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Rizwan Bashir and Ashraf Ashour1 

School of Engineering, Design and Technology, University of Bradford, BD7 1DP, UK 

Abstract 

This paper investigates the feasibility of using artificial neural networks (NNs) to predict the 

shear capacity of concrete members reinforced longitudinally with fibre reinforced polymer 

(FRP) bars, and without any shear reinforcement. An experimental database of 138 test 

specimens failed in shear is created and used to train and test NNs as well as to assess the 

accuracy of three existing shear design methods. The created NN predicted to a high level of 

accuracy the shear capacity of FRP reinforced concrete members. 

Garson index was employed to identify the relative importance of the influencing parameters 

on the shear capacity based on the created NNs weightings. A parametric analysis was also 

conducted using the trained NN to establish the trend of the main influencing variables on the 

shear capacity. Many of the assumptions made by the shear design methods are predicted 

by the NN developed; however, few are inconsistent with the NN predictions. 

 

Keywords: Fibres, Strength, Computational modelling, Statistical properties/methods. 

Introduction 

Steel corrosion is initially protected against the alkalinity of concrete, usually resulting in 

serviceable and durable construction. However for many structures subjected to aggressive 

environments, such as bridges, marine structures, and parking garages exposed to de-icing 

salts, combinations of chlorides, moisture and temperature reduce the concrete alkalinity 

causing reinforcing steel corrosion and ultimately loss of serviceability. Over the last couple 

of decades, fibre reinforced polymers (FRPs) have become alternatives to conventional steel 

reinforcement for concrete structures owing to their non-corrosive and non-magnetic 
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properties (ACI-440, 2006), making them ideal for severe environments and situations where 

magnetic transparency is required. 

Concrete members reinforced longitudinally with FRP bars develop wider and deeper cracks 

than these reinforced with steel due mainly to the relatively low elastic modulus of FRPs 

(Razaqpur and Isgor, 2006, Weigan and Abdalla, 2005, Tureyen and Frosch, 2003, Tariq 

and Newhook, 2003, El-Sayed et al., 2006b). Wider cracks decrease the shear resistance 

contributions from aggregate interlock and residual tensile stresses, whereas deeper cracks 

reduce the shear resistance contribution from the un-cracked concrete in compression (El-

Sayed and Soudki, 2010). Additionally, owing to the relatively wider cracks and small 

transverse strength of FRP bars, dowel action contribution to shear resistance can be very 

small compared with that of steel reinforcement (El-Sayed and Soudki, 2010). Hence, the 

overall shear resistance of concrete members reinforced with longitudinal FRP bars is lower 

than that of concrete members reinforced with steel reinforcement. Over the last couple of 

decades, several design guidelines and codes (JSCE, 1997, BISE, 1999, ACI-440, 2006, 

CNR-DT 203, 2006, ISIS, 2007, CAN/CSA S806-02, 2002, Razaqpur and Isgor, 2006, 

Razaqpur and Spadea, 2010, Weigan and Abdalla, 2005, El-Sayed et al., 2006b) have been 

published to address FRP bars as longitudinal reinforcement in concrete members. However, 

the lack of a universally agreed model for shear means that many practice guidelines and 

codes are still relying upon empirical equations to predict the shear resistance of FRP 

reinforced concrete members. 

The last few decades have witnessed the growth of artificial neural networks (NNs) applied to 

different structural engineering problems (Perera et al., 2010, Flood et al., 2001, 

Pannirselvam et al., 2008, Yang et al., 2008). NNs are computational tools that have the 

ability to learn by examples of past data, generalise and thus make predictions for previously 

unseen input data (Perera et al., 2010). Due to their unique characteristics, NNs can be used 

to solve problems which are complicated, problems that can’t be handled by analytical 

methods and even problems whose underlying numerical and physical models may not be 

well-known. In this respect, NNs may be suitable for predicting the shear resistance of 

concrete members longitudinally reinforced with FRP bars. 

Currently available shear design guidelines 

Several codes and design guidelines addressing FRP bars as primary reinforcement for 

structural concrete have been recently published worldwide (JSCE, 1997, BISE, 1999, ACI-

440, 2006, CNR-DT 203, 2006, ISIS, 2007, CAN/CSA S806-02, 2002, Razaqpur and Isgor, 

2006, Razaqpur and Spadea, 2010, Weigan and Abdalla, 2005, El-Sayed et al., 2006b). 

Most of these design provisions follow the traditional approach of Vc + Vf for shear design, 
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where Vc is the concrete contribution and Vf is the FRP stirrup contribution. Nevertheless, the 

concrete contribution Vc is different in the manner that it has been calculated in these 

guidelines. Most of shear design provisions in these guides are based on the design 

formulas for conventional steel reinforced concrete members after applying some 

modifications to account for the difference between steel and FRP reinforcement properties. 

For example, JSCE (1997), BISE (1999), CNR DT 203/2006 (2006), ISIS-M03-07 (2007) and 

Tottori and Wakui (1993) apply a correction factor 𝐸𝑓/𝐸𝑠 that takes into account the 

difference in the elastic modulus between FRP, 𝐸𝑓, and steel reinforcement, 𝐸𝑠. However, 

this modification factor 𝐸𝑓/𝐸𝑠 is raised to different powers in these guidelines. On the other 

hand, the modification proposed by the ACI-440.1R-06 (2006), CAN/CSA-S806-02 (2002), 

Razaqpur and Isgor (2006) and El-Sayed et al. (2006a) only includes the FRP reinforcement 

axial rigidity Ef Af. 

Many published provisions and methods for shear resistance of FRP reinforced concrete 

members (JSCE, 1997, BISE, 1999, ACI-440, 2006, CNR-DT 203, 2006, ISIS, 2007, 

CAN/CSA S806-02, 2002, Razaqpur and Isgor, 2006, Razaqpur and Spadea, 2010, Weigan 

and Abdalla, 2005, El-Sayed et al., 2006b) have been considered in this study i.e. the latest 

versions and those which are currently implemented around the world. However, for the sake 

of brevity, only three methods are assessed and presented here, namely provisions 

developed by ACI-440.1R-06 (2006), CNR DT 203/2006 (2006) and ISIS-M03-07 (2007). It is 

also to be noted that in these design provisions, all safety factors were ignored, i.e. assigned 

to 1.0. In reality safety factors would be applied to make shear capacity predictions more 

conservative and acceptable for design purposes. 

ACI-440.1R-06 shear design provisions 

ACI-440.1R-06 (2006) adopted the design method proposed by Tureyen and Frosch (2003). 

The ACI-440 shear capacity 𝑉𝑐 of FRP reinforced concrete members is given as: 

𝑉𝑐 =
2

5
  (√( 2 𝜌𝑓 𝑛𝑓 + (𝜌𝑓 𝑛𝑓)

2
 – 𝜌𝑓 𝑛𝑓) √𝑓𝑐

′ 𝑏𝑤 𝑑 (1) 

where 𝑛𝑓 = 𝐸𝑓/𝐸𝑐 is the moduluar ratio, 𝐸𝑓 and 𝐸𝑐  (= 4.7√𝑓𝑐
′  𝑖𝑛 𝐺𝑃𝑎) are FRP and concrete 

elastic moduli, respectively, 𝜌𝑓 = 𝐴𝑓/(𝑏𝑤𝑑)  is the FRP reinforcement ratio, Af is the FRP 

reinforcement area, 𝑏𝑤 and 𝑑 are the width and effective depth of FRP members and 𝑓𝑐
′  is 

the cylinder compressive strength of concrete (in MPa). The above equation is simply the 

ACI-318 shear equation for steel reinforced concrete modified by a factor to account for the 

axial stiffness of FRP reinforcement. 
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CNR DT 203/2006 shear capacity approach 

The CNR DT 203 Task Group (2006) conducted a calibration to adjust the shear resistance 

equation of steel reinforced concrete members in Eurocode 2 (2004) and extend it to 

concrete members reinforced with FRP; the following expression for the shear resistance Vc 

of FRP reinforced concrete members was proposed: 

 𝑉𝑐 =  1.3 (
𝐸𝑓

𝐸𝑠
)

1

2
𝜏𝑟𝑑  𝑘𝑑  (1.2 + 40𝜌𝑓)𝑏𝑤 𝑑 (2) 

where 𝜏𝑟𝑑 = 0.25𝑓𝑐𝑘𝑡0.05 is the design shear stress, 𝑓𝑐𝑘𝑡0.05 (= 0.7 𝑓𝑐𝑡𝑚) is the characteristic 

tensile strength of concrete (5% fractile),  𝑓𝑐𝑡𝑚  (= 0.3(𝑓𝑐
′)

2

3)  is the mean value of concrete 

tensile strength, 𝐸𝑠 is the steel elastic modulus and 𝑘𝑑(= 1.6 − 𝑑 ≥ 1.0, 𝑑 = depth in metres) 

is a size effect parameter. The above equation was calibrated for FRP reinforcement ratios 

𝜌𝑓 in the range: 0.01 < 𝜌𝑓 < 0.02. The motivation behind Eq. 2 was based on the objective of 

developing a simple and reliable equation having a structure with which practitioners are 

familiar (Fico et al., 2008). 

ISIS-M03-07 shear design method 

The shear strength of members reinforced with FRP bars in ISIS-M03-07 (2007) is 

determined in accordance to the analogous principles for steel reinforced concrete in CSA 

A23.3-94 (Bentz and Collins, 2006) after accounting for the difference in the elastic modulus 

between steel and FRP reinforcement. The shear strength formula distinguishes between 

members with effective depth d less or greater than 300 mm as given below: 

𝑉𝑐 = 0.2 𝜆 √𝑓𝑐
′ 𝑏𝑤 𝑑 (

𝐸𝑓

𝐸𝑠
)

1

2
     𝑑 ≤ 300𝑚𝑚             (3a) 

𝑉𝑐 = (
260

1000+𝑑
) 𝜆  √𝑓𝑐

′ 𝑏𝑤 𝑑 (
𝐸𝑓

𝐸𝑠
)

1

2
≥    0.1 𝜆  √𝑓𝑐

′ 𝑏𝑤 𝑑 (
𝐸𝑓

𝐸𝑠
)

1

2
  𝑑 > 300𝑚𝑚             (3b) 

where 𝜆 is a factor accouting for concrete density (assumed 1.0 in this study). 

Experimental database 

An experimental database of 138 FRP reinforced concrete members failed in shear was 

initially created to compare experimentally determined shear capacities with the predictions 

of the three shear design methods presented above, and also to train and test NNs to be 

developed for shear capacity prediction. The database was then refined to 87 specimens as 

explained below. 5 of the 138 test specimens collected had shear span to depth ratios a/d 
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less than 2.4 constituting deep beams and 2 specimens with a/d more than 6.5 identified to 

be very long beams; these 7 specimens were omitted as they are not compatible with the 

majority of the database specimens. In addition, most of the current shear design methods 

were developed mainly on the testing of slender beams and not deep or long beams. Few of 

specimens collected from the same investigation had the same material and geometrical 

properties, however, their experimentally obtained shear capacities were different. Therefore, 

the shear capacities of specimens with identical geometrical and material properties have 

been averaged to reduce the noise in the training samples and consequently achieve 

successful training and generalisation of NNs created. 

The material and geometrical properties of the 87 members in the refined database as well 

as their original sources are given in Appendix A (Table A.1). Of the 87 test specimens, 77 

were beams and the other 10 were one way slabs. All specimens in the database were 

simply supported, tested in either three or four points loading arrangement, had no 

transverse reinforcement and failed in shear. The distribution of geometrical and mechanical 

properties of the 87 test specimens is given in Table 1. 

Comparisons between current design methods and experiments 

Table A.1 in Appendix A gives the ratio of experimentally measured shear capacity Vexp to 

that predicted by the three design methods, Vpred, for every specimen in the refined database. 

For each shear design method, four statistical observations are also calculated to assess the 

predicted shear capacities to those experimentally observed, namely the mean, standard 

deviation, coefficient of variation (COV%) and mean absolute square percentage error 

(MAE%); these statistical parameters are summarised in Table 2. Verification of the shear 

design equations is also shown by plotting the predicted shear strengths against the 

experimental values for all specimens in Figures 1 to 3. In each plot a straight line, with Vexp = 

Vpred, is drawn. The ACI-440.1R-06 is the most conservative, even though all safety factors 

were not considered, and shows the largest scatter of results. On the other hand, CNR DT 

203/2006 is the most accurate among the three methods with a mean of 0.954 and least 

scatter with a standard deviation of 0.261. 

Artificial neural network modelling 

Artificial neural networks (NNs) are defined as computing systems made up of a number of 

simple, highly interconnected processing elements called neurons. They can be applied to 

complex problems described with a large amount of data, where rational engineering 

solutions have not yet been developed, such as the problem in hand. 
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Multi layered feed forward NNs 

A typical multi-layered feed-forward NN without input delay commonly consists of an input 

layer, one or more hidden layers and an output layer as shown in Figure 4, where p indicates 

the input vector, w and v give the weight matrices for input and hidden layers and b 

represents the bias vector. n is the net input passed to the transfer function f to obtain the 

neuron’s output vector y. Input data of input layer given from outside feed into hidden layers 

connecting input and output layers in a forward direction, and then useful characteristics of 

input data are extracted and remembered in hidden layers to predict the output. Finally NN 

predictions are produced through the output layer. Each processing element usually has 

many inputs, but it can send out only one output. 

Back propagation is generally known to be the most powerful and widely used technique to 

train a network. To obtain some desired outputs, weights, which represent connection 

strength between neurons, and biases, are adjusted using a number of training inputs and 

the corresponding target values. The network error, that is the difference between calculated 

and expected target patterns, is then back propagated from the output layer to the input layer 

to update the network weights and biases. The process of adjusting neuron weights and 

biases is conducted until the network error arrives at a specific level of accuracy. 

The input and output neurons are defined by the problem to be solved whereas the number 

of hidden layers and the corresponding number of neurons per layer may be determined by 

trialling different configurations until reaching the optimum. The NN toolbox available in 

MATLAB R2010a (2010) was used for creating the current NN models. 

Inputs and outputs of developed NN 

Based on the experimental observations and recently developed formula (JSCE, 1997, BISE, 

1999, ACI-440, 2006, CNR-DT 203, 2006, ISIS, 2007, CAN/CSA S806-02, 2002, Razaqpur 

and Isgor, 2006, Razaqpur and Spadea, 2010, Weigan and Abdalla, 2005, El-Sayed et al., 

2006b), the following parameters are used as the inputs of the networks to be developed: d, 

bw, a/d, 𝑓𝑐
′, 𝜌f and Ef, where various notations are defined in Table 1. The output is the shear 

capacity Vc of FRP reinforced concrete members. 

The refined database of 87 specimens is used for training and testing NNs. As mentioned 

earlier in the paper, many gathered specimens have exact same parametric values i.e. 

material and geometrical properties but the experimentally measured shear capacities are 

different, so the experimentally obtained shear capacities of these specimens have been 

averaged. Based on initial trial and error testing it was realised that the averaged database of 

87 specimens allowed the NNs to generalise better and train more efficiently than that using 

the original un-averaged database. 
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Generalisation of NN 

One of the problems that occur during NN training is the so called over fitting as the network 

may memorise the training features, but not learned to generalise new patterns (Demuth and 

Beale, 2002). One of the most effective and widely used techniques to improve 

generalisation of NNs is early stopping. In this technique, the available data are divided into 

three subsets: training, validation and test subsets. The training set is used for computing the 

gradient and updating the network weights and biases to diminish the training error. When 

the error on the validation set, which is monitored during the training process, increases for a 

specified number of iterations, the training is stopped, and then the network weights and 

biases at the minimum validation error are returned. The test set error is not used during 

training, but it is used for verification of the NNs (Demuth and Beale, 2002). However for the 

current problem it has shown to be inefficient and thus not most suitable. 

On the other hand, Bayesian regularisation (BR) is known to provide better generalisation 

performance than early stopping technique when the dataset is relatively small (Demuth and 

Beale, 2002), such as the case in this paper, as it does not require that a validation data set 

be separate from the training data set. Therefore, BR has been adopted in the current 

development. Hence, all database specimens are divided into only two subsets: training and 

testing as detailed later. Analogous to the early stopping technique, the training set is used 

for computing the gradient and updating the network weights and biases to diminish the 

training error. 

The training algorithm is allowed to run until convergence i.e. when the sum squared error 

(SSE) is relatively constant over several iterations as calculated by the equation below: 

                                          𝑆𝑆𝐸 =  ∑ (𝑉𝑖 ,𝑝𝑟𝑒𝑑 − 𝑉𝑖 ,exp )2 𝑚
𝑖=1      (4) 

where m is the total number of training specimens. Then the testing subset is used to assess 

the created network and any possible complications due to over fitting. For this investigation, 

80% is used for training and 20% for testing the networks as indicated in Table A.1. Over 

fitting in training and outputs of NNs are commonly influenced by the number of hidden 

layers and neurons in each hidden layer. A trial and error approach was therefore carried out 

to choose an optimum number of hidden layers and number of neurons in each hidden layer 

as explained later. 

In a multi-layered feed-forward NN having a back-propagation algorithm, the combination of 

non-linear and linear transfer functions can be trained to approximate any function arbitrarily 

well (Demuth and Beale, 2002). For the NNs created in this study, tan-sigmoid transfer 

function was employed in the hidden layers as it is generally known to be more suitable for 

multi-layer networks developed for non-linear applications than log-sigmoid function that 

generates outputs between 0 and 1 (Demuth and Beale, 2002). On the other hand, linear 
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transfer function was adopted in the output layer; its suitability was also reiterated by the trial 

and error experiments conducted. 

Data normalisation 

By performing certain pre-processing steps on the network inputs and targets, NN training 

can be made more efficient, commonly referred to as normalisation. As upper and lower 

bounds of the tan-sigmoid function output are +1 and -1, respectively, inputs and targets in 

the database were normalised so that they fall in the interval [-1, 1]. The network output is 

then reverse transformed back into the units of the original target data when the created 

network is simulated. Most of the network creation functions in the NN toolbox of Matlab 

automatically assign pre and post processing functions to the network inputs and targets. 

Initial weights and biases were randomly assigned by the NN toolbox of Matlab. The 

maximum number of iterations (epochs) was set at 1000. In the training process of the multi-

layer feed-forward NNs developed, the error between the prediction of the output layer and 

experimental shear strength was then back propagated from the output layer to the input 

layer in which the connection weights and biases were adjusted. The training process was 

repeated until the maximum epochs were reached, the SSE converged or the performance 

gradient fell below a minimum value. However, the SSE converged in most trials. 

NN training and testing 

Of the 87 specimens (refined database), 80% (70 specimens) of data was assigned to 

training and 20% (17 specimens) to testing as given in Table A.1. The distribution of each 

parameter across its range in the training subset is manually examined to ensure that it 

covers a good spread within the range considered. At early stages of trial and error network 

creation and testing, data corresponding to a high error for the test set were moved into the 

training set and replaced in the test set with another random combination to achieve better 

results and learning. 

Comparisons of NN predictions and experimental shear capacities 

A total of 10 different NNs with different architectures were created and tested i.e. networks 

with varying number of hidden layers and corresponding neurons as listed in Table 3. Each 

created network weights and biases were randomly reinitialised nine times thus the results 

shown are the most favourable of the ten trials for each NN architecture. SSE defined in Eq. 

(4) was used to monitor the network performance. For each NN four statistical observations; 

mean, standard deviation, COV% and MAE% of Vexp / Vpred are used to assess predicted to 

those experimentally observed shear capacities for all specimens as presented in Table 3. 

Although the mean and standard deviation of the ratio of predicted and measured shear 

capacities of FRP reinforced concrete members presented in Table 3 by different NN 
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architectures were similar, the 6×12×1 NN was finally selected for predicting shear capacity 

of FRP reinforced concrete members. In addition, over-fitting seldom occurred in the 6×12×1 

network due to their simpler architecture and better prediction especially for the testing data 

set compared with NNs having more neurons or hidden layers. Figure 5 compares the 

6×12×1 network prediction and experimental results. It indicates generalisation and good 

modelling of the problem with low scatter around the diagonal line showing consistency and 

efficiency. 

The fact that the somewhat limited training set of 70 specimens was successful for 

developing networks which provide accurate predictions of shear capacity suggests that the 

problem is not heavily non-linear. This is also reiterated by the fact that the problem can be 

modelled reasonably well with a single hidden layer and a relatively small number of 

corresponding neurons. 

Comparing the predictions from the 6×12×1 NN and existing shear design methods 

presented above for the specimens in the database, the following observations can be made: 

 The NN has a mean value closer to 1, indicating its superior average accuracy as 

compared to the design methods. 

 The NN standard deviation, COV% and MAE% are far much lower than those of the 

three design methods. Graphically the NN also shows more favourable results. The 

data points are less scattered and closer to the diagonal line indicating that the NN 

predictions are more accurate and consistent at predicting shear resistance. 

Parametric analysis using developed NN 

The trained 6x12x1 NN is used to analyse the influence of the main parameters on shear 

capacity of FRP reinforced concrete members. This has been done via two avenues; firstly 

the Garson index (Garson, 1991) which identifies the relative importance of each parameter 

based on the created NN weightings at node points and secondly by using the created 

network to simulate indicative results for the influencing parameters. 

Garson index of trained NN 

The Garson index (Garson, 1991) has been used to identify the relative importance of all 

input parameters with respect to the shear resistance as the output parameter via operations 

between the weight matrices generated in two successive layers of the trained NN. For a NN 

with one hidden layer the Garson index is determined from the following formula: 
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                                                        𝐺𝑖𝑘 =  
∑   

|𝑊𝑖𝑗||𝑉𝑗𝑘|

∑ |𝑊𝑖𝑗|𝐼
𝑖=1

𝐽
𝑗=1

∑ ∑   
|𝑊𝑖𝑗||𝑉𝑗𝑘|

∑ |𝑊𝑖𝑗|𝐼
𝑖=1

𝐽
𝑗=1

𝐼
𝑖=1

  (5) 

where 𝐺𝑖𝑘 indicates the connectivity strength between the ith parameter of the input layer and 

the kth prediction of the output layer; |𝑊𝑖𝑗| is the weight matrix linking the I neurons of the 

input layer with the J neurons of the intermediate hidden layer, |𝑉𝑗𝑘| represents the weight 

matrix linking the J neurons of the intermediate hidden layer with the K neurons of the output 

layer, as shown in Figure 4. 

Table 4 gives the Garson index values for the six input parameters considered in the final NN 

configuration (6x12x1). It is clear that all parameters have a high relative importance which 

demonstrates their usage as input parameters for the NNs and shear design methods. 𝜌f and 

Ef have a relatively large weighting, shortly followed by d, then bw and then 𝑓𝑐
′. The lowest 

relative importance is that of a/d, approximately half that of d, 𝜌f and Ef. This may be 

attributed to the range of a/d in the refined database used to train and test NNs. The 

literature shows that a/d has a large effect for deeper beams (0<a/d<2.5) than it does for 

slender beams (2.5<a/d<6.5) similar to those in the refined database. 

Parametric Analysis 

The developed 6x12x1 network is employed to examine the effect of the main input 

parameters on shear capacity. The ranges of the inputs have shown that there are parts 

which are covered by a limited amount of specimens, if any, mainly due to the fact that many 

tests have not been conducted so as to have ranges which are fully and thoroughly covered 

as presented in Table 1. Therefore only parts of the ranges which are appropriately covered 

are considered in this parametric study to give reliable trend in the confidence that the NN 

has generalised for those parts accordingly. The values, at which various parameters were 

kept constant when other parameters were being changed in the analysis, are: d=300mm; 

bw=200mm; a/d=3.5; 𝑓𝑐
′=40MPa; pf =1.5% and Ef =40 GPa. These values have been chosen 

as they are not at the extremes of the whole range for each parameter and also as they 

occur within the band for which there is a high frequency. 

Effect of shear span to depth ratio 

The influence of the shear span to depth ratio a/d is presented in Figure 6. It is clear that as 

a/d increases, shear capacity decreases. This is in accordance with the known effect of a/d 

on reinforced concrete shear capacity indicating that the NN has modelled the problem 

adequately. Interestingly some shear design methods don’t consider a/d to be a notable 

influencing parameter. 
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Effect of longitudinal reinforcement ratio 

Figure 7 shows that Vc increases with increasing longitudinal FRP reinforcement ratio 𝜌f, 

which is general knowledge in the field. The NN indicates that Vc is linearly proportional to 𝜌f, 

disputing the assumptions made by some of the shear design methods that it is proportional 

to 𝜌f
1/2 or 𝜌f

1/3. Surprisingly some design methods (ISIS, 2007) don’t even consider 𝜌f to be a 

notable influencing parameter. 

Effect of elastic modulus 

The influence of FRP elastic modulus Ef is presented in Figures 8. This figure has been 

produced for the commercially available ranges of Ef (=30 to 50 and 110 to 140 GPa) and 

consequently used in NN training. However, as future shear test data become available in 

the Ef range between 60 and 110 GPa, the NN will be re-trained to cover the entire Ef range 

between 20 and 140 GPa. The figure shows that for smaller Ef values (30 to 50 GPa), Vc 

increases with increasing Ef and that Vc is nearly linearly proportional to Ef. For higher Ef 

values (110 to 140 GPa), the effect of increasing Ef has a much smaller influence on Vc, if 

any, and Vc is far much less from linearly proportional to Ef. None of the empirically 

developed shear design methods presented in the literature takes this dual effect into 

account; the formulas are the same regardless of whether high modulus CFRP or lower 

modulus GFRP or AFRP bars are used as flexural tensile reinforcement. 

Effect of concrete compressive strength 

The effect of increasing concrete compressive strength 𝑓𝑐
′ is to increase Vc (see Figure 9) as 

is common knowledge in the field. The developed network predicts that the shear capacity Vc 

is nearly linearly proportional to 𝑓𝑐
′. It also predicts that Vc is more linearly proportional to 𝑓𝑐

′ 

than √𝑓𝑐
′ (Figure 9(b)) as is assumed by some shear design methods in the literature. 

However, the difference between the two is rather small and so it is reasonable as to why 

some design methods consider one over the other. 

Conclusions 

Based on the above investigation, the following conclusions may be drawn: 

 The ACI-440.1R-06 and ISIS-M03-07 were not accurate at predicting shear capacity 

and had a large dispersion of data about the mean. However, CNR DT 203/2006 

design method showed reasonable accuracy and scatter in calculating shear 

resistance. 
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 The shear capacity of FRP reinforced concrete members is not heavily non-linear as 

it can be modelled reasonably well with a single hidden layer and small number of 

corresponding neurons e.g. 6x3x1 network. In addition, NN training was successfully 

achieved using a limited training set of 70 specimens. 

 Statistically and graphically the NN proved to be considerably more accurate than the 

three existing design methods with its better mean and proved to be more consistent 

with its lower standard deviation and graphical scatter, at predicting the shear 

capacity of FRP reinforced concrete members. 

 The Garson indices calculated for the developed NN clearly showed that all 

parameters considered have a high relative importance demonstrating their usage as 

input parameters for the NN. For the parameter ranges used to develop NNs, FRP 

reinforcement amount and modulus of elasticity have the highest weighting shortly 

followed by the beam depth, then width and then concrete compressive strength. The 

shear span to depth ratio has the lowest relative importance for the range (2.49–6.49) 

studied. 

 The trained NN predicted that the shear capacity is: 

o linearly proportional to the FRP reinforcement ratio, 𝜌f, disputing the 

assumptions made by some of the shear design methods that it is proportional 

to 𝜌f
1/2 or 𝜌f

1/3. 

o more linearly proportional to the concrete compressive strength, 𝑓𝑐
′, than √𝑓𝑐

′ 

as is assumed by some shear design methods, however the difference is 

rather small and so it is reasonable as to why some design methods consider 

one over the other. 

o nearly linearly proportional to Ef  for smaller FRP modulus of elasticity values 

(Ef = 30-50 GPa). However, for higher Ef values (110–140 GPa), the effect of 

increasing Ef  has a much smaller influence on shear capacity, if any. None of 

the shear design methods take this dual effect into account. 

 The developed network is trained to generalise well within the range of inputs 

considered. However, it does not have the ability to accurately extrapolate beyond 

this range and isn’t flexible enough for engineering design where a design model 

consisting of simple equations would be more suitable but less accurate. 
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Appendix A 

Table A.1 –  Refined experimental database of 87 specimens and shear strength predictions 

Source 
Specimen 

No. 
bw 

(mm) 
d 

(mm) 
a/d 

f'c 

(MPa) 
ρf 

(%) 
Ef 

(GPa) 
Vexp 
(kN) 

Vexp / Vpred 

ACI 440.1R-
06 (2006) 

CNR DT 
203/2006 

(2006) 

ISIS-M03-
07 (2007) 

6x12x1 NN 

El-Sayed et 
al. (2005) 

1 1000 165.3 6.0 40.0 0.39 114 140 2.11 0.72 0.89 0.97 

2 1000 165.3 6.0 40.0 0.78 114 167 1.84 0.77 1.06 1.01 

3* 1000 160.5 6.2 40.0 1.18 114 190 1.81 0.82 1.24 1.05 

4 1000 162.1 6.2 40.0 0.86 40 113 1.95 0.88 1.23 0.99 

5 1000 159 6.3 40.0 1.70 40 142 1.84 0.92 1.58 1.03 

6* 1000 162.1 6.2 40.0 1.71 40 163 2.06 1.04 1.78 1.15 

7 1000 159 6.3 40.0 2.44 40 163 1.80 0.92 1.81 0.98 

8 1000 154.1 6.5 40.0 2.63 40 168 1.85 0.94 1.93 1.00 

El-Sayed et 
al. (2006b) 

9 250 326 3.1 50.0 0.87 128 77.5 1.48 0.68 0.86 0.73 

10 250 326 3.1 50.0 0.87 39 70.5 2.30 1.07 1.41 1.19 

11* 250 326 3.1 44.6 1.24 134 104 1.73 0.89 1.19 0.90 

12 250 326 3.1 44.6 1.22 42 60 1.67 0.87 1.23 0.81 

13* 250 326 3.1 43.6 1.72 134 124.5 1.82 0.98 1.44 0.98 

14 250 326 3.1 43.6 1.71 42 77.5 1.86 1.02 1.60 0.89 

El-Sayed et 
al. (2006a) 

15 250 326 3.1 63.0 1.71 135 130 1.70 0.86 1.25 0.94 

16 250 326 3.1 63.0 1.71 42 87 1.89 0.96 1.50 0.98 

17 250 326 3.1 63.0 2.2 135 174 2.05 1.04 1.67 1.07 

18 250 326 3.1 63.0 2.2 42 115.5 2.24 1.16 1.99 1.08 

Razaqpur 
et al. 
(2004) 

19 200 225 2.7 40.5 0.25 145 36.1 2.19 0.72 0.74 0.82 

20 200 225 2.7 49.0 0.5 145 47 1.97 0.77 0.88 1.02 

21* 200 225 2.7 40.5 0.63 145 47.2 1.89 0.85 0.97 1.06 

22 200 225 2.7 40.5 0.88 145 42.7 1.48 0.72 0.88 0.90 

23 200 225 3.6 40.5 0.5 145 49.7 2.20 0.93 1.02 1.11 



 

18 
 

24 200 225 4.2 40.5 0.5 145 38.5 1.70 0.72 0.79 0.86 

Gross et al. 
(2004) 

25-27‡ 127 143 6.4 60.3 0.33 139 13.97 1.69 0.52 0.59 0.96 

28-30** 159 141 6.5 61.8 0.58 139 19.97 1.51 0.55 0.68 1.12 

31-33** 89 143 6.4 81.4 0.47 139 9.8 1.33 0.45 0.51 1.01 

34-36** 121 141 6.5 81.4 0.76 139 15.4 1.25 0.48 0.60 0.90 

Tarik and 
Newhook 
(2003) 

37-38** 160 346 2.8 37.3 0.72 42 59.1 3.24 1.64 1.97 1.20 

39-40‡ 160 346 3.3 43.2 1.1 42 44.1 1.91 1.01 1.37 0.79 

41-42** 160 325 3.5 34.1 1.54 42 46.8 1.98 1.18 1.71 0.90 

43-44** 130 310 3.1 37.3 0.72 120 47.5 2.22 1.05 1.26 0.79 

45-46** 130 310 3.7 43.2 1.1 120 50.15 1.87 0.91 1.23 0.79 

47-48** 130 310 3.7 34.1 1.54 120 57.1 1.98 1.10 1.58 1.05 

Gross et al. 
(2003) 

49-51‡ 203 225 4.1 79.6 1.25 40.3 38.03 1.63 0.72 1.04 1.13 

52-54** 152 225 4.1 79.6 1.66 40.3 32.5 1.63 0.75 1.19 1.10 

55-57** 165 224 4.1 79.6 2.1 40.3 35.77 1.49 0.70 1.21 0.99 

58-60** 203 224 4.1 79.6 2.56 40.3 46.4 1.44 0.68 1.27 0.93 

Tureyen 
and Frosch 
(2002) 

61 457 360 3.4 39.7 0.96 40.5 108.1 1.74 0.94 1.21 1.03 

62 457 360 3.4 39.7 0.96 37.6 94.7 1.58 0.85 1.10 0.94 

63 457 360 3.4 40.3 0.96 47.1 114.8 1.72 0.91 1.18 1.01 

64 457 360 3.4 42.3 1.92 40.5 137 1.59 0.92 1.49 0.91 

65* 457 360 3.4 42.5 1.92 37.6 152.6 1.83 1.05 1.72 1.05 

66 457 360 3.4 42.6 1.92 47.1 177 1.92 1.09 1.78 1.10 

Yost et al. 
(2001) 

67-69** 229 225 4.1 36.3 1.11 40.3 38.1 1.89 0.97 1.37 1.01 

70-72** 178 225 4.1 36.3 1.42 40.3 31.73 1.81 0.97 1.46 1.08 

73-75** 229 225 4.1 36.3 1.66 40.3 44.43 1.83 1.00 1.59 1.08 

76-78** 279 225 4.1 36.3 1.81 40.3 45.27 1.48 0.81 1.33 0.84 

79-81‡ 254 224 4.1 36.3 2.05 40.3 45.1 1.54 0.85 1.47 0.90 

82-84** 229 224 4.1 36.3 2.27 40.3 42.2 1.52 0.84 1.52 0.91 

Alkhrdaji et 
al. (2001) 

85 178 279 2.7 24.1 2.3 40 53.4 2.23 1.51 2.45 0.94 

86 178 287 2.6 24.1 0.77 40 36.1 2.39 1.40 1.61 1.01 

87* 178 287 2.6 24.1 1.34 40 40.1 2.07 1.35 1.79 0.95 
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Deitz et al. 
(1999) 

88 305 157.5 4.5 28.6 0.73 40 26.8 1.85 0.91 1.17 0.81 

89 305 157.5 5.8 30.1 0.73 40 28.3 1.92 0.93 1.20 1.03 

90 305 157.5 5.8 27.0 0.73 40 29.2 2.04 1.03 1.31 1.03 

91* 305 157.5 5.8 28.2 0.73 40 28.5 1.97 0.97 1.25 1.02 

92 305 157.5 5.8 30.8 0.73 40 27.6 1.86 0.89 1.16 1.01 

Mizkuwa et 
al. (1997) 

93 200 260 2.7 34.7 1.3 130 62.2 1.73 0.93 1.26 1.01 

Duranovic 
et al. 
(1997) 

94 150 210 3.7 32.9 1.31 45 22 1.62 0.88 1.28 0.96 

95* 150 210 3.7 38.1 1.31 45 26.5 1.87 0.96 1.44 1.09 

Swamy and 
Aburawi 
(1997) 

96 254 222 3.2 39.0 1.55 34 19.5 0.80 0.43 0.67 0.43 

Zhao et al. 
(1995) 

97* 150 250 3.0 34.3 1.51 105 45 1.79 0.94 1.41 1.11 

98 150 250 3.0 34.3 3.02 105 46 1.38 0.72 1.45 0.89 

99 150 250 3.0 34.3 2.27 105 40.5 1.36 0.73 1.27 0.92 

Lubell et al. 
(2004) 

100 450 970 3.1 40.0 0.46 40 136 1.17 0.63 0.83 0.97 

Ashour 
(2005) 

101 150 171 3.9 34.0 0.45 38 12.5 1.98 0.79 0.96 1.10 

102 150 218 3.1 34.0 0.71 32 17.5 1.90 0.91 1.15 1.20 

103 150 268 2.5 34.0 0.86 32 25 2.02 1.06 1.33 0.95 

104 150 168 4.0 59.0 1.39 32 17.5 1.56 0.70 1.13 1.89 

105* 150 218 3.1 59.0 1.06 32 27.5 2.14 0.95 1.37 1.38 

106 150 268 2.5 59.0 1.15 32 30 1.83 0.86 1.21 0.91 

Tottori and 
Wakui 
(1993) 

107-108** 200 325 3.2 44.6 0.7 137 110.5 2.91 1.36 1.57 1.27 

109 200 325 3.2 45.0 0.7 137 118 3.10 1.45 1.67 1.35 

110-112** 200 325 3.2 46.9 0.9 192 106 2.14 1.20 1.24 0.99 

113-115** 200 325 3.2 46.9 0.9 58 87 2.97 1.41 1.85 1.22 

Nagasaka 
et al. 
(1993) 

116 250 265 3.1 34.1 1.9 56 113 3.01 1.72 2.76 1.47 

117* 250 265 3.1 22.9 1.9 56 83 2.48 1.64 2.47 1.17 

Nakamura 118 300 150 4.0 22.7 1.3 29 33 2.30 1.41 2.02 1.15 
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and Higai 
(1995) 

119 300 150 4.0 27.8 1.8 29 36 2.05 1.20 1.99 1.10 

Matta et al. 
(2008) 

120 457 883 3.1 29.5 0.59 40.7 154.1 1.37 0.90 1.13 0.98 

121 457 880 3.1 29.5 1.18 40.7 220.7 1.43 1.12 1.62 1.02 

122 456 880 3.1 30.7 1.18 41.4 216.2 1.38 1.06 1.55 1.00 

123 114 294 3.1 59.7 0.59 40.8 15.2 1.35 0.54 0.65 0.60 

124-125** 114 294 3.1 32.1 0.59 40.8 18.7 1.96 0.96 1.09 0.71 

126* 229 147 3.1 59.7 0.59 40.8 28.6 2.53 0.91 1.22 1.50 

127-128** 229 147 3.1 32.1 0.59 40.8 31.55 3.29 1.44 1.83 1.32 

Note: * Specimens used for training. 
** Specimens having the same geometrical and material properties. 
‡ Specimens used for training and having the same geometrical and material properties. 

 



 

21 
 

 

Table 1 – Distribution of geometrical and mechanical properties of the 87 test specimens 

Web width bw 
Effective depth d 

Concrete 
compressive 

strength '

cf  

Shear span to 
depth ratio a/d 

Modulus of 

elasticity fE  

Reinforcement ratio 

f % 

Range 
(mm) 

Freq. Range 
(mm) 

Freq. Range 
(MPa) 

Freq. Range Freq. Range 
(GPa) 

Freq. Range Freq. 

80 - 100 1 100 – 200 23 20 - 30 11 2.48 - 3.0 11 20 - 50 56 0.25 -0.75 26 

100 - 200 28 200 – 300 34 30 - 40 26 3.0 - 3.5 38 50 - 80 3 0.75 - 1.25 23 

200 - 300 33 300 - 400 26 40 - 50 30 3.5 - 4.0 10 80 - 110 3 1.25 - 1.75 20 

300 - 400 7 400 - 500 0 50 - 60 6 4.0 - 4.5 11 110 - 140 18 1.75 - 2.25 11 

400 - 500 10 500 - 600 0 60 - 70 8 4.5 - 5.0 1 140- 170 6 2.25 - 2.75 6 

500 - 1000 8 600 - 1000 4 70 - 90 6 5.0 - 6.5 16 170 - 200 1 2.75 - 3.25 1 
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Table 2 – Summary of statistical results for shear design methods 

Design method Mean 

Standard 

deviation COV % MAE % 

ACI 440.1R-06 (2006) 1.894 0.443 23.37 44.95 

CNR DT 203/2006 (2006) 0.954 0.261 27.41 24.28 

ISIS-M03-07 (2007) 1.353 0.416 30.77 30.11 

 

Table 3 – Statistical results for 10 NNs created 

NN architecture* Mean 
Standard 

deviation 
COV% MAE% 

6x3x1 1.032 0.240 23.24 15.33 

6x6x1 1.021 0.200 19.61 13.11 

6x10x1 1.020 0.211 20.68 13.87 

6x12x1 1.018 0.189 18.57 12.83 

6x15x1 1.020 0.182 17.82 13.03 

6x21x1 1.024 0.216 21.09 14.02 

6x3x3x1 1.023 0.216 21.16 15.17 

6x3x5x1 1.022 0.214 20.90 14.96 

6x5x5x1 1.012 0.190 18.75 14.29 

6x6x1x1 1.019 0.179 17.60 13.14 

* The first and last numbers indicate the numbers of neurons in 

input and output layers, respectively, and the others refer to the 

number of neurons in hidden layers. 

 

Table 4 - Garson index values for NN input parameters 

Input parameter d bw a/d f’c 𝜌f Ef 

Garson index (relative importance) 0.1833 0.1618 0.0965 0.1418 0.2006 0.2160 
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Figure 1 – ACI 440.1R-06 (2007) predicted vs. experimental shear capacities. 
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Figure 2 – CNR DT 203/2006 (2006) predicted vs. experimental shear capacities. 
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Figure 3 – ISIS-M03-07 (2007) predicted vs. experimental shear capacities. 
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Figure 4 - Architecture of 6x12x1 network. 

 

 

p
1

p
2

p
3

p
4

p
5

p
6









b
1,1

b
1,2

b
1,11

b
1,12

W
1,1

W
12,6

= d

= b

= a/d

w

= Ef

f

= fc
'

=

n
1,1

n
1,2

n
1,11

n
1,12

y
1,1

y
1,2

y
1,11

y
1,12



b
2,1

V
1,1

V
1,12

n
2,1

V
pred

p
1

p
2

p
3

p
4

p
5

p
6









b
1,1

b
1,2

b
1,11

b
1,12

W
1,1

W
12,6

= d

= b

= a/d

w

= Ef


f

= fc
'

=

n
1,1

n
1,2

n
1,11

n
1,12

y
1,1

y
1,2

y
1,11

y
1,12



b
2,1

V
1,1

V
1,12

n
2,1

V
pred



 

27 
 

 

 

Figure 5 – 6x12x1 network predicted vs. experimental shear capacities. 
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Figure 6 – Shear span to depth ratio, a/d, effect on shear capacity. 
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Figure 7 – FRP reinforcement ratio, 𝜌𝑓, effect on shear capacity. 
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Figure 8– FRP elastic modulus, Ef, effect on shear capacity. 
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Figure 9(a) - 𝑓𝑐
′  effect on shear capacity 
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Figure 9(b) – √𝑓𝑐
′ effect on shear capacity 
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