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Flow in open channel with complex solid boundary 1 

Yakun Guo
1
 2 

 3 

Abstract: A two-dimensional steady potential flow theory is applied to calculate the flow in open 4 

channel with complex solid boundaries. The boundary integral equations for the problem under 5 

investigation are firstly derived in an auxiliary plane by taking the Cauchy integral principal 6 

values. To overcome the difficulties of nonlinear curvilinear solid boundary character and free 7 

water surface being not known a priori; the boundary integral equations are transformed to the 8 

physical plane by substituting the integral variables. As such, the proposed approach has the 9 

advantages of (1) the angle of the curvilinear solid boundary as well as the location of free water 10 

surface (initially assumed) is a known function of coordinates in physical plane; and (2) the 11 

meshes can be flexibly assigned on the solid and free water surface boundaries along which the 12 

integration is performed. This avoids the difficulty of the traditional potential flow theory which 13 

seeks a function to conformally map the geometry in physical plane onto an auxiliary plane. 14 

Furthermore, rough bed friction induced energy loss is estimated using the Darcy-Weisbach 15 

equation and is solved together with the boundary integral equations using the proposed iterative 16 

method. The method has no stringent requirement for initial free water surface position, while 17 

traditional potential flow methods usually have strict requirement for the initial free surface 18 

profiles to ensure that the numerical computation is stable and convergent. Several typical open 19 

channel flows have been calculated with high accuracy and limited computational time, 20 

indicating that the proposed method has general suitability for open channel flows with complex 21 

geometry.  22 
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 25 

Introduction 26 

Open channel flow, a gravity driven free surface flow, is a frequently encountered flow pattern in 27 

civil engineering. Such flow can be considered as inviscid and irrotational potential flow 28 

provided that the flow velocity is relatively high and there is no serious separation between flow 29 

and solid boundaries (Batchelor 2000; Hager 1985; White 1986; Montes 1998). Due to its 30 

practical engineering relevance, extensive studies have been conducted by researchers who have 31 

developed various potential flow theories and numerical methods to solve such flows in past 32 

decades. Among these methods, analytical/complex function theory was the first approach used 33 

to treat the problem (Guo et al. 1996; Guo 2005). Traditional analytical/complex function 34 

approach applied conformal mapping and obtained the solution of the problem as integral 35 

equations in the complex potential plane or an auxiliary plane (Birkhoff and Zarantonello 1957; 36 

Gurevich 1965). However such approach can only treat the flow with simple geometry and 37 

without the presence of gravity (Dias et al. 1987). For flow moving in a complex geometry (e.g. 38 

curvilinear solid boundary occurring in most open channel flows) and/or gravity being present, it 39 

is impossible to obtain the analytical solution using the complex function theory (Cheng et al. 40 

1981; Yeung 1982; Guo et al. 1998). The difficulty in solving the gravity driven free water 41 

surface flows, as indicated by von Kármán (1940), is due to (1) the nonlinear character of 42 

curvilinear solid boundary conditions and (2) the boundary itself (free water surface) being 43 

unknown a priori. In traditional complex variable function theory method, the solution of the 44 

problem is expressed either in the complex plane or in an auxiliary plane. In those planes, 45 
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however, not only the free water surface needs to be solved, but also the initially known solid 46 

boundaries become unknown and need to be determined as part of the solution (Wen and Wu 47 

1987). This makes the problem more difficult to solve. As a result, the application of complex 48 

function theory to treat open channel flows with curvilinear solid boundaries is greatly limited 49 

(Diersch, et al., 1977). As such, various numerical methods have been developed to treat this 50 

flow pattern. The advantages and application of the numerical methods have greatly dwarfed the 51 

application of the complex variable function theory in potential flow.   52 

 53 

Lauck (1925) could be considered as one of the pioneers dealing with the potential flow using 54 

complex variable function theory and numerical computation. He calculated the flow over an 55 

infinite high sharp crested weir using a successive numerical approximation (Lauck 1925). He 56 

found that the computation was only convergent for a certain flow discharge per unit width. 57 

Since his pioneering work, Southwell and Vaisey (1946) applied finite difference method to 58 

simulate the free overfall. Thom and Apelt (1961) demonstrated the advantage of computation in 59 

complex plane. The same approach was applied by Markland (1965) to treat the free overfall and 60 

by Cassidy (1965) to calculate the flow over spillway in which the convergent free water surface 61 

was obtained only for a certain flow discharge. Flow over sharp crested weir of finite height was 62 

simulated by Strelkoff (1964) and Strelkoff and Moayeri (1970) who obtained integral equations 63 

using potential and stream functions as variables. Similar to Cassidy, they only obtained the 64 

convergent solution for a certain flow discharge and Strelkoff and Moayeri (1970) only 65 

simulated the problem with horizontal and vertical walls. Free overfall was also simulated by 66 

Clarke (1965) and Montes (1992) who applied potential flow solutions and by Hager (1983) and 67 

Marchi (1993) who applied analytical approach. More recently, Castro-Orgaz and Hager (2013) 68 
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applied potential flow theory to treat the open channel flow. The semi-inverse mapping of the 69 

Laplace equation was applied by Castro-Orgaz (2013a, b) to simulate open channel flow and free 70 

overfall.  71 

 72 

In this study, the problem under investigation is expressed as a boundary value (the Riemann-73 

Hilbert) problem and the general solution is obtained in an auxiliary plane. The boundary 74 

integral equations are then derived by taking the Cauchy integral principal values. Using arc 75 

(streamline) length to substitute the integral variables, the boundary integral equations in the 76 

physical plane are obtained with the integration performed only along solid and free water 77 

surface boundaries. For rough channel bed, the wall friction induced energy loss along channel 78 

bed can be estimated using the Darcy-Weisbach equation. A numerical iterative method is 79 

proposed to solve the boundary integral equations and the Darcy-Weisbach equation. As the 80 

convergence and stability of the iterative method is ensured (Wen and Wu 1987), this approach 81 

has no stringent requirement for initial free water surface profiles while the aforementioned 82 

methods usually have strict requirement for the initial free surface profiles to ensure the stability 83 

and convergence of the numerical algorithms (Montes 1992, Castro-Orgaz 2013a). As such, the 84 

difficulties of nonlinear solid boundary character and unknown free water surface (von Karman 85 

1940) are overcome. The method has been applied to calculate several common open channel 86 

flows. Good agreement is obtained between calculation and measurements, demonstrating that 87 

the method has general practical engineering applications to a broad range of open channel flows 88 

in complex geometry.  89 

 90 

Potential flow formulation 91 
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Considering flow over a bump in open channel where a Cartesian coordinate system (x, y) is 92 

established with x being horizontal and y being vertical (see Fig. 1a where points A and G refer 93 

to far upstream and far downstream respectively). Assume that the flow velocity is sufficiently 94 

high and there is no serious separation between flow and solid boundary, the flow under 95 

investigation can then be considered as two-dimensional irrotational and inviscid potential flow. 96 

Let φ be the potential function and ψ be the stream function, both are real values and satisfy the 97 

Laplace’s equation. Define a holomorphic (or analytic) function f as following (von Kármán 98 

1940; Batchelor 2000): 99 

)()()()( zizzfiyxf                 (1) 100 

where x and y = real values, z=x+iy, 1i . This analytical function will conformally map the 101 

flow field in the physical domain ((x, y) in Fig. 1a) to an infinite rectangular strip in the 102 

transformed domain ((φ, ψ), i.e. complex potential plane, see Fig. 1b). The lower and upper 103 

boundaries of the strip in the complex potential plane correspond to the solid boundary and free 104 

water surface in the physical plane, respectively. Solid boundary BCDE and free water surface 105 

KJ are streamlines. Without loss of generality, let the stream function ψ be zero along streamline 106 

BCDE and be q (q = flow discharge per unit width) along streamline KJ. Differentiating f with 107 

respect to z yields the complex conjugate of the velocity:  108 

yx iuu
dz

zdf


)(
                                                   (2) 109 

where ux, uy = velocity components in the x, y directions respectively. Rewriting Eq.(2) as 110 

following:  111 

)()(
)( ziezu

dz

zdf                   (3) 112 
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where u = flow velocity magnitude (
22

yx uuu  ) and β = direction of flow velocity.  Assume 113 

the total water head at point K of upstream free water surface be h0. Taking x-axis as datum and 114 

setting the constant atmospheric pressure at the free water surface be zero, one obtains: 115 

g

u
yh

2

2

0
00                    (4) 116 

where y0=vertical coordinate of point K; u0= flow velocity magnitude at point K; g = the 117 

acceleration due to gravity (see Fig.1a). Applying the Bernoulli equation along the free water 118 

surface (a streamline) yields: 119 

)(2)( 0 yhgzu                   (5)  120 

where y = ordinate of free water surface KJ. 121 

 122 

Using analytical function f to define a transformation function t:  123 

q

f

eit







                       (6) 124 

where η and ζ=real values; π =3.14159. This transformation function t conformally maps the 125 

infinite rectangular strip in complex potential plane (f-plane) onto the upper half-plane of an 126 

auxiliary plane - t-plane (see Fig. 1c). The real axis of t-plane corresponds to the solid and water 127 

free surface boundaries of the flow domain in the physical plane (see Fig 1a) in which we 128 

assume φ =0 at point B. 129 

 130 

Using the flow velocity magnitude and its direction, an analytic function (the dimensionless 131 

logarithmic velocity) can be defined in t-plane: 132 

)(
)]([2

ln)(
)(

ln)(
0

0

0

ti
u

tyhg
ti

u

tu
tFun  




            (7)  133 
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The boundary conditions of the above analytical function Fun(t) on the real axis of t-plane can then 134 

be determined as:  135 

 136 

-∞ < η < 0, ImFun(η) = -α(η) 137 

0 < η < ∞,  
0

0 )]([2
ln)(Re

u

yhg
Fun





              (8) 138 

where α = the bed slope of the channel (in radian), Im and Re = the imaginary and real parts of 139 

Fun, respectively. Equations (7)(8) define a boundary value (the Riemann-Hilbert) problem 140 

whose general solution can be written as (Muskhelishvili, 1965) 141 

  


 









O

O

t O

t

O

O

ttu

dyhg

tt

dtt
tFun }

)(

)]([2)(
{)(

0

0










             (9) 142 

where tO=0. Let cross section KB and JE be far away from the bottom obstacle CD.  Assume that 143 

no waves occur at KB; then the flow at the cross section KB can be considered as uniform 144 

(Vanden-Broeck 1997). As we are mostly interested in the flow field bounded by BCDE and KJ, 145 

the infinite integral intervals of the two integration terms on the right hand side of Eq. (9) can be 146 

shortened and replaced by finite integral intervals: 147 

  










K

J

E

B

t

t

t

t tu

dyhg

t

dt
tFun }

)(

)]([2)(
{)(

0

0










           (10) 148 

Eq. (10) is the general formula to calculate the flow field. In Eq.(10), if the solid boundary is 149 

comprised of straight segments (e.g. α = constants) and the gravity is ignored, then Eq. (10) can 150 

be analytically integrated. For open channel flows with curvilinear solid boundaries investigated 151 

here, the mathematical difficulty in obtaining the analytical solution is so far insurmountable 152 

(Cheng et al. 1981; Yeung 1982). This is because the analytical conformal mapping function for 153 

open channel free water surface flows from flow domain in physical plane to an infinite strip in 154 
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f-plane (complex potential plane) or to the upper half plane of t-plane is unknown. Therefore, if η 155 

or φ is chosen as independent variable; α(η) or α(φ) (known in the physical plane) will be 156 

unknown functions. This will make the solution of (10) in t-plane or f-plane more difficult (von 157 

Kármán 1940). On the other hand, α is a known function of coordinates x and y, or of arc length s 158 

(see Fig. 2), in the physical plane. If we assume the position of free surface in advance, then u 159 

(Eq.(5)) is also a known function of coordinates x and y, or of arc length s, in physical plane. 160 

Therefore, we seek the solution of Eq. (10) in physical plane. This can be achieved via changing 161 

the integral variables in Eq. (10).   162 

 163 

As shown in Fig.2, points B and K are taken as the origins of streamline (arc) coordinate along 164 

solid boundary BCDE and free water surface boundary KJ, respectively. Denote s as arc length 165 

of the streamline measured from B and K respectively along boundaries, the potential function at 166 

any point of solid and free water surface boundaries is then the function of s. From Eq.(7), we 167 

have  168 

t=η=-e
-πφ/q      

on BCDE
       

               (11a) 169 

t=η=-e
-π(φ+iq)/q

 =e
-πφ/q

    on KJ            (11b) 170 

 Differentiating η with respect to the arc length s s along solid and free boundaries yields: 171 

q

sus

ds

d

d

d

ds

d )()(




                         (12) 172 

where u(s) = the velocity magnitude along boundaries.  173 

 174 

For most engineering practice, the pressure distribution along the solid boundary and the position 175 

of free water surface are the major concern in terms of cavitation damage studies and flooding 176 

forecasting. As such, we take the Cauchy principle value of Eq. (10) on real axis of t-plane. 177 
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Separating the real and imaginary parts of the principle value yields the equations for calculating 178 

the inclinations of the free water surface and the velocity magnitude along the solid boundary. In 179 

light of Eq.(12), the boundary integral solutions of Eq.(10) in physical plane can be obtained: 180 

 181 

The velocity magnitude at a distance s from point B on the solid boundary BCDE is 182 

Bw

wE

wss
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                          (13)  183 

The inclination of free surface KJ at a distance s from point K is 184 

Ks

sJs
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s

s

s
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


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                            (14) 186 

where ηB, ηE, ηJ, and ηK  = values of η at points B, E, J and K, respectively, subscripts w and s 187 

denote solid/wall and free water surface boundaries, respectively. The integrations are performed 188 

along the solid boundary and free water surface in the direction of flow.   189 

 190 

As aforementioned, cross section BK is uniform. Assume flow is two-dimensional, this cross 191 

section is then isopotential. Without loss of generality, let the potential function at BK be zero.  192 

The potential functions at a distance s from the cross section BK along solid boundary (BCDE) 193 

and free water surface (KJ) can then be calculated as: 194 

dllus

s

ww )()(
0

                (15a)  195 
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dllus

s

ss )()(
0

              (15b) 196 

With the inclination of free water surface having been determined, the location (coordinates) of 197 

free water surface KJ can be calculated by  198 

dllxsx

s

K )(cos)(
0

                                     (16a) 199 

dllysy

s

K )(sin)(
0

                           (16b) 200 

where (xK, yK)  = coordinates of point K.  201 

 202 

When flow field is calculated, the pressure distribution along the channel bed can be determined 203 

by applying the Bernoulli’s equation between far upstream and downstream cross section. For 204 

rough bed, the solid wall friction induced energy loss should be taken into account in order to 205 

have accurate calculation of pressure. This energy loss, which is usually ignored in potential flow 206 

methods, can be evaluated using the following iterative method. To this end, the Darcy-207 

Weisbach equation is applied to estimate the continuous friction loss along solid boundary. 208 

Applying the modified energy equation yields the pressure distribution along the solid boundary 209 

(taking x-axis as basic datum): 210 

dllu
Rg

sy
g

su
hshsy

g

su
h

g

sP
s

h

f )(
8

1
)(

2

)(
)()(

2

)()( 2

0

2

0

2

0 



             (17) 211 

where P = the pressure at the channel bed, h0 = total energy head at cross section BK, ρ = water 212 

density, hf(s) = continuous energy loss generated by wall friction along the channel bed, Rh = 213 

hydraulic radius (taken as water depth); λ = 8g n
2
 /Rh

1/3
= the Darcy-Weisbach coefficient (in 214 
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metric units); n = the Manning coefficient, which is taken as 0.014 for concrete (Sivakumaran et 215 

al. 1983). 216 

 217 

The boundary integral equations (13) and (14) together with Eqs. (16) and (17) form the basic 218 

equations used to calculate the flow field, pressure distribution on the bed and the position of 219 

free water surface in open channel flow. The boundary integral equations and the pressure 220 

equation will be solved using iterative method proposed below. 221 

 222 

Boundary conditions 223 

Boundary conditions are summarized as following: at lower solid boundary, the stream function 224 

ψ is set as zero and the geometries are prescribed, namely α is known. At upper free water 225 

surface boundary, the stream function ψ is set as q (flow discharge per unit width) and the 226 

constant atmospheric pressure is assumed to be zero. At far upstream section BK and 227 

downstream section EJ where the effect of bottom topography is assumed to be negligible, the 228 

flow is assumed to be parallel to the channel bottom (Montes 1994; Castro-Orgaz 2013a).  229 

 230 

Computational procedure 231 

A numerical iterative method is proposed to solve the boundary integral equations and pressure 232 

distribution equation. The computational procedure is as following: 233 

1. Specify the inlet boundary conditions (e.g. water depth and flow velocity) according to 234 

the experiments. Assume the energy loss due to friction be zero. 235 

2. Assume free surface KJ. Assign non-uniform meshes along boundaries with finer meshes 236 

in the regions of rapid change of flow (e.g. near the bottom obstacle). Meshes are 237 
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assigned between points B and E along solid boundary and between points K and J along 238 

free water surface. Figure 3 is an illustrative sketch to demonstrate the strategy of 239 

assigning non-uniform meshes along boundaries.  240 

3. Assume velocity along solid boundary BCDE and calculate velocity on free water surface 241 

KJ using the Bernoulli equation. 242 

4. Calculate potential functions using (15a, b) and η using (11a, b) on boundaries KJ and 243 

BCDE. 244 

5. Bring these values into Eqs. (13)(14) to calculate new velocity along solid boundary 245 

BCDE and new inclination of free water surface KJ.  246 

6. Calculate the new position of free water surface KJ using (16a, b), then calculate new 247 

velocity on free surface KJ using the Bernoulli equation (5). 248 

7. Calculate new potential functions and η on boundaries KJ and BCDE. Estimate new 249 

friction induced energy loss. 250 

8. Repeat steps 5 to 7 until 251 

1

1







 

n

nn

;  2

1






n

f

n

f

n

f

h

hh
                 (18a, b) 252 

where superscript n denotes the iterative number; ε1,ε2 = prescribed computational accuracy for 253 

potential function and energy loss, respectively; the values of potential function and energy loss 254 

are taken at point E.  255 

9. Calculate the pressure distribution using Eq. (17). 256 

 257 

Numerical examples 258 

Several frequently encountered open channel flows with various boundary conditions are 259 

simulated using the proposed method. Simulated results are well compared with measurements, 260 
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demonstrating that the approach has general suitability to broad open channel flows with 261 

satisfactory accuracy. 262 

 263 

Open channel flow over irregularities 264 

Cavitations often occur when high speed water flows around objects, resulting in the damage of 265 

the object surface and reducing mechanical efficiency. Typical example is the cavitation caused 266 

by high velocity flow over the surface irregularities (Ball 1976). Cavitation damage takes place 267 

when the absolute pressure is equal to or lower than the vapor pressure of water at the given 268 

temperature (Douglas et al. 2001). Therefore, the most potential place that cavitation may appear 269 

is the place where the minimum pressure occurs and this can be represented using the pressure 270 

coefficient (Guo et al. 2007).     271 

 272 

Therefore, to investigate the likelihood of cavitations around the irregularity, applying modified 273 

energy equation along the irregularity surface (which is a streamline) yields the pressure 274 

coefficient on the irregularity (taking the x-axis as datum): 275 

2

0

2

0

2

2

0

0
)}()({2)(

1
2/

)(
)(

u

syshg

u

su

u

PsP
sC

f

p








                             (19)  276 

where Cp=pressure coefficient on the irregularity surface, P0 = the pressure at far undisturbed 277 

upstream, y(s)=the height of irregularity, other symbols have the same meanings as those in 278 

Eq.(17). In general, the last item on the right hand side of Eq. (19) is much smaller than other 279 

items for relatively small irregularity and can be ignored. Equation (19) shows that the minimum 280 

pressure, thus the minimum pressure coefficient, appears at the point that the maximum velocity 281 

takes place. This is the position that the most likelihood of cavitations damage takes place.  282 

 283 



 

14 

Two types of irregularity are simulated in this study: one is arc irregularity and another is semi-284 

arc step. Both the arc irregularity and semi-arc step were placed at the centre of the channel. The 285 

front and end edges of arc irregularity were at the same level of the channel bed (see the sketch 286 

inside Fig. 4). For semi-arc step, the channel bed at the end of semi-arc step was raised to the 287 

same level of the end edge of the step (see the sketch inside Fig. 5). Therefore, there was no 288 

abrupt drop at the back of the semi-arc step. 289 

 290 

Fig. 4 is the plot of the simulated and measured (taken from Lin and Xu 1985) pressure 291 

coefficient distribution around arc irregularity for upstream incoming flow velocity of 292 

u0=4.52m/s, h=0.1m (corresponding to the incoming flow Froude number F=u0/(gh)
1/2

=4.56). 293 

The height of arc irregularity is δ=0.0092m and radius R=0.6m. Simulations were performed at 294 

10 water depths in both upstream and downstream where the effect of arc irregularity was 295 

expected to be negligible. The maximum mesh size is 0.005m at both the far upstream and 296 

downstream and the minimum mesh size is 0.0015m around the arc irregularity and the free 297 

surface above it. The simulation was performed at a Dell OPTIPLEX390. For the computational 298 

accuracy of 10
-4

 and 10
-3

 for potential function and energy loss respectively, the total 299 

computational time for all cases is less than 1 minute with iteration number being between 15 300 

and 30.    301 

 302 

Fig.4 demonstrates that an almost symmetric pressure coefficient distribution around the centre 303 

of the arc irregularity exists. It is seen that the pressure coefficient decreases along the 304 

irregularity and reaches the minimum value roughly at the top of irregularity. This is the location 305 

that the largest effect of the obstruction of irregularity to flow takes place, thereby producing the 306 
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maximum flow velocity. This position is the location where the likelihood of cavitations may 307 

take place. Good agreement between the simulated and measured pressure coefficients indicates 308 

that the proposed method can accurately predict the flow and pressure field for flow over an 309 

irregularity in open channel. 310 

 311 

If irregularity is sufficiently high, flow regime will be similar to that of flow over a hump 312 

(discussed below) or weir flow where flow regime changes from upstream subcritical to 313 

downstream supercritical.  314 

 315 

Fig. 5 is the comparison of simulated and measured pressure coefficient around a semi-arc step 316 

for incoming flow velocity u0=2.95m/s, water depth h=0.1m, irregularity height δ=0.0111m and 317 

radius R=0.6m. The corresponding incoming flow Froude number is F=2.98. The mesh 318 

assignment is similar to that in arc-irregularity. Both the measured (symbols, taken from Lin and 319 

Xu 1985) and simulated (solid lines) results show that the pressure coefficient decreases along 320 

the semi-arc step and reaches the minimum at s/L≈0.82 where the maximum velocity occurs due 321 

to the contraction effect of the step. The pressure coefficient then increases downstream.   322 

 323 

Simulations have also been run to investigate the effect of incoming flow velocity (thus the 324 

Froude number) on the flow and pressure field. For the sake of clarity and for the purpose of 325 

comparison, measured results of u0=6.40m/s (F=6.47) are plotted in Fig. 5, while the solid line 326 

represents the averaged simulated results for F=2.98 and 6.47.  It is seen that the incoming flow 327 

velocity (or the Froude number at the inlet) has insignificant effect on the pressure distribution 328 
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around the semi-arc step. Simulations run for a range of the Froude number reveals similar 329 

results.  330 

 331 

Fig. 5 also demonstrates that relatively large deviation between the simulation and experiments 332 

exists around the top of the semi-arc step. This may be ascribed to the fact that the asymmetric 333 

step irregularity has relatively larger effect on the flow near the top step region.   334 

 335 

Comparing Fig. 4 and Fig. 5 demonstrates that for the similar size (height and radius), arc 336 

irregularity has slightly greater impact on the flow and pressure field around irregularity than that 337 

semi-arc step irregularity does. There may be two reasons. The first reason is that the arc 338 

irregularity is almost twice long of the semi-arc step irregularity; therefore, it has larger effect on 339 

the flow than semi arc step does. The second reason is that the end of the semi-arc step is at the 340 

same level as that of the channel bed. Therefore, it is unlikely that the flow separation will take 341 

place at the end of step, which greatly reduces the impact of semi-arc step on the flow field. For 342 

cases that there exists an abrupt enlarge cross section (e.g. the end of the semi-arc irregularity is 343 

higher than the channel bed), flow separation and vortices may take place, thereby resulting in 344 

larger impact on pressure distribution around the end of irregularity. In this situation, the 345 

proposed potential flow approach fails and advanced turbulent models are required to capture the 346 

vortex flow structures at the end corner of semi-arc irregularity.   347 

 348 

Open channel flow over a bottom hump 349 

The second example is the open channel flow over a relatively large hump. The case simulated is 350 

taken from Sivakumaran et al. (1983) who measured the free water surface profile and bottom 351 
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pressure distribution around the symmetrical and asymmetrical humps. For symmetrical hump 352 

which is expressed as y=0.2exp[-0.5(x/24)
2
] (in m), the unit width flow discharge is q=0.112 353 

m
2
/s (high flow) and 0.036 m

2
/s (low flow), respectively. The corresponding upstream Froude 354 

number is 0.18 and 0.08, indicating that the incoming flow is subcritical for both cases. The 355 

length of the open channel simulated is about 6m with the hump located approximately centrally. 356 

In the regions where flow varies rapidly (e.g. around the hump and the free water surface above 357 

it); meshes are locally refined to improve the computational accuracy with the minimum mesh 358 

size of 0.0012m. The computational time (run on a Dell OPTIPLEX390) for all cases is less than 359 

2 minutes for the computational accuracy of 10
-4

 for potential function.  360 

 361 

Figs. 6(a) and (b) plot the measured (symbols) and simulated (solid and dashed lines) free water 362 

surface and bottom pressure distribution around the hump. Fig. 6 shows that water flow 363 

accelerates as it approaches the hump. The flow continues accelerating and descends down the 364 

lee side of the hump. The simulation shows that the flow transition from subcritical to 365 

supercritical roughly takes place at the crest of hump for both cases. In contrast to free water 366 

surface, the bed pressure decreases as flow approaches the hump and reaches the minimum in 367 

the half top lee side of hump. This is caused by the variation of water depth as well as the profile 368 

of hump. The water depth at the half top lee side is relatively small while the hump convex 369 

profile produces the negative centrifugal force, resulting in the minimum pressure. The bed 370 

pressure then slightly increases downstream due to the contribution of centrifugal force 371 

generated by the concave profile of the hump. The good agreement between the simulated and 372 

measured free water surface and bed pressure for both cases indicates that the proposed potential 373 

flow method performs well for both subcritical and supercritical flow.  374 
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Flow over asymmetrical hump is also simulated. In this case, the hump is a B-splined shape 375 

(Sivakumaran et al. 1983). The flow discharge per unit width is q=0.11165 m
2
/s. The 376 

corresponding upstream Froude number is 0.12, indicating that the upstream incoming flow is 377 

subcritical. The mesh assignment is similar to that for symmetrical hump. The simulated and 378 

measured free water surface and bed pressure distribution are plotted in Fig. 6c. The simulation 379 

shows that the flow transition from subcritical to supercritical takes place roughly at the hump 380 

crest, while this flow transition takes place slightly downstream of the hump crest in the 381 

experiments. It is also seen that the potential flow method underestimate the bed pressure. Runs 382 

using finer meshes (the minimum meshes around asymmetrical hump is 0.0008m) didn’t 383 

improve the computational accuracy. This discrepancy between simulation and measurement 384 

may be ascribed to the fact that the asymmetrical hump shape has larger impact on flow field 385 

with larger extensive flow transition region (Sivakumaran et al. 1983); which the potential flow 386 

approach may fail to accurately capture.  387 

 388 

Flow transition in curved open channel  389 

Flow in an open channel with the bed slope changing from mild to steep (or other way round) is 390 

frequently encountered in men-made flows. Free overfall usually takes place at the slope break. 391 

The water depth upstream the slope break is larger than the critical water depth, while the water 392 

depth downstream the slope break is smaller than the critical water depth. The determination of 393 

the free water surface is of importance due to its practical engineering applications (Chow 1959; 394 

Montes 1994). As flow regime changes from subcritical in the upstream mild slope section to 395 

supercritical in the downstream steep slope reach, free water surface goes through a sharp drop 396 

which provides a challenge for accurate simulation. In this study, the flow transition from mild 397 
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slope to steep slope is simulated using the proposed potential flow method. The simulation case 398 

is taken from Montes (1994). Though details can be found in Montes (1994), we present a brief 399 

description here for convenience. The upstream horizontal plane was connected with a steep 400 

slope of either 45
0
 or 60

0
 via a circular fairing of radius r=0.1m. The flume width was 0.402m. 401 

The flow discharge simulated for both cases is 0.06m
3
/s. The data of free water surface profiles 402 

and bed pressure are taken from Montes (1994) for the purpose of comparison with the 403 

simulation.  404 

 405 

For the given experimental data, the flow at upstream horizontal section is critical and transfers 406 

to supercritical as it moves towards the steep slope. Simulation was performed 10 upstream 407 

water depths in both upstream and downstream reaches. The maximum mesh size is 0.008m at 408 

both the far upstream and downstream and the minimum mesh size is 0.004m around the circular 409 

fairing section and the free water surface above it. The simulated and measured free water 410 

surfaces and bed pressure distributions are plotted in Fig. 7 for a steep slope of 45
0
 (Fig. 7a) and 411 

60
0
 (Fig. 7b) in which h is water depth at upstream mild slope section. The simulated end depth 412 

ratio (depth at the end of mild slope to critical depth) is 0.703 for 45
0
 and 0.692 for 60

0
 413 

respectively. These values are slightly smaller than the classic result of Rouse (1936) for a 414 

horizontal channel and favorably compare with the experiments taken from Montes (1994). For 415 

both cases, the simulation shows that water depth continues to decrease over the short circular 416 

transition section and steep slope. In general, good agreement between the simulated and 417 

measured free water surface profiles is obtained.  418 

 419 



 

20 

It is seen from Fig. 7 that both the simulations and experiments demonstrate that the bed pressure 420 

sharply decreases at the circular section. This can be ascribed to the centrifugal force caused by 421 

convex curve solid boundary as well as the decrease of water depth. The minimum bed pressure 422 

appears at the lower part of the circular linkage for two steep slopes. The bed pressure then 423 

increases and reaches the positive value near the beginning section of the steep slope where the 424 

centrifugal force disappears. Comparison of simulation and measurements demonstrates that the 425 

proposed potential flow method favorably predicts the sharp variation of the bed pressure 426 

distribution around the transition from mild to steep slopes. Fig. 7 also shows that the simulation 427 

slightly overestimates the minimum bed pressure.  428 

 429 

Simulations have also been performed for various flow discharges. Similar results to Fig. 7 are 430 

obtained. Simulation reveals that the absolute value of the minimum bed pressure decreases with 431 

the decrease of flow discharge. 432 

 433 

Flow through spillway flip bucket 434 

Spillway is usually used to discharge water from a reservoir into downstream with a free jet. The 435 

flow characteristics (e.g. free water surface profiles, bottom pressure, etc) in the spillway flip 436 

bucket are of importance to optimize the design of the spillway. The profile of flip bucket has 437 

significant effect on the free trajectory jet exiting from the bucket. In this study, a circular flip 438 

bucket with different Froude numbers is simulated and compared with the measurements taken 439 

from Lenau and Cassidy (1969). The central angle of bucket (or total turning angle of bucket) 440 

simulated is 95
0
 and the slope angle of upstream spillway chute is 56.16

0
 (see the inset sketch in 441 

Fig.8). Simulation was performed from 10 upstream water depths from the entrance of the flip 442 
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bucket. Meshes are locally refined within the bucket to ensure the computational accuracy. Two 443 

upstream incoming flow Froude numbers F=7.35 and 10.39 are simulated, corresponding to the 444 

ratios of bucket radius to the depth of flow well upstream from bucket being 3 and 6 445 

respectively. Figure 8 shows the comparison of simulated and measured (taken from Lenau and 446 

Cassidy 1969) bucket bottom dimensionless pressure distribution for (a) F=7.35  and (b) 10.39. 447 

In Figure 8, s is the arc distance from the starting point of flip bucket and L is the total arc length 448 

of bucket. It is seen that bottom pressure increases sharply as flow enters into bucket. This is 449 

mainly caused by the centrifugal force due to the concave curve solid boundary. The bottom 450 

pressure then remains approximately constant in the bucket. The bottom pressure then sharply 451 

decreases as flow approaches exit and becomes zero at the exit. Comparing Fig 8a and 8b 452 

demonstrates the bottom pressure in the bucket decreases with the increase of the incoming 453 

Froude number. In general, simulated bottom pressure agrees well with the measurements though 454 

a slight discrepancy between simulation and measurement takes place at the entrance of bucket.       455 

   456 

Conclusion 457 

Open channel flow over curved boundary or irregularities/humps is frequently encountered in 458 

civil engineering. Potential flow theory has been applied to calculate such flows due to its simple 459 

form and easy calculations (Castro-Orgaz 2013a). However, traditional complex variable 460 

function approach can only treat flow in simple geometry comprised by straight sections and 461 

without the presence of gravity. For free water surface open channel flows with curvilinear solid 462 

boundaries, the mathematical difficulty is so far insurmountable (Cheng et al. 1981; Yeung 463 

1982) due to the fact that the boundary condition is nonlinear and the free water surface is 464 

unknown a priori (von Kármán 1940). In this study, the boundary integral equations for the 465 
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problem under investigation are derived in an auxiliary plane by taking the Cauchy integral 466 

principal values. Using the arc length to substitute the integral variables yields the boundary 467 

integral equations in the physical plane. The advantage of expressing boundary integral 468 

equations in the physical plane is that both the angle of the prescribed curved solid boundary and 469 

position of free water surface (assumed in advance) are known functions of coordinates x and y, 470 

or of arc length s, in physical plane. The effect of rough boundary friction is evaluated using the 471 

Darcy-Weisbach equation. An iterative computational method is proposed to solve the boundary 472 

integral equations and the Darcy-Weisbach equation. As the integration is performed only along 473 

the solid and free water surface boundaries, the computational meshes can be flexibly assigned 474 

along boundaries to ensure simulation accuracy and save computational time. When flow 475 

discharge is known, the convergence and stability of the numerical iteration has been proved 476 

(Wen and Wu 1987). Therefore, the proposed method has no stringent requirement for initial 477 

values and position of free water surface while other potential flow methods usually have high 478 

requirement for the initial free water surface profiles in order to have a convergent numerical 479 

solution (Montes 1992, Castro-Orgaz 2013a). The approach has been successfully applied to 480 

calculate several common open channel flows in various boundary conditions for a range of flow 481 

parameters. The position of free water surface and pressure distribution at the channel bed can be 482 

accurately simulated using the proposed method. Examples carried out in this study demonstrate 483 

that the proposed approach can provide quick and accurate solution to frequently encountered 484 

engineering problems. Given that for most engineering practice, the location of free water 485 

surface, bottom pressure distribution and flow rate are the most concerned aspects in terms of 486 

flooding forecasting and prediction and cavitation damage studies; the proposed approach has the 487 

broad engineering practice applications.  488 
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For cases that only water depth upstream is given, the iterative approach based on consistency 489 

between the discharge and uniform velocity at far upstream can be used to determine flow 490 

discharge (Guo et al. 1996, 1998). The iterative method for flow discharge will then be 491 

incorporated into the iterative procedure for computing free water surface and bottom pressure to 492 

form a synchronous iteration (Guo et al. 1996, 1998). 493 

 494 

If serious flow separation between flow and solid boundary takes place or if the turbulent 495 

properties are of importance for the problem under investigation, the proposed potential flow 496 

approach cannot capture these details of flow structures. For these flow scenarios, the more 497 

sophisticated and complex turbulent models should be used.  498 

 499 
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 504 

Notation 505 

The following symbols are used in this paper: 506 

Cp=pressure coefficient; 507 

F=the Froude number; 508 

f=φ+iψ; 509 

Fun=analytical function or dimensionless logarithmic velocity;  510 

g=acceleration due to gravity; 511 
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h=water depth at cross section BK; 512 

h0= total water head upstream;  513 

hf= continuous energy loss due to friction; 514 

i= 1  515 

L=total arc length of arc, semi-arc irregularity or flip bucket; 516 

n= the Manning's roughness; 517 

P = the pressure at the channel bottom  518 

P0 = the pressure at far undisturbed upstream; 519 

R=radius of arc and semi-arc irregularity; 520 

Rh = hydraulic radius;  521 

r= radius of a circular fairing connecting mild and steep slopes; 522 

s=arc length from the starting point of irregularity or flip bucket; 523 

u=flow velocity magnitude; 524 

 ux, uy= velocity components in the x, y directions, respectively 525 

u0 = the velocity at far upstream; 526 

α= the bed slope of the channel; 527 

β= direction of flow velocity; 528 

λ = the Darcy-Weisbach coefficient 529 

π= 3.14159; 530 

φ= potential function; 531 

ψ= stream function; 532 

ε1= prescribed computational accuracy for potential function;  533 

ε2= prescribed computational accuracy for energy loss; 534 
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(a) 

(b) (c) 

Figure 1. Schematic diagram of open channel flow over a bottom obstacle; (a) flow 

domain in physical plane; (b) in complex potential plane ((φ, ψ) plane) and (c) in an 

auxiliary plane - t-plane. 
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 632 

Figure 3. Sketch of meshes along solid and free water surface boundaries for demonstrating the 

strategy of meshes assignments. 

 

Figure 2. Sketch of streamline coordinate system. 
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 642 

 643 

Figure 4. Comparison of the simulated (solid line) and measured (symbol) pressure coefficient 

distribution around the arc irregularity, s is the streamline distance from the starting point of the arc 

irregularity and L is the total streamline length of the arc irregularity. Inset is the sketch of 

experimental set-up. 
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 644 
 645 

 646 

Figure 5. Comparison of the simulated (averaged, solid line) and measured (symbols) pressure 

coefficient distribution around the semi-arc step irregularity for F=2.98 and 6.47. Inset is the 

sketch of experimental set-up. s and L are the same as in Fig. 4. 
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(a) (b) 

(c) 

Figure 6. Plot of simulated (solid and dashed lines) 

and measured (symbols) free water surface and 

bottom pressure distribution of potential flow. (a) 

over a symmetrical hump for q=0.112 m
2
/s and F= 

0.18; (b) over a symmetrical hump for q=0.036 m
2
/s 

and F= 0.08; and (c) over an asymmetrical hump for 

q=0.11165 m
2
/s and F= 0.12. 
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 650 

(a) 

(b) 

Figure 7 Simulated and measured free surface profile and bottom pressure distribution 

of the potential flow in transition from horizontal to steep slope for (a) steep slope = 

45
0
, F=1 and (b) steep slope = 60

0
, F=1. 
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 651 

(a) 

(b) 

Figure 8 Comparison of simulated and measured flip bucket bottom pressure. The central angle 

of bucket is 95
0
 and the slope angle of upstream spillway chute is 56.16

0
 (inset is the sketch of 

experimental set-up).  The incoming flow Froude number is (a) F=7.35; (b) F= 10.39.  

 


