zone spreads transversely (see Fig. 

3). Considering the idealized crack band extension, the loss of strain energy, sU , in vertical and 

horizontal shear reinforcements is expressed as follows: 

   
h
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where vs  and 1vA = spacing and area, respectively, of vertical shear reinforcement, hs  and 1hA = 

spacing and area, respectively, of horizontal shear reinforcement, and iw = width of crack band 

extension zone as shown in Fig. 3. In Eq. (11), the average stresses of vertical, sv , and horizontal, 

sh , shear reinforcements can be calculated as follows: 

jdA
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v

vsv
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1

tan
            (12) 
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h
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where sV = shear transfer capacity of shear reinforcement, and v  and h = proportions of shear 

force carried by vertical and horizontal shear reinforcements, respectively. Therefore, the energy 
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release rate s  of shear reinforcement due to the extension of the crack band can be estimated by 

the following equation: 
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where vwvv sbA /1  and hwhh sbA /1 = ratios of vertical and horizontal shear reinforcements, 

respectively. As the total energy dissipated in the crack band extension zone due to shear 

reinforcement is fw

ce

i
s Ghb

s

w
W 0 , the crack growth resistance, s , of the crack band extension 

zone is obtained from
15

: 
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where ces = spacing of axial splitting micro-cracks of the crack band extension zone of beams with 

shear reinforcement. Equating the loss of strain energy to crack growth resistance of crack band 

extension zone, ss  , shear stress, sv , transferred by shear reinforcement is expressed as 

follows: 
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Geometrical dimension of concrete struts 

Considering the hydrostatic state of stress at nodal zones, the average width, sw , at mid-depth of 

concrete struts can be calculated from the following equation:
3, 20

 

 
2

sin)()(cos8.1  ppEpt

s

llw
w


         (17) 

where tw = height of bottom nodal zone, Ppl )( , and Epl )(  = widths of loading, and support plates, 

respectively, as shown in Fig. 1. ACI 318-05 pointed out that concrete struts of inclination less than 
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25 degrees are not effective in transferring applied external loads to supports. Therefore, the angle, 

 , of concrete struts presented in Fig. 1 can be obtained from: 

25tan 1  

a

jd
           (18) 

The depth of the top node can be determined from the equilibrium of forces of the limit of 

resultant compressive force in the top node and the limit of resultant tensile force in the bottom 

node.
2
 As the height of the top nodal zone is assumed to be 0.8 tw  from the concrete effective 

stresses in the nodal zones, the distance between top and bottom nodes is calculated from the 

following equation: 

twhjd 9.0           (19) 

Concrete properties 

The modulus of elasticity of concrete is obtained from the equation specified in ACI 318-05
3
. 

'4700 cc fE   (in MPa)         (20) 

where '

cf = concrete compressive strength in MPa. Available literature on fracture energy of 

concrete is very scarce. The concrete fracture energy equations specified in CEB-FIP
10

 is adopted in 

the present study as below: 

  7.0' / cocfof ffGG   for 80' cf MPa (11.6 ksi)      (21 a) 

fof GG 3.4  for 80' cf MPa (11.6 ksi)       (21 b) 

where cof = 10 MPa (1.45 ksi)= reference concrete strength, and foG = basic fracture energy. CEB-

FIP proposes different values of foG  based on the maximum aggregate size, ad  (in mm), of 

concrete. 

Shear resistance of horizontal and vertical shear reinforcement 

Fig. 4 shows shear transfer mechanisms for different shear reinforcement arrangements by truss 

action. The model with either vertical or horizontal shear reinforcement is a statically determinate 



 

11 

truss system. On the other hand, the idealized model with both horizontal and vertical shear 

reinforcements belongs to a statically internally indeterminate system as shown in Fig. 4 (c). 

Matamoros and Wong
14

 concluded that average shear force carried by vertical and horizontal shear 

reinforcements can be reasonably evaluated using the stiffness method based on the assumption that 

the axial stiffnesses of all members are the same. Fig. 5 shows that the proportions of shear force 

carried by vertical and horizontal shear reinforcement against a/jd using the stiffness method.  

Based on the regression analysis of Fig. 5, the proportion of shear resistance of vertical and 

horizontal shear reinforcement can be calculated from: 

0.1v  for 0h  and 0v  (22 a) 

     jdajdajdav //7.0/15.0
23
  for 0h  and 0v  (22 b) 

jdah /  for 0v  and 0h  (23 a) 

   jdajdah /6.0/12.0
2
  for 0v  and 0h  (23 b) 

where v  and h  = proportions of shear force carried by vertical and horizontal shear 

reinforcements, respectively. 

 

STATISTICAL ANALYSIS OF TEST DATA 

Experimental database 

The experimental database established by Yang et al.
16, 17

 is used to evaluate and calibrate the 

proposed model. The frequency distribution of different parameters in the database is presented in 

Fig. 6. A total of 637 simple deep beam specimens failed in shear is collected from different sources. 

The frequency distribution of different parameters in the database is presented in Fig. 6. Some test 

specimens had no shear reinforcement whereas others were reinforced with vertical and horizontal 

shear reinforcement: the number of beam specimens in the database is 251 for beams without shear 

reinforcement, 165 for beams with only vertical shear reinforcement, 59 for beams with only 
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horizontal shear reinforcement, and 162 for beams with orthogonal shear reinforcement. The shear 

span-to-overall depth ratio ha /  in the database ranged from 0.23 to 2.0. The beam specimens were 

made of concrete having a very low '

cf  as 11 MPa (1.595 ksi) and a high '

cf  of 120 MPa (17.4 ksi). 

The section overall depth , h , of most of the specimens varied between 300 mm (11.7 in.) and 700 

mm (27.3 in.), thought some specimens have a small depth below 300 mm (11.7 in.) and a few 

specimens have a relatively large depth above 1000 mm (39 in.). 

 

Model calibration 

Deep beams without shear reinforcement 

Bažant and Planas
15

 showed that  csh /0  in Eq. (10) is an experimental constant, independent on 

h  and hw f / , and hwo /  can be also assumed as constant parameters. Hence,  
ff www 0/  in Eq. 

(10) can be regarded as a function of the section overall depth, h , normalized by the maximum 

aggregate size, ad , for dimensional purposes. The normalized shear capacity, pcc vv / , of deep beam 

specimens without shear reinforcement extracted from the database is plotted against adh /  in Fig. 7, 

where 
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values of   5.0

0 / csh  and    5.0

0/ ff www   can be assumed as 0.65 and   75.0
/ adh , respectively. As 
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Equation (24) clearly shows that shear stress capacity of deep beams without shear reinforcement is 

proportional to   25.0
h . 

Contribution of shear reinforcement 
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The crack distribution in concrete struts is commonly dependent on shear reinforcement as observed 

in test results
21

, therefore ceo sh /  in Eq. (16) should be a function of the amount and configuration 

of shear reinforcement. It was also shown that the effectiveness of horizontal shear reinforcement 

increases with the decrease of jda / , whereas that of vertical shear reinforcement increases with the 

increase of jda / .
2, 21

 However, the proportion of shear force transferred by shear reinforcement 

increases with the increase of jda /  as predicted from the elastic truss analysis and plotted in Fig. 5. 

Therefore, in order to improve the regression analysis for shear reinforcement and to avoid over 

fitting, the shear reinforcement ratio is normalised by 0  as pointed out by Bažant, and Sun
22

, 

where 
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and   = angle of shear reinforcement to the longitudinal axis of deep beams. For horizontal shear 

reinforcement )0(  , the coefficient ho/1  smoothly changes from 1.0 to 0.0, whereas, for 

vertical shear reinforcement )90( o , vo/1  smoothly increases from 0.0 to a finite value of 1.0, 

as jda /  increases from 0 to 2.0. 

Normalized shear stress, pss vv / , of shear reinforcement obtained from the database is plotted 

against the amount and configuration of shear reinforcement in Fig. 8, where 
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scatter of the test data is relatively large. As a result, shear transfer capacity carried by shear 

reinforcement due to truss action can be proposed as follows: 

375.05.0
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    (26) 

COMPARISONS WITH TEST RESULTS 

Table 1 gives the mean, mcs , , standard deviation, scs , , and coefficient of variation, vcs , , of the 

ratio between predicted and measured shear capacities, ..Pr )/()( Expnencs VV , of deep beams in the 

database obtained from STMs proposed by ACI 318-05
3
, EC 2

9
, Tan and Cheng

13
 and the current 

approach. The distributions of cs  for total specimens in the database against the section overall 

depth, h , are also plotted in Fig. 9. The largest mcs , , scs ,  and vcs ,  of all STM models appear in 

that specified in EC 2. In particular, ACI 318-05 and EC 2 STMs are highly unconservative for deep 

beams without shear reinforcement. In addition, the unconservatism of both code models increases 

with the increase of h , regardless of the configuration of shear reinforcement, as shown in Fig. 9 (a) 

and (b). On the other hand, mcs ,  of both code models decreases in deep beams with shear 

reinforcement compared with those without shear reinforcement, as both code models do not 

recommend a shear transfer mechanism of shear reinforcement. Predictions obtained from Tan and 

Cheng’s model slightly overestimate the shear capacity of deep beams without shear reinforcement. 

Although, Tan and Cheng’s model includes the size effect, cs  slightly decreases with the increase 

of h  as shown in Fig. 9 (c). On the other hand, the predictions obtained from the present model are 

in better agreement with test results, regardless of the configuration of shear reinforcement, 

indicating that mcs , , scs ,  and vcs ,  are 0.989, 0.245 and 0.248, respectively. In particular, cs  of the 

present model lies within a range of 0.6 to 1.8, regardless of the variation of h  as shown in Fig. 9 

(d). 
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Parametric Study 

The influence of longitudinal reinforcement ratio, web reinforcement and overall depth on the shear 

capacity of deep beams is evaluated using STMs of ACI 318-05, EC-2, Tang and Cheng and the 

current model. Experimental results are also extracted from the database and presented in the 

following figures, whenever possible,  to validate the trend predicted by different models. 

Effect of longitudinal reinforcement ratio 

The influence of longitudinal reinforcement ratio s  on the normalized shear capacity, 

 '/ cwnn fhbV , of deep beams is shown in Fig. 10. Geometrical dimensions, concrete strength 

and reinforcement details of deep beams considered are also presented in Fig. 10. It is generally 

accepted
17, 23

 that n  increases with the increase of s  up to a certain limit, dependent on ha / , 

beyond which  n  remains constant. Predictions obtained from ACI 318-05 and EC 2 are not 

influenced by s , and different from each other. On the other hand, predictions obtained from Tan 

and Cheng’s strut and tie model, and the present study increase with the increase of s . In particular, 

the increasing rate of n  predicted from the present model gradually descends with the increase of 

s , indicating that the effect of s  incorporated in the present model is in good agreement with the 

general trend observed in the literature. 

Relative effectiveness of vertical and horizontal shear reinforcement 

Fig. 11 shows the variation of  '/ cwnn fhbV  of deep beams with either vertical or horizontal 

shear reinforcement against the shear span to depth ratio ha / . Geometrical dimensions, concrete 

strength and reinforcement details of deep beams considered are also given in Fig. 11. The 

analytical results of ACI 318-05 and EC 2 are not presented in the figure, as they do not provide any 

guidelines for shear transfer mechanism of shear reinforcement. It is generally recognized
16, 19, 20

 

that the threshold of ha / , where both vertical and horizontal web reinforcements are equally 
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effective, is between 0.75 and 1.0. A higher n  exhibited by deep beams with only horizontal web 

reinforcement than beams with only vertical web reinforcement when ha /  is less than this critical 

threshold. Predictions obtained from Tan and Cheng’s model are seldom influenced by the 

configuration of shear reinforcement, though the threshold ha /  appears at around 1.1. On the other 

hand, the effect of the vertical and horizontal shear reinforcements on n  changed against ha /  is 

clearly demonstrated in the present model, showing that the threshold ha /  is around 0.9. Therefore, 

the present model reasonably embodies the shear transfer mechanism of shear reinforcement by 

truss action. In addition, predictions from both STM models are reasonably close to experimental 

results of Yang et al.
19

. 

Effect of overall depth of deep beams 

The influence of deep beam depth h  on  '/ cwnn fhbV  carried out by Tan and Lu
24

 is 

presented in Fig. 12. In all STMs and experimental results, it is clearly observed that n  decreases 

with the increase of h , but the decreasing rate varies. A higher decreasing rate is observed in 

predictions from the models of ACI 318-05, EC 2 or Tan and Cheng than in the present model. 

However, the decreasing rate of n  predicted from the present model is very close to that of test 

results, indicating that the size effect is properly reflected in the present model. 

 

CONCLUSIONS 

A strut-and-tie (STM) model reflecting size effect based on the crack band theory of fracture 

mechanics is proposed to evaluate the shear transfer capacities of concrete struts and shear 

reinforcement in deep beams. The basic formulas for the shear transfer mechanism of concrete and 

shear reinforcement are driven using the energy equilibrium in the stress relief strip and crack band 

zone of concrete struts. Based on the statistical comparisons and parametric analysis presented, the 

following conclusions may be drawn: 
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1. The predictions obtained from the present model are in much better agreement with test 

results than those determined from STMs proposed by ACI 318-05 and EC 2. The mean, 

standard deviation, and coefficient of variation of the ratio between predicted using the 

present model and measured shear capacities are 1.002, 0.250 and 0.250, respectively. 

2. The normalized shear capacity predicted from the present model increases with the increase 

of longitudinal reinforcement ratio and the increasing rate gradually descends with further 

increase of longitudinal reinforcement ratio, similar to trend generally observed in 

experimental  results. 

3. The effect of the vertical and horizontal shear reinforcements on the shear capacity of deep 

beams is reasonably reflected in the present model.  

4. The normalized shear capacity of deep beams decreases with the increase of section overall 

depth, in particular, the decreasing rate predicted from the present model is in better 

agreement with test results than STM models of ACI 318-05, EC2 and Tan and Cheng. 

5. The proposed model shows that the normalized shear capacity of deep beams is proportional 

to   25.0
h , where h  indicates section overall depth. 
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Table 1-Statistical comparisons of predictions by different STM models and test results. 

Statistical 

values 
Models W/O W/V W/H W/VH Total 

mcs ,  

ACI 318-05 1.277 0.836 0.769 0.952 1.027 

EC 2 1.487 0.804 0.743 0.738 1.039 

Tan and Cheng 1.092 0.858 0.862 0.846 0.947 

This study 1.000 0.961 0.978 1.015 0.989 

scs ,  

ACI 318-05 0.689 0.384 0.337 0.305 0.543 

EC 2 0.978 0.453 0.412 0.281 0.758 

Tan and Cheng 0.399 0.293 0.242 0.154 0.341 

This study 0.277 0.246 0.255 0.179 0.245 

vcs ,  

ACI 318-05 0.540 0.460 0.438 0.321 0.529 

EC 2 0.658 0.564 0.554 0.381 0.729 

Tan and Cheng 0.365 0.344 0.280 0.182 0.360 

This study 0.277 0.256 0.260 0.176 0.248 

Note : mcs , , scs ,  and vcs ,  indicate the mean, standard deviation, and coefficient of variation for the 

factor ..Pr )/()( Expnencs VV , respectively. W/O, W/V, W/H, and W/VH refer to deep beams without, 

with only vertical, with only horizontal and with orthogonal shear reinforcement, respectively. 
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Fig. 1– Schematic strut-and-tie model for simple deep beams. 
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Fig. 2- Idealized stress relief strip and crack band zone in beams without shear reinforcement. 
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Fig. 3- Growth of crack band by shear reinforcement. 

 

 

Vertical

tension

tie

V s
V s(a/jd)

V s

vV s

 hV s

Horizontal

tension

tieV s

V sV s

V s V s

a

jd

aa

jdjd

(a) (b) (c)

 

Fig. 4– Idealized shear transfer mechanism of shear reinforcement by truss action; (a) with 

vertical shear reinforcement only; (b) with horizontal shear reinforcement only; (c) with 

orthogonal shear reinforcement. 
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Fig. 5– Proportion of shear force carried by horizontal and vertical shear reinforcement. 
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Fig. 6–Frequency distribution of main parameters in the database; (a) beam width; (b) 

beam overall depth; (c) concrete strength; (d) shear span-to-overall depth ratio; (e) 

longitudinal tensile reinforcement ratio; (f) vertical shear reinforcement ratio; (g) horizontal 

shear reinforcement ratio; (h) orthogonal shear reinforcement ratio.  

(1 MPa = 145 psi; 1 mm = 0.039 in.) 
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Fig. 7– Normalized shear transfer capacity of deep beams without shear reinforcement. 
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Fig. 8– Normalized shear transfer capacity of shear reinforcement by truss action. 
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(a) ACI 318-05 
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(b) EC 2 
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(c) Tan and Cheng 
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(d) This study 

Fig. 9-Comparisons of predicted and measured shear capacities. 

(1 mm = 0.039 in.) 
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Fig. 10 – Effect of s on normalized shear capacity of deep beams with  a/h=0.75. 

(1 MPa = 145 psi; 1 mm = 0.039 in.) 
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Fig. 11 – Relative effectiveness of vertical and horizontal shear reinforcement against ha / . 

(1 MPa = 145 psi; 1 mm = 0.039 in.) 
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Fig. 12 – Effect of h on normalized shear capacity of deep beams. 

(1 MPa = 145 psi; 1 mm = 0.039 in.) 


